calculate_interaction_zscores.R 38 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945
  1. suppressMessages({
  2. library(ggplot2)
  3. library(plotly)
  4. library(htmlwidgets)
  5. library(dplyr)
  6. library(ggthemes)
  7. library(data.table)
  8. library(unix)
  9. })
  10. options(warn = 2, max.print = 1000)
  11. options(width = 10000)
  12. # Set the memory limit to 30GB (30 * 1024 * 1024 * 1024 bytes)
  13. soft_limit <- 30 * 1024 * 1024 * 1024
  14. hard_limit <- 30 * 1024 * 1024 * 1024
  15. rlimit_as(soft_limit, hard_limit)
  16. # Constants for configuration
  17. plot_width <- 14
  18. plot_height <- 9
  19. base_size <- 14
  20. parse_arguments <- function() {
  21. args <- if (interactive()) {
  22. c(
  23. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/20240116_jhartman2_DoxoHLD",
  24. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/apps/r/SGD_features.tab",
  25. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/easy/20240116_jhartman2_DoxoHLD/results_std.txt",
  26. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/20240822_jhartman2_DoxoHLD/exp1",
  27. "Experiment 1: Doxo versus HLD",
  28. 3,
  29. "/home/bryan/documents/develop/hartmanlab/workflow/out/20240116_jhartman2_DoxoHLD/20240822_jhartman2_DoxoHLD/exp2",
  30. "Experiment 2: HLD versus Doxo",
  31. 3
  32. )
  33. } else {
  34. commandArgs(trailingOnly = TRUE)
  35. }
  36. # Extract paths, names, and standard deviations
  37. paths <- args[seq(4, length(args), by = 3)]
  38. names <- args[seq(5, length(args), by = 3)]
  39. sds <- as.numeric(args[seq(6, length(args), by = 3)])
  40. # Normalize paths
  41. normalized_paths <- normalizePath(paths, mustWork = FALSE)
  42. # Create named list of experiments
  43. experiments <- list()
  44. for (i in seq_along(paths)) {
  45. experiments[[names[i]]] <- list(
  46. path = normalized_paths[i],
  47. sd = sds[i]
  48. )
  49. }
  50. list(
  51. out_dir = normalizePath(args[1], mustWork = FALSE),
  52. sgd_gene_list = normalizePath(args[2], mustWork = FALSE),
  53. easy_results_file = normalizePath(args[3], mustWork = FALSE),
  54. experiments = experiments
  55. )
  56. }
  57. args <- parse_arguments()
  58. # Should we keep output in exp dirs or combine in the study output dir?
  59. # dir.create(file.path(args$out_dir, "zscores"), showWarnings = FALSE)
  60. # dir.create(file.path(args$out_dir, "zscores", "qc"), showWarnings = FALSE)
  61. # Define themes and scales
  62. theme_publication <- function(base_size = 14, base_family = "sans", legend_position = "bottom") {
  63. theme_foundation <- ggplot2::theme_grey(base_size = base_size, base_family = base_family)
  64. theme_foundation %+replace%
  65. theme(
  66. plot.title = element_text(face = "bold", size = rel(1.2), hjust = 0.5),
  67. text = element_text(),
  68. panel.background = element_rect(colour = NA),
  69. plot.background = element_rect(colour = NA),
  70. panel.border = element_rect(colour = NA),
  71. axis.title = element_text(face = "bold", size = rel(1)),
  72. axis.title.y = element_text(angle = 90, vjust = 2),
  73. axis.title.x = element_text(vjust = -0.2),
  74. axis.line = element_line(colour = "black"),
  75. panel.grid.major = element_line(colour = "#f0f0f0"),
  76. panel.grid.minor = element_blank(),
  77. legend.key = element_rect(colour = NA),
  78. legend.position = legend_position,
  79. legend.direction = ifelse(legend_position == "right", "vertical", "horizontal"),
  80. plot.margin = unit(c(10, 5, 5, 5), "mm"),
  81. strip.background = element_rect(colour = "#f0f0f0", fill = "#f0f0f0"),
  82. strip.text = element_text(face = "bold")
  83. )
  84. }
  85. scale_fill_publication <- function(...) {
  86. discrete_scale("fill", "Publication", manual_pal(values = c(
  87. "#386cb0", "#fdb462", "#7fc97f", "#ef3b2c", "#662506",
  88. "#a6cee3", "#fb9a99", "#984ea3", "#ffff33"
  89. )), ...)
  90. }
  91. scale_colour_publication <- function(...) {
  92. discrete_scale("colour", "Publication", manual_pal(values = c(
  93. "#386cb0", "#fdb462", "#7fc97f", "#ef3b2c", "#662506",
  94. "#a6cee3", "#fb9a99", "#984ea3", "#ffff33"
  95. )), ...)
  96. }
  97. # Load the initial dataframe from the easy_results_file
  98. load_and_process_data <- function(easy_results_file, sd = 3) {
  99. df <- read.delim(easy_results_file, skip = 2, as.is = TRUE, row.names = 1, strip.white = TRUE)
  100. df <- df %>%
  101. filter(!(.[[1]] %in% c("", "Scan"))) %>%
  102. filter(!is.na(ORF) & ORF != "" & !Gene %in% c("BLANK", "Blank", "blank") & Drug != "BMH21") %>%
  103. # Rename columns
  104. rename(L = l, num = Num., AUC = AUC96, scan = Scan, last_bg = LstBackgrd, first_bg = X1stBackgrd) %>%
  105. mutate(
  106. across(c(Col, Row, num, L, K, r, scan, AUC, last_bg, first_bg), as.numeric),
  107. delta_bg = last_bg - first_bg,
  108. delta_bg_tolerance = mean(delta_bg, na.rm = TRUE) + (sd * sd(delta_bg, na.rm = TRUE)),
