|
@@ -578,102 +578,99 @@ generate_interaction_plot_configs <- function(df, variables) {
|
|
|
r = c(-0.65, 0.65),
|
|
|
AUC = c(-6500, 6500)
|
|
|
)
|
|
|
-
|
|
|
- # Define functions to generate annotation labels
|
|
|
- annotation_labels <- list(
|
|
|
- ZShift = function(df, var) {
|
|
|
- val <- df[[paste0("Z_Shift_", var)]]
|
|
|
- paste("ZShift =", round(val, 2))
|
|
|
- },
|
|
|
- lm_ZScore = function(df, var) {
|
|
|
- val <- df[[paste0("Z_lm_", var)]]
|
|
|
- paste("lm ZScore =", round(val, 2))
|
|
|
- },
|
|
|
- NG = function(df, var) paste("NG =", df$NG),
|
|
|
- DB = function(df, var) paste("DB =", df$DB),
|
|
|
- SM = function(df, var) paste("SM =", df$SM)
|
|
|
- )
|
|
|
|
|
|
- results <- filter_data_for_plots(df, variables, limits_map)
|
|
|
- df_filtered <- results$df_filtered
|
|
|
- lm_lines <- filtered_results$lm_lines
|
|
|
-
|
|
|
- # Iterate over each variable to create plot configurations
|
|
|
- for (variable in variables) {
|
|
|
-
|
|
|
- # Calculate x and y positions for annotations based on filtered data
|
|
|
- x_levels <- levels(df_filtered$conc_num_factor)
|
|
|
- num_levels <- length(x_levels)
|
|
|
- x_pos <- (1 + num_levels) / 2 # Midpoint of x-axis positions
|
|
|
-
|
|
|
- y_range <- limits_map[[variable]]
|
|
|
+ df_filtered <- filter_data_for_plots(df, variables, limits_map)$filtered_data
|
|
|
+
|
|
|
+ # Define annotation label functions
|
|
|
+ generate_annotation_labels <- function(df, var, annotation_name) {
|
|
|
+ switch(annotation_name,
|
|
|
+ ZShift = paste("ZShift =", round(df[[paste0("Z_Shift_", var)]], 2)),
|
|
|
+ lm_ZScore = paste("lm ZScore =", round(df[[paste0("Z_lm_", var)]], 2)),
|
|
|
+ NG = paste("NG =", df$NG),
|
|
|
+ DB = paste("DB =", df$DB),
|
|
|
+ SM = paste("SM =", df$SM),
|
|
|
+ NULL # Default case for unrecognized annotation names
|
|
|
+ )
|
|
|
+ }
|
|
|
+
|
|
|
+ # Define annotation positions relative to the y-axis range
|
|
|
+ calculate_annotation_positions <- function(y_range) {
|
|
|
y_min <- min(y_range)
|
|
|
y_max <- max(y_range)
|
|
|
y_span <- y_max - y_min
|
|
|
-
|
|
|
- # Adjust y positions as fractions of y-span
|
|
|
- annotation_positions <- list(
|
|
|
+
|
|
|
+ list(
|
|
|
ZShift = y_max - 0.1 * y_span,
|
|
|
lm_ZScore = y_max - 0.2 * y_span,
|
|
|
NG = y_min + 0.2 * y_span,
|
|
|
DB = y_min + 0.1 * y_span,
|
|
|
SM = y_min + 0.05 * y_span
|
|
|
)
|
|
|
-
|
|
|
+ }
|
|
|
+
|
|
|
+ # Create configurations for each variable
|
|
|
+ for (variable in variables) {
|
|
|
+
|
|
|
+ y_range <- limits_map[[variable]]
|
|
|
+ annotation_positions <- calculate_annotation_positions(y_range)
|
|
|
+ lm_line <- list(
|
|
|
+ intercept = df_filtered[[paste0("lm_intercept_", variable)]],
|
|
|
+ slope = df_filtered[[paste0("lm_slope_", variable)]]
|
|
|
+ )
|
|
|
+
|
|
|
+ # Determine x-axis midpoint
|
|
|
+ num_levels <- length(levels(df_filtered$conc_num_factor))
|
|
|
+ x_pos <- (1 + num_levels) / 2 # Midpoint of x-axis
|
|
|
+
|
|
|
# Generate annotations
|
|
|
annotations <- lapply(names(annotation_positions), function(annotation_name) {
|
|
|
+ label <- generate_annotation_labels(df_filtered, variable, annotation_name)
|
|
|
y_pos <- annotation_positions[[annotation_name]]
|
|
|
- label_func <- annotation_labels[[annotation_name]]
|
|
|
- if (!is.null(label_func)) {
|
|
|
- label <- label_func(df_filtered, variable)
|
|
|
