|
@@ -619,109 +619,104 @@ adjust_missing_and_rank <- function(df, variables) {
|
|
|
|
|
|
generate_interaction_plot_configs <- function(df, variables) {
|
|
|
configs <- list()
|
|
|
-
|
|
|
- # Define common y-limits and other attributes for each variable dynamically
|
|
|
- limits_map <- list(L = c(-65, 65), K = c(-65, 65), r = c(-0.65, 0.65), AUC = c(-6500, 6500))
|
|
|
-
|
|
|
- # Define annotation positions based on the variable being plotted
|
|
|
+
|
|
|
+ # Define common y-limits for each variable
|
|
|
+ limits_map <- list(
|
|
|
+ L = c(-65, 65),
|
|
|
+ K = c(-65, 65),
|
|
|
+ r = c(-0.65, 0.65),
|
|
|
+ AUC = c(-6500, 6500)
|
|
|
+ )
|
|
|
+
|
|
|
+ # Define annotation positions and labels
|
|
|
annotation_positions <- list(
|
|
|
- L = list(Z_Shift_L = 45, lm_ZScore = 25, NG = -25, DB = -35, SM = -45),
|
|
|
- K = list(Z_Shift_K = 45, lm_ZScore = 25, NG = -25, DB = -35, SM = -45),
|
|
|
- r = list(Z_Shift_r = 0.45, lm_ZScore = 0.25, NG = -0.25, DB = -0.35, SM = -0.45),
|
|
|
- AUC = list(Z_Shift_AUC = 4500, lm_ZScore = 2500, NG = -2500, DB = -3500, SM = -4500)
|
|
|
+ Z_Shift = 45,
|
|
|
+ Z_lm = 25,
|
|
|
+ NG = -25,
|
|
|
+ DB = -35,
|
|
|
+ SM = -45
|
|
|
)
|
|
|
-
|
|
|
- # Define which annotations to include for each plot
|
|
|
+
|
|
|
+ # Define functions to generate annotation labels
|
|
|
annotation_labels <- list(
|
|
|
- ZShift = function(df, var) {
|
|
|
+ Z_Shift = function(df, var) {
|
|
|
val <- df[[paste0("Z_Shift_", var)]]
|
|
|
- if (is.numeric(val)) {
|
|
|
- paste("ZShift =", round(val, 2))
|
|
|
- } else {
|
|
|
- paste("ZShift =", val)
|
|
|
- }
|
|
|
+ paste("ZShift =", round(val, 2))
|
|
|
},
|
|
|
- lm_ZScore = function(df, var) {
|
|
|
+ Z_lm = function(df, var) {
|
|
|
val <- df[[paste0("Z_lm_", var)]]
|
|
|
- if (is.numeric(val)) {
|
|
|
- paste("lm ZScore =", round(val, 2))
|
|
|
- } else {
|
|
|
- paste("lm ZScore =", val)
|
|
|
- }
|
|
|
+ paste("lm ZScore =", round(val, 2))
|
|
|
},
|
|
|
NG = function(df, var) paste("NG =", df$NG),
|
|
|
DB = function(df, var) paste("DB =", df$DB),
|
|
|
SM = function(df, var) paste("SM =", df$SM)
|
|
|
)
|
|
|
-
|
|
|
+
|
|
|
for (variable in variables) {
|
|
|
- # Dynamically generate the names of the columns
|
|
|
- var_info <- list(
|
|
|
- ylim = limits_map[[variable]],
|
|
|
- sd_col = paste0("WT_sd_", variable)
|
|
|
- )
|
|
|
-
|
|
|
- # Extract the precomputed linear model coefficients
|
|
|
+ # Get y-limits for the variable
|
|
|
+ ylim_vals <- limits_map[[variable]]
|
|
|
+
|
|
|
+ # Extract precomputed linear model coefficients
|
|
|
lm_line <- list(
|
|
|
intercept = df[[paste0("lm_intercept_", variable)]],
|
|
|
slope = df[[paste0("lm_slope_", variable)]]
|
|
|
)
|
|
|
-
|
|
|
- annotations <- lapply(names(annotation_positions[[variable]]), function(annotation_name) {