  109. NG = if_else(L == 0 & !is.na(L), 1, 0),
  110. DB = if_else(delta_bg >= delta_bg_tolerance, 1, 0),
  111. SM = 0,
  112. OrfRep = if_else(ORF == "YDL227C", "YDL227C", OrfRep), # should these be hardcoded?
  113. conc_num = as.numeric(gsub("[^0-9\\.]", "", Conc)),
  114. conc_num_factor = as.numeric(as.factor(conc_num)) - 1
  115. )
  116. return(df)
  117. }
  118. # Update Gene names using the SGD gene list
  119. update_gene_names <- function(df, sgd_gene_list) {
  120. # Load SGD gene list
  121. genes <- read.delim(file = sgd_gene_list,
  122. quote = "", header = FALSE,
  123. colClasses = c(rep("NULL", 3), rep("character", 2), rep("NULL", 11)))
  124. # Create a named vector for mapping ORF to GeneName
  125. gene_map <- setNames(genes$V5, genes$V4)
  126. # Vectorized match to find the GeneName from gene_map
  127. mapped_genes <- gene_map[df$ORF]
  128. # Replace NAs in mapped_genes with original Gene names (preserves existing Gene names if ORF is not found)
  129. updated_genes <- ifelse(is.na(mapped_genes) | df$OrfRep == "YDL227C", df$Gene, mapped_genes)
  130. # Ensure Gene is not left blank or incorrectly updated to "OCT1"
  131. df <- df %>%
  132. mutate(Gene = ifelse(updated_genes == "" | updated_genes == "OCT1", OrfRep, updated_genes))
  133. return(df)
  134. }
  135. # Calculate summary statistics for all variables
  136. calculate_summary_stats <- function(df, variables, group_vars = c("conc_num", "conc_num_factor")) {
  137. df <- df %>%
  138. mutate(across(all_of(variables), ~ ifelse(. == 0, NA, .)))
  139. summary_stats <- df %>%
  140. group_by(across(all_of(group_vars))) %>%
  141. summarise(
  142. N = sum(!is.na(L)),
  143. across(all_of(variables), list(
  144. mean = ~mean(., na.rm = TRUE),
  145. median = ~median(., na.rm = TRUE),
  146. max = ~max(., na.rm = TRUE),
  147. min = ~min(., na.rm = TRUE),
  148. sd = ~sd(., na.rm = TRUE),
  149. se = ~sd(., na.rm = TRUE) / sqrt(sum(!is.na(.)) - 1)
  150. ), .names = "{.fn}_{.col}")
  151. )
  152. df_cleaned <- df %>%
  153. select(-any_of(names(summary_stats)))
  154. df_with_stats <- left_join(df_cleaned, summary_stats, by = group_vars)
  155. return(list(summary_stats = summary_stats, df_with_stats = df_with_stats))
  156. }
  157. calculate_interaction_scores <- function(df, max_conc, variables, group_vars = c("OrfRep", "Gene", "num")) {
  158. # Calculate total concentration variables
  159. total_conc_num <- length(unique(df$conc_num))
  160. num_non_removed_concs <- total_conc_num - sum(df$DB, na.rm = TRUE) - 1
  161. # Pull the background means and standard deviations from zero concentration
  162. bg_means <- list(
  163. L = df %>% filter(conc_num_factor == 0) %>% pull(mean_L) %>% first(),
  164. K = df %>% filter(conc_num_factor == 0) %>% pull(mean_K) %>% first(),
  165. r = df %>% filter(conc_num_factor == 0) %>% pull(mean_r) %>% first(),
  166. AUC = df %>% filter(conc_num_factor == 0) %>% pull(mean_AUC) %>% first()
  167. )
  168. bg_sd <- list(
  169. L = df %>% filter(conc_num_factor == 0) %>% pull(sd_L) %>% first(),
  170. K = df %>% filter(conc_num_factor == 0) %>% pull(sd_K) %>% first(),
  171. r = df %>% filter(conc_num_factor == 0) %>% pull(sd_r) %>% first(),
  172. AUC = df %>% filter(conc_num_factor == 0) %>% pull(sd_AUC) %>% first()
  173. )
  174. interaction_scores <- df %>%
  175. mutate(
  176. WT_L = df$mean_L,
  177. WT_K = df$mean_K,
  178. WT_r = df$mean_r,
  179. WT_AUC = df$mean_AUC,
  180. WT_sd_L = df$sd_L,
  181. WT_sd_K = df$sd_K,
  182. WT_sd_r = df$sd_r,
  183. WT_sd_AUC = df$sd_AUC
  184. ) %>%
  185. group_by(across(all_of(group_vars)), conc_num, conc_num_factor) %>%
  186. mutate(
  187. N = sum(!is.na(L)),
  188. NG = sum(NG, na.rm = TRUE),
  189. DB = sum(DB, na.rm = TRUE),
  190. SM = sum(SM, na.rm = TRUE),
  191. across(all_of(variables), list(
  192. mean = ~mean(., na.rm = TRUE),
  193. median = ~median(., na.rm = TRUE),
  194. max = ~max(., na.rm = TRUE),
  195. min = ~min(., na.rm = TRUE),
  196. sd = ~sd(., na.rm = TRUE),
  197. se = ~sd(., na.rm = TRUE) / sqrt(sum(!is.na(.)) - 1)
  198. ), .names = "{.fn}_{.col}")
  199. ) %>%
  200. ungroup()
  201. interaction_scores <- interaction_scores %>%
  202. group_by(across(all_of(group_vars))) %>%
  203. mutate(
  204. Raw_Shift_L = mean_L[[1]] - bg_means$L,
  205. Raw_Shift_K = mean_K[[1]] - bg_means$K,
  206. Raw_Shift_r = mean_r[[1]] - bg_means$r,
  207. Raw_Shift_AUC = mean_AUC[[1]] - bg_means$AUC,
  208. Z_Shift_L = Raw_Shift_L[[1]] / df$sd_L[[1]],
  209. Z_Shift_K = Raw_Shift_K[[1]] / df$sd_K[[1]],
  210. Z_Shift_r = Raw_Shift_r[[1]] / df$sd_r[[1]],
  211. Z_Shift_AUC = Raw_Shift_AUC[[1]] / df$sd_AUC[[1]]
  212. )
  213. interaction_scores <- interaction_scores %>%
  214. mutate(
  215. Exp_L = WT_L + Raw_Shift_L,
  216. Delta_L = mean_L - Exp_L,
