#4. GTA K Pairwise Compare #Sean's Arg convention for info only #use this Rscript to compare two results sheets from GTF analysis "Average_GOTerms_All.csv" #Arg1 is Average_GOTerms_All_1.csv #Arg2 is the name to give GTA results 1 #Arg3 is Average_GOTerms_All2.csv #Arg4 is the name to give GTA results 2 #Arg5 is the directory to put the files into #Arg 1 is the GTA results 1 #Arg 2 is the name of GTA results 1 to print in the results #Arg 3 is GTA results 3 #Arg 4 is the name of GTA results 2 to print in the results #Arg 4 is the name of GTA results 2 to print in the results #arg 5 is the directory to put the results into (and create that directory if needed) library(ggplot2) library(plotly) library(htmlwidgets) library(extrafont) library(grid) library(ggthemes) Args <- commandArgs(TRUE) expNm= Args[1] #"Exp3" expNm[2]= Args[2] #"Exp4" expNumber1<- as.numeric(sub("^.*?(\\d+)$", "\\1", expNm[1])) expNumber2<- as.numeric(sub("^.*?(\\d+)$", "\\1", expNm[2])) #labels <- read.delim("ExpLabels.txt",skip=0,as.is=T,row.names=1,strip.white=TRUE) labels <- read.delim("StudyInfo.txt",skip=0,as.is=T,row.names=1,strip.white=TRUE) Name1 <- labels[expNumber1,1] #ssArg2 These are now supplied by Code/ExpLabels.txt which is user edited Name2 <- labels[expNumber2,1] #ssArg4 Wstudy= getwd() input_file1 <- paste0("../GTAresults/",expNm[1],"/Average_GOTerms_All.csv" ) #Args[1] input_file2 <- paste0("../GTAresults/",expNm[2],"/Average_GOTerms_All.csv" ) #Args[3] pairDirL= paste0("../GTAresults/","PairwiseCompareL_",expNm[1],"-",expNm[2]) pairDirK= paste0("../GTAresults/","PairwiseCompareK_",expNm[1],"-",expNm[2]) outPathGTAcompare= "../GTAresults/PairwiseCompareL" #paste0(Wstudy,"/GTAresults/PairwiseCompareL) outPathGTAcompare[2]= "../GTAresults/PairwiseCompareK" #paste0(Wstudy,"/GTAresults/PairwiseCompareK") #dir.create(outPathGTAcompare[1]) dir.create(pairDirL) #(outPathGTAcompare[1]) dir.create(pairDirK) #(outPathGTAcompare[2]) #define the output path (as fourth argument from Rscript) outputpath <- pairDirK #outPathGTAcompare[2] #Args[5] #theme elements for plots theme_Publication <- function(base_size=14, base_family="sans") { (theme_foundation(base_size=base_size, base_family=base_family) + theme(plot.title = element_text(face = "bold", size = rel(1.2), hjust = 0.5), text = element_text(), panel.background = element_rect(colour = NA), plot.background = element_rect(colour = NA), panel.border = element_rect(colour = NA), axis.title = element_text(face = "bold",size = rel(1)), axis.title.y = element_text(angle=90,vjust =2), axis.title.x = element_text(vjust = -0.2), axis.text = element_text(), axis.line = element_line(colour="black"), axis.ticks = element_line(), panel.grid.major = element_line(colour="#f0f0f0"), panel.grid.minor = element_blank(), legend.key = element_rect(colour = NA), legend.position = "bottom", legend.direction = "horizontal", legend.key.size= unit(0.2, "cm"), legend.spacing = unit(0, "cm"), legend.title = element_text(face="italic"), plot.margin=unit(c(10,5,5,5),"mm"), strip.background=element_rect(colour="#f0f0f0",fill="#f0f0f0"), strip.text = element_text(face="bold") )) } scale_fill_Publication <- function(...){ library(scales) discrete_scale("fill","Publication",manual_pal(values = c("#386cb0","#fdb462","#7fc97f","#ef3b2c","#662506","#a6cee3","#fb9a99","#984ea3","#ffff33")), ...) } scale_colour_Publication <- function(...){ discrete_scale("colour","Publication",manual_pal(values = c("#386cb0","#fdb462","#7fc97f","#ef3b2c","#662506","#a6cee3","#fb9a99","#984ea3","#ffff33")), ...) } theme_Publication_legend_right <- function(base_size=14, base_family="sans") { (theme_foundation(base_size=base_size, base_family=base_family) + theme(plot.title = element_text(face = "bold", size = rel(1.2), hjust = 0.5), text = element_text(), panel.background = element_rect(colour = NA), plot.background = element_rect(colour = NA), panel.border = element_rect(colour = NA), axis.title = element_text(face = "bold",size = rel(1)), axis.title.y = element_text(angle=90,vjust =2), axis.title.x = element_text(vjust = -0.2), axis.text = element_text(), axis.line = element_line(colour="black"), axis.ticks = element_line(), panel.grid.major = element_line(colour="#f0f0f0"), panel.grid.minor = element_blank(), legend.key = element_rect(colour = NA), legend.position = "right", legend.direction = "vertical", legend.key.size= unit(0.5, "cm"), legend.spacing = unit(0, "cm"), legend.title = element_text(face="italic"), plot.margin=unit(c(10,5,5,5),"mm"), strip.background=element_rect(colour="#f0f0f0",fill="#f0f0f0"), strip.text = element_text(face="bold") )) } scale_fill_Publication <- function(...){ discrete_scale("fill","Publication",manual_pal(values = c("#386cb0","#fdb462","#7fc97f","#ef3b2c","#662506","#a6cee3","#fb9a99","#984ea3","#ffff33")), ...) } scale_colour_Publication <- function(...){ discrete_scale("colour","Publication",manual_pal(values = c("#386cb0","#fdb462","#7fc97f","#ef3b2c","#662506","#a6cee3","#fb9a99","#984ea3","#ffff33")), ...) } X1 <- read.csv(file = input_file1,stringsAsFactors=FALSE,header = TRUE) X2 <- read.csv(file = input_file2,stringsAsFactors=FALSE,header = TRUE) #1 X <- merge(X1,X2,by ="Term_Avg",all=TRUE,suffixes = c("_X1","_X2")) gg <- ggplot(data = X,aes(x=Z_lm_K_Avg_X1,y=Z_lm_K_Avg_X2,color=Ontology_Avg_X1,Term=Term_Avg,Genes=Genes_Avg_X1,NumGenes=NumGenes_Avg_X1,AllPossibleGenes=AllPossibleGenes_Avg_X1,SD_1=Z_lm_K_SD_X1,SD_2=Z_lm_K_SD_X2)) + xlab(paste("GO Term Avg lm Z for ",Name1,sep="")) + geom_rect(aes(xmin=-2,xmax=2,ymin=-2,ymax=2),color="grey20",size=0.25,alpha=0.1,inherit.aes = FALSE,fill=NA) + geom_point(shape=3) + ylab(paste("GO Term Avg lm Z for ",Name2,sep="")) + ggtitle(paste("Comparing Average GO Term Z lm for ",Name1," vs. ",Name2,sep = "")) + theme_Publication_legend_right() pdf(paste(getwd(),"/",outputpath,"/","Scatter_lm_GTF_Averages_",Name1,"_vs_",Name2,"_All_ByOntology.pdf",sep=""),width = 12,height = 8) gg dev.off() pgg <- ggplotly(gg) #pgg print("127") fname <- paste("Scatter_lm_GTA_Averages_",Name1,"_vs_",Name2,"_All_byOntology.html",sep="") print(fname) htmlwidgets::saveWidget(pgg, file.path(getwd(),fname)) file.rename(from = file.path(getwd(),fname), to = file.path(pairDirK,fname)) #2 #ID aggravators and alleviators, regardless of whether they meet 2SD threshold X1_Specific_Aggravators <- X[which(X$Z_lm_K_Avg_X1 >= 2 & X$Z_lm_K_Avg_X2 < 2),] X1_Specific_Alleviators <- X[which(X$Z_lm_K_Avg_X1 <= -2 & X$Z_lm_K_Avg_X2 > -2),] X2_Specific_Aggravators <- X[which(X$Z_lm_K_Avg_X2 >= 2 & X$Z_lm_K_Avg_X1 < 2),] X2_Specific_Alleviators <- X[which(X$Z_lm_K_Avg_X2 <= -2 & X$Z_lm_K_Avg_X1 > -2),] Overlap_Aggravators <- X[which(X$Z_lm_K_Avg_X1 >= 2 & X$Z_lm_K_Avg_X2 >= 2),] Overlap_Alleviators <- X[which(X$Z_lm_K_Avg_X1 <= -2 & X$Z_lm_K_Avg_X2 <= -2),] X2_Specific_Aggravators_X1_Alleviatiors <- X[which(X$Z_lm_K_Avg_X2 >= 2 & X$Z_lm_K_Avg_X1 <= -2),] X2_Specific_Alleviators_X1_Aggravators <- X[which(X$Z_lm_K_Avg_X2 <= -2 & X$Z_lm_K_Avg_X1 >= 2),] X$Overlap_Avg <- NA try(X[X$Term_Avg %in% X1_Specific_Aggravators$Term_Avg,]$Overlap_Avg <- paste(Name1,"Specific_Deletion_Suppressors",sep="_")) try(X[X$Term_Avg %in% X1_Specific_Alleviators$Term_Avg,]$Overlap_Avg <- paste(Name1,"Specific_Deletion_Enhancers",sep="_")) try(X[X$Term_Avg %in% X2_Specific_Aggravators$Term_Avg,]$Overlap_Avg <- paste(Name2,"Specific_Deletion_Suppressors",sep="_")) try(X[X$Term_Avg %in% X2_Specific_Alleviators$Term_Avg,]$Overlap_Avg <- paste(Name2,"Specific_Deletion_Enhancers",sep="_")) try(X[X$Term_Avg %in% Overlap_Aggravators$Term_Avg,]$Overlap_Avg <- "Overlapping_Deletion_Suppressors") try(X[X$Term_Avg %in% Overlap_Alleviators$Term_Avg,]$Overlap_Avg <- "Overlapping_Deletion_Enhancers") try(X[X$Term_Avg %in% X2_Specific_Aggravators_X1_Alleviatiors$Term_Avg,]$Overlap_Avg <- paste(Name2,"Deletion_Suppressors",Name1,"Deletion_Enhancers",sep="_")) try(X[X$Term_Avg %in% X2_Specific_Alleviators_X1_Aggravators$Term_Avg,]$Overlap_Avg <- paste(Name2,"Deletion_Enhancers",Name1,"Deletion_Suppressors",sep="_")) plotly_path <- paste(getwd(),"/",outputpath,"/","Scatter_lm_GTF_Averages_",Name1,"_vs_",Name2,"_All_byOverlap.html",sep="") gg <- ggplot(data = X,aes(x=Z_lm_K_Avg_X1,y=Z_lm_K_Avg_X2,color=Overlap_Avg,Term=Term_Avg,Genes=Genes_Avg_X1,NumGenes=NumGenes_Avg_X1,AllPossibleGenes=AllPossibleGenes_Avg_X1,SD_1=Z_lm_K_SD_X1,SD_2=Z_lm_K_SD_X2)) + xlab(paste("GO Term Avg lm Z for ",Name1,sep="")) + geom_rect(aes(xmin=-2,xmax=2,ymin=-2,ymax=2),color="grey20",size=0.25,alpha=0.1,inherit.aes = FALSE,fill=NA) + geom_point(shape=3) + ylab(paste("GO Term Avg lm Z for ",Name2,sep="")) + ggtitle(paste("Comparing Average GO Term Z lm for ",Name1," vs. ",Name2,sep="")) + theme_Publication_legend_right() pdf(paste(getwd(),"/",outputpath,"/","Scatter_lm_GTF_Averages_",Name1,"_vs_",Name2,"_All_ByOverlap.pdf",sep=""),width = 12,height = 8) gg dev.off() pgg <- ggplotly(gg) #pgg print("#2-170") #2 fname <- paste("/Scatter_lm_GTA_Averages_",Name1,"_vs_",Name2,"_All_byOverlap.html",sep="") print(fname) htmlwidgets::saveWidget(pgg, file.path(getwd(),fname)) file.rename(from = file.path(getwd(),fname), to = file.path(pairDirK,fname)) #3 x_rem2_gene <- X[X$NumGenes_Avg_X1 >= 2 & X$NumGenes_Avg_X2 >= 2,] plotly_path <- paste(getwd(),"/",outputpath,"/","Scatter_lm_GTF_Averages_",Name1,"_vs_",Name2,"_All_byOverlap_above2genes.html",sep="") gg <- ggplot(data = x_rem2_gene,aes(x=Z_lm_K_Avg_X1,y=Z_lm_K_Avg_X2,color=Overlap_Avg,Term=Term_Avg,Genes=Genes_Avg_X1,NumGenes=NumGenes_Avg_X1,AllPossibleGenes=AllPossibleGenes_Avg_X1,SD_1=Z_lm_K_SD_X1,SD_2=Z_lm_K_SD_X2)) + xlab(paste("GO Term Avg lm Z for ",Name1,sep="")) + geom_rect(aes(xmin=-2,xmax=2,ymin=-2,ymax=2),color="grey20",size=0.25,alpha=0.1,inherit.aes = FALSE,fill=NA) + geom_point(shape=3) + ylab(paste("GO Term Avg lm Z for ",Name2,sep="")) + ggtitle(paste("Comparing Average GO Term Z lm for ",Name1," vs. ",Name2,sep="")) + theme_Publication_legend_right() pdf(paste(getwd(),"/",outputpath,"/","Scatter_lm_GTF_Averages_",Name1,"_vs_",Name2,"_All_ByOverlap_above2genes.pdf",sep=""),width = 12,height = 8) gg dev.off() pgg <- ggplotly(gg) #pgg print("#3") fname <- paste("Scatter_lm_GTA_Averages_",Name1,"_vs_",Name2,"_All_byOverlap_above2genes.html",sep="") print(fname) htmlwidgets::saveWidget(pgg, file.path(getwd(),fname)) file.rename(from = file.path(getwd(),fname), to = file.path(pairDirK,fname)) #4 X_overlap_nothresold <- X[!