|
|
|
- message("Processing annotation: ", annotation_name, " for variable: ", variable)
|
|
|
- y_pos <- annotation_positions[[variable]][[annotation_name]]
|
|
|
-
|
|
|
- # Check if the annotation_name exists in annotation_labels
|
|
|
- if (!is.null(annotation_labels[[annotation_name]])) {
|
|
|
- label <- annotation_labels[[annotation_name]](df, variable)
|
|
|
+
|
|
|
+ # Generate annotations
|
|
|
+ annotations <- lapply(names(annotation_positions), function(annotation_name) {
|
|
|
+ y_pos <- annotation_positions[[annotation_name]]
|
|
|
+ label_func <- annotation_labels[[annotation_name]]
|
|
|
+ if (!is.null(label_func)) {
|
|
|
+ label <- label_func(df, variable)
|
|
|
list(x = 1, y = y_pos, label = label)
|
|
|
} else {
|
|
|
message(paste("Warning: No annotation function found for", annotation_name))
|
|
|
NULL
|
|
|
}
|
|
|
})
|
|
|
-
|
|
|
- # Filter out any NULL annotations
|
|
|
+
|
|
|
+ # Remove NULL annotations
|
|
|
annotations <- Filter(Negate(is.null), annotations)
|
|
|
-
|
|
|
- # Add scatter plot configuration for this variable
|
|
|
+
|
|
|
+ # Create scatter plot config
|
|
|
configs[[length(configs) + 1]] <- list(
|
|
|
df = df,
|
|
|
x_var = "conc_num_factor",
|
|
|
y_var = variable,
|
|
|
plot_type = "scatter",
|
|
|
title = sprintf("%s %s", df$OrfRep[1], df$Gene[1]),
|
|
|
- ylim_vals = var_info$ylim,
|
|
|
+ ylim_vals = ylim_vals,
|
|
|
annotations = annotations,
|
|
|
- lm_line = lm_line, # Precomputed linear model
|
|
|
+ lm_line = lm_line,
|
|
|
error_bar = TRUE,
|
|
|
x_breaks = unique(df$conc_num_factor),
|
|
|
x_labels = unique(as.character(df$conc_num)),
|
|
|
x_label = unique(df$Drug[1]),
|
|
|
position = "jitter",
|
|
|
- coord_cartesian = c(0, max(var_info$ylim)) # You can customize this per plot as needed
|
|
|
+ coord_cartesian = c(min(ylim_vals), max(ylim_vals))
|
|
|
)
|
|
|
-
|
|
|
- # Add box plot configuration for this variable
|
|
|
+
|
|
|
+ # Create box plot config
|
|
|
configs[[length(configs) + 1]] <- list(
|
|
|
df = df,
|
|
|
x_var = "conc_num_factor",
|
|
|
y_var = variable,
|
|
|
plot_type = "box",
|
|
|
title = sprintf("%s %s (Boxplot)", df$OrfRep[1], df$Gene[1]),
|
|
|
- ylim_vals = var_info$ylim,
|
|
|
+ ylim_vals = ylim_vals,
|
|
|
annotations = annotations,
|
|
|
error_bar = FALSE,
|
|
|
x_breaks = unique(df$conc_num_factor),
|
|
|
x_labels = unique(as.character(df$conc_num)),
|
|
|
x_label = unique(df$Drug[1]),
|
|
|
- coord_cartesian = c(0, max(var_info$ylim)) # Customize this as needed
|
|
|
+ coord_cartesian = c(min(ylim_vals), max(ylim_vals))
|
|
|
)
|
|
|
}
|
|
|
-
|
|
|
+
|
|
|
return(configs)
|
|
|
}
|
|
|
|
|
|
+
|
|
|
generate_rank_plot_configs <- function(df, rank_var, zscore_var, var, is_lm = FALSE) {
|
|
|
configs <- list()
|
|
|
|