  217. Exp_K = WT_K + Raw_Shift_K,
  218. Delta_K = mean_K - Exp_K,
  219. Exp_r = WT_r + Raw_Shift_r,
  220. Delta_r = mean_r - Exp_r,
  221. Exp_AUC = WT_AUC + Raw_Shift_AUC,
  222. Delta_AUC = mean_AUC - Exp_AUC
  223. )
  224. interaction_scores <- interaction_scores %>%
  225. mutate(
  226. Delta_L = if_else(NG == 1, mean_L - WT_L, Delta_L),
  227. Delta_K = if_else(NG == 1, mean_K - WT_K, Delta_K),
  228. Delta_r = if_else(NG == 1, mean_r - WT_r, Delta_r),
  229. Delta_AUC = if_else(NG == 1, mean_AUC - WT_AUC, Delta_AUC),
  230. Delta_L = if_else(SM == 1, mean_L - WT_L, Delta_L)
  231. )
  232. # Calculate linear models and interaction scores
  233. interaction_scores <- interaction_scores %>%
  234. mutate(
  235. lm_L = lm(Delta_L ~ conc_num_factor),
  236. lm_K = lm(Delta_K ~ conc_num_factor),
  237. lm_r = lm(Delta_r ~ conc_num_factor),
  238. lm_AUC = lm(Delta_AUC ~ conc_num_factor),
  239. Zscore_L = Delta_L / WT_sd_L,
  240. Zscore_K = Delta_K / WT_sd_K,
  241. Zscore_r = Delta_r / WT_sd_r,
  242. Zscore_AUC = Delta_AUC / WT_sd_AUC
  243. )
  244. interaction_scores <- interaction_scores %>%
  245. mutate(
  246. Sum_Zscore_L = sum(Zscore_L, na.rm = TRUE),
  247. Sum_Zscore_K = sum(Zscore_K, na.rm = TRUE),
  248. Sum_Zscore_r = sum(Zscore_r, na.rm = TRUE),
  249. Sum_Zscore_AUC = sum(Zscore_AUC, na.rm = TRUE)
  250. )
  251. interaction_scores_all <- interaction_scores %>%
  252. mutate(
  253. Avg_Zscore_L = Sum_Zscore_L / num_non_removed_concs,
  254. Avg_Zscore_K = Sum_Zscore_K / num_non_removed_concs,
  255. Avg_Zscore_r = Sum_Zscore_r / (total_conc_num - 1),
  256. Avg_Zscore_AUC = Sum_Zscore_AUC / (total_conc_num - 1),
  257. lm_Score_L = max_conc * coef(lm_L)[2] + coef(lm_L)[1],
  258. lm_Score_K = max_conc * coef(lm_K)[2] + coef(lm_K)[1],
  259. lm_Score_r = max_conc * coef(lm_r)[2] + coef(lm_r)[1],
  260. lm_Score_AUC = max_conc * coef(lm_AUC)[2] + coef(lm_AUC)[1],
  261. r_squared_L = summary(lm_L)$r.squared,
  262. r_squared_K = summary(lm_K)$r.squared,
  263. r_squared_r = summary(lm_r)$r.squared,
  264. r_squared_AUC = summary(lm_AUC)$r.squared
  265. )
  266. # Calculate Z_lm for each variable
  267. interaction_scores_all <- interaction_scores_all %>%
  268. mutate(
  269. Z_lm_L = (lm_Score_L - mean(lm_Score_L, na.rm = TRUE)) / sd(lm_Score_L, na.rm = TRUE),
  270. Z_lm_K = (lm_Score_K - mean(lm_Score_K, na.rm = TRUE)) / sd(lm_Score_K, na.rm = TRUE),
  271. Z_lm_r = (lm_Score_r - mean(lm_Score_r, na.rm = TRUE)) / sd(lm_Score_r, na.rm = TRUE),
  272. Z_lm_AUC = (lm_Score_AUC - mean(lm_Score_AUC, na.rm = TRUE)) / sd(lm_Score_AUC, na.rm = TRUE)
  273. )
  274. # Arrange results by Z_lm_L and NG
  275. interaction_scores_all <- interaction_scores_all %>%
  276. arrange(desc(lm_Score_L)) %>%
  277. arrange(desc(NG)) %>%
  278. ungroup()
  279. return(list(zscores_calculations = interaction_scores_all, zscores_interactions = interaction_scores))
  280. }
  281. generate_and_save_plots <- function(output_dir, file_name, plot_configs, grid_layout = NULL) {
  282. `%||%` <- function(a, b) if (!is.null(a)) a else b
  283. # Generalized plot generation
  284. plots <- lapply(plot_configs, function(config) {
  285. df <- config$df
  286. plot <- ggplot(df, aes(x = !!sym(config$x_var), y = !!sym(config$y_var), color = as.factor(!!sym(config$color_var))))
  287. # Rank plots with SD annotations
  288. if (config$plot_type == "rank") {
  289. plot <- plot + geom_point(size = 0.1, shape = 3)
  290. # Adding SD bands
  291. if (!is.null(config$sd_band)) {
  292. for (i in seq_len(config$sd_band)) {
  293. plot <- plot +
  294. annotate("rect", xmin = -Inf, xmax = Inf, ymin = i, ymax = Inf, fill = "#542788", alpha = 0.3) +
  295. annotate("rect", xmin = -Inf, xmax = Inf, ymin = -i, ymax = -Inf, fill = "orange", alpha = 0.3) +
  296. geom_hline(yintercept = c(-i, i), color = "gray")
  297. }
  298. }
  299. # Optionally add enhancer/suppressor count annotations
  300. if (!is.null(config$enhancer_label)) {
  301. plot <- plot + annotate("text", x = config$enhancer_label$x,
  302. y = config$enhancer_label$y, label = config$enhancer_label$label) +
  303. annotate("text", x = config$suppressor_label$x,
  304. y = config$suppressor_label$y, label = config$suppressor_label$label)
  305. }
  306. }
  307. # Correlation plots
  308. if (config$plot_type == "correlation") {
  309. plot <- plot + geom_point(shape = 3, color = "gray70") +
  310. geom_smooth(method = "lm", color = "tomato3") +
  311. annotate("text", x = 0, y = 0, label = config$correlation_text)
  312. }
  313. # General scatter/boxplot/density handling
  314. if (!is.null(config$y_var)) {
  315. plot <- plot + aes(y = !!sym(config$y_var))
  316. y_mean_col <- paste0("mean_", config$y_var)
  317. y_sd_col <- paste0("sd_", config$y_var)
