calculate_interaction_zscores.R 48 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217
  1. suppressMessages({
  2. library(ggplot2)
  3. library(plotly)
  4. library(htmlwidgets)
  5. library(dplyr)
  6. library(ggthemes)
  7. library(data.table)
  8. library(unix)
  9. })
  10. options(warn = 2)
  11. options(width = 10000)
  12. # Set the memory limit to 30GB (30 * 1024 * 1024 * 1024 bytes)
  13. soft_limit <- 30 * 1024 * 1024 * 1024
  14. hard_limit <- 30 * 1024 * 1024 * 1024
  15. rlimit_as(soft_limit, hard_limit)
  16. # Constants for configuration
  17. plot_width <- 14
  18. plot_height <- 9
  19. base_size <- 14
  20. parse_arguments <- function() {
  21. args <- if (interactive()) {
  22. c(
  23. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/20240116_jhartman2_DoxoHLD",
  24. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/apps/r/SGD_features.tab",
  25. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/easy/20240116_jhartman2_DoxoHLD/results_std.txt",
  26. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/20240822_jhartman2_DoxoHLD/exp1",
  27. "Experiment 1: Doxo versus HLD",
  28. 3,
  29. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/20240822_jhartman2_DoxoHLD/exp2",
  30. "Experiment 2: HLD versus Doxo",
  31. 3
  32. )
  33. } else {
  34. commandArgs(trailingOnly = TRUE)
  35. }
  36. # Extract paths, names, and standard deviations
  37. paths <- args[seq(4, length(args), by = 3)]
  38. names <- args[seq(5, length(args), by = 3)]
  39. sds <- as.numeric(args[seq(6, length(args), by = 3)])
  40. # Normalize paths
  41. normalized_paths <- normalizePath(paths, mustWork = FALSE)
  42. # Create named list of experiments
  43. experiments <- list()
  44. for (i in seq_along(paths)) {
  45. experiments[[names[i]]] <- list(
  46. path = normalized_paths[i],
  47. sd = sds[i]
  48. )
  49. }
  50. list(
  51. out_dir = normalizePath(args[1], mustWork = FALSE),
  52. sgd_gene_list = normalizePath(args[2], mustWork = FALSE),
  53. easy_results_file = normalizePath(args[3], mustWork = FALSE),
  54. experiments = experiments
  55. )
  56. }
  57. args <- parse_arguments()
  58. # Should we keep output in exp dirs or combine in the study output dir?
  59. # dir.create(file.path(args$out_dir, "zscores"), showWarnings = FALSE)
  60. # dir.create(file.path(args$out_dir, "zscores", "qc"), showWarnings = FALSE)
  61. # Define themes and scales
  62. theme_publication <- function(base_size = 14, base_family = "sans", legend_position = "bottom") {
  63. theme_foundation <- ggplot2::theme_grey(base_size = base_size, base_family = base_family)
  64. theme_foundation %+replace%
  65. theme(
  66. plot.title = element_text(face = "bold", size = rel(1.2), hjust = 0.5),
  67. text = element_text(),
  68. panel.background = element_rect(colour = NA),
  69. plot.background = element_rect(colour = NA),
  70. panel.border = element_rect(colour = NA),
  71. axis.title = element_text(face = "bold", size = rel(1)),
  72. axis.title.y = element_text(angle = 90, vjust = 2),
  73. axis.title.x = element_text(vjust = -0.2),
  74. axis.line = element_line(colour = "black"),
  75. panel.grid.major = element_line(colour = "#f0f0f0"),
  76. panel.grid.minor = element_blank(),
  77. legend.key = element_rect(colour = NA),
  78. legend.position = legend_position,
  79. legend.direction = ifelse(legend_position == "right", "vertical", "horizontal"),
  80. plot.margin = unit(c(10, 5, 5, 5), "mm"),
  81. strip.background = element_rect(colour = "#f0f0f0", fill = "#f0f0f0"),
  82. strip.text = element_text(face = "bold")
  83. )
  84. }
  85. scale_fill_publication <- function(...) {
  86. discrete_scale("fill", "Publication", manual_pal(values = c(
  87. "#386cb0", "#fdb462", "#7fc97f", "#ef3b2c", "#662506",
  88. "#a6cee3", "#fb9a99", "#984ea3", "#ffff33"
  89. )), ...)
