diff --git a/.gitignore b/.gitignore index e900ca98..0ea15735 100644 --- a/.gitignore +++ b/.gitignore @@ -3,3 +3,4 @@ manual.odt mwe centos-upgrade-plan.txt workflow/out/ +workflow/scans/ diff --git a/workflow/apps/r/addShiftVals.R b/workflow/apps/r/addShiftVals.R index 08a46d3f..7ae5988a 100644 --- a/workflow/apps/r/addShiftVals.R +++ b/workflow/apps/r/addShiftVals.R @@ -10,25 +10,25 @@ library(sos) args <- commandArgs(TRUE) if (length(args) >= 1) { - finalTable <- args[1] + finalTable <- file.path(args[1]) } else { finalTable <- "REMcRdy_lm_only.csv-finalTable.csv" # for legacy workflow } if (length(args) >= 2) { - shiftFile <- args[2] + shiftFile <- file.path(args[2]) } else { shiftFile <- "Shift_only.csv" # for legacy workflow } if (length(args) >= 3) { - studyInfo <- args[3] + studyInfo <- file.path(args[3]) } else { studyInfo <- "../Code/StudyInfo.csv" # for legacy workflow } if (length(args) >= 4) { - output <- args[4] + output <- file.path(args[4]) } else { output <- "REMcHeatmaps/REMcWithShift.csv" # for legacy workflow } diff --git a/workflow/apps/r/createHeatMaps.R b/workflow/apps/r/createHeatMaps.R index 32c46cc8..dcb3d4c2 100644 --- a/workflow/apps/r/createHeatMaps.R +++ b/workflow/apps/r/createHeatMaps.R @@ -171,7 +171,7 @@ for (i in 1:num_unique_clusts) { if (cluster_length != 1) { X0 <- as.matrix(cluster_data[, 4:(length(hmapfile[1, ]) - 2)]) if (cluster_length >= 2001) { - mypath <- file.path(outDir, paste("cluster_", gsub(" ", "", cluster), sep = ""), ".pdf") + mypath <- file.path(outDir, paste("cluster_", gsub(" ", "", cluster), ".pdf", sep = "")) pdf(file = mypath, height = 20, width = 15) heatmap.2( x = X0, @@ -191,7 +191,7 @@ for (i in 1:num_unique_clusts) { dev.off() } if (cluster_length >= 201 && cluster_length <= 2000) { - mypath <- file.path(outDir, paste("cluster_", gsub(" ", "", cluster), sep = ""), ".pdf") + mypath <- file.path(outDir, paste("cluster_", gsub(" ", "", cluster), ".pdf", sep = "")) pdf(file = mypath, height = 15, width = 12) heatmap.2( x = X0, @@ -210,7 +210,7 @@ for (i in 1:num_unique_clusts) { dev.off() } if (cluster_length >= 150 && cluster_length <= 200) { - mypath <- file.path(outDir, paste("cluster_", gsub(" ", "", cluster), sep = ""), ".pdf") + mypath <- file.path(outDir, paste("cluster_", gsub(" ", "", cluster), ".pdf", sep = "")) pdf(file = mypath, height = 12, width = 12) heatmap.2( x = X0, @@ -228,7 +228,7 @@ for (i in 1:num_unique_clusts) { dev.off() } if (cluster_length >= 101 && cluster_length <= 149) { - mypath <- file.path(outDir, paste("cluster_", gsub(" ", "", cluster), sep = ""), ".pdf") + mypath <- file.path(outDir, paste("cluster_", gsub(" ", "", cluster), ".pdf", sep = "")) pdf(file = mypath, mypath, height = 12, width = 12) heatmap.2( x = X0, @@ -246,7 +246,7 @@ for (i in 1:num_unique_clusts) { dev.off() } if (cluster_length >= 60 && cluster_length <= 100) { - mypath <- file.path(outDir, paste("cluster_", gsub(" ", "", cluster), sep = ""), ".pdf") + mypath <- file.path(outDir, paste("cluster_", gsub(" ", "", cluster), ".pdf", sep = "")) pdf(file = mypath, height = 12, width = 12) heatmap.2( x = X0, @@ -264,7 +264,7 @@ for (i in 1:num_unique_clusts) { dev.off() } if (cluster_length <= 59 && cluster_length >= 30) { - mypath <- file.path(outDir, paste("cluster_", gsub(" ", "", cluster), sep = ""), ".pdf") + mypath <- file.path(outDir, paste("cluster_", gsub(" ", "", cluster), ".pdf", sep = "")) pdf(file = mypath, height = 9, width = 12) heatmap.2( x = X0, @@ -282,7 +282,7 @@ for (i in 1:num_unique_clusts) { dev.off() } if (cluster_length <= 29) { - mypath <- file.path(outDir, paste("cluster_", gsub(" ", "", cluster), sep = ""), ".pdf") + mypath <- file.path(outDir, paste("cluster_", gsub(" ", "", cluster), ".pdf", sep = "")) pdf(file = mypath, height = 7, width = 12) heatmap.2( x = X0, diff --git a/workflow/apps/r/createHeatMapsHomology.R b/workflow/apps/r/createHeatMapsHomology.R index b376a22a..029f0b7e 100644 --- a/workflow/apps/r/createHeatMapsHomology.R +++ b/workflow/apps/r/createHeatMapsHomology.R @@ -8,57 +8,58 @@ library(tidyverse) args <- commandArgs(TRUE) # Need to give the input "finalTable.csv" file after running REMc generated by eclipse -inputFinalTable <- args[1] +inputFinalTable <- file.path(args[1]) # Give the DAmP_list.txt as the third argument - will color the gene names differently -DAmPs <- Args[2] -DAmP_list <- read.delim(file=DAmPs,header=F,stringsAsFactors = F) +DAmPs <- file.path(Args[2]) +DAmP_list <- read.delim(file = DAmPs, header = FALSE, stringsAsFactors = FALSE) # Give the yeast human homology mapping as the fourth argument - will add the genes to the finalTable and use info for heatmaps -mapFile <- Args[3] -mapping <- read.csv(file=mapFile,stringsAsFactors = F) +mapFile <- file.path(Args[3]) +mapping <- read.csv(file = mapFile, stringsAsFactors = FALSE) # Define the output path for the heatmaps - create this folder first - in linux terminal in the working folder use > mkdir filename_heatmaps -outputPath <- Args[4] +outputPath <- file.path(Args[4]) # Read in finalTablewithShift -hmapfile <- data.frame(read.csv(file=inputFinalTable,header=TRUE,sep=",",stringsAsFactors = FALSE)) +hmapfile <- data.frame(read.csv(file = inputFinalTable, header = TRUE, sep = ",", stringsAsFactors = FALSE)) # Map the finalTable to the human homolog file hmapfile_map <- hmapfile -# Match using OrfRep after dropping the _1 _2 _3 _4 +# Match using OrfRep after dropping the _1 _2 _3 _4 # But need to also account for some older files have ORF as column name rather than OrfRep in finalTable file -if(colnames(hmapfile_map)[2] == "OrfRep"){ +if (colnames(hmapfile_map)[2] == "OrfRep") { try(hmapfile_map$ORFMatch <- hmapfile_map$OrfRep) } -if(colnames(hmapfile_map)[2] == "ORF"){ +if (colnames(hmapfile_map)[2] == "ORF") { try(hmapfile_map$ORFMatch <- hmapfile_map$ORF) } -hmapfile_map$ORFMatch <- gsub("_1","",x=hmapfile_map$ORFMatch) -hmapfile_map$ORFMatch <- gsub("_2","",x=hmapfile_map$ORFMatch) -hmapfile_map$ORFMatch <- gsub("_3","",x=hmapfile_map$ORFMatch) -hmapfile_map$ORFMatch <- gsub("_4","",x=hmapfile_map$ORFMatch) +hmapfile_map$ORFMatch <- gsub("_1", "", x = hmapfile_map$ORFMatch) +hmapfile_map$ORFMatch <- gsub("_2", "", x = hmapfile_map$ORFMatch) +hmapfile_map$ORFMatch <- gsub("_3", "", x = hmapfile_map$ORFMatch) +hmapfile_map$ORFMatch <- gsub("_4", "", x = hmapfile_map$ORFMatch) -# Join the hmapfile using -hmapfile_w_homolog <- full_join(hmapfile_map,mapping,by=c("ORFMatch"="ensembl_gene_id")) +# Join the hmapfile using +hmapfile_w_homolog <- full_join(hmapfile_map, mapping, by = c("ORFMatch" = "ensembl_gene_id")) # Remove matches that are not from the finalTable -hmapfile_w_homolog <- hmapfile_w_homolog[is.na(hmapfile_w_homolog$likelihood) == F,] +hmapfile_w_homolog <- hmapfile_w_homolog[is.na(hmapfile_w_homolog$likelihood) == FASLE, ] # Write csv with all info from mapping file -write.csv(hmapfile_w_homolog,file=paste(outputPath,"/",inputFinalTable,"_WithHomologAll.csv",sep=""),row.names = F) +write.csv(hmapfile_w_homolog, file.path(outputPath, paste(inputFinalTable, "_WithHomologAll.csv", sep = "")), row.names = FALSE) # Remove the non matches and output another mapping file - this is also one used to make heatmaps -hmapfile_w_homolog <- hmapfile_w_homolog[is.na(hmapfile_w_homolog$external_gene_name_Human) == F,] -write.csv(hmapfile_w_homolog,file=paste(outputPath,"/",inputFinalTable,"_WithHomologMatchesOnly.csv",sep=""),row.names = F) +hmapfile_w_homolog <- hmapfile_w_homolog[is.na(hmapfile_w_homolog$external_gene_name_Human) == FALSE, ] +write.csv(hmapfile_w_homolog, file.path(outputPath, paste(inputFinalTable, "_WithHomologMatchesOnly.csv", sep = ""), row.names = FALSE)) # Add human gene name to the Gene column -hmapfile_w_homolog$Gene <- paste(hmapfile_w_homolog$Gene,hmapfile_w_homolog$external_gene_name_Human,sep="/") +hmapfile_w_homolog$Gene <- paste(hmapfile_w_homolog$Gene, hmapfile_w_homolog$external_gene_name_Human, sep = "/") # Only keep the finalTable file columns and the homology info hmap_len <- dim(hmapfile)[2] -hmapfile_w_homolog_remake <- cbind(hmapfile_w_homolog[,1:hmap_len], hsapiens_homolog_orthology_type=hmapfile_w_homolog$hsapiens_homolog_orthology_type) +hmapfile_w_homolog_remake <- + cbind(hmapfile_w_homolog[, 1:hmap_len], hsapiens_homolog_orthology_type = hmapfile_w_homolog$hsapiens_homolog_orthology_type) hmapfile <- hmapfile_w_homolog_remake # Set NAs to NA @@ -68,19 +69,20 @@ hmapfile[hmapfile == 0.001] <- NA hmapfile[hmapfile == -0.001] <- NA # Select the number of rows based on the number of genes -num_total_genes <- length(hmapfile[,1]) +num_total_genes <- length(hmapfile[, 1]) -# break out the cluster names so each part of the cluster origin can be accessed -# line below removed because it adds to many genes to clusters when going past 1-0-10 since it cannot differentiate between 1-0-1 and 1-0-10 when using grepl. -# hmapfile$cluster.origin = gsub(" ","",x=hmapfile$cluster.origin) +# Break out the cluster names so each part of the cluster origin can be accessed +# Line below removed because it adds to many genes to clusters when going past 1-0-10 +# since it cannot differentiate between 1-0-1 and 1-0-10 when using grepl. +# hmapfile$cluster.origin = gsub(" ","",x = hmapfile$cluster.origin) -hmapfile$cluster.origin = gsub(";"," ;",x=hmapfile$cluster.origin) -hmapfile$cluster.origin = strsplit(hmapfile$cluster.origin,';') +hmapfile$cluster.origin <- gsub(";", " ;", x = hmapfile$cluster.origin) +hmapfile$cluster.origin <- strsplit(hmapfile$cluster.origin, ";") # use tail(x,n) for accessing the outward most cluster clust_rounds <- 0 -for(i in 1:num_total_genes){ - if(length(hmapfile$cluster.origin[[i]]) > clust_rounds){ +for (i in 1:num_total_genes) { + if (length(hmapfile$cluster.origin[[i]]) > clust_rounds) { clust_rounds <- length(hmapfile$cluster.origin[[i]]) } } @@ -89,12 +91,13 @@ unique_clusts <- unique(hmapfile$cluster.origin[1:num_total_genes]) unique_clusts <- unique_clusts[unique_clusts != " "] #select only the unique cluster names -unique_clusts <- sort(unique(unlist(unique_clusts,use.names= FALSE)),decreasing=FALSE) +unique_clusts <- sort(unique(unlist(unique_clusts, use.names = FALSE)), decreasing = FALSE) num_unique_clusts <- length(unique_clusts) # Base the color key on a statistical analysis of the L and K data # need to create "breaks" to set the color key, need to have 12 different breaks (for 11 colors) -# scale() will calculate the mean and standard deviation of the entire vector, then "scale" each element by those values by subtracting the mean and dividing by the sd. +# scale() will calculate the mean and standard deviation of the entire vector +# then "scale" each element by those values by subtracting the mean and dividing by the sd # hmapfile[,4:(length(hmapfile[1,]) - 2)] <- scale(hmapfile[,4:(length(hmapfile[1,]) - 2)]) @@ -107,19 +110,19 @@ L_MAX <- 0 KcolumnValues <- vector() LcolumnValues <- vector() -for(i in 4:(length(hmapfile[1,]) - 3)){ - if(grepl("_Z_lm_K",colnames(hmapfile)[i],fixed=TRUE) == TRUE){ - KcolumnValues <- append(KcolumnValues,i) +for (i in 