+ if (!is.null(label)) {
|
|
|
list(x = x_pos, y = y_pos, label = label)
|
|
|
} else {
|
|
|
- message(paste("Warning: No annotation function found for", annotation_name))
|
|
|
+ message(paste("Warning: No annotation found for", annotation_name))
|
|
|
NULL
|
|
|
}
|
|
|
})
|
|
|
-
|
|
|
+
|
|
|
# Remove NULL annotations
|
|
|
annotations <- Filter(Negate(is.null), annotations)
|
|
|
-
|
|
|
- # Create scatter plot config
|
|
|
- configs[[length(configs) + 1]] <- list(
|
|
|
+
|
|
|
+ # Shared plot settings
|
|
|
+ plot_settings <- list(
|
|
|
df = df_filtered,
|
|
|
x_var = "conc_num_factor",
|
|
|
y_var = variable,
|
|
|
- plot_type = "scatter",
|
|
|
- title = sprintf("%s %s", df_filtered$OrfRep[1], df_filteredGene[1]),
|
|
|
ylim_vals = y_range,
|
|
|
annotations = annotations,
|
|
|
- lm_line = lm_lines[[variable]],
|
|
|
- error_bar = TRUE,
|
|
|
+ lm_line = lm_line,
|
|
|
x_breaks = levels(df_filtered$conc_num_factor),
|
|
|
x_labels = levels(df_filtered$conc_num_factor),
|
|
|
- x_label = unique(df$Drug[1]),
|
|
|
- position = "jitter",
|
|
|
+ x_label = unique(df_filtered$Drug[1]),
|
|
|
coord_cartesian = y_range # Use the actual y-limits
|
|
|
)
|
|
|
-
|
|
|
- # Create box plot config
|
|
|
- configs[[length(configs) + 1]] <- list(
|
|
|
- df = df_filtered,
|
|
|
- x_var = "conc_num_factor",
|
|
|
- y_var = variable,
|
|
|
+
|
|
|
+ # Scatter plot config
|
|
|
+ configs[[length(configs) + 1]] <- modifyList(plot_settings, list(
|
|
|
+ plot_type = "scatter",
|
|
|
+ title = sprintf("%s %s", df_filtered$OrfRep[1], df_filtered$Gene[1]),
|
|
|
+ error_bar = TRUE,
|
|
|
+ position = "jitter"
|
|
|
+ ))
|
|
|
+
|
|
|
+ # Box plot config
|
|
|
+ configs[[length(configs) + 1]] <- modifyList(plot_settings, list(
|
|
|
plot_type = "box",
|
|
|
title = sprintf("%s %s (Boxplot)", df_filtered$OrfRep[1], df_filtered$Gene[1]),
|
|
|
- ylim_vals = y_range,
|
|
|
- annotations = annotations,
|
|
|
- error_bar = FALSE,
|
|
|
- x_breaks = levels(df_filtered$conc_num_factor),
|
|
|
- x_labels = levels(df_filtered$conc_num_factor),
|
|
|
- x_label = unique(df_filtered$Drug[1]),
|
|
|
- coord_cartesian = y_range
|
|
|
- )
|
|
|
+ error_bar = FALSE
|
|
|
+ ))
|
|
|
}
|
|
|
-
|
|
|
+
|
|
|
return(configs)
|
|
|
}
|
|
|
|
|
|
+
|
|
|
generate_rank_plot_configs <- function(df, interaction_vars, rank_vars = c("L", "K"), is_lm = FALSE, adjust = FALSE) {
|
|
|
|
|
|
for (var in interaction_vars) {
|
|
@@ -789,7 +786,7 @@ filter_and_print_non_finite <- function(df, vars_to_check, print_vars) {
|
|
|
df %>% filter(if_all(all_of(vars_to_check), is.finite))
|
|
|
}
|
|
|
|
|
|
-filter_data_for_plots <- function(df, variables, limits_map) {
|
|
|
+filter_data_for_plots <- function(df, variables, limits_map = NULL) {
|
|
|
|
|
|
# Initialize lists to store lm lines and filtered data
|
|
|
lm_lines <- list()
|
|
@@ -830,11 +827,7 @@ filter_data_for_plots <- function(df, variables, limits_map) {
|
|
|
df_filtered <- df %>% filter(across(all_of(variables), ~ !is.na(.))) %>%
|
|
|
filter(across(all_of(variables), ~ between(., limits_map[[cur_column()]][1], limits_map[[cur_column()]][2]), .names = "filter_{col}"))
|
|
|
|
|
|
- # Return the filtered dataframe and lm lines
|
|
|
- return(list(
|
|
|
- df_filtered = df_filtered,
|
|
|
- lm_lines = lm_lines
|
|
|
- ))
|
|
|
+ return(df_filtered)
|
|
|
}
|
|
|
|
|
|
main <- function() {
|