  90. }
  91. scale_colour_publication <- function(...) {
  92. discrete_scale("colour", "Publication", manual_pal(values = c(
  93. "#386cb0", "#fdb462", "#7fc97f", "#ef3b2c", "#662506",
  94. "#a6cee3", "#fb9a99", "#984ea3", "#ffff33"
  95. )), ...)
  96. }
  97. # Load the initial dataframe from the easy_results_file
  98. load_and_process_data <- function(easy_results_file, sd = 3) {
  99. df <- read.delim(easy_results_file, skip = 2, as.is = TRUE, row.names = 1, strip.white = TRUE)
  100. df <- df %>%
  101. filter(!(.[[1]] %in% c("", "Scan"))) %>%
  102. filter(!is.na(ORF) & ORF != "" & !Gene %in% c("BLANK", "Blank", "blank") & Drug != "BMH21") %>%
  103. # Rename columns
  104. rename(L = l, num = Num., AUC = AUC96, scan = Scan, last_bg = LstBackgrd, first_bg = X1stBackgrd) %>%
  105. mutate(
  106. across(c(Col, Row, num, L, K, r, scan, AUC, last_bg, first_bg), as.numeric),
  107. delta_bg = last_bg - first_bg,
  108. delta_bg_tolerance = mean(delta_bg, na.rm = TRUE) + (sd * sd(delta_bg, na.rm = TRUE)),
  109. NG = if_else(L == 0 & !is.na(L), 1, 0),
  110. DB = if_else(delta_bg >= delta_bg_tolerance, 1, 0),
  111. SM = 0,
  112. OrfRep = if_else(ORF == "YDL227C", "YDL227C", OrfRep), # should these be hardcoded?
  113. conc_num = as.numeric(gsub("[^0-9\\.]", "", Conc)),
  114. conc_num_factor = as.numeric(as.factor(conc_num)) - 1
  115. )
  116. return(df)
  117. }
  118. # Update Gene names using the SGD gene list
  119. update_gene_names <- function(df, sgd_gene_list) {
  120. # Load SGD gene list
  121. genes <- read.delim(file = sgd_gene_list,
  122. quote = "", header = FALSE,
  123. colClasses = c(rep("NULL", 3), rep("character", 2), rep("NULL", 11)))
  124. # Create a named vector for mapping ORF to GeneName
  125. gene_map <- setNames(genes$V5, genes$V4)
  126. # Vectorized match to find the GeneName from gene_map
  127. mapped_genes <- gene_map[df$ORF]
  128. # Replace NAs in mapped_genes with original Gene names (preserves existing Gene names if ORF is not found)
  129. updated_genes <- ifelse(is.na(mapped_genes) | df$OrfRep == "YDL227C", df$Gene, mapped_genes)
  130. # Ensure Gene is not left blank or incorrectly updated to "OCT1"
  131. df <- df %>%
  132. mutate(Gene = ifelse(updated_genes == "" | updated_genes == "OCT1", OrfRep, updated_genes))
  133. return(df)
  134. }
  135. # Calculate summary statistics for all variables
  136. calculate_summary_stats <- function(df, variables, group_vars = c("OrfRep", "conc_num", "conc_num_factor")) {
  137. # Summarize the variables within the grouped data
  138. summary_stats <- df %>%
  139. group_by(across(all_of(group_vars))) %>%
  140. summarise(
  141. N = sum(!is.na(L)),
  142. across(all_of(variables), list(
  143. mean = ~mean(., na.rm = TRUE),
  144. median = ~median(., na.rm = TRUE),
  145. max = ~ ifelse(all(is.na(.)), NA, max(., na.rm = TRUE)),
  146. min = ~ ifelse(all(is.na(.)), NA, min(., na.rm = TRUE)),