(is.na(X$Overlap_Avg)),] gg <- ggplot(data = X_overlap_nothresold,aes(x=Z_lm_K_Avg_X1,y=Z_lm_K_Avg_X2,color=Overlap_Avg,Term=Term_Avg,Genes=Genes_Avg_X1,NumGenes=NumGenes_Avg_X1,AllPossibleGenes=AllPossibleGenes_Avg_X1,SD_1=Z_lm_K_SD_X1,SD_2=Z_lm_K_SD_X2)) + xlab(paste("GO Term Avg lm Z for ",Name1,sep="")) + geom_rect(aes(xmin=-2,xmax=2,ymin=-2,ymax=2),color="grey20",size=0.25,alpha=0.1,inherit.aes = FALSE,fill=NA) + geom_point(shape=3) + ylab(paste("GO Term Avg lm Z for ",Name2,sep="")) + ggtitle(paste("Comparing Average GO Term Z lm for ",Name1," vs. ",Name2,sep = "")) + theme_Publication_legend_right() pdf(paste(getwd(),"/",outputpath,"/","Scatter_lm_GTF_Averages_",Name1,"_vs_",Name2,"_Above2SD_ByOverlap.pdf",sep=""),width = 12,height = 8) gg dev.off() pgg <- ggplotly(gg) #pgg print("#4") fname <- paste("Scatter_lm_GTA_Averages_",Name1,"_vs_",Name2,"_Above2SD_ByOverlap.html",sep="") print(fname) htmlwidgets::saveWidget(pgg, file.path(getwd(),fname)) file.rename(from = file.path(getwd(),fname), to = file.path(pairDirK,fname)) #5 #only output GTA terms where average score is still above 2 after subtracting the SD #Z1 will ID aggravators, Z2 alleviators Z1 <- X Z1$L_Subtract_SD_X1 <- Z1$Z_lm_K_Avg_X1 - Z1$Z_lm_K_SD_X1 Z1$L_Subtract_SD_X2 <- Z1$Z_lm_K_Avg_X2 - Z1$Z_lm_K_SD_X2 Z2 <- X Z2$L_Subtract_SD_X1 <- Z1$Z_lm_K_Avg_X1 + Z1$Z_lm_K_SD_X1 Z2$L_Subtract_SD_X2 <- Z1$Z_lm_K_Avg_X2 + Z1$Z_lm_K_SD_X2 X1_Specific_Aggravators2 <- Z1[which(Z1$L_Subtract_SD_X1 >= 2 & Z1$L_Subtract_SD_X2 < 2),] X1_Specific_Alleviators2 <- Z2[which(Z2$L_Subtract_SD_X1 <= -2 & Z2$L_Subtract_SD_X2 > -2),] X2_Specific_Aggravators2 <- Z1[which(Z1$L_Subtract_SD_X2 >= 2 & Z1$L_Subtract_SD_X1 < 2),] X2_Specific_Alleviators2 <- Z2[which(Z2$L_Subtract_SD_X2 <= -2 & Z2$L_Subtract_SD_X1 > -2),] Overlap_Aggravators2 <- Z1[which(Z1$L_Subtract_SD_X1 >= 2 & Z1$L_Subtract_SD_X2 >= 2),] Overlap_Alleviators2 <- Z2[which(Z2$L_Subtract_SD_X2 <= -2 & Z2$L_Subtract_SD_X1 <= -2),] X2_Specific_Aggravators2_X1_Alleviatiors2 <- Z1[which(Z1$L_Subtract_SD_X2 >= 2 & Z2$L_Subtract_SD_X1 <= -2),] X2_Specific_Alleviators2_X1_Aggravators2 <- Z2[which(Z2$L_Subtract_SD_X2 <= -2 & Z1$L_Subtract_SD_X1 >= 2),] X$Overlap <- NA try(X[X$Term_Avg %in% X1_Specific_Aggravators2$Term_Avg,]$Overlap <- paste(Name1,"Specific_Deletion_Suppressors",sep="_")) try(X[X$Term_Avg %in% X1_Specific_Alleviators2$Term_Avg,]$Overlap <- paste(Name1,"Specific_Deletion_Enhancers",sep="_")) try(X[X$Term_Avg %in% X2_Specific_Aggravators2$Term_Avg,]$Overlap <- paste(Name2,"Specific_Deletion_Suppressors",sep="_")) try(X[X$Term_Avg %in% X2_Specific_Alleviators2$Term_Avg,]$Overlap <- paste(Name2,"Specific_Deletion_Enhancers",sep="_")) try(X[X$Term_Avg %in% Overlap_Aggravators2$Term_Avg,]$Overlap <- "Overlapping_Deletion_Suppressors") try(X[X$Term_Avg %in% Overlap_Alleviators2$Term_Avg,]$Overlap <- "Overlapping_Deletion_Enhancers") try(X[X$Term_Avg %in% X2_Specific_Aggravators2_X1_Alleviatiors2$Term_Avg,]$Overlap <- paste(Name2,"Deletion_Suppressors",Name1,"Deletion_Enhancers",sep="_")) try(X[X$Term_Avg %in% X2_Specific_Alleviators2_X1_Aggravators2$Term_Avg,]$Overlap <- paste(Name2,"Deletion_Enhancers",Name1,"Deletion_Suppressors",sep="_")) X_abovethreshold <- X[!