123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945 |
- suppressMessages({
- library(ggplot2)
- library(plotly)
- library(htmlwidgets)
- library(dplyr)
- library(ggthemes)
- library(data.table)
- library(unix)
- })
- options(warn = 2, max.print = 1000)
- options(width = 10000)
- # Set the memory limit to 30GB (30 * 1024 * 1024 * 1024 bytes)
- soft_limit <- 30 * 1024 * 1024 * 1024
- hard_limit <- 30 * 1024 * 1024 * 1024
- rlimit_as(soft_limit, hard_limit)
- # Constants for configuration
- plot_width <- 14
- plot_height <- 9
- base_size <- 14
- parse_arguments <- function() {
- args <- if (interactive()) {
- c(
- "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/20240116_jhartman2_DoxoHLD",
- "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/apps/r/SGD_features.tab",
- "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/easy/20240116_jhartman2_DoxoHLD/results_std.txt",
- "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/20240822_jhartman2_DoxoHLD/exp1",
- "Experiment 1: Doxo versus HLD",
- 3,
- "/home/bryan/documents/develop/hartmanlab/workflow/out/20240116_jhartman2_DoxoHLD/20240822_jhartman2_DoxoHLD/exp2",
- "Experiment 2: HLD versus Doxo",
- 3
- )
- } else {
- commandArgs(trailingOnly = TRUE)
- }
-
- # Extract paths, names, and standard deviations
- paths <- args[seq(4, length(args), by = 3)]
- names <- args[seq(5, length(args), by = 3)]
- sds <- as.numeric(args[seq(6, length(args), by = 3)])
-
- # Normalize paths
- normalized_paths <- normalizePath(paths, mustWork = FALSE)
-
- # Create named list of experiments
- experiments <- list()
- for (i in seq_along(paths)) {
- experiments[[names[i]]] <- list(
- path = normalized_paths[i],
- sd = sds[i]
- )
- }
-
- list(
- out_dir = normalizePath(args[1], mustWork = FALSE),
- sgd_gene_list = normalizePath(args[2], mustWork = FALSE),
- easy_results_file = normalizePath(args[3], mustWork = FALSE),
- experiments = experiments
- )
- }
- args <- parse_arguments()
- # Should we keep output in exp dirs or combine in the study output dir?
- # dir.create(file.path(args$out_dir, "zscores"), showWarnings = FALSE)
- # dir.create(file.path(args$out_dir, "zscores", "qc"), showWarnings = FALSE)
- # Define themes and scales
- theme_publication <- function(base_size = 14, base_family = "sans", legend_position = "bottom") {
- theme_foundation <- ggplot2::theme_grey(base_size = base_size, base_family = base_family)
-
- theme_foundation %+replace%
- theme(
- plot.title = element_text(face = "bold", size = rel(1.2), hjust = 0.5),
- text = element_text(),
- panel.background = element_rect(colour = NA),
- plot.background = element_rect(colour = NA),
- panel.border = element_rect(colour = NA),
- axis.title = element_text(face = "bold", size = rel(1)),
- axis.title.y = element_text(angle = 90, vjust = 2),
- axis.title.x = element_text(vjust = -0.2),
- axis.line = element_line(colour = "black"),
- panel.grid.major = element_line(colour = "#f0f0f0"),
- panel.grid.minor = element_blank(),
- legend.key = element_rect(colour = NA),
- legend.position = legend_position,
- legend.direction = ifelse(legend_position == "right", "vertical", "horizontal"),
- plot.margin = unit(c(10, 5, 5, 5), "mm"),
- strip.background = element_rect(colour = "#f0f0f0", fill = "#f0f0f0"),
- strip.text = element_text(face = "bold")
- )
- }
- scale_fill_publication <- function(...) {
- discrete_scale("fill", "Publication", manual_pal(values = c(
- "#386cb0", "#fdb462", "#7fc97f", "#ef3b2c", "#662506",
- "#a6cee3", "#fb9a99", "#984ea3", "#ffff33"
- )), ...)
- }
- scale_colour_publication <- function(...) {
- discrete_scale("colour", "Publication", manual_pal(values = c(
- "#386cb0", "#fdb462", "#7fc97f", "#ef3b2c", "#662506",
- "#a6cee3", "#fb9a99", "#984ea3", "#ffff33"
- )), ...)
- }
- # Load the initial dataframe from the easy_results_file
- load_and_process_data <- function(easy_results_file, sd = 3) {
- df <- read.delim(easy_results_file, skip = 2, as.is = TRUE, row.names = 1, strip.white = TRUE)
-
- df <- df %>%
- filter(!(.[[1]] %in% c("", "Scan"))) %>%
- filter(!is.na(ORF) & ORF != "" & !Gene %in% c("BLANK", "Blank", "blank") & Drug != "BMH21") %>%
- # Rename columns
- rename(L = l, num = Num., AUC = AUC96, scan = Scan, last_bg = LstBackgrd, first_bg = X1stBackgrd) %>%
- mutate(
- across(c(Col, Row, num, L, K, r, scan, AUC, last_bg, first_bg), as.numeric),
- delta_bg = last_bg - first_bg,
- delta_bg_tolerance = mean(delta_bg, na.rm = TRUE) + (sd * sd(delta_bg, na.rm = TRUE)),
- NG = if_else(L == 0 & !is.na(L), 1, 0),
- DB = if_else(delta_bg >= delta_bg_tolerance, 1, 0),
- SM = 0,
- OrfRep = if_else(ORF == "YDL227C", "YDL227C", OrfRep), # should these be hardcoded?