  147. sd = ~sd(., na.rm = TRUE),
  148. se = ~ ifelse(all(is.na(.)), NA, sd(., na.rm = TRUE) / sqrt(sum(!is.na(.)) - 1))
  149. ), .names = "{.fn}_{.col}")
  150. )
  151. # print(summary_stats)
  152. # Prevent .x and .y suffix issues by renaming columns
  153. df_cleaned <- df %>%
  154. select(-any_of(setdiff(names(summary_stats), group_vars))) # Avoid duplicate columns in the final join
  155. # Join the stats back to the original dataframe
  156. df_with_stats <- left_join(df_cleaned, summary_stats, by = group_vars)
  157. return(list(summary_stats = summary_stats, df_with_stats = df_with_stats))
  158. }
  159. calculate_interaction_scores <- function(df, max_conc, variables, group_vars = c("OrfRep", "Gene", "num")) {
  160. # Calculate total concentration variables
  161. total_conc_num <- length(unique(df$conc_num))
  162. # Pull the background means and standard deviations from zero concentration
  163. bg_means <- list(
  164. L = df %>% filter(conc_num_factor == 0) %>% pull(mean_L) %>% first(),
  165. K = df %>% filter(conc_num_factor == 0) %>% pull(mean_K) %>% first(),
  166. r = df %>% filter(conc_num_factor == 0) %>% pull(mean_r) %>% first(),
  167. AUC = df %>% filter(conc_num_factor == 0) %>% pull(mean_AUC) %>% first()
  168. )
  169. bg_sd <- list(
  170. L = df %>% filter(conc_num_factor == 0) %>% pull(sd_L) %>% first(),
  171. K = df %>% filter(conc_num_factor == 0) %>% pull(sd_K) %>% first(),
  172. r = df %>% filter(conc_num_factor == 0) %>% pull(sd_r) %>% first(),
  173. AUC = df %>% filter(conc_num_factor == 0) %>% pull(sd_AUC) %>% first()
  174. )
  175. stats <- df %>%
  176. group_by(OrfRep, Gene, num, conc_num, conc_num_factor) %>%
  177. summarise(
  178. N = sum(!is.na(L)),
  179. NG = sum(NG, na.rm = TRUE),
  180. DB = sum(DB, na.rm = TRUE),
  181. SM = sum(SM, na.rm = TRUE),
  182. across(all_of(variables), list(
  183. mean = ~mean(., na.rm = TRUE),
  184. median = ~median(., na.rm = TRUE),
  185. max = ~ifelse(all(is.na(.)), NA, max(., na.rm = TRUE)),
  186. min = ~ifelse(all(is.na(.)), NA, min(., na.rm = TRUE)),
  187. sd = ~sd(., na.rm = TRUE),
  188. se = ~ifelse(sum(!is.na(.)) > 1, sd(., na.rm = TRUE) / sqrt(sum(!is.na(.)) - 1), NA)
  189. ), .names = "{.fn}_{.col}")
  190. )
  191. stats <- df %>%
  192. group_by(OrfRep, Gene, num) %>%
  193. mutate(
  194. WT_L = mean_L,
  195. WT_K = mean_K,
  196. WT_r = mean_r,
  197. WT_AUC = mean_AUC,
  198. WT_sd_L = sd_L,
  199. WT_sd_K = sd_K,
  200. WT_sd_r = sd_r,
  201. WT_sd_AUC = sd_AUC
  202. )
  203. stats <- stats %>%
  204. mutate(
  205. Raw_Shift_L = first(mean_L) - bg_means$L,
  206. Raw_Shift_K = first(mean_K) - bg_means$K,
  207. Raw_Shift_r = first(mean_r) - bg_means$r,
  208. Raw_Shift_AUC = first(mean_AUC) - bg_means$AUC,
  209. Z_Shift_L = first(Raw_Shift_L) / bg_sd$L,
  210. Z_Shift_K = first(Raw_Shift_K) / bg_sd$K,
  211. Z_Shift_r = first(Raw_Shift_r) / bg_sd$r,
  212. Z_Shift_AUC = first(Raw_Shift_AUC) / bg_sd$AUC
