Explorar el Código

Improve NA filtering

Bryan Roessler hace 7 meses
padre
commit
0836dc70d2
Se han modificado 1 ficheros con 32 adiciones y 43 borrados
  1. 32 43
      qhtcp-workflow/apps/r/calculate_interaction_zscores.R

+ 32 - 43
qhtcp-workflow/apps/r/calculate_interaction_zscores.R

@@ -134,10 +134,9 @@ load_and_process_data <- function(easy_results_file, sd = 3) {
       DB = if_else(delta_bg >= delta_bg_tolerance, 1, 0),
       SM = 0,
       OrfRep = if_else(ORF == "YDL227C", "YDL227C", OrfRep), # should these be hardcoded?
-      conc_num = as.numeric(gsub("[^0-9\\.]", "", Conc))
-    ) %>%
-    mutate(
-      conc_num_factor = as.factor(match(conc_num, sort(unique(conc_num))) - 1)
+      conc_num = as.numeric(gsub("[^0-9\\.]", "", Conc)),
+      conc_num_factor = factor(as.numeric(factor(conc_num)) - 1),
+      conc_num_factor_num = as.numeric(conc_num_factor)
     )
     
     return(df)
@@ -169,8 +168,7 @@ calculate_summary_stats <- function(df, variables, group_vars) {
     group_by(across(all_of(group_vars))) %>%
     summarise(
       N = n(),
-      across(
-        all_of(variables),
+      across(all_of(variables),
         list(
           mean = ~mean(., na.rm = TRUE),
           median = ~median(., na.rm = TRUE),
@@ -208,10 +206,10 @@ calculate_interaction_scores <- function(df, max_conc, bg_stats, variables = c("
       num_non_removed_concs = total_conc_num - sum(DB, na.rm = TRUE) - 1,
 
       # Calculate raw data
-      Raw_Shift_L = first(mean_L) - bg_stats$L,
-      Raw_Shift_K = first(mean_K) - bg_stats$K,
-      Raw_Shift_r = first(mean_r) - bg_stats$r,
-      Raw_Shift_AUC = first(mean_AUC) - bg_stats$AUC,
+      Raw_Shift_L = first(mean_L) - bg_stats$mean_L,
+      Raw_Shift_K = first(mean_K) - bg_stats$mean_K,
+      Raw_Shift_r = first(mean_r) - bg_stats$mean_r,
+      Raw_Shift_AUC = first(mean_AUC) - bg_stats$mean_AUC,
       Z_Shift_L = first(Raw_Shift_L) / bg_stats$sd_L,
       Z_Shift_K = first(Raw_Shift_K) / bg_stats$sd_K,
       Z_Shift_r = first(Raw_Shift_r) / bg_stats$sd_r,
@@ -237,10 +235,10 @@ calculate_interaction_scores <- function(df, max_conc, bg_stats, variables = c("
       Zscore_AUC = Delta_AUC / WT_sd_AUC,
 
       # Fit linear models and store in list-columns
-      gene_lm_L = list(lm(Delta_L ~ conc_num_factor, data = pick(everything()))),
-      gene_lm_K = list(lm(Delta_K ~ conc_num_factor, data = pick(everything()))),
-      gene_lm_r = list(lm(Delta_r ~ conc_num_factor, data = pick(everything()))),
-      gene_lm_AUC = list(lm(Delta_AUC ~ conc_num_factor, data = pick(everything()))),
+      gene_lm_L = list(lm(Delta_L ~ conc_num_factor_num, data = pick(everything()))),
+      gene_lm_K = list(lm(Delta_K ~ conc_num_factor_num, data = pick(everything()))),
+      gene_lm_r = list(lm(Delta_r ~ conc_num_factor_num, data = pick(everything()))),
+      gene_lm_AUC = list(lm(Delta_AUC ~ conc_num_factor_num, data = pick(everything()))),
 
       # Extract coefficients using purrr::map_dbl
       lm_intercept_L = map_dbl(gene_lm_L, ~ coef(.x)[1]),
@@ -1040,7 +1038,7 @@ main <- function() {
     df_no_zeros <- df_na %>% filter(L > 0) # formerly X_noZero
     
     # Save some constants
-    max_conc <- max(as.numeric(df$conc_num_factor))
+    max_conc <- max(df$conc_num_factor_num)
     l_half_median <- (median(df_above_tolerance$L, na.rm = TRUE)) / 2
     k_half_median <- (median(df_above_tolerance$K, na.rm = TRUE)) / 2
 
@@ -1050,7 +1048,6 @@ main <- function() {
       variables = summary_vars,
       group_vars = c("conc_num", "conc_num_factor"))$df_with_stats
     message("Filtering non-finite data")
-    # df_filtered_stats <- process_data(df_stats, c("L"), filter_nf = TRUE)
 
     message("Calculating summary statistics after quality control")
     ss <- calculate_summary_stats(
@@ -1060,9 +1057,7 @@ main <- function() {
     df_na_ss <- ss$summary_stats
     df_na_stats <- ss$df_with_stats
     write.csv(df_na_ss, file = file.path(out_dir, "summary_stats_all_strains.csv"), row.names = FALSE)
-    # df_na_filtered_stats <- process_data(df_na_stats, c("L"), filter_nf = TRUE)
 
