import subprocess as sp import vmd class Simulate: def __init__(self, job, namdbin, params): self.prepare(job) self.run_namd(job, namdbin, params) def prepare(self, job): if job.next_stage == '1-min': self.min1(job) if job.next_stage == '2-min': self.min2(job) if job.next_stage == '3-heat': self.heat(job) if job.next_stage == '4-sim': self.sim(job) def run_namd(self, job, namdbin, params): cmd = f'{namdbin} {params} {job.conf} > {job.out}' print(f'Running: {cmd}') p1 = sp.run(cmd, shell=True) def min1(self, job): steps = 15000 with open(job.conf, 'w') as conf: conf.write('# Input\n') conf.write(f'structure {job.psf}\n') conf.write(f'coordinates {job.pdb}\n') conf.write('paraTypeCharmm on\n') for ff in job.ffs: conf.write(f'parameters {ff}\n') conf.write('\n') conf.write('# Temperature\n') conf.write('temperature 0\n') conf.write('\n') conf.write('# Force-Field Parameters\n') conf.write('exclude scaled1-4\n') conf.write('1-4scaling 1.0\n') conf.write('cutoff 12.\n') conf.write('switching on\n') conf.write('switchdist 10.\n') conf.write('pairlistdist 14\n') conf.write('\n') conf.write('# Integrator Parameters\n') conf.write('timestep 1.0 ;# 1fs/step\n') conf.write('nonbondedFreq 1\n') conf.write('fullElectFrequency 2\n') conf.write('stepspercycle 10\n') conf.write('\n') conf.write('# Output\n') conf.write(f'outputName {job.name}_{job.next_stage}_{steps}\n') conf.write('outputEnergies 100\n') conf.write('outputPressure 100\n') conf.write('\n') conf.write('# Run\n') conf.write(f'minimize {steps}') def min2(self, job): #self.solv_ion(job) cbvx, cbvy, cbvz, corx, cory, corz = self.calc_pcell(job) steps = 15000 with open(job.conf, 'w') as conf: conf.write('# Input\n') conf.write(f'structure {job.psf}\n') conf.write(f'coordinates {job.pdb}\n') conf.write('paraTypeCharmm on\n') for ff in job.ffs: conf.write(f'parameters {ff}\n') conf.write('\n') conf.write('# Temperature\n') conf.write('temperature 0\n') conf.write('\n') conf.write('# Periodic Boundary Conditions\n') conf.write('wrapWater on\n') conf.write('wrapAll on\n') conf.write(f'cellOrigin\t{corx}\t{cory}\t{corz}\n') conf.write(f'cellBasisVector1\t{cbvx}\t0.0\t0.0\n') conf.write(f'cellBasisVector2\t0.0\t{cbvy}\t0.0\n') conf.write(f'cellBasisVector3\t0.0\t0.0\t{cbvz}\n') conf.write('\n') conf.write('# Force-Field Parameters\n') conf.write('exclude scaled1-4\n') conf.write('1-4scaling 1.0\n') conf.write('cutoff 12.\n') conf.write('switching on\n') conf.write('switchdist 10.\n') conf.write('pairlistdist 14\n') conf.write('\n') conf.write('# Integrator Parameters\n') conf.write('timestep 1.0 ;# 1fs/step\n') conf.write('nonbondedFreq 1\n') conf.write('fullElectFrequency 2\n') conf.write('stepspercycle 10\n') conf.write('\n') conf.write('# Output\n') conf.write(f'outputName {job.name}_{job.next_stage}_{steps}\n') conf.write('outputEnergies 100\n') conf.write('outputPressure 100\n') conf.write('\n') conf.write('# Run\n') conf.write(f'minimize {steps}') def heat(self, job): temp_reinit_steps = 100 steps = 10000 final_steps = 30 * temp_reinit_steps + steps cbvx, cbvy, cbvz, corx, cory, corz = self.calc_pcell(job) with open(job.conf, 'w') as conf: conf.write('# Input\n') conf.write(f'structure {job.psf}\n') conf.write(f'coordinates {job.pdb}\n') conf.write(f'bincoordinates {job.coor}\n') conf.write('paraTypeCharmm on\n') for ff in job.ffs: conf.write(f'parameters {ff}\n') conf.write('\n') conf.write('# Temperature\n') conf.write('temperature 0\n') conf.write('\n') conf.write('# Periodic Boundary Conditions\n') conf.write('wrapWater on\n') conf.write('wrapAll on\n') conf.write(f'cellOrigin\t{corx}\t{cory}\t{corz}\n') conf.write(f'cellBasisVector1\t{cbvx}\t0.0\t0.0\n') conf.write(f'cellBasisVector2\t0.0\t{cbvy}\t0.0\n') conf.write(f'cellBasisVector3\t0.0\t0.0\t{cbvz}\n') conf.write('# Force-Field Parameters\n') conf.write('exclude scaled1-4\n') conf.write('1-4scaling 1.0\n') conf.write('cutoff 12.\n') conf.write('switching on\n') conf.write('switchdist 10.\n') conf.write('pairlistdist 14\n') conf.write('\n') conf.write('# Full Electrostatics\n') conf.write('PME on\n') conf.write('PMEGridSpacing 1.0\n') conf.write('\n') conf.write('# Integrator Parameters\n') conf.write('timestep 1.0 ;# 1fs/step\n') conf.write('nonbondedFreq 1\n') conf.write('fullElectFrequency 2\n') conf.write('stepspercycle 10\n') conf.write('\n') conf.write('# Output\n') conf.write(f'outputName {job.name}_{job.next_stage}_{final_steps}\n') conf.write('outputEnergies 100\n') conf.write('outputPressure 100\n') conf.write('dcdfreq 1000\n') conf.write('\n') conf.write('# Constant Temperature Control\n') conf.write('langevin on ;# do langevin dynamics\n') conf.write('langevinDamping 0.5 ;# damping coefficient (gamma) of 0.5/ps\n') conf.write('langevinTemp 310\n') conf.write('langevinHydrogen yes ;# couple langevin bath to hydrogens\n') conf.write('\n') conf.write('# Constant Pressure Control\n') conf.write('useGroupPressure no ;# needed for 2fs steps\n') conf.write('useFlexibleCell yes ;# no for water box, yes for membrane\n') conf.write('useConstantRatio yes ;# no for water box, yes for membrane\n') conf.write('langevinPiston on\n') conf.write('langevinPistonTarget 1.01325 ;# in bar -> 1 atm\n') conf.write('langevinPistonPeriod 100.\n') conf.write('langevinPistonDecay 50.\n') conf.write('langevinPistonTemp 310\n') conf.write('\n') conf.write('# Run equilibration\n') conf.write(f'set freq {temp_reinit_steps}\n') conf.write('for {set i 10} {$i <= 310} {incr i 10} {\n') conf.write('reinitvels $i\n') conf.write('langevinTemp $i\n') conf.write('run $freq\n') conf.write('}\n') conf.write('# Run stabilization\n') conf.write(f'run {steps}') def sim(self, job): cbvx, cbvy, cbvz, corx, cory, corz = self.calc_pcell(job) with open(job.conf, 'w') as conf: conf.write('# Input\n') conf.write(f'structure {job.psf}\n') conf.write(f'coordinates {job.pdb}\n') conf.write(f'bincoordinates {job.coor}\n') conf.write('paraTypeCharmm on\n') for ff in job.ffs: conf.write(f'parameters {ff}\n') conf.write('\n') conf.write('# Temperature\n') conf.write('temperature 0\n') conf.write('\n') conf.write('# Periodic Boundary Conditions\n') conf.write('wrapWater on\n') conf.write('wrapAll on\n') conf.write(f'cellOrigin\t{corx}\t{cory}\t{corz}\n') conf.write(f'cellBasisVector1\t{cbvx}\t0.0\t0.0\n') conf.write(f'cellBasisVector2\t0.0\t{cbvy}\t0.0\n') conf.write(f'cellBasisVector3\t0.0\t0.0\t{cbvz}\n') conf.write('# Force-Field Parameters\n') conf.write('exclude scaled1-4\n') conf.write('1-4scaling 1.0\n') conf.write('cutoff 12.