4:(length(hmapfile[1, ]) - 3)){ + if (grepl("_Z_lm_K", colnames(hmapfile)[i], fixed = TRUE) == TRUE) { + KcolumnValues <- append(KcolumnValues, i) } - if(grepl("_Z_lm_L",colnames(hmapfile)[i],fixed=TRUE) == TRUE){ - LcolumnValues <- append(LcolumnValues,i) + if (grepl("_Z_lm_L", colnames(hmapfile)[i], fixed = TRUE) == TRUE) { + LcolumnValues <- append(LcolumnValues, i) } } -# L_MAX <- quantile(hmapfile[,LcolumnValues],c(0,.01,.5,.99,1),na.rm=TRUE)[4] -# K_MIN <- quantile(hmapfile[,KcolumnValues],c(0,.01,.5,.99,1),na.rm=TRUE)[2] -# L_MAX <- quantile(hmapfile[,LcolumnValues],c(0,.01,.5,.975,1),na.rm=TRUE)[4] -# K_MIN <- quantile(hmapfile[,KcolumnValues],c(0,.025,.5,.99,1),na.rm=TRUE)[2] +# L_MAX <- quantile(hmapfile[,LcolumnValues],c(0,.01,.5,.99,1),na.rm = TRUE)[4] +# K_MIN <- quantile(hmapfile[,KcolumnValues],c(0,.01,.5,.99,1),na.rm = TRUE)[2] +# L_MAX <- quantile(hmapfile[,LcolumnValues],c(0,.01,.5,.975,1),na.rm = TRUE)[4] +# K_MIN <- quantile(hmapfile[,KcolumnValues],c(0,.025,.5,.99,1),na.rm = TRUE)[2] # Z scores are L_MAX <- 12 @@ -128,7 +131,7 @@ K_MIN <- -12 # L_Multiplier <- as.numeric(abs(K_MIN/L_MAX)) # hmapfile[,LcolumnValues] <- hmapfile[,LcolumnValues] * L_Multiplier -# if(grepl("SHIFT",colnames(hmapfile)[4],fixed=TRUE) == TRUE){ +# if(grepl("SHIFT",colnames(hmapfile)[4],fixed = TRUE) == TRUE){ # print("FOUND SHIFT VALUES") # hmapfile[,(LcolumnValues - 1)] <- hmapfile[,(LcolumnValues-1)] * L_Multiplier # } @@ -142,15 +145,19 @@ print(KEY_MIN) print(L_MAX) #print(L_Multiplier) -colormapbreaks <- c(KEY_MIN,KEY_MIN*(5/6),KEY_MIN*(4/6),KEY_MIN*(3/6),KEY_MIN*(2/6),KEY_MIN*(1/6),KEY_MAX*(1/6),KEY_MAX*(2/6),KEY_MAX*(3/6),KEY_MAX*(4/6),KEY_MAX*(5/6),KEY_MAX) -#print(colormapbreaks) +colormapbreaks <- c(KEY_MIN, KEY_MIN * (5 / 6), KEY_MIN * (4 / 6), KEY_MIN * (3 / 6), + KEY_MIN * (2 / 6), KEY_MIN * (1 / 6), KEY_MAX * (1 / 6), KEY_MAX * (2 / 6), + KEY_MAX * (3 / 6), KEY_MAX * (4 / 6), KEY_MAX * (5 / 6), KEY_MAX) +# print(colormapbreaks) # Probably should give a way to detect shift in case that is is not in the first row... (maybe just grepl for the whole column name?) -# However since also using this to amend the first part. Could possibly identify all the ones that contain the word shift and then create an object containing just those numbers -# then could just use these values and create spaces only between interaction values - possibly could get rid of redundant shift values if we don't want to view these +# However since also using this to amend the first part. +# Could possibly identify all the ones that contain the word shift and then create an object containing just those numbers +# then could just use these values and create spaces only between interaction values +# possibly could get rid of redundant shift values if we don't want to view these # could we pool all the shift data/average it? -if(grepl("Shift",colnames(hmapfile)[4],fixed=TRUE) == TRUE){ - even_columns <- seq(from= 2, to= (length(hmapfile[1,]) - 7),by=2) +if (grepl("Shift", colnames(hmapfile)[4], fixed = TRUE) == TRUE) { + even_columns <- seq(from = 2, to = (length(hmapfile[1, ]) - 7), by = 2) # ev_repeat = rep("white",length(even_columns)) # ev_repeat = rep("red",(length(hmapfile[1,]) - 5)) # middle_col <- (length(hmapfile[1,]) - 5)/2 @@ -158,8 +165,8 @@ if(grepl("Shift",colnames(hmapfile)[4],fixed=TRUE) == TRUE){ # print(ev_repeat) } -if(grepl("Shift",colnames(hmapfile)[4],fixed=TRUE) == FALSE){ - even_columns <- seq(from= 2, to= (length(hmapfile[1,]) - 7),by=1) +if (grepl("Shift", colnames(hmapfile)[4], fixed = TRUE) == FALSE) { + even_columns <- seq(from = 2, to = (length(hmapfile[1, ]) - 7), by = 1) print("NO SHIFT VALS FOUND") } @@ -167,43 +174,43 @@ if(grepl("Shift",colnames(hmapfile)[4],fixed=TRUE) == FALSE){ # even_columns <- c(2,5,7,10,12,15,17) # m <- 0 -colnames_edit <- as.character(colnames(hmapfile)[4:(length(hmapfile[1,]) - 3)]) +colnames_edit <- as.character(colnames(hmapfile)[4:(length(hmapfile[1, ]) - 3)]) colnames(DAmP_list)[1] <- "ORF" hmapfile$DAmPs <- "YKO" colnames(hmapfile)[2] <- "ORF" -try(hmapfile[hmapfile$ORF %in% DAmP_list$ORF,]$DAmPs <- "YKD") +try(hmapfile[hmapfile$ORF %in% DAmP_list$ORF, ]$DAmPs <- "YKD") # X <- X[order(X$DAmPs,decreasing = TRUE),] hmapfile$color2 <- NA -try(hmapfile[hmapfile$DAmPs == "YKO",]$color2 <- "black") -try(hmapfile[hmapfile$DAmPs == "YKD",]$color2 <- "red") +try(hmapfile[hmapfile$DAmPs == "YKO", ]$color2 <- "black") +try(hmapfile[hmapfile$DAmPs == "YKD", ]$color2 <- "red") hmapfile$color <- NA -try(hmapfile[hmapfile$hsapiens_homolog_orthology_type == "ortholog_many2many",]$color <- "#F8766D") -try(hmapfile[hmapfile$hsapiens_homolog_orthology_type == "ortholog_one2many",]$color <- "#00BA38") -try(hmapfile[hmapfile$hsapiens_homolog_orthology_type == "ortholog_one2one",]$color <- "#619CFF") +try(hmapfile[hmapfile$hsapiens_homolog_orthology_type == "ortholog_many2many", ]$color <- "#F8766D") +try(hmapfile[hmapfile$hsapiens_homolog_orthology_type == "ortholog_one2many", ]$color <- "#00BA38") +try(hmapfile[hmapfile$hsapiens_homolog_orthology_type == "ortholog_one2one", ]$color <- "#619CFF") # print(colnames_edit) -for(i in 1:length(colnames_edit)){ - if(grepl("Shift",colnames_edit[i],fixed=TRUE) == TRUE){ +for (i in 1:length(colnames_edit)) { + if (grepl("Shift", colnames_edit[i], fixed = TRUE) == TRUE) { colnames_edit[i] <- "" - colnames_edit[i+1] <- gsub(pattern = "_Z_lm_",replacement = " ",x = colnames_edit[i+1]) - try(colnames_edit[i+1] <- gsub(pattern = "_",replacement = " ",x = colnames_edit[i+1])) + colnames_edit[i + 1] <- gsub(pattern = "_Z_lm_", replacement = " ", x = colnames_edit[i + 1]) + try(colnames_edit[i + 1] <- gsub(pattern = "_", replacement = " ", x = colnames_edit[i + 1])) # INT_store <- strsplit(colnames_edit[i+1], "Z_lm") # print(length(unlist(INT_store))) # if(length(unlist(INT_store)) == 4){ - # colnames_edit[i+1] <- paste(unlist(INT_store)[1],unlist(INT_store)[2],unlist(INT_store)[3],sep=" ") + # colnames_edit[i+1] <- paste(unlist(INT_store)[1],unlist(INT_store)[2],unlist(INT_store)[3],sep = " ") # } # if(length(unlist(INT_store)) == 3){ - # - # colnames_edit[i+1] <- paste(unlist(INT_store)[1],unlist(INT_store)[2],sep=" ") + # + # colnames_edit[i+1] <- paste(unlist(INT_store)[1],unlist(INT_store)[2],sep = " ") # } # if(length(unlist(INT_store)) == 5){ - # colnames_edit[i+1] <- paste(unlist(INT_store)[1],unlist(INT_store)[2],unlist(INT_store)[3],unlist(INT_store)[4],sep=" ") + # colnames_edit[i+1] <- paste(unlist(INT_store)[1],unlist(INT_store)[2],unlist(INT_store)[3],unlist(INT_store)[4],sep = " ") # } # if(length(unlist(INT_store)) == 6){ - # colnames_edit[i+1] <- paste(unlist(INT_store)[1],unlist(INT_store)[2],unlist(INT_store)[6],sep=" ") + # colnames_edit[i+1] <- paste(unlist(INT_store)[1],unlist(INT_store)[2],unlist(INT_store)[6],sep = " ") # } } @@ -217,135 +224,142 @@ print(colnames_edit) # colnames_edit[20] <- "TEM HL L" # Create the heatmaps -for(i in 1:num_unique_clusts){ +for (i in 1:num_unique_clusts) { cluster <- unique_clusts[i] - cluster_data <- subset(hmapfile,grepl(cluster,cluster.origin)) - cluster_length <- length(cluster_data[,1]) - if(cluster_length != 1){ - X0 <- as.matrix(cluster_data[,4:(length(hmapfile[1,]) - 6)]) - if(cluster_length >= 2001){ - mypath = file.path(outputPath,paste("cluster_",gsub(" ","",cluster), ".pdf",sep="")) - pdf(file=mypath,height=20,width=15) + cluster_data <- subset(hmapfile, grepl(cluster, cluster.origin)) + cluster_length <- length(cluster_data[, 1]) + if (cluster_length != 1) { + X0 <- as.matrix(cluster_data[, 4:(length(hmapfile[1, ]) - 6)]) + if (cluster_length >= 2001) { + mypath <- file.path(outputPath, paste("cluster_", gsub(" ", "", cluster), ".pdf", sep = "")) + pdf(file = mypath, height = 20, width = 15) heatmap.2( - x=X0, - Rowv=TRUE, Colv=NA, distfun = dist, hclustfun = hclust, + x = X0, + Rowv = TRUE, Colv = NA, distfun = dist, hclustfun = hclust, dendrogram = "row", cexCol = 0.8, cexRow = 0.1, scale = "none", - breaks=colormapbreaks, symbreaks=FALSE, colsep = even_columns, sepcolor= "white", offsetCol = 0.1, - # zlim=c(-132,132), + breaks = colormapbreaks, symbreaks = FALSE, colsep = even_columns, sepcolor = "white", offsetCol = 0.1, + # zlim = c(-132,132), xlab = "Type of Media", ylab = "Gene Name", - # cellnote = round(X0,digits=0), notecex = 0.1, key=TRUE, - keysize=0.7, trace="none", density.info=c("none"), margins=c(10, 8), - na.color="red", col=brewer.pal(11,"PuOr"), - main=cluster, - # ColSideColors=ev_repeat, - labRow=as.character(cluster_data$Gene), labCol=colnames_edit, colRow=cluster_data$color2,RowSideColors=cluster_data$color) - # abline(v=0.5467,col="black") + # cellnote = round(X0,digits = 0), notecex = 0.1, key = TRUE, + keysize = 0.7, trace = "none", density.info = c("none"), margins = c(10, 8), + na.color = "red", col = brewer.pal(11, "PuOr"), + main = cluster, + # ColSideColors = ev_repeat, + labRow = as.character(cluster_data$Gene), labCol = colnames_edit, colRow = cluster_data$color2, RowSideColors = cluster_data$color + ) + # abline(v = 0.5467,col = "black") dev.off() } - if(cluster_length >= 201 && cluster_length <= 2000){ - mypath = file.path(outputPath,paste("cluster_",gsub(" ","",cluster), ".pdf",sep="")) - pdf(file=mypath,height=15,width=12) + if (cluster_length >= 201 && cluster_length <= 2000) { + mypath <- file.path(outputPath, paste("cluster_", gsub(" ", "", cluster), ".pdf", sep = "")) + pdf(file = mypath, height = 15, width = 12) heatmap.2( - x=X0, - Rowv=TRUE, Colv=NA, distfun = dist, hclustfun = hclust, + x = X0, + Rowv = TRUE, Colv = NA, distfun = dist, hclustfun = hclust, dendrogram = "row", cexCol = 0.8, cexRow = 0.1, scale = "none", - breaks=colormapbreaks, symbreaks=FALSE, colsep = even_columns, sepcolor="white", offsetCol = 0.1, - # zlim=c(-132,132), + breaks = colormapbreaks, symbreaks = FALSE, colsep = even_columns, sepcolor = "white", offsetCol = 0.1, + # zlim = c(-132,132), xlab = "Type of Media", ylab = "Gene Name", - cellnote = round(X0,digits=0), notecex = 0.1, key=TRUE, - keysize=0.7, trace="none", density.info=c("none"), margins=c(10, 8), - na.color="red", col=brewer.pal(11,"PuOr"), - main=cluster, - labRow=as.character(cluster_data$Gene), labCol=colnames_edit, colRow=cluster_data$color2,RowSideColors=cluster_data$color) - # abline(v=0.5316,col="black") + cellnote = round(X0, digits = 0), notecex = 0.1, key = TRUE, + keysize = 0.7, trace = "none", density.info = c("none"), margins = c(10, 8), + na.color = "red", col = brewer.pal(11, "PuOr"), + main = cluster, + labRow = as.character(cluster_data$Gene), labCol = colnames_edit, colRow = cluster_data$color2, RowSideColors = cluster_data$color + ) + # abline(v = 0.5316,col = "black") dev.off() } - if(cluster_length >= 150 && cluster_length <= 200){ - mypath = file.path(outputPath,paste("cluster_",gsub(" ","",cluster), ".pdf",sep="")) - pdf(file=mypath,height=12,width=12) + if (cluster_length >= 150 && cluster_length <= 200) { + mypath <- file.path(outputPath, paste("cluster_", gsub(" ", "", cluster), ".pdf", sep = "")) + pdf(file = mypath, height = 12, width = 