  318. if (config$y_var == "delta_bg" && config$plot_type == "scatter") {
  319. plot <- plot + geom_point(shape = 3, size = 0.2, position = "jitter") +
  320. geom_errorbar(aes(ymin = !!sym(y_mean_col) - !!sym(y_sd_col),
  321. ymax = !!sym(y_mean_col) + !!sym(y_sd_col)), width = 0.1) +
  322. geom_point(aes(y = !!sym(y_mean_col)), size = 0.6)
  323. } else if (config$error_bar %||% FALSE) {
  324. plot <- plot +
  325. geom_point(shape = 3, size = 0.2) +
  326. geom_errorbar(aes(ymin = !!sym(y_mean_col) - !!sym(y_sd_col),
  327. ymax = !!sym(y_mean_col) + !!sym(y_sd_col)), width = 0.1) +
  328. geom_point(aes(y = !!sym(y_mean_col)), size = 0.6)
  329. }
  330. }
  331. # Plot type selection
  332. plot <- switch(config$plot_type,
  333. "box" = plot + geom_boxplot(),
  334. "density" = plot + geom_density(),
  335. "bar" = plot + geom_bar(stat = "identity"),
  336. plot + geom_point() + geom_smooth(method = "lm", se = FALSE))
  337. # Adding y-limits if provided
  338. if (!is.null(config$ylim_vals)) {
  339. plot <- plot + coord_cartesian(ylim = config$ylim_vals)
  340. }
  341. # Setting legend position, titles, and labels
  342. legend_position <- config$legend_position %||% "bottom"
  343. plot <- plot + ggtitle(config$title) + theme_Publication(legend_position = legend_position)
  344. if (!is.null(config$x_label)) plot <- plot + xlab(config$x_label)
  345. if (!is.null(config$y_label)) plot <- plot + ylab(config$y_label)
  346. # Adding text annotations if provided
  347. if (!is.null(config$annotations)) {
  348. for (annotation in config$annotations) {
  349. plot <- plot + annotate("text", x = annotation$x, y = annotation$y, label = annotation$label)
  350. }
  351. }
  352. return(plot)
  353. })
  354. # If grid_layout is provided, arrange plots in a grid and save in a single PDF
  355. if (!is.null(grid_layout)) {
  356. pdf(file.path(output_dir, paste0(file_name, ".pdf")), width = 14, height = 9)
  357. # Loop through plots in chunks defined by ncol and nrow
  358. for (start_idx in seq(1, length(plots), by = grid_layout$ncol * grid_layout$nrow)) {
  359. end_idx <- min(start_idx + grid_layout$ncol * grid_layout$nrow - 1, length(plots))
  360. plot_subset <- plots[start_idx:end_idx]
  361. # Arrange plots in a grid
  362. do.call(grid.arrange, c(plot_subset, ncol = grid_layout$ncol, nrow = grid_layout$nrow))
  363. }
  364. dev.off()
  365. # Save as HTML (optional)
  366. plotly_plots <- lapply(plots, function(plot) {
  367. suppressWarnings(ggplotly(plot) %>% layout(legend = list(orientation = "h")))
  368. })
  369. combined_plot <- subplot(plotly_plots, nrows = grid_layout$nrow, margin = 0.05)
  370. saveWidget(combined_plot, file = file.path(output_dir, paste0(file_name, "_grid.html")), selfcontained = TRUE)
  371. } else {
  372. # Save individual plots to PDF
  373. pdf(file.path(output_dir, paste0(file_name, ".pdf")), width = 14, height = 9)
  374. lapply(plots, print)
  375. dev.off()
  376. # Convert plots to plotly and save as HTML
  377. plotly_plots <- lapply(plots, function(plot) {
  378. suppressWarnings(ggplotly(plot) %>% layout(legend = list(orientation = "h")))
  379. })
  380. combined_plot <- subplot(plotly_plots, nrows = length(plotly_plots), margin = 0.05)
  381. saveWidget(combined_plot, file = file.path(output_dir, paste0(file_name, ".html")), selfcontained = TRUE)
  382. }
  383. }
  384. generate_interaction_plot_configs <- function(df, variables) {
  385. plot_configs <- list()
  386. for (variable in variables) {
  387. # Define the y-limits based on the variable being plotted
  388. ylim_vals <- switch(variable,
  389. "L" = c(-65, 65),
  390. "K" = c(-65, 65),
  391. "r" = c(-0.65, 0.65),
  392. "AUC" = c(-6500, 6500)
  393. )
  394. # Dynamically generate the column names for standard deviation and delta
  395. wt_sd_col <- paste0("WT_sd_", variable)
  396. delta_var <- paste0("Delta_", variable)
  397. z_shift <- paste0("Z_Shift_", variable)
  398. z_lm <- paste0("Z_lm_", variable)
  399. # Set annotations for ZShift, Z lm Score, NG, DB, SM
  400. annotations <- list(
  401. list(x = 1, y = ifelse(variable == "L", 45, ifelse(variable == "K", 45,
  402. ifelse(variable == "r", 0.45, 4500))), label = paste("ZShift =", round(df[[z_shift]], 2))),
  403. list(x = 1, y = ifelse(variable == "L", 25, ifelse(variable == "K", 25,
  404. ifelse(variable == "r", 0.25, 2500))), label = paste("lm ZScore =", round(df[[z_lm]], 2))),
  405. list(x = 1, y = ifelse(variable == "L", -25, ifelse(variable == "K", -25,
  406. ifelse(variable == "r", -0.25, -2500))), label = paste("NG =", df$NG)),
  407. list(x = 1, y = ifelse(variable == "L", -35, ifelse(variable == "K", -35,
  408. ifelse(variable == "r", -0.35, -3500))), label = paste("DB =", df$DB)),
  409. list(x = 1, y = ifelse(variable == "L", -45, ifelse(variable == "K", -45,