-    # Create background (WT) data columns
     df_na_stats <- df_na_stats %>%
       mutate(
         WT_L = mean_L,
@@ -1079,10 +1074,10 @@ main <- function() {
     bg_stats <- df_na_stats %>%
       filter(conc_num == 0) %>%
       summarise(
-        L = first(mean_L),
-        K = first(mean_K),
-        r = first(mean_r),
-        AUC = first(mean_AUC),
+        mean_L = first(mean_L),
+        mean_K = first(mean_K),
+        mean_r = first(mean_r),
+        mean_AUC = first(mean_AUC),
         sd_L = first(sd_L),
         sd_K = first(sd_K),
         sd_r = first(sd_r),
@@ -1090,12 +1085,11 @@ main <- function() {
       )
 
     message("Calculating summary statistics after quality control excluding zero values")
-    ss <- calculate_summary_stats(
+    df_no_zeros_stats <- calculate_summary_stats(
       df = df_no_zeros,
       variables = summary_vars,
-      group_vars = c("conc_num", "conc_num_factor"))
-    df_no_zeros_stats <- ss$df_with_stats
-    # df_no_zeros_filtered_stats <- process_data(df_no_zeros_stats, c("L"), filter_nf = TRUE)
+      group_vars = c("conc_num", "conc_num_factor")
+    )$df_with_stats
 
     message("Filtering by 2SD of K")
     df_na_within_2sd_k <- df_na_stats %>%
@@ -1105,9 +1099,8 @@ main <- function() {
 
     message("Calculating summary statistics for L within 2SD of K")
     # TODO We're omitting the original z_max calculation, not sure if needed?
-    ss <- calculate_summary_stats(df_na_within_2sd_k, "L", group_vars = c("conc_num", "conc_num_factor"))
-    # df_na_l_within_2sd_k_stats <- ss$df_with_stats
-    write.csv(ss$summary_stats,
+    ss <- calculate_summary_stats(df_na_within_2sd_k, "L", group_vars = c("conc_num", "conc_num_factor"))$summary_stats
+    write.csv(ss,
       file = file.path(out_dir_qc, "max_observed_L_vals_for_spots_within_2sd_K.csv"),
       row.names = FALSE)
     
@@ -1293,28 +1286,24 @@ main <- function() {
         file = file.path(out_dir, paste0("SummaryStats_BackgroundStrains_", strain, ".csv")),
         row.names = FALSE)
       
-      # Filter reference and deletion strains
-      df_reference <- df_na_stats %>% # formerly X2_RF
-        filter(OrfRep == strain) %>%
-        mutate(SM = 0)
-      
-      df_deletion <- df_na_stats %>% # formerly X2
-        filter(OrfRep != strain) %>%
-        mutate(SM = 0)
-
       # Set the missing values to the highest theoretical value at each drug conc for L
       # Leave other values as 0 for the max/min
-      reference_strain <- df_reference %>%
+      df_reference <- df_na_stats %>% # formerly X2_RF
+        filter(OrfRep == strain) %>%
+        filter(!is.na(L)) %>%
         group_by(conc_num, conc_num_factor) %>%
         mutate(
           max_l_theoretical = max(max_L, na.rm = TRUE),
           L = ifelse(L == 0 & !is.na(L) & conc_num > 0, max_l_theoretical, L),
-          SM = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, 1, SM),
+          SM = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, 1, 0),
           L = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, max_l_theoretical, L)) %>%
         ungroup()
 
       # Ditto for deletion strains
-      deletion_strains <- df_deletion %>%
+      df_deletion <- df_na_stats %>% # formerly X2
+        filter(OrfRep != strain) %>%
+        filter(!is.na(L)) %>%
+        mutate(SM = 0) %>%
         group_by(conc_num, conc_num_factor) %>%
         mutate(
           max_l_theoretical = max(max_L, na.rm = TRUE),
@@ -1325,7 +1314,7 @@ main <- function() {
 
       message("Calculating reference strain interaction scores")
       df_reference_stats <- calculate_summary_stats(
-        df = reference_strain,
+        df = df_reference,
         variables = interaction_vars,
         group_vars = c("OrfRep", "Gene", "num", "conc_num", "conc_num_factor")
         )$df_with_stats
@@ -1336,7 +1325,7 @@ main <- function() {
 
       message("Calculating deletion strain(s) interactions scores")
       df_deletion_stats <- calculate_summary_stats(
-        df = deletion_strains,
+        df = df_deletion,
         variables = interaction_vars,
         group_vars = c("OrfRep", "Gene", "conc_num", "conc_num_factor")
         )$df_with_stats