12) heatmap.2( - x=X0, - Rowv=TRUE, Colv=NA, distfun = dist, hclustfun = hclust, + x = X0, + Rowv = TRUE, Colv = NA, distfun = dist, hclustfun = hclust, dendrogram = "row", cexCol = 0.8, cexRow = 0.1, scale = "none", - breaks=colormapbreaks, symbreaks=FALSE, colsep = even_columns, sepcolor="white", offsetCol = 0.1, - # zlim=c(-132,132), + breaks = colormapbreaks, symbreaks = FALSE, colsep = even_columns, sepcolor = "white", offsetCol = 0.1, + # zlim = c(-132,132), xlab = "Type of Media", ylab = "Gene Name", - cellnote = round(X0,digits=0), notecex = 0.2, key=TRUE, - keysize=1, trace="none", density.info=c("none"), margins=c(10, 8), - na.color="red", col=brewer.pal(11,"PuOr"), - main=cluster, - labRow=as.character(cluster_data$Gene), labCol=colnames_edit, colRow=cluster_data$color2,RowSideColors=cluster_data$color) + cellnote = round(X0, digits = 0), notecex = 0.2, key = TRUE, + keysize = 1, trace = "none", density.info = c("none"), margins = c(10, 8), + na.color = "red", col = brewer.pal(11, "PuOr"), + main = cluster, + labRow = as.character(cluster_data$Gene), labCol = colnames_edit, colRow = cluster_data$color2, RowSideColors = cluster_data$color + ) dev.off() } - if(cluster_length >= 101 && cluster_length <= 149){ - mypath = file.path(outputPath,paste("cluster_",gsub(" ","",cluster), ".pdf",sep="")) - pdf(file=mypath,mypath,height=12,width=12) + if (cluster_length >= 101 && cluster_length <= 149) { + mypath <- file.path(outputPath, paste("cluster_", gsub(" ", "", cluster), ".pdf", sep = "")) + pdf(file = mypath, height = 12, width = 12) heatmap.2( - x=X0, - Rowv=TRUE, Colv=NA, distfun = dist, hclustfun = hclust, + x = X0, + Rowv = TRUE, Colv = NA, distfun = dist, hclustfun = hclust, dendrogram = "row", cexCol = 0.8, cexRow = 0.2, scale = "none", - breaks=colormapbreaks, symbreaks=FALSE, colsep = even_columns, sepcolor="white", offsetCol = 0.1, - # zlim=c(-132,132), + breaks = colormapbreaks, symbreaks = FALSE, colsep = even_columns, sepcolor = "white", offsetCol = 0.1, + # zlim = c(-132,132), xlab = "Type of Media", ylab = "Gene Name", - cellnote = round(X0,digits=0), notecex = 0.3, key=TRUE, - keysize=1, trace="none", density.info=c("none"), margins=c(10, 8), - na.color="red", col=brewer.pal(11,"PuOr"), - main=cluster, - labRow=as.character(cluster_data$Gene), labCol=colnames_edit, colRow=cluster_data$color2,RowSideColors=cluster_data$color) + cellnote = round(X0, digits = 0), notecex = 0.3, key = TRUE, + keysize = 1, trace = "none", density.info = c("none"), margins = c(10, 8), + na.color = "red", col = brewer.pal(11, "PuOr"), + main = cluster, + labRow = as.character(cluster_data$Gene), labCol = colnames_edit, colRow = cluster_data$color2, RowSideColors = cluster_data$color + ) dev.off() } - if(cluster_length >= 60 && cluster_length <= 100){ - mypath = file.path(outputPath,paste("cluster_",gsub(" ","",cluster), ".pdf",sep="")) - pdf(file=mypath,height=12,width=12) + if (cluster_length >= 60 && cluster_length <= 100) { + mypath <- file.path(outputPath, paste("cluster_", gsub(" ", "", cluster), ".pdf", sep = "")) + pdf(file = mypath, height = 12, width = 12) heatmap.2( - x=X0, - Rowv=TRUE, Colv=NA, distfun = dist, hclustfun = hclust, + x = X0, + Rowv = TRUE, Colv = NA, distfun = dist, hclustfun = hclust, dendrogram = "row", cexCol = 0.8, cexRow = 0.4, scale = "none", - breaks=colormapbreaks,symbreaks=FALSE, colsep = even_columns, sepcolor="white", offsetCol = 0.1, - #zlim=c(-132,132), + breaks = colormapbreaks, symbreaks = FALSE, colsep = even_columns, sepcolor = "white", offsetCol = 0.1, + # zlim = c(-132,132), xlab = "Type of Media", ylab = "Gene Name", - cellnote = round(X0,digits=0), notecex = 0.3, key=TRUE, - keysize=1, trace="none", density.info=c("none"), margins=c(10, 