  410. ifelse(variable == "r", -0.45, -4500))), label = paste("SM =", df$SM))
  411. )
  412. # Add scatter plot configuration for this variable
  413. plot_configs[[length(plot_configs) + 1]] <- list(
  414. df = df,
  415. x_var = "conc_num_factor",
  416. y_var = delta_var,
  417. plot_type = "scatter",
  418. title = sprintf("%s %s", df$OrfRep[1], df$Gene[1]),
  419. ylim_vals = ylim_vals,
  420. annotations = annotations,
  421. error_bar = list(
  422. ymin = 0 - (2 * df[[wt_sd_col]][1]),
  423. ymax = 0 + (2 * df[[wt_sd_col]][1])
  424. ),
  425. x_breaks = unique(df$conc_num_factor),
  426. x_labels = unique(as.character(df$conc_num)),
  427. x_label = unique(df$Drug[1])
  428. )
  429. # Add box plot configuration for this variable
  430. plot_configs[[length(plot_configs) + 1]] <- list(
  431. df = df,
  432. x_var = "conc_num_factor",
  433. y_var = variable,
  434. plot_type = "box",
  435. title = sprintf("%s %s (Boxplot)", df$OrfRep[1], df$Gene[1]),
  436. ylim_vals = ylim_vals,
  437. annotations = annotations,
  438. error_bar = FALSE, # Boxplots typically don't need error bars
  439. x_breaks = unique(df$conc_num_factor),
  440. x_labels = unique(as.character(df$conc_num)),
  441. x_label = unique(df$Drug[1])
  442. )
  443. }
  444. return(plot_configs)
  445. }
  446. generate_rank_plot_configs <- function(df, rank_var, zscore_var, label_prefix) {
  447. configs <- list()
  448. for (sd_band in c(1, 2, 3)) {
  449. # Annotated version
  450. configs[[length(configs) + 1]] <- list(
  451. df = df,
  452. x_var = rank_var,
  453. y_var = zscore_var,
  454. plot_type = "rank",
  455. title = paste("Average Z score vs. Rank for", label_prefix, "above", sd_band, "SD"),
  456. sd_band = sd_band,
  457. enhancer_label = list(
  458. x = nrow(df) / 2, y = 10,
  459. label = paste("Deletion Enhancers =", nrow(df[df[[zscore_var]] >= sd_band, ]))
  460. ),
  461. suppressor_label = list(
  462. x = nrow(df) / 2, y = -10,
  463. label = paste("Deletion Suppressors =", nrow(df[df[[zscore_var]] <= -sd_band, ]))
  464. )
  465. )
  466. # Non-annotated version
  467. configs[[length(configs) + 1]] <- list(
  468. df = df,
  469. x_var = rank_var,
  470. y_var = zscore_var,
  471. plot_type = "rank",
  472. title = paste("Average Z score vs. Rank for", label_prefix, "above", sd_band, "SD"),
  473. sd_band = sd_band
  474. )
  475. }
  476. return(configs)
  477. }
  478. generate_correlation_plot_configs <- function(df, lm_list, lm_summaries) {
  479. lapply(seq_along(lm_list), function(i) {
  480. r_squared <- round(lm_summaries[[i]]$r.squared, 3)
  481. list(
  482. x_var = names(lm_list)[i][1],
  483. y_var = names(lm_list)[i][2],
  484. plot_type = "scatter",
  485. title = paste("Correlation between", names(lm_list)[i][1], "and", names(lm_list)[i][2]),
  486. annotations = list(list(x = 0, y = 0, label = paste("R-squared =", r_squared)))
  487. )
  488. })
  489. }
  490. # Adjust missing values and calculate ranks
  491. adjust_missing_and_rank <- function(df, variables) {
  492. # Adjust missing values in Avg_Zscore and Z_lm columns, and apply rank to the specified variables
  493. df <- df %>%
  494. mutate(across(all_of(variables), list(
  495. Avg_Zscore = ~ if_else(is.na(get(paste0("Avg_Zscore_", cur_column()))), 0.001, get(paste0("Avg_Zscore_", cur_column()))),
  496. Z_lm = ~ if_else(is.na(get(paste0("Z_lm_", cur_column()))), 0.001, get(paste0("Z_lm_", cur_column()))),
  497. Rank = ~ rank(get(paste0("Avg_Zscore_", cur_column()))),
  498. Rank_lm = ~ rank(get(paste0("Z_lm_", cur_column())))
  499. ), .names = "{fn}_{col}"))
  500. return(df)
  501. }
  502. main <- function() {
  503. lapply(names(args$experiments), function(exp_name) {
  504. exp <- args$experiments[[exp_name]]
  505. exp_path <- exp$path
  506. exp_sd <- exp$sd
  507. out_dir <- file.path(exp_path, "zscores")
  508. out_dir_qc <- file.path(exp_path, "zscores", "qc")
  509. dir.create(out_dir, recursive = TRUE, showWarnings = FALSE)
  510. dir.create(out_dir_qc, recursive = TRUE, showWarnings = FALSE)
  511. # Load and process data
  512. df <- load_and_process_data(args$easy_results_file, sd = exp_sd)
  513. df <- update_gene_names(df, args$sgd_gene_list)
  514. max_conc <- max(df$conc_num_factor)
  515. # QC steps and filtering
  516. df_above_tolerance <- df %>% filter(DB == 1)
  517. # Calculate the half-medians for `L` and `K` for rows above tolerance
  518. L_half_median <- (median(df_above_tolerance$L, na.rm = TRUE)) / 2
  519. K_half_median <- (median(df_above_tolerance$K, na.rm = TRUE)) / 2
  520. # Get the number of rows that are above tolerance
  521. rows_to_remove <- nrow(df_above_tolerance)
  522. # Set L, r, K, and AUC to NA for rows that are above tolerance
  523. df_na <- df %>% mutate(across(c(L, r, AUC, K), ~ ifelse(DB == 1, NA, .)))