- conc_num = as.numeric(gsub("[^0-9\\.]", "", Conc)),
- conc_num_factor = as.numeric(as.factor(conc_num)) - 1
- )
-
- return(df)
- }
- # Update Gene names using the SGD gene list
- update_gene_names <- function(df, sgd_gene_list) {
- # Load SGD gene list
- genes <- read.delim(file = sgd_gene_list,
- quote = "", header = FALSE,
- colClasses = c(rep("NULL", 3), rep("character", 2), rep("NULL", 11)))
-
- # Create a named vector for mapping ORF to GeneName
- gene_map <- setNames(genes$V5, genes$V4)
- # Vectorized match to find the GeneName from gene_map
- mapped_genes <- gene_map[df$ORF]
- # Replace NAs in mapped_genes with original Gene names (preserves existing Gene names if ORF is not found)
- updated_genes <- ifelse(is.na(mapped_genes) | df$OrfRep == "YDL227C", df$Gene, mapped_genes)
- # Ensure Gene is not left blank or incorrectly updated to "OCT1"
- df <- df %>%
- mutate(Gene = ifelse(updated_genes == "" | updated_genes == "OCT1", OrfRep, updated_genes))
-
- return(df)
- }
- # Calculate summary statistics for all variables
- calculate_summary_stats <- function(df, variables, group_vars = c("conc_num", "conc_num_factor")) {
- df <- df %>%
- mutate(across(all_of(variables), ~ ifelse(. == 0, NA, .)))
- summary_stats <- df %>%
- group_by(across(all_of(group_vars))) %>%
- summarise(
- N = sum(!is.na(L)),
- across(all_of(variables), list(
- mean = ~mean(., na.rm = TRUE),
- median = ~median(., na.rm = TRUE),
- max = ~max(., na.rm = TRUE),
- min = ~min(., na.rm = TRUE),
- sd = ~sd(., na.rm = TRUE),
- se = ~sd(., na.rm = TRUE) / sqrt(sum(!is.na(.)) - 1)
- ), .names = "{.fn}_{.col}")
- )
- df_cleaned <- df %>%
- select(-any_of(names(summary_stats)))
- df_with_stats <- left_join(df_cleaned, summary_stats, by = group_vars)
- return(list(summary_stats = summary_stats, df_with_stats = df_with_stats))
- }
- calculate_interaction_scores <- function(df, max_conc, variables, group_vars = c("OrfRep", "Gene", "num")) {
- # Calculate total concentration variables
- total_conc_num <- length(unique(df$conc_num))
- num_non_removed_concs <- total_conc_num - sum(df$DB, na.rm = TRUE) - 1
- # Pull the background means and standard deviations from zero concentration
- bg_means <- list(
- L = df %>% filter(conc_num_factor == 0) %>% pull(mean_L) %>% first(),
- K = df %>% filter(conc_num_factor == 0) %>% pull(mean_K) %>% first(),
- r = df %>% filter(conc_num_factor == 0) %>% pull(mean_r) %>% first(),
- AUC = df %>% filter(conc_num_factor == 0) %>% pull(mean_AUC) %>% first()
- )
- bg_sd <- list(
- L = df %>% filter(conc_num_factor == 0) %>% pull(sd_L) %>% first(),
- K = df %>% filter(conc_num_factor == 0) %>% pull(sd_K) %>% first(),
- r = df %>% filter(conc_num_factor == 0) %>% pull(sd_r) %>% first(),
- AUC = df %>% filter(conc_num_factor == 0) %>% pull(sd_AUC) %>% first()
- )
- interaction_scores <- df %>%
- mutate(
- WT_L = df$mean_L,
- WT_K = df$mean_K,
- WT_r = df$mean_r,
- WT_AUC = df$mean_AUC,
- WT_sd_L = df$sd_L,
- WT_sd_K = df$sd_K,
- WT_sd_r = df$sd_r,
- WT_sd_AUC = df$sd_AUC
- ) %>%
- group_by(across(all_of(group_vars)), conc_num, conc_num_factor) %>%
- mutate(
- N = sum(!is.na(L)),
- NG = sum(NG, na.rm = TRUE),
- DB = sum(DB, na.rm = TRUE),
- SM = sum(SM, na.rm = TRUE),
- across(all_of(variables), list(
- mean = ~mean(., na.rm = TRUE),
- median = ~median(., na.rm = TRUE),
- max = ~max(., na.rm = TRUE),
- min = ~min(., na.rm = TRUE),
- sd = ~sd(., na.rm = TRUE),
- se = ~sd(., na.rm = TRUE) / sqrt(sum(!is.na(.)) - 1)
- ), .names = "{.fn}_{.col}")
- ) %>%
- ungroup()
- interaction_scores <- interaction_scores %>%
- group_by(across(all_of(group_vars))) %>%
- mutate(
- Raw_Shift_L = mean_L[[1]] - bg_means$L,
- Raw_Shift_K = mean_K[[1]] - bg_means$K,
- Raw_Shift_r = mean_r[[1]] - bg_means$r,
- Raw_Shift_AUC = mean_AUC[[1]] - bg_means$AUC,
- Z_Shift_L = Raw_Shift_L[[1]] / df$sd_L[[1]],
- Z_Shift_K = Raw_Shift_K[[1]] / df$sd_K[[1]],
- Z_Shift_r = Raw_Shift_r[[1]] / df$sd_r[[1]],
- Z_Shift_AUC = Raw_Shift_AUC[[1]] / df$sd_AUC[[1]]
- )
- interaction_scores <- interaction_scores %>%
- mutate(
- Exp_L = WT_L + Raw_Shift_L,
- Delta_L = mean_L - Exp_L,
- Exp_K = WT_K + Raw_Shift_K,
- Delta_K = mean_K - Exp_K,
- Exp_r = WT_r + Raw_Shift_r,
- Delta_r = mean_r - Exp_r,
- Exp_AUC = WT_AUC + Raw_Shift_AUC,
- Delta_AUC = mean_AUC - Exp_AUC
