|
@@ -435,79 +435,77 @@ generate_and_save_plots <- function(output_dir, file_name, plot_configs, grid_la
|
|
generate_interaction_plot_configs <- function(df, variables) {
|
|
generate_interaction_plot_configs <- function(df, variables) {
|
|
configs <- list()
|
|
configs <- list()
|
|
|
|
|
|
- # Predefine y-limits and annotation y-values for each variable
|
|
|
|
- variable_properties <- list(
|
|
|
|
- "L" = list(ylim = c(-65, 65), annotations_y = c(45, 25, -25, -35, -45)),
|
|
|
|
- "K" = list(ylim = c(-65, 65), annotations_y = c(45, 25, -25, -35, -45)),
|
|
|
|
- "r" = list(ylim = c(-0.65, 0.65), annotations_y = c(0.45, 0.25, -0.25, -0.35, -0.45)),
|
|
|
|
- "AUC" = list(ylim = c(-6500, 6500), annotations_y = c(4500, 2500, -2500, -3500, -4500))
|
|
|
|
- )
|
|
|
|
|
|
+ # Define common y-limits and other attributes for each variable dynamically
|
|
|
|
+ limits_map <- list(L = c(-65, 65), K = c(-65, 65), r = c(-0.65, 0.65), AUC = c(-6500, 6500))
|
|
|
|
|
|
for (variable in variables) {
|
|
for (variable in variables) {
|
|
- props <- variable_properties[[variable]]
|
|
|
|
|
|
+ # Dynamically generate the names of the columns
|
|
|
|
+ var_info <- list(
|
|
|
|
+ ylim = limits_map[[variable]],
|
|
|
|
+ lm_model = df[[paste0("lm_", variable)]][[1]], # Access the precomputed linear model
|
|
|
|
+ sd_col = paste0("WT_sd_", variable),
|
|
|
|
+ delta_var = paste0("Delta_", variable),
|
|
|
|
+ z_shift = paste0("Z_Shift_", variable),
|
|
|
|
+ z_lm = paste0("Z_lm_", variable)
|
|
|
|
+ )
|
|
|
|
|
|
- # Dynamically generate column names
|
|
|
|
- wt_sd_col <- paste0("WT_sd_", variable)
|
|
|
|
- delta_var <- paste0("Delta_", variable)
|
|
|
|
- z_shift <- paste0("Z_Shift_", variable)
|
|
|
|
- z_lm <- paste0("Z_lm_", variable)
|
|
|
|
- lm_score <- paste0("lm_Score_", variable) # Precomputed lm score
|
|
|
|
- r_squared <- paste0("r_squared_", variable) # Precomputed R^2
|
|
|
|
-
|
|
|
|
- # Create annotation list
|
|
|
|
- annotation_labels <- c("ZShift =", "lm ZScore =", "NG =", "DB =", "SM =")
|
|
|
|
- annotations <- lapply(seq_along(annotation_labels), function(i) {
|
|
|
|
- list(x = 1, y = props$annotations_y[i], label = paste(annotation_labels[i], round(df[[c(z_shift, z_lm, "NG", "DB", "SM")[i]]], 2)))
|
|
|
|
- })
|
|
|
|
|
|
+ # Extract the precomputed linear model coefficients
|
|
|
|
+ lm_line <- list(
|
|
|
|
+ intercept = coef(var_info$lm_model)[1],
|
|
|
|
+ slope = coef(var_info$lm_model)[2]
|
|
|
|
+ )
|
|
|
|
+
|
|
|
|
+ # Set annotations dynamically for ZShift, Z lm Score, NG, DB, SM
|
|
|
|
+ base_y <- if (variable == "L" || variable == "K") 45 else if (variable == "r") 0.45 else 4500
|
|
|
|
+ annotations <- list(
|
|
|
|
+ list(x = 1, y = base_y, label = paste("ZShift =", round(df[[var_info$z_shift]], 2))),
|
|
|
|
+ list(x = 1, y = base_y - 20, label = paste("lm ZScore =", round(df[[var_info$z_lm]], 2))),
|
|
|
|
+ list(x = 1, y = base_y - 70, label = paste("NG =", df$NG)),
|
|
|
|
+ list(x = 1, y = base_y - 80, label = paste("DB =", df$DB)),
|
|
|
|
+ list(x = 1, y = base_y - 90, label = paste("SM =", df$SM))