  524. # Calculate summary statistics for all strains, including both background and the deletions
  525. message("Calculating summary statistics for all strains")
  526. variables <- c("L", "K", "r", "AUC")
  527. ss <- calculate_summary_stats(df_na, variables, group_vars = c("OrfRep", "conc_num", "conc_num_factor"))
  528. summary_stats <- ss$summary_stats
  529. df_na_stats <- ss$df_with_stats
  530. write.csv(summary_stats, file = file.path(out_dir, "SummaryStats_ALLSTRAINS.csv"), row.names = FALSE)
  531. print("Summary stats:")
  532. print(head(summary_stats), width = 200)
  533. # Remove rows with 0 values in L
  534. df_no_zeros <- df_na %>% filter(L > 0)
  535. # Additional filtering for non-finite values
  536. df_na_filtered <- df_na %>%
  537. filter(if_any(c(L), ~ !is.finite(.))) %>%
  538. {
  539. if (nrow(.) > 0) {
  540. message("Removing non-finite rows:\n")
  541. print(head(., n = 10))
  542. }
  543. df_na %>% filter(if_all(c(L), is.finite))
  544. }
  545. # Filter data within and outside 2SD
  546. message("Filtering by 2SD of K")
  547. df_na_within_2sd_k <- df_na_stats %>%
  548. filter(K >= (mean_K - 2 * sd_K) & K <= (mean_K + 2 * sd_K))
  549. df_na_outside_2sd_k <- df_na_stats %>%
  550. filter(K < (mean_K - 2 * sd_K) | K > (mean_K + 2 * sd_K))
  551. # Summary statistics for within and outside 2SD of K
  552. message("Calculating summary statistics for L within 2SD of K")
  553. # TODO We're omitting the original z_max calculation, not sure if needed?
  554. ss <- calculate_summary_stats(df_na_within_2sd_k, "L", group_vars = c("conc_num", "conc_num_factor"))
  555. l_within_2sd_k_stats <- ss$summary_stats
  556. df_na_l_within_2sd_k_stats <- ss$df_with_stats
  557. message("Calculating summary statistics for L outside 2SD of K")
  558. ss <- calculate_summary_stats(df_na_outside_2sd_k, "L", group_vars = c("conc_num", "conc_num_factor"))
  559. l_outside_2sd_k_stats <- ss$summary_stats
  560. df_na_l_outside_2sd_k_stats <- ss$df_with_stats
  561. # Write CSV files
  562. write.csv(l_within_2sd_k_stats, file = file.path(out_dir_qc, "Max_Observed_L_Vals_for_spots_within_2sd_k.csv"), row.names = FALSE)
  563. write.csv(l_outside_2sd_k_stats, file = file.path(out_dir, "Max_Observed_L_Vals_for_spots_outside_2sd_k.csv"), row.names = FALSE)
  564. # Plots
  565. # Print quality control graphs before removing data due to contamination and
  566. # adjusting missing data to max theoretical values
  567. l_vs_k_plots <- list(
  568. list(df = df, x_var = "L", y_var = "K", plot_type = "scatter",
  569. title = "Raw L vs K before QC",
  570. color_var = "conc_num",
  571. legend_position = "right"
  572. )
  573. )
  574. above_threshold_plots <- list(
  575. list(df = df_above_tolerance, x_var = "L", y_var = "K", plot_type = "scatter",
  576. title = paste("Raw L vs K for strains above delta background threshold of", df_above_tolerance$delta_bg_tolerance[[1]], "or above"),
  577. color_var = "conc_num",
  578. annotations = list(
  579. list(
  580. x = L_half_median,
  581. y = K_half_median,
  582. label = paste("Strains above delta background tolerance =", nrow(df_above_tolerance))
  583. )
  584. ),
  585. error_bar = FALSE,
  586. legend_position = "right"
  587. )
  588. )
  589. frequency_delta_bg_plots <- list(
  590. list(df = df, x_var = "delta_bg", y_var = NULL, plot_type = "density",
  591. title = "Density plot for Delta Background by Conc All Data",
  592. color_var = "conc_num",
  593. x_label = "Delta Background",
  594. y_label = "Density",
  595. error_bar = FALSE,
  596. legend_position = "right"
  597. ),
  598. list(df = df, x_var = "delta_bg", y_var = NULL, plot_type = "bar",
  599. title = "Bar plot for Delta Background by Conc All Data",
  600. color_var = "conc_num",
  601. x_label = "Delta Background",
  602. y_label = "Count",
  603. error_bar = FALSE,
  604. legend_position = "right"
  605. )
  606. )
  607. plate_analysis_plots <- list()
  608. for (plot_type in c("scatter", "box")) {
  609. variables <- c("L", "K", "r", "AUC", "delta_bg")
  610. for (var in variables) {
  611. for (stage in c("before", "after")) {
  612. if (stage == "before") {
  613. df_plot <- df
  614. } else {
  615. df_plot <- df_na # TODO use df_na_filtered if necessary
  616. }
  617. # Set error_bar = TRUE only for scatter plots
  618. error_bar <- ifelse(plot_type == "scatter", TRUE, FALSE)
  619. # Create the plot configuration
  620. plot_config <- list(df = df_plot, x_var = "scan", y_var = var, plot_type = plot_type,
  621. title = paste("Plate analysis by Drug Conc for", var, stage, "quality control"),
  622. error_bar = error_bar, color_var = "conc_num")
  623. plate_analysis_plots <- append(plate_analysis_plots, list(plot_config))
  624. }
  625. }
  626. }
  627. plate_analysis_no_zero_plots <- list()
  628. for (plot_type in c("scatter", "box")) {
  629. variables <- c("L", "K", "r", "AUC", "delta_bg")
  630. for (var in variables) {
  631. # Set error_bar = TRUE only for scatter plots
  632. error_bar <- ifelse(plot_type == "scatter", TRUE, FALSE)
  633. # Create the plot configuration
  634. plot_config <- list(
  635. df = df_no_zeros,
  636. x_var = "scan",
  637. y_var = var,
  638. plot_type = plot_type,
  639. title = paste("Plate analysis by Drug Conc for", var, "after quality control"),
  640. error_bar = error_bar,
  641. color_var = "conc_num"
  642. )
  643. plate_analysis_plots <- append(plate_analysis_plots, list(plot_config))
  644. }
  645. }
  646. l_outside_2sd_k_plots <- list(
  647. list(df = X_outside_2SD_K, x_var = "l", y_var = "K", plot_type = "scatter",