(is.na(X$Overlap)),] gg <- ggplot(data = X_abovethreshold,aes(x=Z_lm_K_Avg_X1,y=Z_lm_K_Avg_X2,color=Overlap,Term=Term_Avg,Genes=Genes_Avg_X1,NumGenes=NumGenes_Avg_X1,AllPossibleGenes=AllPossibleGenes_Avg_X1,SD_1=Z_lm_K_SD_X1,SD_2=Z_lm_K_SD_X2)) + xlab(paste("GO Term Avg lm Z for ",Name1,sep="")) + geom_rect(aes(xmin=-2,xmax=2,ymin=-2,ymax=2),color="grey20",size=0.25,alpha=0.1,inherit.aes = FALSE,fill=NA) + geom_point(shape=3) + ylab(paste("GO Term Avg lm Z for ",Name2,sep="")) + ggtitle(paste("Comparing Average GO Term Z lm for ",Name1," vs. ",Name2,sep="")) + theme_Publication_legend_right() pdf(paste(getwd(),"/",outputpath,"/","Scatter_lm_GTF_Averages_",Name1,"_vs_",Name2,"_All_ByOverlap_AboveThreshold.pdf",sep=""),width = 12,height = 8) gg dev.off() pgg <- ggplotly(gg) #pgg print("#5") fname <- paste("Scatter_lm_GTA_Averages_",Name1,"_vs_",Name2,"_All_ByOverlap_AboveThreshold.html",sep="") print(fname) htmlwidgets::saveWidget(pgg, file.path(getwd(),fname)) file.rename(from = file.path(getwd(),fname), to = file.path(pairDirK,fname)) #6 gg <- ggplot(data = X_abovethreshold,aes(x=Z_lm_K_Avg_X1,y=Z_lm_K_Avg_X2,color=Overlap,Term=Term_Avg,Genes=Genes_Avg_X1,NumGenes=NumGenes_Avg_X1,AllPossibleGenes=AllPossibleGenes_Avg_X1,SD_1=Z_lm_K_SD_X1,SD_2=Z_lm_K_SD_X2)) + xlab(paste("GO Term Avg lm Z for ",Name1,sep="")) + geom_text(aes(label=Term_Avg),nudge_y = 0.25,size=2) + geom_rect(aes(xmin=-2,xmax=2,ymin=-2,ymax=2),color="grey20",size=0.25,alpha=0.1,inherit.aes = FALSE,fill=NA) + geom_point(shape=3,size=3) + ylab(paste("GO Term Avg lm Z for ",Name2,sep="")) + ggtitle(paste("Comparing Average GO Term Z lm for ",Name1," vs. ",Name2,sep="")) + theme_Publication_legend_right() pdf(paste(getwd(),"/",outputpath,"/","Scatter_lm_GTF_Averages_",Name1,"_vs_",Name2,"_All_ByOverlap_AboveThreshold_names.pdf",sep=""),width = 20,height = 20) gg dev.off() pgg <- ggplotly(gg) #pgg print("#6") fname <- paste("Scatter_lm_GTA_Averages_",Name1,"_vs_",Name2,"_All_ByOverlap_AboveThreshold_names.html",sep="") print(fname) htmlwidgets::saveWidget(pgg, file.path(getwd(),fname)) file.rename(from = file.path(getwd(),fname), to = file.path(pairDirK,fname)) #7 X_abovethreshold$X1_Rank <- NA X_abovethreshold$X1_Rank <- rank(-X_abovethreshold$Z_lm_K_Avg_X1,ties.method = "random") X_abovethreshold$X2_Rank <- NA