- )
- interaction_scores <- interaction_scores %>%
- mutate(
- Delta_L = if_else(NG == 1, mean_L - WT_L, Delta_L),
- Delta_K = if_else(NG == 1, mean_K - WT_K, Delta_K),
- Delta_r = if_else(NG == 1, mean_r - WT_r, Delta_r),
- Delta_AUC = if_else(NG == 1, mean_AUC - WT_AUC, Delta_AUC),
- Delta_L = if_else(SM == 1, mean_L - WT_L, Delta_L)
- )
- # Calculate linear models and interaction scores
- interaction_scores <- interaction_scores %>%
- mutate(
- lm_L = lm(Delta_L ~ conc_num_factor),
- lm_K = lm(Delta_K ~ conc_num_factor),
- lm_r = lm(Delta_r ~ conc_num_factor),
- lm_AUC = lm(Delta_AUC ~ conc_num_factor),
- Zscore_L = Delta_L / WT_sd_L,
- Zscore_K = Delta_K / WT_sd_K,
- Zscore_r = Delta_r / WT_sd_r,
- Zscore_AUC = Delta_AUC / WT_sd_AUC
- )
- interaction_scores <- interaction_scores %>%
- mutate(
- Sum_Zscore_L = sum(Zscore_L, na.rm = TRUE),
- Sum_Zscore_K = sum(Zscore_K, na.rm = TRUE),
- Sum_Zscore_r = sum(Zscore_r, na.rm = TRUE),
- Sum_Zscore_AUC = sum(Zscore_AUC, na.rm = TRUE)
- )
- interaction_scores_all <- interaction_scores %>%
- mutate(
- Avg_Zscore_L = Sum_Zscore_L / num_non_removed_concs,
- Avg_Zscore_K = Sum_Zscore_K / num_non_removed_concs,
- Avg_Zscore_r = Sum_Zscore_r / (total_conc_num - 1),
- Avg_Zscore_AUC = Sum_Zscore_AUC / (total_conc_num - 1),
- lm_Score_L = max_conc * coef(lm_L)[2] + coef(lm_L)[1],
- lm_Score_K = max_conc * coef(lm_K)[2] + coef(lm_K)[1],
- lm_Score_r = max_conc * coef(lm_r)[2] + coef(lm_r)[1],
- lm_Score_AUC = max_conc * coef(lm_AUC)[2] + coef(lm_AUC)[1],
- r_squared_L = summary(lm_L)$r.squared,
- r_squared_K = summary(lm_K)$r.squared,
- r_squared_r = summary(lm_r)$r.squared,
- r_squared_AUC = summary(lm_AUC)$r.squared
- )
- # Calculate Z_lm for each variable
- interaction_scores_all <- interaction_scores_all %>%
- mutate(
- Z_lm_L = (lm_Score_L - mean(lm_Score_L, na.rm = TRUE)) / sd(lm_Score_L, na.rm = TRUE),
- Z_lm_K = (lm_Score_K - mean(lm_Score_K, na.rm = TRUE)) / sd(lm_Score_K, na.rm = TRUE),
- Z_lm_r = (lm_Score_r - mean(lm_Score_r, na.rm = TRUE)) / sd(lm_Score_r, na.rm = TRUE),
- Z_lm_AUC = (lm_Score_AUC - mean(lm_Score_AUC, na.rm = TRUE)) / sd(lm_Score_AUC, na.rm = TRUE)
- )
- # Arrange results by Z_lm_L and NG
- interaction_scores_all <- interaction_scores_all %>%
- arrange(desc(lm_Score_L)) %>%
- arrange(desc(NG)) %>%
- ungroup()
- return(list(zscores_calculations = interaction_scores_all, zscores_interactions = interaction_scores))
- }
- generate_and_save_plots <- function(output_dir, file_name, plot_configs, grid_layout = NULL) {
-
- `%||%` <- function(a, b) if (!is.null(a)) a else b
-
- # Generalized plot generation
- plots <- lapply(plot_configs, function(config) {
-
- df <- config$df
- plot <- ggplot(df, aes(x = !!sym(config$x_var), y = !!sym(config$y_var), color = as.factor(!!sym(config$color_var))))
-
- # Rank plots with SD annotations
- if (config$plot_type == "rank") {
- plot <- plot + geom_point(size = 0.1, shape = 3)
-
- # Adding SD bands
- if (!is.null(config$sd_band)) {
- for (i in seq_len(config$sd_band)) {
- plot <- plot +
- annotate("rect", xmin = -Inf, xmax = Inf, ymin = i, ymax = Inf, fill = "#542788", alpha = 0.3) +
- annotate("rect", xmin = -Inf, xmax = Inf, ymin = -i, ymax = -Inf, fill = "orange", alpha = 0.3) +
- geom_hline(yintercept = c(-i, i), color = "gray")
- }
- }
- # Optionally add enhancer/suppressor count annotations
- if (!is.null(config$enhancer_label)) {
- plot <- plot + annotate("text", x = config$enhancer_label$x,
- y = config$enhancer_label$y, label = config$enhancer_label$label) +
- annotate("text", x = config$suppressor_label$x,
- y = config$suppressor_label$y, label = config$suppressor_label$label)
- }
- }
-
- # Correlation plots
- if (config$plot_type == "correlation") {
- plot <- plot + geom_point(shape = 3, color = "gray70") +
- geom_smooth(method = "lm", color = "tomato3") +
- annotate("text", x = 0, y = 0, label = config$correlation_text)
- }
- # General scatter/boxplot/density handling
- if (!is.null(config$y_var)) {
- plot <- plot + aes(y = !!sym(config$y_var))
-
- y_mean_col <- paste0("mean_", config$y_var)
- y_sd_col <- paste0("sd_", config$y_var)
-
- if (config$y_var == "delta_bg" && config$plot_type == "scatter") {
- plot <- plot + geom_point(shape = 3, size = 0.2, position = "jitter") +
