|
@@ -709,23 +709,21 @@ generate_interaction_plot_configs <- function(df, variables) {
|
|
|
|
|
|
generate_rank_plot_configs <- function(df, interaction_vars, rank_vars = c("L", "K"), is_lm = FALSE, adjust = FALSE) {
|
|
|
|
|
|
- # Adjust missing values and compute ranks for each interaction variable
|
|
|
- if (adjust) {
|
|
|
- for (var in interaction_vars) {
|
|
|
- avg_zscore_col <- paste0("Avg_Zscore_", var)
|
|
|
- z_lm_col <- paste0("Z_lm_", var)
|
|
|
- rank_col <- paste0("Rank_", var)
|
|
|
- rank_lm_col <- paste0("Rank_lm_", var)
|
|
|
-
|
|
|
+ for (var in interaction_vars) {
|
|
|
+ avg_zscore_col <- paste0("Avg_Zscore_", var)
|
|
|
+ z_lm_col <- paste0("Z_lm_", var)
|
|
|
+ rank_col <- paste0("Rank_", var)
|
|
|
+ rank_lm_col <- paste0("Rank_lm_", var)
|
|
|
+
|
|
|
+ if (adjust) {
|
|
|
# Replace NA with 0.001 for interaction variables
|
|
|
df[[avg_zscore_col]] <- if_else(is.na(df[[avg_zscore_col]]), 0.001, df[[avg_zscore_col]])
|
|
|
df[[z_lm_col]] <- if_else(is.na(df[[z_lm_col]]), 0.001, df[[z_lm_col]])
|
|
|
-
|
|
|
- # Compute ranks for interaction variables
|
|
|
- df[[rank_col]] <- rank(df[[avg_zscore_col]], na.last = "keep")
|
|
|
- df[[rank_lm_col]] <- rank(df[[z_lm_col]], na.last = "keep")
|
|
|
-
|
|
|
}
|
|
|
+
|
|
|
+ # Compute ranks for interaction variables
|
|
|
+ df[[rank_col]] <- rank(df[[avg_zscore_col]], na.last = "keep")
|
|
|
+ df[[rank_lm_col]] <- rank(df[[z_lm_col]], na.last = "keep")
|
|
|
}
|
|
|
|
|
|
# Initialize list to store plot configurations
|
|
@@ -782,11 +780,8 @@ generate_rank_plot_configs <- function(df, interaction_vars, rank_vars = c("L",
|
|
|
)
|
|
|
}
|
|
|
}
|
|
|
-
|
|
|
- return(list(
|
|
|
- adjusted_df = df,
|
|
|
- plot_configs = configs
|
|
|
- ))
|
|
|
+
|
|
|
+ return(configs)
|
|
|
}
|
|
|
|
|
|
generate_correlation_plot_configs <- function(df, variables) {
|
|
@@ -1230,7 +1225,7 @@ main <- function() {
|
|
|
interaction_vars = interaction_vars,
|
|
|
is_lm = FALSE,
|
|
|
adjust = TRUE
|
|
|
- )$plot_configs
|
|
|
+ )
|
|
|
|
|
|
# Save the generated rank plots for L and K
|
|
|
generate_and_save_plots(output_dir = out_dir, file_name = "RankPlots",
|
|
@@ -1242,27 +1237,26 @@ main <- function() {
|
|
|
interaction_vars = interaction_vars,
|
|
|
is_lm = TRUE,
|
|
|
adjust = TRUE
|
|
|
- )$plot_configs
|
|
|
+ )
|
|
|
|
|
|
# Save the linear model based rank plots for L and K
|
|
|
generate_and_save_plots(output_dir = out_dir, file_name = "RankPlots_lm",
|
|
|
plot_configs = rank_lm_plot_configs, grid_layout = list(ncol = 3, nrow = 2))
|
|
|
-
|
|
|
+
|
|
|
message("Filtering and regenerating rank plots")
|
|
|
# Filter rows where either Z_lm_L or Avg_Zscore_L is not NA
|
|
|
+ # Formerly X_NArm
|
|
|
zscores_interactions_filtered <- zscores_interactions %>%
|
|
|
group_by(across(all_of(orf_group_vars))) %>%
|
|
|
filter(!is.na(Z_lm_L) | !is.na(Avg_Zscore_L)) %>%
|
|
|
- ungroup()
|
|
|
-
|
|
|
- # Final filtered correlation calculations and Overlap column
|
|
|
- zscores_interactions_filtered <- zscores_interactions_filtered %>%
|
|
|
+ ungroup() %>%
|
|
|
rowwise() %>%
|
|
|
mutate(
|
|
|
lm_R_squared_L = if (n() > 1) summary(lm(Z_lm_L ~ Avg_Zscore_L))$r.squared else NA,
|
|
|
lm_R_squared_K = if (n() > 1) summary(lm(Z_lm_K ~ Avg_Zscore_K))$r.squared else NA,
|
|
|
lm_R_squared_r = if (n() > 1) summary(lm(Z_lm_r ~ Avg_Zscore_r))$r.squared else NA,
|
|
|
lm_R_squared_AUC = if (n() > 1) summary(lm(Z_lm_AUC ~ Avg_Zscore_AUC))$r.squared else NA,
|
|
|
+
|
|
|
Overlap = case_when(
|
|
|
Z_lm_L >= 2 & Avg_Zscore_L >= 2 ~ "Deletion Enhancer Both",
|
|
|
Z_lm_L <= -2 & Avg_Zscore_L <= -2 ~ "Deletion Suppressor Both",
|