|
@@ -187,7 +187,6 @@ calculate_interaction_scores <- function(df, max_conc, variables, group_vars = c
|
|
|
|
|
|
# Calculate total concentration variables
|
|
|
total_conc_num <- length(unique(df$conc_num))
|
|
|
- num_non_removed_concs <- total_conc_num - sum(df$DB, na.rm = TRUE) - 1
|
|
|
|
|
|
# Pull the background means and standard deviations from zero concentration
|
|
|
bg_means <- list(
|
|
@@ -204,6 +203,7 @@ calculate_interaction_scores <- function(df, max_conc, variables, group_vars = c
|
|
|
AUC = df %>% filter(conc_num_factor == 0) %>% pull(sd_AUC) %>% first()
|
|
|
)
|
|
|
|
|
|
+ # Grab these values from the original df before mutating the new stats
|
|
|
stats <- df %>%
|
|
|
mutate(
|
|
|
WT_L = mean_L,
|
|
@@ -214,9 +214,11 @@ calculate_interaction_scores <- function(df, max_conc, variables, group_vars = c
|
|
|
WT_sd_K = sd_K,
|
|
|
WT_sd_r = sd_r,
|
|
|
WT_sd_AUC = sd_AUC
|
|
|
- ) %>%
|
|
|
+ )
|
|
|
+
|
|
|
+ stats <- stats %>%
|
|
|
group_by(OrfRep, Gene, num, conc_num, conc_num_factor) %>%
|
|
|
- mutate(
|
|
|
+ summarise(
|
|
|
N = sum(!is.na(L)),
|
|
|
NG = sum(NG, na.rm = TRUE),
|
|
|
DB = sum(DB, na.rm = TRUE),
|
|
@@ -229,8 +231,7 @@ calculate_interaction_scores <- function(df, max_conc, variables, group_vars = c
|
|
|
sd = ~sd(., na.rm = TRUE),
|
|
|
se = ~ifelse(sum(!is.na(.)) > 1, sd(., na.rm = TRUE) / sqrt(sum(!is.na(.)) - 1), NA)
|
|
|
), .names = "{.fn}_{.col}")
|
|
|
- ) %>%
|
|
|
- ungroup()
|
|
|
+ )
|
|
|
|
|
|
stats <- stats %>%
|
|
|
group_by(OrfRep, Gene, num) %>%
|
|
@@ -274,51 +275,61 @@ calculate_interaction_scores <- function(df, max_conc, variables, group_vars = c
|
|
|
Zscore_AUC = Delta_AUC / WT_sd_AUC
|
|
|
)
|
|
|
|
|
|
- stats <- stats %>%
|
|
|
- mutate(
|
|
|
+ # Calculate linear models
|
|
|
+ lm_L <- lm(Delta_L ~ conc_num_factor, data = stats)
|
|
|
+ lm_K <- lm(Delta_K ~ conc_num_factor, data = stats)
|
|
|
+ lm_r <- lm(Delta_r ~ conc_num_factor, data = stats)
|
|
|
+ lm_AUC <- lm(Delta_AUC ~ conc_num_factor, data = stats)
|
|
|
+
|
|
|
+ interactions <- stats %>%
|
|
|
+ transmute(
|
|
|
+ OrfRep = first(OrfRep),
|
|
|
+ Gene = first(Gene),
|
|
|
+ Raw_Shift_L = first(Raw_Shift_L),
|
|
|
+ Raw_Shift_K = first(Raw_Shift_K),
|
|
|
+ Raw_Shift_r = first(Raw_Shift_r),
|
|
|
+ Raw_Shift_AUC = first(Raw_Shift_AUC),
|
|
|
+ Z_Shift_L = first(Z_Shift_L),
|
|
|
+ Z_Shift_K = first(Z_Shift_K),
|
|
|
+ Z_Shift_r = first(Z_Shift_r),
|
|
|
+ Z_Shift_AUC = first(Z_Shift_AUC),
|
|
|
Sum_Zscore_L = sum(Zscore_L, na.rm = TRUE),
|
|
|
Sum_Zscore_K = sum(Zscore_K, na.rm = TRUE),
|
|
|
Sum_Zscore_r = sum(Zscore_r, na.rm = TRUE),
|
|
|
- Sum_Zscore_AUC = sum(Zscore_AUC, na.rm = TRUE)
|
|
|
- )
|
|
|
-
|
|
|
- # Calculate linear models and store in own df for now
|
|
|
- lms <- stats %>%
|
|
|
- reframe(
|
|
|
- L = lm(Delta_L ~ conc_num_factor),
|
|
|
- K = lm(Delta_K ~ conc_num_factor),
|
|
|
- r = lm(Delta_r ~ conc_num_factor),
|
|
|
- AUC = lm(Delta_AUC ~ conc_num_factor)
|
|
|
+ Sum_Zscore_AUC = sum(Zscore_AUC, na.rm = TRUE),
|
|
|
+ lm_Score_L = max_conc * coef(lm_L)[2] + coef(lm_L)[1],
|
|
|
+ lm_Score_K = max_conc * coef(lm_K)[2] + coef(lm_K)[1],
|
|
|
+ lm_Score_r = max_conc * coef(lm_r)[2] + coef(lm_r)[1],
|
|
|
+ lm_Score_AUC = max_conc * coef(lm_AUC)[2] + coef(lm_AUC)[1],
|
|
|
+ R_Squared_L = summary(lm_L)$r.squared,
|
|
|
+ R_Squared_K = summary(lm_K)$r.squared,