- geom_errorbar(aes(ymin = !!sym(y_mean_col) - !!sym(y_sd_col),
- ymax = !!sym(y_mean_col) + !!sym(y_sd_col)), width = 0.1) +
- geom_point(aes(y = !!sym(y_mean_col)), size = 0.6)
- } else if (config$error_bar %||% FALSE) {
- plot <- plot +
- geom_point(shape = 3, size = 0.2) +
- geom_errorbar(aes(ymin = !!sym(y_mean_col) - !!sym(y_sd_col),
- ymax = !!sym(y_mean_col) + !!sym(y_sd_col)), width = 0.1) +
- geom_point(aes(y = !!sym(y_mean_col)), size = 0.6)
- }
- }
- # Plot type selection
- plot <- switch(config$plot_type,
- "box" = plot + geom_boxplot(),
- "density" = plot + geom_density(),
- "bar" = plot + geom_bar(stat = "identity"),
- plot + geom_point() + geom_smooth(method = "lm", se = FALSE))
-
- # Adding y-limits if provided
- if (!is.null(config$ylim_vals)) {
- plot <- plot + coord_cartesian(ylim = config$ylim_vals)
- }
- # Setting legend position, titles, and labels
- legend_position <- config$legend_position %||% "bottom"
- plot <- plot + ggtitle(config$title) + theme_Publication(legend_position = legend_position)
-
- if (!is.null(config$x_label)) plot <- plot + xlab(config$x_label)
- if (!is.null(config$y_label)) plot <- plot + ylab(config$y_label)
-
- # Adding text annotations if provided
- if (!is.null(config$annotations)) {
- for (annotation in config$annotations) {
- plot <- plot + annotate("text", x = annotation$x, y = annotation$y, label = annotation$label)
- }
- }
-
- return(plot)
- })
-
- # If grid_layout is provided, arrange plots in a grid and save in a single PDF
- if (!is.null(grid_layout)) {
- pdf(file.path(output_dir, paste0(file_name, ".pdf")), width = 14, height = 9)
-
- # Loop through plots in chunks defined by ncol and nrow
- for (start_idx in seq(1, length(plots), by = grid_layout$ncol * grid_layout$nrow)) {
- end_idx <- min(start_idx + grid_layout$ncol * grid_layout$nrow - 1, length(plots))
- plot_subset <- plots[start_idx:end_idx]
-
- # Arrange plots in a grid
- do.call(grid.arrange, c(plot_subset, ncol = grid_layout$ncol, nrow = grid_layout$nrow))
- }
-
- dev.off()
-
- # Save as HTML (optional)
- plotly_plots <- lapply(plots, function(plot) {
- suppressWarnings(ggplotly(plot) %>% layout(legend = list(orientation = "h")))
- })
- combined_plot <- subplot(plotly_plots, nrows = grid_layout$nrow, margin = 0.05)
- saveWidget(combined_plot, file = file.path(output_dir, paste0(file_name, "_grid.html")), selfcontained = TRUE)
-
- } else {
- # Save individual plots to PDF
- pdf(file.path(output_dir, paste0(file_name, ".pdf")), width = 14, height = 9)
- lapply(plots, print)
- dev.off()
-
- # Convert plots to plotly and save as HTML
- plotly_plots <- lapply(plots, function(plot) {
- suppressWarnings(ggplotly(plot) %>% layout(legend = list(orientation = "h")))
- })
- combined_plot <- subplot(plotly_plots, nrows = length(plotly_plots), margin = 0.05)
- saveWidget(combined_plot, file = file.path(output_dir, paste0(file_name, ".html")), selfcontained = TRUE)
- }
- }
- generate_interaction_plot_configs <- function(df, variables) {
- plot_configs <- list()
- for (variable in variables) {
- # Define the y-limits based on the variable being plotted
- ylim_vals <- switch(variable,
- "L" = c(-65, 65),
- "K" = c(-65, 65),
- "r" = c(-0.65, 0.65),
- "AUC" = c(-6500, 6500)
- )
- # Dynamically generate the column names for standard deviation and delta
- wt_sd_col <- paste0("WT_sd_", variable)
- delta_var <- paste0("Delta_", variable)
- z_shift <- paste0("Z_Shift_", variable)
- z_lm <- paste0("Z_lm_", variable)
- # Set annotations for ZShift, Z lm Score, NG, DB, SM
- annotations <- list(
- list(x = 1, y = ifelse(variable == "L", 45, ifelse(variable == "K", 45,
- ifelse(variable == "r", 0.45, 4500))), label = paste("ZShift =", round(df[[z_shift]], 2))),
- list(x = 1, y = ifelse(variable == "L", 25, ifelse(variable == "K", 25,
- ifelse(variable == "r", 0.25, 2500))), label = paste("lm ZScore =", round(df[[z_lm]], 2))),
- list(x = 1, y = ifelse(variable == "L", -25, ifelse(variable == "K", -25,
- ifelse(variable == "r", -0.25, -2500))), label = paste("NG =", df$NG)),
- list(x = 1, y = ifelse(variable == "L", -35, ifelse(variable == "K", -35,
- ifelse(variable == "r", -0.35, -3500))), label = paste("DB =", df$DB)),
- list(x = 1, y = ifelse(variable == "L", -45, ifelse(variable == "K", -45,