  213. )
  214. stats <- stats %>%
  215. mutate(
  216. Exp_L = WT_L + Raw_Shift_L,
  217. Exp_K = WT_K + Raw_Shift_K,
  218. Exp_r = WT_r + Raw_Shift_r,
  219. Exp_AUC = WT_AUC + Raw_Shift_AUC,
  220. Delta_L = mean_L - Exp_L,
  221. Delta_K = mean_K - Exp_K,
  222. Delta_r = mean_r - Exp_r,
  223. Delta_AUC = mean_AUC - Exp_AUC
  224. )
  225. stats <- stats %>%
  226. mutate(
  227. Delta_L = if_else(NG == 1, mean_L - WT_L, Delta_L),
  228. Delta_K = if_else(NG == 1, mean_K - WT_K, Delta_K),
  229. Delta_r = if_else(NG == 1, mean_r - WT_r, Delta_r),
  230. Delta_AUC = if_else(NG == 1, mean_AUC - WT_AUC, Delta_AUC),
  231. Delta_L = if_else(SM == 1, mean_L - WT_L, Delta_L)
  232. )
  233. stats <- stats %>%
  234. mutate(
  235. Zscore_L = Delta_L / WT_sd_L,
  236. Zscore_K = Delta_K / WT_sd_K,
  237. Zscore_r = Delta_r / WT_sd_r,
  238. Zscore_AUC = Delta_AUC / WT_sd_AUC
  239. )
  240. # Calculate linear models
  241. lm_L <- lm(Delta_L ~ conc_num_factor, data = stats)
  242. lm_K <- lm(Delta_K ~ conc_num_factor, data = stats)
  243. lm_r <- lm(Delta_r ~ conc_num_factor, data = stats)
  244. lm_AUC <- lm(Delta_AUC ~ conc_num_factor, data = stats)
  245. interactions <- stats %>%
  246. summarise(
  247. OrfRep = first(OrfRep),
  248. Gene = first(Gene),
  249. num = first(num),
  250. conc_num = first(conc_num),
  251. conc_num_factor = first(conc_num_factor),
  252. Raw_Shift_L = first(Raw_Shift_L),
  253. Raw_Shift_K = first(Raw_Shift_K),
  254. Raw_Shift_r = first(Raw_Shift_r),
  255. Raw_Shift_AUC = first(Raw_Shift_AUC),
  256. Z_Shift_L = first(Z_Shift_L),
  257. Z_Shift_K = first(Z_Shift_K),
  258. Z_Shift_r = first(Z_Shift_r),
  259. Z_Shift_AUC = first(Z_Shift_AUC),
  260. Sum_Zscore_L = sum(Zscore_L, na.rm = TRUE),
  261. Sum_Zscore_K = sum(Zscore_K, na.rm = TRUE),
  262. Sum_Zscore_r = sum(Zscore_r, na.rm = TRUE),
  263. Sum_Zscore_AUC = sum(Zscore_AUC, na.rm = TRUE),
  264. lm_Score_L = max_conc * coef(lm_L)[2] + coef(lm_L)[1],
  265. lm_Score_K = max_conc * coef(lm_K)[2] + coef(lm_K)[1],
  266. lm_Score_r = max_conc * coef(lm_r)[2] + coef(lm_r)[1],
  267. lm_Score_AUC = max_conc * coef(lm_AUC)[2] + coef(lm_AUC)[1],
  268. R_Squared_L = summary(lm_L)$r.squared,
  269. R_Squared_K = summary(lm_K)$r.squared,
  270. R_Squared_r = summary(lm_r)$r.squared,
  271. R_Squared_AUC = summary(lm_AUC)$r.squared,
  272. lm_intercept_L = coef(lm_L)[1],
  273. lm_slope_L = coef(lm_L)[2],
  274. lm_intercept_K = coef(lm_K)[1],
  275. lm_slope_K = coef(lm_K)[2],
  276. lm_intercept_r = coef(lm_r)[1],
  277. lm_slope_r = coef(lm_r)[2],
  278. lm_intercept_AUC = coef(lm_AUC)[1],
  279. lm_slope_AUC = coef(lm_AUC)[2],
  280. NG = sum(NG, na.rm = TRUE),
  281. DB = sum(DB, na.rm = TRUE),
  282. SM = sum(SM, na.rm = TRUE)
  283. )
  284. num_non_removed_concs <- total_conc_num - sum(stats$DB, na.rm = TRUE) - 1
  285. interactions <- interactions %>%
  286. mutate(
