|
@@ -191,14 +191,14 @@ calculate_summary_stats <- function(df, variables, group_vars) {
|
|
|
return(list(summary_stats = summary_stats, df_with_stats = df_joined))
|
|
|
}
|
|
|
|
|
|
-calculate_interaction_scores <- function(df, max_conc, bg_stats, variables = c("L", "K", "r", "AUC"),
|
|
|
+calculate_interaction_scores <- function(df, max_conc, bg_stats,
|
|
|
group_vars = c("OrfRep", "Gene", "num")) {
|
|
|
|
|
|
# Calculate total concentration variables
|
|
|
total_conc_num <- length(unique(df$conc_num))
|
|
|
|
|
|
calculations <- df %>%
|
|
|
- group_by(OrfRep, Gene, num) %>%
|
|
|
+ group_by(across(all_of(group_vars))) %>%
|
|
|
mutate(
|
|
|
NG = sum(NG, na.rm = TRUE),
|
|
|
DB = sum(DB, na.rm = TRUE),
|
|
@@ -260,19 +260,34 @@ calculate_interaction_scores <- function(df, max_conc, bg_stats, variables = c("
|
|
|
R_Squared_L = map_dbl(gene_lm_L, ~ summary(.x)$r.squared),
|
|
|
R_Squared_K = map_dbl(gene_lm_K, ~ summary(.x)$r.squared),
|
|
|
R_Squared_r = map_dbl(gene_lm_r, ~ summary(.x)$r.squared),
|
|
|
- R_Squared_AUC = map_dbl(gene_lm_AUC, ~ summary(.x)$r.squared),
|
|
|
-
|
|
|
- # Calculate Z_lm_* Scores
|
|
|
- Z_lm_L = (lm_Score_L - mean(lm_Score_L, na.rm = TRUE)) / sd(lm_Score_L, na.rm = TRUE),
|
|
|
- Z_lm_K = (lm_Score_K - mean(lm_Score_K, na.rm = TRUE)) / sd(lm_Score_K, na.rm = TRUE),
|
|
|
- Z_lm_r = (lm_Score_r - mean(lm_Score_r, na.rm = TRUE)) / sd(lm_Score_r, na.rm = TRUE),
|
|
|
- Z_lm_AUC = (lm_Score_AUC - mean(lm_Score_AUC, na.rm = TRUE)) / sd(lm_Score_AUC, na.rm = TRUE)
|
|
|
+ R_Squared_AUC = map_dbl(gene_lm_AUC, ~ summary(.x)$r.squared)
|
|
|
) %>%
|
|
|
ungroup()
|
|
|
|
|
|
+ # Calculate overall mean and SD for lm_Score_* variables
|
|
|
+ lm_means_sds <- calculations %>%
|
|
|
+ summarise(
|
|
|
+ lm_mean_L = mean(lm_Score_L, na.rm = TRUE),
|
|
|
+ lm_sd_L = sd(lm_Score_L, na.rm = TRUE),
|
|
|
+ lm_mean_K = mean(lm_Score_K, na.rm = TRUE),
|
|
|
+ lm_sd_K = sd(lm_Score_K, na.rm = TRUE),
|
|
|
+ lm_mean_r = mean(lm_Score_r, na.rm = TRUE),
|
|
|
+ lm_sd_r = sd(lm_Score_r, na.rm = TRUE),
|
|
|
+ lm_mean_AUC = mean(lm_Score_AUC, na.rm = TRUE),
|
|
|
+ lm_sd_AUC = sd(lm_Score_AUC, na.rm = TRUE)
|
|
|
+ )
|
|
|
+
|
|
|
+ calculations <- calculations %>%
|
|
|
+ mutate(
|
|
|
+ Z_lm_L = (lm_Score_L - lm_means_sds$lm_mean_L) / lm_means_sds$lm_sd_L,
|
|
|
+ Z_lm_K = (lm_Score_K - lm_means_sds$lm_mean_K) / lm_means_sds$lm_sd_K,
|
|
|
+ Z_lm_r = (lm_Score_r - lm_means_sds$lm_mean_r) / lm_means_sds$lm_sd_r,
|
|
|
+ Z_lm_AUC = (lm_Score_AUC - lm_means_sds$lm_mean_AUC) / lm_means_sds$lm_sd_AUC
|
|
|
+ )
|
|
|
+
|
|
|
# Summarize some of the stats
|
|
|
interactions <- calculations %>%
|
|
|
- group_by(OrfRep, Gene, num) %>%
|
|
|
+ group_by(across(all_of(group_vars))) %>%
|
|
|
mutate(
|
|
|
# Calculate raw shifts
|
|
|
Raw_Shift_L = first(Raw_Shift_L),
|