diff --git a/workflow/apps/r/calculate_interaction_zscores5.R b/workflow/apps/r/calculate_interaction_zscores5.R index 4b2424f2..08f431a4 100644 --- a/workflow/apps/r/calculate_interaction_zscores5.R +++ b/workflow/apps/r/calculate_interaction_zscores5.R @@ -306,7 +306,7 @@ calculate_bg_means <- function(df_stats_by_l, df_stats_by_k, df_stats_by_r, df_s } # Process strains (deletion and reference) -process_strains <- function(df, l_within_2sd_k, strain, output_dir) { +process_strains <- function(df, l_within_2sd_k, strain) { df_strains <- data.frame() # Initialize an empty dataframe to store results for (concentration in unique(df$conc_num)) { @@ -627,7 +627,7 @@ main <- function() { stats_by_r_bg <- stats_bg %>% select(starts_with("r_"), "OrfRep", "conc_num", "conc_num_factor") stats_by_auc_bg <- stats_bg %>% select(starts_with("AUC_"), "OrfRep", "conc_num", "conc_num_factor") write.csv(stats_bg, - file = file.path(output_dir, paste0("SummaryStats_BackgroundStrains_", strain, ".csv")), + file = file.path(out_dir, paste0("SummaryStats_BackgroundStrains_", strain, ".csv")), row.names = FALSE) stats_bg_joined <- left_join(df_bg, stats_bg, by = c("conc_num", "conc_num_factor")) @@ -666,9 +666,9 @@ main <- function() { mutate(SM = 0) message("Processing reference strain") - reference_strain <- process_strains(df_reference, l_within_2sd_k, strain, out_dir) + reference_strain <- process_strains(df_reference, l_within_2sd_k, strain) message("Processing deletion strains") - deletion_strains <- process_strains(df_deletion, l_within_2sd_k, strain, out_dir) + deletion_strains <- process_strains(df_deletion, l_within_2sd_k, strain) # Deprecated # Change OrfRep to include the reference strain, gene, and Num so each RF gets its own score