X_abovethreshold$X2_Rank <- rank(-X_abovethreshold$Z_lm_K_Avg_X2,ties.method = "random") gg <- ggplot(data = X_abovethreshold,aes(x=Z_lm_K_Avg_X1,y=Z_lm_K_Avg_X2,color=Overlap,Term=Term_Avg,Genes=Genes_Avg_X1,NumGenes=NumGenes_Avg_X1,AllPossibleGenes=AllPossibleGenes_Avg_X1,SD_1=Z_lm_K_SD_X1,SD_2=Z_lm_K_SD_X2)) + xlab(paste("GO Term Avg lm Z for ",Name1,sep="")) + geom_text(aes(label=X1_Rank),nudge_y = 0.25,size=4) + geom_rect(aes(xmin=-2,xmax=2,ymin=-2,ymax=2),color="grey20",size=0.25,alpha=0.1,inherit.aes = FALSE,fill=NA) + geom_point(shape=3,size=3) + ylab(paste("GO Term Avg lm Z for ",Name2,sep="")) + ggtitle(paste("Comparing Average GO Term Z lm for ",Name1," vs. ",Name2,sep="")) + theme_Publication_legend_right() pdf(paste(getwd(),"/",outputpath,"/","Scatter_lm_GTF_Averages_",Name1,"_vs_",Name2,"_All_ByOverlap_AboveThreshold_numberedX1.pdf",sep=""),width = 15,height = 15) gg dev.off() pgg <- ggplotly(gg) #pgg print("#7") fname <- paste("Scatter_lm_GTA_Averages_",Name1,"_vs_",Name2,"_All_ByOverlap_AboveThreshold_numberedX1.html",sep="") print(fname) htmlwidgets::saveWidget(pgg, file.path(getwd(),fname)) file.rename(from = file.path(getwd(),fname), to = file.path(pairDirK,fname)) #8 gg <- ggplot(data = X_abovethreshold,aes(x=Z_lm_K_Avg_X1,y=Z_lm_K_Avg_X2,color=Overlap,Term=Term_Avg,Genes=Genes_Avg_X1,NumGenes=NumGenes_Avg_X1,AllPossibleGenes=AllPossibleGenes_Avg_X1,SD_1=Z_lm_K_SD_X1,SD_2=Z_lm_K_SD_X2)) + xlab(paste("GO Term Avg lm Z for ",Name1,sep="")) + geom_text(aes(label=X2_Rank),nudge_y = 0.25,size=4) + geom_rect(aes(xmin=-2,xmax=2,ymin=-2,ymax=2),color="grey20",size=0.25,alpha=0.1,inherit.aes = FALSE,fill=NA) + geom_point(shape=3,size=3) + ylab(paste("GO Term Avg lm Z for ",Name2,sep="")) + ggtitle(paste("Comparing Average GO Term Z lm for ",Name1," vs. ",Name2,sep="")) + theme_Publication_legend_right() pdf(paste(getwd(),"/",outputpath,"/","Scatter_lm_GTF_Averages_",Name1,"_vs_",Name2,"_All_ByOverlap_AboveThreshold_numberedX2.pdf",sep=""),width = 15,height = 15) gg dev.off() pgg <- ggplotly(gg) #pgg print("#8") fname <- paste("Scatter_lm_GTA_Averages_",Name1,"_vs_",Name2,"_All_ByOverlap_AboveThreshold_numberedX2.html",sep="") print(fname) htmlwidgets::saveWidget(pgg, file.path(getwd(),fname)) file.rename(from = file.path(getwd(),fname), to = file.path(pairDirK,fname)) print("write csv files") write.csv(x=X,file = paste(getwd(),"/",outputpath,"/","All_GTF_Avg_Scores_",Name1,"_vs_",Name2,".csv",sep=""),row.names = FALSE) write.csv(x=X_abovethreshold,file = paste(getwd(),"/",outputpath,"/","AboveThreshold_GTF_Avg_Scores_",Name1,"_vs_",Name2,".csv",sep=""),row.names = FALSE) #End of GTA Pairwise compare for K values