  648. title = "Raw L vs K for strains falling outside 2SD of the K mean at each Conc",
  649. color_var = "conc_num",
  650. legend_position = "right"
  651. )
  652. )
  653. delta_bg_outside_2sd_k_plots <- list(
  654. list(df = X_outside_2SD_K, x_var = "delta_bg", y_var = "K", plot_type = "scatter",
  655. title = "Delta Background vs K for strains falling outside 2SD of the K mean at each Conc",
  656. color_var = "conc_num",
  657. legend_position = "right"
  658. )
  659. )
  660. # Generate and save plots for each QC step
  661. message("Generating QC plots")
  662. generate_and_save_plots(out_dir_qc, "L_vs_K_before_quality_control", l_vs_k_plots)
  663. generate_and_save_plots(out_dir_qc, "L_vs_K_above_threshold", above_threshold_plots)
  664. generate_and_save_plots(out_dir_qc, "frequency_delta_background", frequency_delta_bg_plots)
  665. generate_and_save_plots(out_dir_qc, "plate_analysis", plate_analysis_plots)
  666. generate_and_save_plots(out_dir_qc, "plate_analysis_no_zeros", plate_analysis_no_zeros_plots)
  667. generate_and_save_plots(out_dir_qc, "L_vs_K_for_strains_2SD_outside_mean_K", l_outside_2sd_k_plots)
  668. generate_and_save_plots(out_dir_qc, "delta_background_vs_K_for_strains_2sd_outside_mean_K", delta_bg_outside_2sd_k_plots)
  669. # Clean up
  670. rm(df, df_above_tolerance, df_no_zeros)
  671. # TODO: Originally this filtered L NA's
  672. # Let's try to avoid for now since stats have already been calculated
  673. # Process background strains
  674. bg_strains <- c("YDL227C")
  675. lapply(bg_strains, function(strain) {
  676. message("Processing background strain: ", strain)
  677. # Handle missing data by setting zero values to NA
  678. # and then removing any rows with NA in L col
  679. df_bg <- df_na %>%
  680. filter(OrfRep == strain) %>%
  681. mutate(
  682. L = if_else(L == 0, NA, L),
  683. K = if_else(K == 0, NA, K),
  684. r = if_else(r == 0, NA, r),
  685. AUC = if_else(AUC == 0, NA, AUC)
  686. ) %>%
  687. filter(!is.na(L))
  688. # Recalculate summary statistics for the background strain
  689. message("Calculating summary statistics for background strain")
  690. ss <- calculate_summary_stats(df_bg, variables, group_vars = c("OrfRep", "conc_num", "conc_num_factor"))
  691. summary_stats_bg <- ss$summary_stats
  692. df_bg_stats <- ss$df_with_stats
  693. write.csv(summary_stats_bg,
  694. file = file.path(out_dir, paste0("SummaryStats_BackgroundStrains_", strain, ".csv")),
  695. row.names = FALSE)
  696. # Filter reference and deletion strains
  697. # Formerly X2_RF (reference strains)
  698. df_reference <- df_na_stats %>%
  699. filter(OrfRep == strain) %>%
  700. mutate(SM = 0)
  701. # Formerly X2 (deletion strains)
  702. df_deletion <- df_na_stats %>%
  703. filter(OrfRep != strain) %>%
  704. mutate(SM = 0)
  705. # Set the missing values to the highest theoretical value at each drug conc for L
  706. # Leave other values as 0 for the max/min
  707. reference_strain <- df_reference %>%
  708. group_by(conc_num) %>%
  709. mutate(
  710. max_l_theoretical = max(max_L, na.rm = TRUE),
  711. L = ifelse(L == 0 & !is.na(L) & conc_num > 0, max_l_theoretical, L),
  712. SM = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, 1, SM),
  713. L = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, max_l_theoretical, L)) %>%
  714. ungroup()
  715. # Ditto for deletion strains
  716. deletion_strains <- df_deletion %>%
  717. group_by(conc_num) %>%
  718. mutate(
  719. max_l_theoretical = max(max_L, na.rm = TRUE),
  720. L = ifelse(L == 0 & !is.na(L) & conc_num > 0, max_l_theoretical, L),
  721. SM = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, 1, SM),
  722. L = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, max_l_theoretical, L)) %>%
  723. ungroup()
  724. # Calculate interactions
  725. variables <- c("L", "K", "r", "AUC")
  726. message("Calculating interaction scores")
  727. print("Reference strain:")
  728. print(head(reference_strain))
  729. reference_results <- calculate_interaction_scores(reference_strain, max_conc, variables)
  730. print("Deletion strains:")
  731. print(head(deletion_strains))
  732. deletion_results <- calculate_interaction_scores(deletion_strains, max_conc, variables)
  733. zscores_calculations_reference <- reference_results$zscores_calculations
  734. zscores_interactions_reference <- reference_results$zscores_interactions
  735. zscores_calculations <- deletion_results$zscores_calculations
  736. zscores_interactions <- deletion_results$zscores_interactions
  737. # Writing Z-Scores to file
  738. write.csv(zscores_calculations_reference, file = file.path(out_dir, "RF_ZScores_Calculations.csv"), row.names = FALSE)
  739. write.csv(zscores_calculations, file = file.path(out_dir, "ZScores_Calculations.csv"), row.names = FALSE)
  740. write.csv(zscores_interactions_reference, file = file.path(out_dir, "RF_ZScores_Interaction.csv"), row.names = FALSE)
  741. write.csv(zscores_interactions, file = file.path(out_dir, "ZScores_Interaction.csv"), row.names = FALSE)
  742. # Create interaction plots
  743. reference_plot_configs <- generate_interaction_plot_configs(df_reference, variables)
  744. deletion_plot_configs <- generate_interaction_plot_configs(df_deletion, variables)
  745. generate_and_save_plots(out_dir, "RF_interactionPlots", reference_plot_configs, grid_layout = list(ncol = 4, nrow = 3))
  746. generate_and_save_plots(out_dir, "InteractionPlots", deletion_plot_configs, grid_layout = list(ncol = 4, nrow = 3))
  747. # Define conditions for enhancers and suppressors
  748. # TODO Add to study config file?