  287. Avg_Zscore_L = Sum_Zscore_L / num_non_removed_concs,
  288. Avg_Zscore_K = Sum_Zscore_K / num_non_removed_concs,
  289. Avg_Zscore_r = Sum_Zscore_r / (total_conc_num - 1),
  290. Avg_Zscore_AUC = Sum_Zscore_AUC / (total_conc_num - 1),
  291. Z_lm_L = (lm_Score_L - mean(lm_Score_L, na.rm = TRUE)) / sd(lm_Score_L, na.rm = TRUE),
  292. Z_lm_K = (lm_Score_K - mean(lm_Score_K, na.rm = TRUE)) / sd(lm_Score_K, na.rm = TRUE),
  293. Z_lm_r = (lm_Score_r - mean(lm_Score_r, na.rm = TRUE)) / sd(lm_Score_r, na.rm = TRUE),
  294. Z_lm_AUC = (lm_Score_AUC - mean(lm_Score_AUC, na.rm = TRUE)) / sd(lm_Score_AUC, na.rm = TRUE)
  295. ) %>%
  296. arrange(desc(Z_lm_L)) %>%
  297. arrange(desc(NG))
  298. # Declare column order for output
  299. calculations <- stats %>%
  300. select(
  301. "OrfRep", "Gene", "conc_num", "conc_num_factor", "N",
  302. "mean_L", "mean_K", "mean_r", "mean_AUC",
  303. "median_L", "median_K", "median_r", "median_AUC",
  304. "sd_L", "sd_K", "sd_r", "sd_AUC",
  305. "se_L", "se_K", "se_r", "se_AUC",
  306. "Raw_Shift_L", "Raw_Shift_K", "Raw_Shift_r", "Raw_Shift_AUC",
  307. "Z_Shift_L", "Z_Shift_K", "Z_Shift_r", "Z_Shift_AUC",
  308. "WT_L", "WT_K", "WT_r", "WT_AUC",
  309. "WT_sd_L", "WT_sd_K", "WT_sd_r", "WT_sd_AUC",
  310. "Exp_L", "Exp_K", "Exp_r", "Exp_AUC",
  311. "Delta_L", "Delta_K", "Delta_r", "Delta_AUC",
  312. "Zscore_L", "Zscore_K", "Zscore_r", "Zscore_AUC",
  313. "NG", "SM", "DB")
  314. calculations_joined <- df %>% select(-any_of(setdiff(names(calculations), c("OrfRep", "Gene", "num", "conc_num", "conc_num_factor"))))
  315. calculations_joined <- left_join(calculations_joined, calculations, by = c("OrfRep", "Gene", "num", "conc_num", "conc_num_factor"))
  316. # # TODO for debug
  317. # df_duplicates <- df %>%
  318. # group_by(OrfRep, Gene, num) %>%
  319. # filter(n() > 1)
  320. # interactions_duplicates <- interactions %>%
  321. # group_by(OrfRep, Gene, num) %>%
  322. # filter(n() > 1)
  323. # print(df_duplicates)
  324. # print(interactions_duplicates)
  325. interactions_joined <- df %>% select(-any_of(setdiff(names(interactions), c("OrfRep", "Gene", "num", "conc_num", "conc_num_factor"))))
  326. interactions_joined <- left_join(interactions_joined, interactions, by = c("OrfRep", "Gene", "num", "conc_num", "conc_num_factor"))
  327. return(list(calculations = calculations, interactions = interactions, interactions_joined = interactions_joined,
  328. calculations_joined = calculations_joined))
  329. }
  330. generate_and_save_plots <- function(output_dir, file_name, plot_configs, grid_layout = NULL) {
  331. message("Generating html and pdf plots for: ", file_name)
  332. plots <- lapply(plot_configs, function(config) {
  333. df <- config$df
  334. # print(df %>% select(any_of(c("OrfRep", "Plate", "scan", "Col", "Row", "num", "OrfRep", "conc_num", "conc_num_factor",
  335. # "delta_bg_tolerance", "delta_bg", "Gene", "L", "K", "r", "AUC", "NG", "DB"))), n = 5)
