#!/usr/bin/env Rscript library("RColorBrewer") library("gplots") library("tidyverse") args <- commandArgs(TRUE) # Define the output path for the heatmaps - create this folder first - in linux terminal in the working folder use > mkdir filename_heatmaps output_path <- file.path(Args[1]) # Need to give the input "finalTable.csv" file after running REMc generated by eclipse final_table <- file.path(args[2]) # Give the damp_list.txt as the third argument - will color the gene names differently damps <- file.path(Args[3]) damp_list <- read.delim(file = damps, header = FALSE, stringsAsFactors = FALSE) # Give the yeast human homology mapping as the fourth argument - will add the genes to the finalTable and use info for heatmaps map_file <- file.path(Args[4]) mapping <- read.csv(file = map_file, stringsAsFactors = FALSE) # Read in finalTablewithShift hmapfile <- data.frame(read.csv(file = final_table, header = TRUE, sep = ",", stringsAsFactors = FALSE)) # Map the finalTable to the human homolog file hmapfile_map <- hmapfile # Match using OrfRep after dropping the _1 _2 _3 _4 # But need to also account for some older files have ORF as column name rather than OrfRep in finalTable file if (colnames(hmapfile_map)[2] == "OrfRep") { try(hmapfile_map$ORFMatch <- hmapfile_map$OrfRep) } if (colnames(hmapfile_map)[2] == "ORF") { try(hmapfile_map$ORFMatch <- hmapfile_map$ORF) } hmapfile_map$ORFMatch <- gsub("_1", "", x = hmapfile_map$ORFMatch) hmapfile_map$ORFMatch <- gsub("_2", "", x = hmapfile_map$ORFMatch) hmapfile_map$ORFMatch <- gsub("_3", "", x = hmapfile_map$ORFMatch) hmapfile_map$ORFMatch <- gsub("_4", "", x = hmapfile_map$ORFMatch) # Join the hmapfile using hmapfile_w_homolog <- full_join(hmapfile_map, mapping, by = c("ORFMatch" = "ensembl_gene_id")) # Remove matches that are not from the finalTable hmapfile_w_homolog <- hmapfile_w_homolog[is.na(hmapfile_w_homolog$likelihood) == FASLE, ] # Write csv with all info from mapping file write.csv(hmapfile_w_homolog, file.path(output_path, paste0(final_table, "_WithHomologAll.csv")), row.names = FALSE) # Remove the non matches and output another mapping file - this is also one used to make heatmaps hmapfile_w_homolog <- hmapfile_w_homolog[is.na(hmapfile_w_homolog$external_gene_name_Human) == FALSE, ] write.csv(hmapfile_w_homolog, file.path(output_path, paste0(final_table, "_WithHomologMatchesOnly.csv"), row.names = FALSE)) # Add human gene name to the Gene column hmapfile_w_homolog$Gene <- paste(hmapfile_w_homolog$Gene, hmapfile_w_homolog$external_gene_name_Human, sep = "/") # Only keep the finalTable file columns and the homology info hmap_len <- dim(hmapfile)[2] hmapfile_w_homolog_remake <- cbind(hmapfile_w_homolog[, 1:hmap_len], hsapiens_homolog_orthology_type = hmapfile_w_homolog$hsapiens_homolog_orthology_type) hmapfile <- hmapfile_w_homolog_remake # Set NAs to NA hmapfile[hmapfile == -100] <- NA hmapfile[hmapfile == 100] <- NA hmapfile[hmapfile == 0.001] <- NA hmapfile[hmapfile == -0.001] <- NA # Select the number of rows based on the number of genes num_total_genes <- length(hmapfile[, 1]) # Break out the cluster names so each part of the cluster origin can be accessed # Line below removed because it adds to many genes to clusters when going past 1-0-10 # since it cannot differentiate between 1-0-1 and 1-0-10 when using grepl. # hmapfile$cluster.origin = gsub(" ","",x = hmapfile$cluster.origin) hmapfile$cluster.origin <- gsub(";", " ;", x = hmapfile$cluster.origin) hmapfile$cluster.origin <- strsplit(hmapfile$cluster.origin, ";") # use tail(x,n) for accessing the outward most cluster clust_rounds <- 0 for (i in 1:num_total_genes) { if (length(hmapfile$cluster.origin[[i]]) > clust_rounds) { clust_rounds <- length(hmapfile$cluster.origin[[i]]) } } unique_clusts <- unique(hmapfile$cluster.origin[1:num_total_genes]) unique_clusts <- unique_clusts[unique_clusts != " "] #select only the unique cluster names unique_clusts <- sort(unique(unlist(unique_clusts, use.names = FALSE)), decreasing = FALSE) num_unique_clusts <- length(unique_clusts) # Base the color key on a statistical analysis of the L and K data # need to create "breaks" to set the color key, need to have 12 different breaks (for 11 colors) # scale() will calculate the mean and standard deviation of the entire vector # then "scale" each element by those values by subtracting the mean and dividing by the sd # hmapfile[,4:(length(hmapfile[1,]) - 2)] <- scale(hmapfile[,4:(length(hmapfile[1,]) - 2)]) # Change so that the L data is multiplied to be on the same scale as the K data KEY_MIN <- 0 KEY_MAX <- 0 K_MIN <- 0 L_MAX <- 0 KcolumnValues <- vector() LcolumnValues <- vector() for (i in 4:(length(hmapfile[1, ]) - 3)){ if (grepl("_Z_lm_K", colnames(hmapfile)[i], fixed = TRUE) == TRUE) { KcolumnValues <- append(KcolumnValues, i) } if (grepl("_Z_lm_L", colnames(hmapfile)[i], fixed = TRUE) == TRUE) { LcolumnValues <- append(LcolumnValues, i) } } # L_MAX <- quantile(hmapfile[,LcolumnValues],c(0,.01,.5,.99,1),na.rm = TRUE)[4] # K_MIN <- quantile(hmapfile[,KcolumnValues],c(0,.01,.5,.99,1),na.rm = TRUE)[2] # L_MAX <- quantile(hmapfile[,LcolumnValues],c(0,.01,.5,.975,1),na.rm = TRUE)[4] # K_MIN <- quantile(hmapfile[,KcolumnValues],c(0,.025,.5,.99,1),na.rm = TRUE)[2] # Z scores are L_MAX <- 12 K_MIN <- -12 # L_Multiplier <- as.numeric(abs(K_MIN/L_MAX)) # hmapfile[,LcolumnValues] <- hmapfile[,LcolumnValues] * L_Multiplier # if(grepl("SHIFT",colnames(hmapfile)[4],fixed = TRUE) == TRUE){ # print("FOUND SHIFT VALUES") # hmapfile[,(LcolumnValues - 1)] <- hmapfile[,(LcolumnValues-1)] * L_Multiplier # } #KEY_MAX <- as.numeric(L_MAX * L_Multiplier) #KEY_MIN <- as.numeric(K_MIN) KEY_MAX <- as.numeric(L_MAX) KEY_MIN <- as.numeric(K_MIN) print(KEY_MIN) print(L_MAX) #print(L_Multiplier) colormapbreaks <- c(KEY_MIN, KEY_MIN * (5 / 6), KEY_MIN * (4 / 6), KEY_MIN * (3 / 6), KEY_MIN * (2 / 6), KEY_MIN * (1 / 6), KEY_MAX * (1 / 6), KEY_MAX * (2 / 6), KEY_MAX * (3 / 6), KEY_MAX * (4 / 6), KEY_MAX * (5 / 6), KEY_MAX) # print(colormapbreaks) # Probably should give a way to detect shift in case that is is not in the first row... (maybe just grepl for the whole column name?) # However since also using this to amend the first part. # Could possibly identify all the ones that contain the word shift and then create an object containing just those numbers # then could just use these values and create spaces only between interaction values # possibly could get rid of redundant shift values if we don't want to view these # could we pool all the shift data/average it? if (grepl("Shift", colnames(hmapfile)[4], fixed = TRUE) == TRUE) { even_columns <- seq(from = 2, to = (length(hmapfile[1, ]) - 7), by = 2) # ev_repeat = rep("white",length(even_columns)) # ev_repeat = rep("red",(length(hmapfile[1,]) - 5)) # middle_col <- (length(hmapfile[1,]) - 5)/2 # ev_repeat[(middle_col/2)] <- "black" # print(ev_repeat) } if (grepl("Shift", colnames(hmapfile)[4], fixed = TRUE) == FALSE) { even_columns <- seq(from = 2, to = (length(hmapfile[1, ]) - 7), by = 1) print("NO SHIFT VALS FOUND") } # for this script only (rap tem hu script) # even_columns <- c(2,5,7,10,12,15,17) # m <- 0 colnames_edit <- as.character(colnames(hmapfile)[4:(length(hmapfile[1, ]) - 3)]) colnames(damp_list)[1] <- "ORF" hmapfile$damps <- "YKO" colnames(hmapfile)[2] <- "ORF" try(hmapfile[hmapfile$ORF %in% damp_list$ORF, ]$damps <- "YKD") # X <- X[order(X$damps,decreasing = TRUE),] hmapfile$color2 <- NA try(hmapfile[hmapfile$damps == "YKO", ]$color2 <- "black") try(hmapfile[hmapfile$damps == "YKD", ]$color2 <- "red") hmapfile$color <- NA try(hmapfile[hmapfile$hsapiens_homolog_orthology_type == "ortholog_many2many", ]$color <- "#F8766D") try(hmapfile[hmapfile$hsapiens_homolog_orthology_type == "ortholog_one2many", ]$color <- "#00BA38") try(hmapfile[hmapfile$hsapiens_homolog_orthology_type == "ortholog_one2one", ]$color <- "#619CFF") # print(colnames_edit) for (i in 1:length(colnames_edit)) { if (grepl("Shift", colnames_edit[i], fixed = TRUE) == TRUE) { colnames_edit[i] <- "" colnames_edit[i + 1] <- gsub(pattern = "_Z_lm_", replacement = " ", x = colnames_edit[i + 1]) try(colnames_edit[i + 1] <- gsub(pattern = "_", replacement = " ", x = colnames_edit[i + 1])) # INT_store <- strsplit(colnames_edit[i+1], "Z_lm") # print(length(unlist(INT_store))) # if(length(unlist(INT_store)) == 4){ # colnames_edit[i+1] <- paste(unlist(INT_store)[1],unlist(INT_store)[2],unlist(INT_store)[3],sep = " ") # } # if(length(unlist(INT_store)) == 3){ # # colnames_edit[i+1] <- paste(unlist(INT_store)[1],unlist(INT_store)[2],sep = " ") # } # if(length(unlist(INT_store)) == 5){ # colnames_edit[i+1] <- paste(unlist(INT_store)[1],unlist(INT_store)[2],unlist(INT_store)[3],unlist(INT_store)[4],sep = " ") # } # if(length(unlist(INT_store)) == 6){ # colnames_edit[i+1] <- paste(unlist(INT_store)[1],unlist(INT_store)[2],unlist(INT_store)[6],sep = " ") # } } } print(colnames_edit) # break() # colnames_edit[5] <- "TEM HLEG K" # colnames_edit[10] <- "TEM HL K" # colnames_edit[15] <- "TEM HLEG L" # colnames_edit[20] <- "TEM HL L" # Create the heatmaps for (i in 1:num_unique_clusts) { cluster <- unique_clusts[i] cluster_data <- subset(hmapfile, grepl(cluster, cluster.origin)) cluster_length <- length(cluster_data[, 1]) if (cluster_length != 1) { X0 <- as.matrix(cluster_data[, 4:(length(hmapfile[1, ]) - 6)]) if (cluster_length >= 2001) { mypath <- file.path(output_path, paste0("cluster_", gsub(" ", "", cluster), ".pdf")) pdf(file = mypath, height = 20, width = 15) heatmap.2( x = X0, Rowv = TRUE, Colv = NA, distfun = dist, hclustfun = hclust, dendrogram = "row", cexCol = 0.8, cexRow = 0.1, scale = "none", breaks = colormapbreaks, symbreaks = FALSE, colsep = even_columns, sepcolor = "white", offsetCol = 0.1, # zlim = c(-132,132), xlab = "Type of Media", ylab = "Gene Name", # cellnote = round(X0,digits = 0), notecex = 0.1, key = TRUE, keysize = 0.7, trace = "none", density.info = c("none"), margins = c(10, 8), na.color = "red", col = brewer.pal(11, "PuOr"), main = cluster, # ColSideColors = ev_repeat, labRow = as.character(cluster_data$Gene), labCol = colnames_edit, colRow = cluster_data$color2, RowSideColors = cluster_data$color ) # abline(v = 0.5467,col = "black") dev.off() } if (cluster_length >= 201 && cluster_length <= 2000) { mypath <- file.path(output_path, paste0("cluster_", gsub(" ", "", cluster), ".pdf")) pdf(file = mypath, height = 15, width = 12) heatmap.2( x = X0, Rowv = TRUE, Colv = NA, distfun = dist, hclustfun = hclust, dendrogram = "row", cexCol = 0.8, cexRow = 0.1, scale = "none", breaks = colormapbreaks, symbreaks = FALSE, colsep = even_columns, sepcolor = "white", offsetCol = 0.1, # zlim = c(-132,132), xlab = "Type of Media", ylab = "Gene Name", cellnote = round(X0, digits = 0), notecex = 0.1, key = TRUE, keysize = 0.7, trace = "none", density.info = c("none"), margins = c(10, 8), na.color = "red", col = brewer.pal(11, "PuOr"), main = cluster, labRow = as.character(cluster_data$Gene), labCol = colnames_edit, colRow = cluster_data$color2, RowSideColors = cluster_data$color ) # abline(v = 0.5316,col = "black") dev.off() } if (cluster_length >= 150 && cluster_length <= 200) { mypath <- file.path(output_path, paste0("cluster_", gsub(" ", "", cluster), ".pdf")) pdf(file = mypath, height = 12, width = 12) heatmap.2( x = X0, Rowv = TRUE, Colv = NA, distfun = dist, hclustfun = hclust, dendrogram = "row", cexCol = 0.8, cexRow = 0.1, scale = "none", breaks = colormapbreaks, symbreaks = FALSE, colsep = even_columns, sepcolor = "white", offsetCol = 0.1, # zlim = c(-132,132), xlab = "Type of Media", ylab = "Gene Name", cellnote = round(X0, digits = 0), notecex = 0.2, key = TRUE, keysize = 1, trace = "none", density.info = c("none"), margins = c(10, 8), na.color = "red", col = brewer.pal(11, "PuOr"), main = cluster, labRow = as.character(cluster_data$Gene), labCol = colnames_edit, colRow = cluster_data$color2, RowSideColors = cluster_data$color ) dev.off() } if (cluster_length >= 101 && cluster_length <= 149) { mypath <- file.path(output_path, paste0("cluster_", gsub(" ", "", cluster), ".pdf")) pdf(file = mypath, height = 12, width = 12) heatmap.2( x = X0, Rowv = TRUE, Colv = NA, distfun = dist, hclustfun = hclust, dendrogram = "row", cexCol = 0.8, cexRow = 0.2, scale = "none", breaks = colormapbreaks, symbreaks = FALSE, colsep = even_columns, sepcolor = "white", offsetCol = 0.1, # zlim = c(-132,132), xlab = "Type of Media", ylab = "Gene Name", cellnote = round(X0, digits = 0), notecex = 0.3, key = TRUE, keysize = 1, trace = "none", density.info = c("none"), margins = c(10, 8), na.color = "red", col = brewer.pal(11, "PuOr"), main = cluster, labRow = as.character(cluster_data$Gene), labCol = colnames_edit, colRow = cluster_data$color2, RowSideColors = cluster_data$color ) dev.off() } if (cluster_length >= 60 && cluster_length <= 100) { mypath <- file.path(output_path, paste0("cluster_", gsub(" ", "", cluster), ".pdf")) pdf(file = mypath, height = 12, width = 12) heatmap.2( x = X0, Rowv = TRUE, Colv = NA, distfun = dist, hclustfun = hclust, dendrogram = "row", cexCol = 0.8, cexRow = 0.4, scale = "none", breaks = colormapbreaks, symbreaks = FALSE, colsep = even_columns, sepcolor = "white", offsetCol = 0.1, # zlim = c(-132,132), xlab = "Type of Media", ylab = "Gene Name", cellnote = round(X0, digits = 0), notecex = 0.3, key = TRUE, keysize = 1, trace = "none", density.info = c("none"), margins = c(10, 8), na.color = "red", col = brewer.pal(11, "PuOr"), main = cluster, labRow = as.character(cluster_data$Gene), labCol = colnames_edit, colRow = cluster_data$color2, RowSideColors = cluster_data$color ) dev.off() } if (cluster_length <= 59 && cluster_length >= 30) { mypath <- file.path(output_path, paste0("cluster_", gsub(" ", "", cluster), ".pdf")) pdf(file = mypath, height = 9, width = 12) heatmap.2( x = X0, Rowv = TRUE, Colv = NA, distfun = dist, hclustfun = hclust, dendrogram = "row", cexCol = 0.8, cexRow = 0.6, scale = "none", breaks = colormapbreaks, symbreaks = FALSE, colsep = even_columns, sepcolor = "white", offsetCol = 0.1, # zlim = c(-132,132), xlab = "Type of Media", ylab = "Gene Name", cellnote = round(X0, digits = 0), notecex = 0.4, key = TRUE, keysize = 1, trace = "none", density.info = c("none"), margins = c(10, 8), na.color = "red", col = brewer.pal(11, "PuOr"), main = cluster, labRow = as.character(cluster_data$Gene), labCol = colnames_edit, colRow = cluster_data$color2, RowSideColors = cluster_data$color ) dev.off() } if (cluster_length <= 29) { mypath <- file.path(output_path, paste0("cluster_", gsub(" ", "", cluster), ".pdf")) pdf(file = mypath, height = 7, width = 12) heatmap.2( x = X0, Rowv = TRUE, Colv = NA, distfun = dist, hclustfun = hclust, dendrogram = "row", cexCol = 0.8, cexRow = 0.9, scale = "none", breaks = colormapbreaks, symbreaks = FALSE, colsep = even_columns, sepcolor = "white", offsetCol = 0.1, # zlim = c(-132,132), xlab = "Type of Media", ylab = "Gene Name", cellnote = round(X0, digits = 0), notecex = 0.4, key = TRUE, keysize = 1, trace = "none", density.info = c("none"), margins = c(10, 8), na.color = "red", col = brewer.pal(11, "PuOr"), main = cluster, labRow = as.character(cluster_data$Gene), labCol = colnames_edit, colRow = cluster_data$color2, RowSideColors = cluster_data$color ) dev.off() } } # print(paste("FINISHED", "CLUSTER",cluster,sep = " ")) }