  749. threshold <- 2
  750. enhancer_condition_L <- zscores_interactions$Avg_Zscore_L >= threshold
  751. suppressor_condition_L <- zscores_interactions$Avg_Zscore_L <= -threshold
  752. enhancer_condition_K <- zscores_interactions$Avg_Zscore_K >= threshold
  753. suppressor_condition_K <- zscores_interactions$Avg_Zscore_K <= -threshold
  754. # Subset data
  755. enhancers_L <- zscores_interactions[enhancer_condition_L, ]
  756. suppressors_L <- zscores_interactions[suppressor_condition_L, ]
  757. enhancers_K <- zscores_interactions[enhancer_condition_K, ]
  758. suppressors_K <- zscores_interactions[suppressor_condition_K, ]
  759. # Save enhancers and suppressors
  760. message("Writing enhancer/suppressor csv files")
  761. write.csv(enhancers_L, file = file.path(out_dir, "ZScores_Interaction_Deletion_Enhancers_L.csv"), row.names = FALSE)
  762. write.csv(suppressors_L, file = file.path(out_dir, "ZScores_Interaction_Deletion_Suppressors_L.csv"), row.names = FALSE)
  763. write.csv(enhancers_K, file = file.path(out_dir, "ZScores_Interaction_Deletion_Enhancers_K.csv"), row.names = FALSE)
  764. write.csv(suppressors_K, file = file.path(out_dir, "ZScores_Interaction_Deletion_Suppressors_K.csv"), row.names = FALSE)
  765. # Combine conditions for enhancers and suppressors
  766. enhancers_and_suppressors_L <- zscores_interactions[enhancer_condition_L | suppressor_condition_L, ]
  767. enhancers_and_suppressors_K <- zscores_interactions[enhancer_condition_K | suppressor_condition_K, ]
  768. # Save combined enhancers and suppressors
  769. write.csv(enhancers_and_suppressors_L,
  770. file = file.path(out_dir, "ZScores_Interaction_Deletion_Enhancers_and_Suppressors_L.csv"), row.names = FALSE)
  771. write.csv(enhancers_and_suppressors_K,
  772. file = file.path(out_dir, "ZScores_Interaction_Deletion_Enhancers_and_Suppressors_K.csv"), row.names = FALSE)
  773. # Handle linear model based enhancers and suppressors
  774. lm_threshold <- 2
  775. enhancers_lm_L <- zscores_interactions[zscores_interactions$Z_lm_L >= lm_threshold, ]
  776. suppressors_lm_L <- zscores_interactions[zscores_interactions$Z_lm_L <= -lm_threshold, ]
  777. enhancers_lm_K <- zscores_interactions[zscores_interactions$Z_lm_K >= lm_threshold, ]
  778. suppressors_lm_K <- zscores_interactions[zscores_interactions$Z_lm_K <= -lm_threshold, ]
  779. # Save linear model based enhancers and suppressors
  780. message("Writing linear model enhancer/suppressor csv files")
  781. write.csv(enhancers_lm_L,
  782. file = file.path(out_dir, "ZScores_Interaction_Deletion_Enhancers_L_lm.csv"), row.names = FALSE)
  783. write.csv(suppressors_lm_L,
  784. file = file.path(out_dir, "ZScores_Interaction_Deletion_Suppressors_L_lm.csv"), row.names = FALSE)
  785. write.csv(enhancers_lm_K,
  786. file = file.path(out_dir, "ZScores_Interaction_Deletion_Enhancers_K_lm.csv"), row.names = FALSE)
  787. write.csv(suppressors_lm_K,
  788. file = file.path(out_dir, "ZScores_Interaction_Deletion_Suppressors_K_lm.csv"), row.names = FALSE)
  789. zscores_interactions_adjusted <- adjust_missing_and_rank(zscores_interactions)
  790. # Generate all rank plot configurations for L and K
  791. rank_plot_configs <- c(
  792. generate_rank_plot_configs(zscores_interactions_adjusted, "Rank_L", "Avg_Zscore_L", "L"),
  793. generate_rank_plot_configs(zscores_interactions_adjusted, "Rank_K", "Avg_Zscore_K", "K")
  794. )
  795. # Generate and save rank plots
  796. generate_and_save_plots(output_dir = out_dir, file_name = "RankPlots",
  797. plot_configs = rank_plot_config, grid_layout = list(ncol = 3, nrow = 2))
  798. # # Correlation plots
  799. # lm_list <- list(
  800. # lm(Z_lm_K ~ Z_lm_L, data = zscores_interactions_filtered),
  801. # lm(Z_lm_r ~ Z_lm_L, data = zscores_interactions_filtered),
  802. # lm(Z_lm_AUC ~ Z_lm_L, data = zscores_interactions_filtered),
  803. # lm(Z_lm_r ~ Z_lm_K, data = zscores_interactions_filtered),
  804. # lm(Z_lm_AUC ~ Z_lm_K, data = zscores_interactions_filtered),
  805. # lm(Z_lm_AUC ~ Z_lm_r, data = zscores_interactions_filtered)
  806. # )
  807. lm_summaries <- lapply(lm_list, summary)
  808. correlation_plot_configs <- generate_correlation_plot_configs(zscores_interactions_filtered, lm_list, lm_summaries)
  809. generate_and_save_plots(zscores_interactions_filtered, output_dir, correlation_plot_configs)
  810. })
  811. })
  812. }
  813. main()