diff --git a/workflow/apps/r/calculate_interaction_zscores5.R b/workflow/apps/r/calculate_interaction_zscores5.R index 1fc547ec..dca58c42 100644 --- a/workflow/apps/r/calculate_interaction_zscores5.R +++ b/workflow/apps/r/calculate_interaction_zscores5.R @@ -556,13 +556,13 @@ main <- function() { df_na %>% filter(if_all(c(L), is.finite)) # Add L, r, AUC, K as needed for debugging } - # # Generate QC PDFs and HTMLs - # message("Generating QC plots") - # variables <- c("L", "K", "r", "AUC", "delta_bg") - # generate_and_save_plots(df, out_dir_qc, "Before_QC", variables, include_qc = TRUE) - # generate_and_save_plots(df_above_tolerance, out_dir_qc, "Raw_L_vs_K_above_delta_bg_threshold", variables, include_qc = TRUE) - # generate_and_save_plots(df_na_filtered, out_dir_qc, "After_QC", variables) - # generate_and_save_plots(df_no_zeros, out_dir_qc, "No_Zeros", variables) + # Generate QC PDFs and HTMLs + message("Generating QC plots") + variables <- c("L", "K", "r", "AUC", "delta_bg") + generate_and_save_plots(df, out_dir_qc, "Before_QC", variables, include_qc = TRUE) + generate_and_save_plots(df_above_tolerance, out_dir_qc, "Raw_L_vs_K_above_delta_bg_threshold", variables, include_qc = TRUE) + generate_and_save_plots(df_na_filtered, out_dir_qc, "After_QC", variables) + generate_and_save_plots(df_no_zeros, out_dir_qc, "No_Zeros", variables) rm(df, df_above_tolerance, df_no_zeros) @@ -573,15 +573,7 @@ main <- function() { write.csv(stats, file = file.path(out_dir, "SummaryStats_ALLSTRAINS.csv"), row.names = FALSE) stats_joined <- left_join(df_na, stats, by = c("conc_num", "conc_num_factor")) - # Create separate dataframes for each variable (we'll use later for plotting) - # stats_by_l <- stats_joined %>% select(starts_with("L_"), "OrfRep", "conc_num", "conc_num_factor") - # stats_by_k <- stats_joined %>% select(starts_with("K_"), "OrfRep", "conc_num", "conc_num_factor") - # stats_by_r <- stats_joined %>% select(starts_with("r_"), "OrfRep", "conc_num", "conc_num_factor") - # stats_by_auc <- stats_joined %>% select(starts_with("AUC_"), "OrfRep", "conc_num", "conc_num_factor") - # Originally this filtered L NA's - # I've removed that filtering for now since it didn't seem right but may need to add it back in later - # str(stats_by_k) # Filter data within 2SD within_2sd_k <- stats_joined %>% @@ -624,10 +616,6 @@ main <- function() { # Recalculate summary statistics for the background strain message("Calculating summary statistics for background strain") stats_bg <- calculate_summary_stats(df_bg, variables, group_vars = c("OrfRep", "Gene", "conc_num", "conc_num_factor")) - # stats_by_l_bg <- stats_bg %>% select(starts_with("L_"), "OrfRep", "Gene", "conc_num", "conc_num_factor") - # stats_by_k_bg <- stats_bg %>% select(starts_with("K_"), "OrfRep", "Gene", "conc_num", "conc_num_factor") - # stats_by_r_bg <- stats_bg %>% select(starts_with("r_"), "OrfRep", "Gene", "conc_num", "conc_num_factor") - # stats_by_auc_bg <- stats_bg %>% select(starts_with("AUC_"), "OrfRep", "Gene", "conc_num", "conc_num_factor") write.csv(stats_bg, file = file.path(out_dir, paste0("SummaryStats_BackgroundStrains_", strain, ".csv")), row.names = FALSE) @@ -649,15 +637,6 @@ main <- function() { message("Processing deletion strains") deletion_strains <- process_strains(df_deletion, l_within_2sd_k, strain) - # Deprecated - # Change OrfRep to include the reference strain, gene, and Num so each RF gets its own score - # reference_strain <- reference_strain %>% - # mutate(OrfRep = paste(OrfRep, Gene, num, sep = "_")) - # We are leaving OrfRep unchanged and using group_by(OrfRep, Gene, num) by default - # This is synonymous with the legacy OrfRep mutation - # Use group_by in functions in lieu of mutating OrfRep - # default_group_vars <- c("OrfRep", "Gene", "num") - # TODO we may need to add "num" to grouping vars # Calculate interactions