  336. # Plots are testy about missing aesthetics, so handle them here
  337. aes_mapping <-
  338. if (is.null(config$color_var)) {
  339. if (is.null(config$y_var)) {
  340. aes(x = !!sym(config$x_var))
  341. } else {
  342. aes(x = !!sym(config$x_var), y = !!sym(config$y_var))
  343. }
  344. } else {
  345. if (is.null(config$y_var)) {
  346. aes(x = !!sym(config$x_var), color = as.factor(!!sym(config$color_var)))
  347. } else {
  348. aes(x = !!sym(config$x_var), y = !!sym(config$y_var), color = as.factor(!!sym(config$color_var)))
  349. }
  350. }
  351. # Start building the plot
  352. plot <- ggplot(df, aes_mapping)
  353. # Use appropriate helper function based on plot type
  354. plot <- switch(config$plot_type,
  355. "scatter" = generate_scatter_plot(plot, config),
  356. "box" = generate_box_plot(plot, config),
  357. "density" = plot + geom_density(),
  358. "bar" = plot + geom_bar(),
  359. plot # default case if no type matches
  360. )
  361. return(plot)
  362. })
  363. # PDF saving logic
  364. pdf(file.path(output_dir, paste0(file_name, ".pdf")), width = 14, height = 9)
  365. lapply(plots, print)
  366. dev.off()
  367. # HTML saving logic
  368. plotly_plots <- lapply(plots, function(plot) {
  369. config <- plot$config
  370. if (!is.null(config$legend_position) && config$legend_position == "bottom") {
  371. suppressWarnings(ggplotly(plot, tooltip = "text") %>% layout(legend = list(orientation = "h")))
  372. } else {
  373. ggplotly(plot, tooltip = "text")
  374. }
  375. })
  376. combined_plot <- subplot(plotly_plots, nrows = grid_layout$nrow %||% length(plots), margin = 0.05)
  377. saveWidget(combined_plot, file = file.path(output_dir, paste0(file_name, ".html")), selfcontained = TRUE)
  378. }
  379. generate_scatter_plot <- function(plot, config, interactive = FALSE) {
  380. # Check for missing or out-of-range data
  381. missing_data <- config$df %>%
  382. filter(
  383. is.na(!!sym(config$x_var)) | is.na(!!sym(config$y_var)) |
  384. !!sym(config$y_var) < min(config$ylim_vals, na.rm = TRUE) |
  385. !!sym(config$y_var) > max(config$ylim_vals, na.rm = TRUE)
  386. )
  387. # Print the rows with missing or out-of-range data if any
  388. if (nrow(missing_data) > 0) {
  389. message("Missing or out-of-range data for ", config$title, ":")
  390. print(missing_data %>% select(any_of(c("OrfRep", "Gene", "num", "conc_num", "conc_num_factor", config$x_var, config$y_var))), n = 100)
  391. }
  392. # Add the interactive `text` aesthetic if `interactive` is TRUE
  393. if (interactive) {
  394. plot <- if (!is.null(config$delta_bg_point) && config$delta_bg_point) {
  395. plot + geom_point(aes(text = paste("ORF:", OrfRep, "Gene:", Gene, "delta_bg:", delta_bg)),
  396. shape = config$shape %||% 3, size = config$size %||% 0.2)
  397. } else if (!is.null(config$gene_point) && config$gene_point) {
  398. plot + geom_point(aes(text = paste("ORF:", OrfRep, "Gene:", Gene)),