8), - na.color="red", col=brewer.pal(11,"PuOr"), - main=cluster, - labRow=as.character(cluster_data$Gene), labCol=colnames_edit, colRow=cluster_data$color2,RowSideColors=cluster_data$color) + cellnote = round(X0, digits = 0), notecex = 0.3, key = TRUE, + keysize = 1, trace = "none", density.info = c("none"), margins = c(10, 8), + na.color = "red", col = brewer.pal(11, "PuOr"), + main = cluster, + labRow = as.character(cluster_data$Gene), labCol = colnames_edit, colRow = cluster_data$color2, RowSideColors = cluster_data$color + ) dev.off() } - if(cluster_length <= 59 && cluster_length >= 30){ - mypath = file.path(outputPath,paste("cluster_",gsub(" ","",cluster), ".pdf",sep="")) - pdf(file=mypath,height=9,width=12) + if (cluster_length <= 59 && cluster_length >= 30) { + mypath <- file.path(outputPath, paste("cluster_", gsub(" ", "", cluster), ".pdf", sep = "")) + pdf(file = mypath, height = 9, width = 12) heatmap.2( - x=X0, - Rowv=TRUE, Colv=NA, distfun = dist, hclustfun = hclust, + x = X0, + Rowv = TRUE, Colv = NA, distfun = dist, hclustfun = hclust, dendrogram = "row", cexCol = 0.8, cexRow = 0.6, scale = "none", - breaks=colormapbreaks, symbreaks=FALSE, colsep = even_columns, sepcolor="white", offsetCol = 0.1, - #zlim=c(-132,132), + breaks = colormapbreaks, symbreaks = FALSE, colsep = even_columns, sepcolor = "white", offsetCol = 0.1, + # zlim = c(-132,132), xlab = "Type of Media", ylab = "Gene Name", - cellnote = round(X0,digits=0), notecex = 0.4, key=TRUE, - keysize=1, trace="none", density.info=c("none"), margins=c(10, 8), - na.color="red", col=brewer.pal(11,"PuOr"), - main=cluster, - labRow=as.character(cluster_data$Gene), labCol=colnames_edit, colRow=cluster_data$color2,RowSideColors=cluster_data$color) + cellnote = round(X0, digits = 0), notecex = 0.4, key = TRUE, + keysize = 1, trace = "none", density.info = c("none"), margins = c(10, 8), + na.color = "red", col = brewer.pal(11, "PuOr"), + main = cluster, + labRow = as.character(cluster_data$Gene), labCol = colnames_edit, colRow = cluster_data$color2, RowSideColors = cluster_data$color + ) dev.off() } - if(cluster_length <= 29){ - mypath = file.path(outputPath,paste("cluster_",gsub(" ","",cluster), ".pdf",sep="")) - pdf(file=mypath,height=7,width=12) + if (cluster_length <= 29) { + mypath <- file.path(outputPath, paste("cluster_", gsub(" ", "", cluster), ".pdf", sep = "")) + pdf(file = mypath, height = 7, width = 12) heatmap.2( - x=X0, - Rowv=TRUE, Colv=NA, + x = X0, + Rowv = TRUE, Colv = NA, distfun = dist, hclustfun = hclust, dendrogram = "row", cexCol = 0.8, cexRow = 0.9, scale = "none", - breaks=colormapbreaks, symbreaks=FALSE, colsep = even_columns, sepcolor="white", offsetCol = 0.1, - #zlim=c(-132,132), + breaks = colormapbreaks, symbreaks = FALSE, colsep = even_columns, sepcolor = "white", offsetCol = 0.1, + # zlim = c(-132,132), xlab = "Type of Media", ylab = "Gene Name", - cellnote = round(X0,digits=0), notecex = 0.4, key=TRUE, - keysize=1, trace="none", density.info=c("none"), margins=c(10, 8), - na.color="red", col=brewer.pal(11,"PuOr"), - main=cluster, - labRow=as.character(cluster_data$Gene), labCol=colnames_edit, colRow=cluster_data$color2,RowSideColors=cluster_data$color) + cellnote = round(X0, digits = 0), notecex = 0.4, key = TRUE, + keysize = 1, trace = "none", density.info = c("none"), margins = c(10, 8), + na.color = "red", col = brewer.pal(11, "PuOr"), + main = cluster, + labRow = as.character(cluster_data$Gene), labCol = colnames_edit, colRow = cluster_data$color2, RowSideColors = cluster_data$color + ) dev.off() } } - # print(paste("FINISHED", "CLUSTER",cluster,sep=" ")) + # print(paste("FINISHED", "CLUSTER",cluster,sep = " ")) }