diff --git a/qhtcp-workflow/apps/r/calculate_interaction_zscores.R b/qhtcp-workflow/apps/r/calculate_interaction_zscores.R index c0def944..7ee23e6e 100644 --- a/qhtcp-workflow/apps/r/calculate_interaction_zscores.R +++ b/qhtcp-workflow/apps/r/calculate_interaction_zscores.R @@ -1232,9 +1232,9 @@ main <- function() { ) # Generating quality control plots in parallel - # furrr::future_map(plot_configs, function(config) { - # generate_and_save_plots(config$out_dir, config$filename, config$plot_configs) - # }, .options = furrr_options(seed = TRUE)) + furrr::future_map(plot_configs, function(config) { + generate_and_save_plots(config$out_dir, config$filename, config$plot_configs) + }, .options = furrr_options(seed = TRUE)) # Process background strains bg_strains <- c("YDL227C") @@ -1259,7 +1259,7 @@ main <- function() { ss_bg <- calculate_summary_stats(df_bg, summary_vars, group_vars = c("OrfRep", "conc_num", "conc_num_factor")) summary_stats_bg <- ss_bg$summary_stats write.csv(summary_stats_bg, - file = file.path(out_dir, paste0("SummaryStats_BackgroundStrains_", strain, ".csv")), + file = file.path(out_dir, paste0("summary_stats_background_strain_", strain, ".csv")), row.names = FALSE) # Set the missing values to the highest theoretical value at each drug conc for L @@ -1449,7 +1449,7 @@ main <- function() { correlation_plot_configs <- generate_correlation_plot_configs(zscores_interactions_filtered) generate_and_save_plots( out_dir = out_dir, - filename = "Avg_Zscore_vs_lm_NA_rm", + filename = "Correlation_CPPs", plot_configs = correlation_plot_configs, grid_layout = list(ncol = 2, nrow = 2)) })