- ifelse(variable == "r", -0.45, -4500))), label = paste("SM =", df$SM))
- )
- # Add scatter plot configuration for this variable
- plot_configs[[length(plot_configs) + 1]] <- list(
- df = df,
- x_var = "conc_num_factor",
- y_var = delta_var,
- plot_type = "scatter",
- title = sprintf("%s %s", df$OrfRep[1], df$Gene[1]),
- ylim_vals = ylim_vals,
- annotations = annotations,
- error_bar = list(
- ymin = 0 - (2 * df[[wt_sd_col]][1]),
- ymax = 0 + (2 * df[[wt_sd_col]][1])
- ),
- x_breaks = unique(df$conc_num_factor),
- x_labels = unique(as.character(df$conc_num)),
- x_label = unique(df$Drug[1])
- )
- # Add box plot configuration for this variable
- plot_configs[[length(plot_configs) + 1]] <- list(
- df = df,
- x_var = "conc_num_factor",
- y_var = variable,
- plot_type = "box",
- title = sprintf("%s %s (Boxplot)", df$OrfRep[1], df$Gene[1]),
- ylim_vals = ylim_vals,
- annotations = annotations,
- error_bar = FALSE, # Boxplots typically don't need error bars
- x_breaks = unique(df$conc_num_factor),
- x_labels = unique(as.character(df$conc_num)),
- x_label = unique(df$Drug[1])
- )
- }
- return(plot_configs)
- }
- generate_rank_plot_configs <- function(df, rank_var, zscore_var, label_prefix) {
- configs <- list()
-
- for (sd_band in c(1, 2, 3)) {
- # Annotated version
- configs[[length(configs) + 1]] <- list(
- df = df,
- x_var = rank_var,
- y_var = zscore_var,
- plot_type = "rank",
- title = paste("Average Z score vs. Rank for", label_prefix, "above", sd_band, "SD"),
- sd_band = sd_band,
- enhancer_label = list(
- x = nrow(df) / 2, y = 10,
- label = paste("Deletion Enhancers =", nrow(df[df[[zscore_var]] >= sd_band, ]))
- ),
- suppressor_label = list(
- x = nrow(df) / 2, y = -10,
- label = paste("Deletion Suppressors =", nrow(df[df[[zscore_var]] <= -sd_band, ]))
- )
- )
-
- # Non-annotated version
- configs[[length(configs) + 1]] <- list(
- df = df,
- x_var = rank_var,
- y_var = zscore_var,
- plot_type = "rank",
- title = paste("Average Z score vs. Rank for", label_prefix, "above", sd_band, "SD"),
- sd_band = sd_band
- )
- }
-
- return(configs)
- }
- generate_correlation_plot_configs <- function(df, lm_list, lm_summaries) {
- lapply(seq_along(lm_list), function(i) {
- r_squared <- round(lm_summaries[[i]]$r.squared, 3)
- list(
- x_var = names(lm_list)[i][1],
- y_var = names(lm_list)[i][2],
- plot_type = "scatter",
- title = paste("Correlation between", names(lm_list)[i][1], "and", names(lm_list)[i][2]),
- annotations = list(list(x = 0, y = 0, label = paste("R-squared =", r_squared)))
- )
- })
- }
- # Adjust missing values and calculate ranks
- adjust_missing_and_rank <- function(df, variables) {
- # Adjust missing values in Avg_Zscore and Z_lm columns, and apply rank to the specified variables
- df <- df %>%
- mutate(across(all_of(variables), list(
- Avg_Zscore = ~ if_else(is.na(get(paste0("Avg_Zscore_", cur_column()))), 0.001, get(paste0("Avg_Zscore_", cur_column()))),
- Z_lm = ~ if_else(is.na(get(paste0("Z_lm_", cur_column()))), 0.001, get(paste0("Z_lm_", cur_column()))),
- Rank = ~ rank(get(paste0("Avg_Zscore_", cur_column()))),
- Rank_lm = ~ rank(get(paste0("Z_lm_", cur_column())))
- ), .names = "{fn}_{col}"))
- return(df)
- }
- main <- function() {
- lapply(names(args$experiments), function(exp_name) {
- exp <- args$experiments[[exp_name]]
- exp_path <- exp$path
- exp_sd <- exp$sd
- out_dir <- file.path(exp_path, "zscores")
- out_dir_qc <- file.path(exp_path, "zscores", "qc")
- dir.create(out_dir, recursive = TRUE, showWarnings = FALSE)
- dir.create(out_dir_qc, recursive = TRUE, showWarnings = FALSE)
-
- # Load and process data
- df <- load_and_process_data(args$easy_results_file, sd = exp_sd)
- df <- update_gene_names(df, args$sgd_gene_list)
-
- max_conc <- max(df$conc_num_factor)
-
- # QC steps and filtering
- df_above_tolerance <- df %>% filter(DB == 1)
- # Calculate the half-medians for `L` and `K` for rows above tolerance
- L_half_median <- (median(df_above_tolerance$L, na.rm = TRUE)) / 2
- K_half_median <- (median(df_above_tolerance$K, na.rm = TRUE)) / 2
- # Get the number of rows that are above tolerance
- rows_to_remove <- nrow(df_above_tolerance)
- # Set L, r, K, and AUC to NA for rows that are above tolerance
- df_na <- df %>% mutate(across(c(L, r, AUC, K), ~ ifelse(DB == 1, NA, .)))