|
|
|
|
+ )
|
|
|
|
|
|
- # Create scatter plot configuration using precomputed lm scores
|
|
|
|
- scatter_config <- list(
|
|
|
|
|
|
+ # Add scatter plot configuration for this variable
|
|
|
|
+ configs[[length(configs) + 1]] <- list(
|
|
df = df,
|
|
df = df,
|
|
x_var = "conc_num_factor",
|
|
x_var = "conc_num_factor",
|
|
- y_var = delta_var,
|
|
|
|
|
|
+ y_var = var_info$delta_var,
|
|
plot_type = "scatter",
|
|
plot_type = "scatter",
|
|
title = sprintf("%s %s", df$OrfRep[1], df$Gene[1]),
|
|
title = sprintf("%s %s", df$OrfRep[1], df$Gene[1]),
|
|
- ylim_vals = props$ylim,
|
|
|
|
|
|
+ ylim_vals = var_info$ylim,
|
|
annotations = annotations,
|
|
annotations = annotations,
|
|
|
|
+ lm_line = lm_line, # Precomputed linear model
|
|
error_bar = list(
|
|
error_bar = list(
|
|
- ymin = 0 - (2 * df[[wt_sd_col]][1]),
|
|
|
|
- ymax = 0 + (2 * df[[wt_sd_col]][1])
|
|
|
|
|
|
+ ymin = 0 - (2 * df[[var_info$sd_col]][1]),
|
|
|
|
+ ymax = 0 + (2 * df[[var_info$sd_col]][1])
|
|
),
|
|
),
|
|
x_breaks = unique(df$conc_num_factor),
|
|
x_breaks = unique(df$conc_num_factor),
|
|
x_labels = unique(as.character(df$conc_num)),
|
|
x_labels = unique(as.character(df$conc_num)),
|
|
x_label = unique(df$Drug[1]),
|
|
x_label = unique(df$Drug[1]),
|
|
shape = 3,
|
|
shape = 3,
|
|
size = 0.6,
|
|
size = 0.6,
|
|
- position = "jitter",
|
|
|
|
- lm_line = list(
|
|
|
|
- intercept = coef(lm(df[[delta_var]] ~ df$conc_num_factor))[1], # Intercept from lm model
|
|
|
|
- slope = coef(lm(df[[delta_var]] ~ df$conc_num_factor))[2] # Slope from lm model
|
|
|
|
- )
|
|
|
|
|
|
+ position = "jitter"
|
|
)
|
|
)
|
|
|
|
|
|
- # Create box plot configuration for this variable
|
|
|
|
- box_config <- list(
|
|
|
|
|
|
+ # Add box plot configuration for this variable
|
|
|
|
+ configs[[length(configs) + 1]] <- list(
|
|
df = df,
|
|
df = df,
|
|
x_var = "conc_num_factor",
|
|
x_var = "conc_num_factor",
|
|
y_var = variable,
|
|
y_var = variable,
|
|
plot_type = "box",
|
|
plot_type = "box",
|
|
title = sprintf("%s %s (Boxplot)", df$OrfRep[1], df$Gene[1]),
|
|
title = sprintf("%s %s (Boxplot)", df$OrfRep[1], df$Gene[1]),
|
|
- ylim_vals = props$ylim,
|
|
|
|
|
|
+ ylim_vals = var_info$ylim,
|
|
annotations = annotations,
|
|
annotations = annotations,
|
|
- error_bar = FALSE,
|
|
|
|
|
|
+ error_bar = FALSE, # Boxplots typically don't need error bars
|
|
x_breaks = unique(df$conc_num_factor),
|
|
x_breaks = unique(df$conc_num_factor),
|
|
x_labels = unique(as.character(df$conc_num)),
|
|
x_labels = unique(as.character(df$conc_num)),
|
|
x_label = unique(df$Drug[1])
|
|
x_label = unique(df$Drug[1])
|
|
)
|
|
)
|
|
-
|
|
|
|
- # Append both scatter and box plot configurations
|
|
|
|
- configs <- append(configs, list(scatter_config, box_config))
|
|
|
|
}
|
|
}
|
|
|
|
|
|
return(configs)
|
|
return(configs)
|
|
}
|
|
}
|
|
|
|
|
|
-
|
|
|
|
# Adjust missing values and calculate ranks
|
|
# Adjust missing values and calculate ranks
|
|
adjust_missing_and_rank <- function(df, variables) {
|
|
adjust_missing_and_rank <- function(df, variables) {
|
|
|
|
|