|
|
|
+ R_Squared_r = summary(lm_r)$r.squared,
|
|
|
+ R_Squared_AUC = summary(lm_AUC)$r.squared,
|
|
|
+ NG = sum(NG, na.rm = TRUE),
|
|
|
+ DB = sum(DB, na.rm = TRUE),
|
|
|
+ SM = sum(SM, na.rm = TRUE)
|
|
|
)
|
|
|
|
|
|
- stats <- stats %>%
|
|
|
+ num_non_removed_concs <- total_conc_num - sum(stats$DB, na.rm = TRUE) - 1
|
|
|
+
|
|
|
+ interactions <- interactions %>%
|
|
|
mutate(
|
|
|
Avg_Zscore_L = Sum_Zscore_L / num_non_removed_concs,
|
|
|
Avg_Zscore_K = Sum_Zscore_K / num_non_removed_concs,
|
|
|
Avg_Zscore_r = Sum_Zscore_r / (total_conc_num - 1),
|
|
|
Avg_Zscore_AUC = Sum_Zscore_AUC / (total_conc_num - 1),
|
|
|
- lm_Score_L = max_conc * coef(lms$L)[2] + coef(lms$L)[1],
|
|
|
- lm_Score_K = max_conc * coef(lms$K)[2] + coef(lms$K)[1],
|
|
|
- lm_Score_r = max_conc * coef(lms$r)[2] + coef(lms$r)[1],
|
|
|
- lm_Score_AUC = max_conc * coef(lms$AUC)[2] + coef(lms$AUC)[1],
|
|
|
- R_Squared_L = summary(lms$L)$r.squared,
|
|
|
- R_Squared_K = summary(lms$K)$r.squared,
|
|
|
- R_Squared_r = summary(lms$r)$r.squared,
|
|
|
- R_Squared_AUC = summary(lms$AUC)$r.squared
|
|
|
- )
|
|
|
-
|
|
|
- stats <- stats %>%
|
|
|
- mutate(
|
|
|
Z_lm_L = (lm_Score_L - mean(lm_Score_L, na.rm = TRUE)) / sd(lm_Score_L, na.rm = TRUE),
|
|
|
Z_lm_K = (lm_Score_K - mean(lm_Score_K, na.rm = TRUE)) / sd(lm_Score_K, na.rm = TRUE),
|
|
|
Z_lm_r = (lm_Score_r - mean(lm_Score_r, na.rm = TRUE)) / sd(lm_Score_r, na.rm = TRUE),
|
|
|
Z_lm_AUC = (lm_Score_AUC - mean(lm_Score_AUC, na.rm = TRUE)) / sd(lm_Score_AUC, na.rm = TRUE)
|
|
|
- )
|
|
|
+ ) %>%
|
|
|
+ arrange(desc(Z_lm_L)) %>%
|
|
|
+ arrange(desc(NG))
|
|
|
|
|
|
# Declare column order for output
|
|
|
calculations <- stats %>%
|
|
|
select(
|
|
|
- "OrfRep", "Gene", "num", "conc_num", "conc_num_factor",
|
|
|
+ "OrfRep", "Gene", "conc_num", "conc_num_factor", "N",
|
|
|
"mean_L", "mean_K", "mean_r", "mean_AUC",
|
|
|
"median_L", "median_K", "median_r", "median_AUC",
|
|
|
"sd_L", "sd_K", "sd_r", "sd_AUC",
|
|
@@ -332,23 +343,8 @@ calculate_interaction_scores <- function(df, max_conc, variables, group_vars = c
|
|
|
"Zscore_L", "Zscore_K", "Zscore_r", "Zscore_AUC",
|
|
|
"NG", "SM", "DB")
|
|
|
|
|
|
- interactions <- stats %>%
|
|
|
- select(
|
|
|
- "OrfRep", "Gene", "num", "Raw_Shift_L", "Raw_Shift_K", "Raw_Shift_AUC", "Raw_Shift_r",
|
|
|
- "Z_Shift_L", "Z_Shift_K", "Z_Shift_r", "Z_Shift_AUC",
|
|
|
- "lm_Score_L", "lm_Score_K", "lm_Score_AUC", "lm_Score_r",
|
|
|
- "R_Squared_L", "R_Squared_K", "R_Squared_r", "R_Squared_AUC",
|
|
|
- "Sum_Zscore_L", "Sum_Zscore_K", "Sum_Zscore_r", "Sum_Zscore_AUC",
|
|
|
- "Avg_Zscore_L", "Avg_Zscore_K", "Avg_Zscore_r", "Avg_Zscore_AUC",
|
|
|
- "Z_lm_L", "Z_lm_K", "Z_lm_r", "Z_lm_AUC",
|
|
|
- "NG", "SM", "DB") %>%
|
|
|
- arrange(desc(lm_Score_L)) %>%
|
|
|
- arrange(desc(NG))
|
|
|
-
|
|
|
- print(df, n = 1)
|
|
|
- print(calculations, n = 1)
|
|
|
- df <- df %>% select(-any_of(setdiff(names(calculations), group_vars)))
|
|
|
- df <- left_join(df, calculations, by = group_vars)
|
|
|
+ df <- df %>% select(-any_of(setdiff(names(calculations), OrfRep, Gene, num, conc_num, conc_num_factor)))
|
|
|
+ df <- left_join(df, calculations, by = c("OrfRep", "Gene", "num", "conc_num", "conc_num_factor"))
|
|
|
# df <- df %>% select(-any_of(setdiff(names(interactions), group_vars)))
|
|
|
# df <- left_join(df, interactions, by = group_vars)
|
|
|
|