- # Calculate summary statistics for all strains, including both background and the deletions
- message("Calculating summary statistics for all strains")
- variables <- c("L", "K", "r", "AUC")
- ss <- calculate_summary_stats(df_na, variables, group_vars = c("OrfRep", "conc_num", "conc_num_factor"))
- summary_stats <- ss$summary_stats
- df_na_stats <- ss$df_with_stats
- write.csv(summary_stats, file = file.path(out_dir, "SummaryStats_ALLSTRAINS.csv"), row.names = FALSE)
- print("Summary stats:")
- print(head(summary_stats), width = 200)
- # Remove rows with 0 values in L
- df_no_zeros <- df_na %>% filter(L > 0)
- # Additional filtering for non-finite values
- df_na_filtered <- df_na %>%
- filter(if_any(c(L), ~ !is.finite(.))) %>%
- {
- if (nrow(.) > 0) {
- message("Removing non-finite rows:\n")
- print(head(., n = 10))
- }
- df_na %>% filter(if_all(c(L), is.finite))
- }
- # Filter data within and outside 2SD
- message("Filtering by 2SD of K")
- df_na_within_2sd_k <- df_na_stats %>%
- filter(K >= (mean_K - 2 * sd_K) & K <= (mean_K + 2 * sd_K))
- df_na_outside_2sd_k <- df_na_stats %>%
- filter(K < (mean_K - 2 * sd_K) | K > (mean_K + 2 * sd_K))
- # Summary statistics for within and outside 2SD of K
- message("Calculating summary statistics for L within 2SD of K")
- # TODO We're omitting the original z_max calculation, not sure if needed?
- ss <- calculate_summary_stats(df_na_within_2sd_k, "L", group_vars = c("conc_num", "conc_num_factor"))
- l_within_2sd_k_stats <- ss$summary_stats
- df_na_l_within_2sd_k_stats <- ss$df_with_stats
- message("Calculating summary statistics for L outside 2SD of K")
- ss <- calculate_summary_stats(df_na_outside_2sd_k, "L", group_vars = c("conc_num", "conc_num_factor"))
- l_outside_2sd_k_stats <- ss$summary_stats
- df_na_l_outside_2sd_k_stats <- ss$df_with_stats
- # Write CSV files
- write.csv(l_within_2sd_k_stats, file = file.path(out_dir_qc, "Max_Observed_L_Vals_for_spots_within_2sd_k.csv"), row.names = FALSE)
- write.csv(l_outside_2sd_k_stats, file = file.path(out_dir, "Max_Observed_L_Vals_for_spots_outside_2sd_k.csv"), row.names = FALSE)
- # Plots
- # Print quality control graphs before removing data due to contamination and
- # adjusting missing data to max theoretical values
- l_vs_k_plots <- list(
- list(df = df, x_var = "L", y_var = "K", plot_type = "scatter",
- title = "Raw L vs K before QC",
- color_var = "conc_num",
- legend_position = "right"
- )
- )
- above_threshold_plots <- list(
- list(df = df_above_tolerance, x_var = "L", y_var = "K", plot_type = "scatter",
- title = paste("Raw L vs K for strains above delta background threshold of", df_above_tolerance$delta_bg_tolerance[[1]], "or above"),
- color_var = "conc_num",
- annotations = list(
- list(
- x = L_half_median,
- y = K_half_median,
- label = paste("Strains above delta background tolerance =", nrow(df_above_tolerance))
- )
- ),
- error_bar = FALSE,
- legend_position = "right"
- )
- )
- frequency_delta_bg_plots <- list(
- list(df = df, x_var = "delta_bg", y_var = NULL, plot_type = "density",
- title = "Density plot for Delta Background by Conc All Data",
- color_var = "conc_num",
- x_label = "Delta Background",
- y_label = "Density",
- error_bar = FALSE,
- legend_position = "right"
- ),
- list(df = df, x_var = "delta_bg", y_var = NULL, plot_type = "bar",
- title = "Bar plot for Delta Background by Conc All Data",
- color_var = "conc_num",
- x_label = "Delta Background",
- y_label = "Count",
- error_bar = FALSE,
- legend_position = "right"
- )
- )
- plate_analysis_plots <- list()
- for (plot_type in c("scatter", "box")) {
- variables <- c("L", "K", "r", "AUC", "delta_bg")
- for (var in variables) {
- for (stage in c("before", "after")) {
- if (stage == "before") {
- df_plot <- df
- } else {
- df_plot <- df_na # TODO use df_na_filtered if necessary
- }
-
- # Set error_bar = TRUE only for scatter plots
- error_bar <- ifelse(plot_type == "scatter", TRUE, FALSE)
-
- # Create the plot configuration
- plot_config <- list(df = df_plot, x_var = "scan", y_var = var, plot_type = plot_type,
- title = paste("Plate analysis by Drug Conc for", var, stage, "quality control"),
- error_bar = error_bar, color_var = "conc_num")
- plate_analysis_plots <- append(plate_analysis_plots, list(plot_config))
- }
- }
- }
- plate_analysis_no_zero_plots <- list()
- for (plot_type in c("scatter", "box")) {
- variables <- c("L", "K", "r", "AUC", "delta_bg")
- for (var in variables) {
-
- # Set error_bar = TRUE only for scatter plots
- error_bar <- ifelse(plot_type == "scatter", TRUE, FALSE)
-
- # Create the plot configuration
- plot_config <- list(
- df = df_no_zeros,
- x_var = "scan",
- y_var = var,
- plot_type = plot_type,
- title = paste("Plate analysis by Drug Conc for", var, "after quality control"),
- error_bar = error_bar,
- color_var = "conc_num"
- )
- plate_analysis_plots <- append(plate_analysis_plots, list(plot_config))
- }
- }
- l_outside_2sd_k_plots <- list(
- list(df = X_outside_2SD_K, x_var = "l", y_var = "K", plot_type = "scatter",
- title = "Raw L vs K for strains falling outside 2SD of the K mean at each Conc",