\n') conf.write('switching on\n') conf.write('switchdist 10.\n') conf.write('pairlistdist 14\n') conf.write('\n') conf.write('# Full Electrostatics\n') conf.write('PME on\n') conf.write('PMEGridSpacing 1.0\n') conf.write('\n') conf.write('# Integrator Parameters\n') conf.write('timestep 2.0 ;# 2fs/step\n') conf.write('rigidBonds all ;# needed for 2fs steps\n') conf.write('nonbondedFreq 1\n') conf.write('fullElectFrequency 2\n') conf.write('stepspercycle 10\n') conf.write('\n') conf.write('# Output\n') conf.write(f'outputName {job.name}_{job.next_stage}_{job.next_step}\n') conf.write('outputEnergies 10000\n') conf.write('outputPressure 10000\n') conf.write('dcdfreq 10000\n') conf.write('\n') conf.write('# Constant Temperature Control\n') conf.write('langevin on ;# do langevin dynamics\n') conf.write('langevinDamping 0.5 ;# damping coefficient (gamma) of 0.5/ps\n') conf.write('langevinTemp 310\n') conf.write('langevinHydrogen no ;# couple langevin bath to hydrogens\n') conf.write('\n') conf.write('# Constant Pressure Control\n') conf.write('useGroupPressure yes ;# needed for 2fs steps\n') conf.write('useFlexibleCell yes ;# no for water box, yes for membrane\n') conf.write('useConstantRatio yes ;# no for water box, yes for membrane\n') conf.write('langevinPiston on\n') conf.write('langevinPistonTarget 1.01325 ;# in bar -> 1 atm\n') conf.write('langevinPistonPeriod 100.\n') conf.write('langevinPistonDecay 50.\n') conf.write('langevinPistonTemp 310\n') conf.write('\n') conf.write('# Run\n') conf.write(f'run {job.steps}') def del_all_mols(self): for mol in vmd.molecule.listall(): vmd.molecule.delete(mol) def solv_ion(self, job): pdb_f = f'{job.prefix}_{job.stage}.pdb' psf_f = f'{job.prefix}.psf' solv_f = f'{job.prefix}_{job.stage}_solv' solv_ion_f = f'{job.prefix}_{job.stage}_solv_ion' molid = vmd.molecule.load('psf', psf_f, 'namdbin', job.coor) vmd.molecule.write(molid, 'pdb', pdb_f) vmd.evaltcl('package require solvate') vmd.evaltcl(f'solvate {job.psf} {pdb_f} -o {solv_f} ' f'-s WT -x 13 -y 13 -z 13 +x 13 +y 13 +z 13 -b 2.4') vmd.evaltcl('package require autoionize') vmd.evaltcl(f'autoionize -psf {solv_f}.psf -pdb {solv_f}.pdb -o {solv_ion_f} ' f'-sc 0.15') self.del_all_mols() def calc_pcell(self, job): if job.next_stage == '2-min' or job.next_stage == '3-min': molid = vmd.molecule.load('psf', job.psf, 'pdb', job.pdb) else: molid = vmd.molecule.load('psf', job.psf, 'namdbin', job.coor) all = vmd.atomsel("all", molid=molid) minmax = all.minmax() center = all.center() cbvx = minmax[1][0] - minmax[0][0] cbvy = minmax[1][1] - minmax[0][1] cbvz = minmax[1][2] - minmax[0][2] corx = center[0] cory = center[1] corz = center[2] self.del_all_mols() return cbvx, cbvy, cbvz, corx, cory, corz