- color_var = "conc_num",
- legend_position = "right"
- )
- )
- delta_bg_outside_2sd_k_plots <- list(
- list(df = X_outside_2SD_K, x_var = "delta_bg", y_var = "K", plot_type = "scatter",
- title = "Delta Background vs K for strains falling outside 2SD of the K mean at each Conc",
- color_var = "conc_num",
- legend_position = "right"
- )
- )
- # Generate and save plots for each QC step
- message("Generating QC plots")
- generate_and_save_plots(out_dir_qc, "L_vs_K_before_quality_control", l_vs_k_plots)
- generate_and_save_plots(out_dir_qc, "L_vs_K_above_threshold", above_threshold_plots)
- generate_and_save_plots(out_dir_qc, "frequency_delta_background", frequency_delta_bg_plots)
- generate_and_save_plots(out_dir_qc, "plate_analysis", plate_analysis_plots)
- generate_and_save_plots(out_dir_qc, "plate_analysis_no_zeros", plate_analysis_no_zeros_plots)
- generate_and_save_plots(out_dir_qc, "L_vs_K_for_strains_2SD_outside_mean_K", l_outside_2sd_k_plots)
- generate_and_save_plots(out_dir_qc, "delta_background_vs_K_for_strains_2sd_outside_mean_K", delta_bg_outside_2sd_k_plots)
- # Clean up
- rm(df, df_above_tolerance, df_no_zeros)
- # TODO: Originally this filtered L NA's
- # Let's try to avoid for now since stats have already been calculated
- # Process background strains
- bg_strains <- c("YDL227C")
- lapply(bg_strains, function(strain) {
-
- message("Processing background strain: ", strain)
-
- # Handle missing data by setting zero values to NA
- # and then removing any rows with NA in L col
- df_bg <- df_na %>%
- filter(OrfRep == strain) %>%
- mutate(
- L = if_else(L == 0, NA, L),
- K = if_else(K == 0, NA, K),
- r = if_else(r == 0, NA, r),
- AUC = if_else(AUC == 0, NA, AUC)
- ) %>%
- filter(!is.na(L))
-
- # Recalculate summary statistics for the background strain
- message("Calculating summary statistics for background strain")
- ss <- calculate_summary_stats(df_bg, variables, group_vars = c("OrfRep", "conc_num", "conc_num_factor"))
- summary_stats_bg <- ss$summary_stats
- df_bg_stats <- ss$df_with_stats
- write.csv(summary_stats_bg,
- file = file.path(out_dir, paste0("SummaryStats_BackgroundStrains_", strain, ".csv")),
- row.names = FALSE)
-
- # Filter reference and deletion strains
- # Formerly X2_RF (reference strains)
- df_reference <- df_na_stats %>%
- filter(OrfRep == strain) %>%
- mutate(SM = 0)
-
- # Formerly X2 (deletion strains)
- df_deletion <- df_na_stats %>%
- filter(OrfRep != strain) %>%
- mutate(SM = 0)
- # Set the missing values to the highest theoretical value at each drug conc for L
- # Leave other values as 0 for the max/min
- reference_strain <- df_reference %>%
- group_by(conc_num) %>%
- mutate(
- max_l_theoretical = max(max_L, na.rm = TRUE),
- L = ifelse(L == 0 & !is.na(L) & conc_num > 0, max_l_theoretical, L),
- SM = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, 1, SM),
- L = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, max_l_theoretical, L)) %>%
- ungroup()
- # Ditto for deletion strains
- deletion_strains <- df_deletion %>%
- group_by(conc_num) %>%
- mutate(
- max_l_theoretical = max(max_L, na.rm = TRUE),
- L = ifelse(L == 0 & !is.na(L) & conc_num > 0, max_l_theoretical, L),
- SM = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, 1, SM),
- L = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, max_l_theoretical, L)) %>%
- ungroup()
- # Calculate interactions
- variables <- c("L", "K", "r", "AUC")
- message("Calculating interaction scores")
- print("Reference strain:")
- print(head(reference_strain))
- reference_results <- calculate_interaction_scores(reference_strain, max_conc, variables)
- print("Deletion strains:")
- print(head(deletion_strains))
- deletion_results <- calculate_interaction_scores(deletion_strains, max_conc, variables)
-
- zscores_calculations_reference <- reference_results$zscores_calculations
- zscores_interactions_reference <- reference_results$zscores_interactions
- zscores_calculations <- deletion_results$zscores_calculations
- zscores_interactions <- deletion_results$zscores_interactions
-
- # Writing Z-Scores to file
- write.csv(zscores_calculations_reference, file = file.path(out_dir, "RF_ZScores_Calculations.csv"), row.names = FALSE)
- write.csv(zscores_calculations, file = file.path(out_dir, "ZScores_Calculations.csv"), row.names = FALSE)
- write.csv(zscores_interactions_reference, file = file.path(out_dir, "RF_ZScores_Interaction.csv"), row.names = FALSE)
- write.csv(zscores_interactions, file = file.path(out_dir, "ZScores_Interaction.csv"), row.names = FALSE)
- # Create interaction plots
- reference_plot_configs <- generate_interaction_plot_configs(df_reference, variables)
- deletion_plot_configs <- generate_interaction_plot_configs(df_deletion, variables)
- generate_and_save_plots(out_dir, "RF_interactionPlots", reference_plot_configs, grid_layout = list(ncol = 4, nrow = 3))
- generate_and_save_plots(out_dir, "InteractionPlots", deletion_plot_configs, grid_layout = list(ncol = 4, nrow = 3))
- # Define conditions for enhancers and suppressors
- # TODO Add to study config file?
- threshold <- 2
- enhancer_condition_L <- zscores_interactions$Avg_Zscore_L >= threshold
- suppressor_condition_L <- zscores_interactions$Avg_Zscore_L <= -threshold
- enhancer_condition_K <- zscores_interactions$Avg_Zscore_K >= threshold
- suppressor_condition_K <- zscores_interactions$Avg_Zscore_K <= -threshold
-
- # Subset data
- enhancers_L <- zscores_interactions[enhancer_condition_L, ]
- suppressors_L <- zscores_interactions[suppressor_condition_L, ]
- enhancers_K <- zscores_interactions[enhancer_condition_K, ]
- suppressors_K <- zscores_interactions[suppressor_condition_K, ]
-
- # Save enhancers and suppressors
- message("Writing enhancer/suppressor csv files")
- write.csv(enhancers_L, file = file.path(out_dir, "ZScores_Interaction_Deletion_Enhancers_L.csv"), row.names = FALSE)
- write.csv(suppressors_L, file = file.path(out_dir, "ZScores_Interaction_Deletion_Suppressors_L.csv"), row.names = FALSE)
- write.csv(enhancers_K, file = file.path(out_dir, "ZScores_Interaction_Deletion_Enhancers_K.csv"), row.names = FALSE)
- write.csv(suppressors_K, file = file.path(out_dir, "ZScores_Interaction_Deletion_Suppressors_K.csv"), row.names = FALSE)
-
- # Combine conditions for enhancers and suppressors
- enhancers_and_suppressors_L <- zscores_interactions[enhancer_condition_L | suppressor_condition_L, ]
- enhancers_and_suppressors_K <- zscores_interactions[enhancer_condition_K | suppressor_condition_K, ]
-
- # Save combined enhancers and suppressors
- write.csv(enhancers_and_suppressors_L,
- file = file.path(out_dir, "ZScores_Interaction_Deletion_Enhancers_and_Suppressors_L.csv"), row.names = FALSE)
- write.csv(enhancers_and_suppressors_K,
- file = file.path(out_dir, "ZScores_Interaction_Deletion_Enhancers_and_Suppressors_K.csv"), row.names = FALSE)
-
- # Handle linear model based enhancers and suppressors
- lm_threshold <- 2
- enhancers_lm_L <- zscores_interactions[zscores_interactions$Z_lm_L >= lm_threshold, ]
- suppressors_lm_L <- zscores_interactions[zscores_interactions$Z_lm_L <= -lm_threshold, ]
- enhancers_lm_K <- zscores_interactions[zscores_interactions$Z_lm_K >= lm_threshold, ]
- suppressors_lm_K <- zscores_interactions[zscores_interactions$Z_lm_K <= -lm_threshold, ]
-
- # Save linear model based enhancers and suppressors
- message("Writing linear model enhancer/suppressor csv files")
- write.csv(enhancers_lm_L,
- file = file.path(out_dir, "ZScores_Interaction_Deletion_Enhancers_L_lm.csv"), row.names = FALSE)
- write.csv(suppressors_lm_L,
- file = file.path(out_dir, "ZScores_Interaction_Deletion_Suppressors_L_lm.csv"), row.names = FALSE)
- write.csv(enhancers_lm_K,
- file = file.path(out_dir, "ZScores_Interaction_Deletion_Enhancers_K_lm.csv"), row.names = FALSE)
- write.csv(suppressors_lm_K,
- file = file.path(out_dir, "ZScores_Interaction_Deletion_Suppressors_K_lm.csv"), row.names = FALSE)
- zscores_interactions_adjusted <- adjust_missing_and_rank(zscores_interactions)
-
- # Generate all rank plot configurations for L and K
- rank_plot_configs <- c(
- generate_rank_plot_configs(zscores_interactions_adjusted, "Rank_L", "Avg_Zscore_L", "L"),
- generate_rank_plot_configs(zscores_interactions_adjusted, "Rank_K", "Avg_Zscore_K", "K")
- )
- # Generate and save rank plots
- generate_and_save_plots(output_dir = out_dir, file_name = "RankPlots",
- plot_configs = rank_plot_config, grid_layout = list(ncol = 3, nrow = 2))
- # # Correlation plots
- # lm_list <- list(
- # lm(Z_lm_K ~ Z_lm_L, data = zscores_interactions_filtered),
- # lm(Z_lm_r ~ Z_lm_L, data = zscores_interactions_filtered),
- # lm(Z_lm_AUC ~ Z_lm_L, data = zscores_interactions_filtered),
- # lm(Z_lm_r ~ Z_lm_K, data = zscores_interactions_filtered),
- # lm(Z_lm_AUC ~ Z_lm_K, data = zscores_interactions_filtered),
- # lm(Z_lm_AUC ~ Z_lm_r, data = zscores_interactions_filtered)
- # )
- lm_summaries <- lapply(lm_list, summary)
- correlation_plot_configs <- generate_correlation_plot_configs(zscores_interactions_filtered, lm_list, lm_summaries)
- generate_and_save_plots(zscores_interactions_filtered, output_dir, correlation_plot_configs)
- })
- })
- }
- main()
|