  399. shape = config$shape %||% 3, size = config$size %||% 0.2, position = "jitter")
  400. } else {
  401. plot + geom_point(shape = config$shape %||% 3, size = config$size %||% 0.2)
  402. }
  403. } else {
  404. # For non-interactive plots, just add `geom_point`
  405. plot <- plot + geom_point(shape = config$shape %||% 3, size = config$size %||% 0.2,
  406. position = if (!is.null(config$position) && config$position == "jitter") "jitter" else "identity")
  407. }
  408. # Add smooth line if specified
  409. if (!is.null(config$add_smooth) && config$add_smooth) {
  410. plot <- if (!is.null(config$lm_line)) {
  411. plot + geom_abline(intercept = config$lm_line$intercept, slope = config$lm_line$slope)
  412. } else {
  413. plot + geom_smooth(method = "lm", se = FALSE)
  414. }
  415. }
  416. # Add SD bands (iterate over sd_band only here)
  417. if (!is.null(config$sd_band)) {
  418. for (i in config$sd_band) {
  419. plot <- plot +
  420. annotate("rect", xmin = -Inf, xmax = Inf, ymin = i, ymax = Inf, fill = "#542788", alpha = 0.3) +
  421. annotate("rect", xmin = -Inf, xmax = Inf, ymin = -i, ymax = -Inf, fill = "orange", alpha = 0.3) +
  422. geom_hline(yintercept = c(-i, i), color = "gray")
  423. }
  424. }
  425. # Add error bars if specified
  426. if (!is.null(config$error_bar) && config$error_bar) {
  427. y_mean_col <- paste0("mean_", config$y_var)
  428. y_sd_col <- paste0("sd_", config$y_var)
  429. plot <- plot + geom_errorbar(aes(
  430. ymin = !!sym(y_mean_col) - !!sym(y_sd_col),
  431. ymax = !!sym(y_mean_col) + !!sym(y_sd_col)
  432. ), alpha = 0.3)
  433. }
  434. # Add x-axis customization if specified
  435. if (!is.null(config$x_breaks) && !is.null(config$x_labels) && !is.null(config$x_label)) {
  436. plot <- plot + scale_x_continuous(
  437. name = config$x_label,
  438. breaks = config$x_breaks,
  439. labels = config$x_labels)
  440. }
  441. # Use coord_cartesian for zooming in without removing data outside the range
  442. if (!is.null(config$coord_cartesian)) {
  443. plot <- plot + coord_cartesian(ylim = config$coord_cartesian)
  444. }
  445. # Use scale_y_continuous for setting the y-axis limits
  446. if (!is.null(config$ylim_vals)) {
  447. plot <- plot + scale_y_continuous(limits = config$ylim_vals)
  448. }
  449. return(plot)
  450. }
  451. generate_box_plot <- function(plot, config) {
  452. plot <- plot + geom_boxplot()
  453. if (!is.null(config$x_breaks) && !is.null(config$x_labels) && !is.null(config$x_label)) {
  454. plot <- plot + scale_x_discrete(
  455. name = config$x_label,
  456. breaks = config$x_breaks,
  457. labels = config$x_labels
  458. )
  459. }
  460. if (!is.null(config$coord_cartesian)) {
  461. plot <- plot + coord_cartesian(ylim = config$coord_cartesian)
  462. }
  463. return(plot)
  464. }
  465. # Adjust missing values and calculate ranks
  466. adjust_missing_and_rank <- function(df, variables) {
  467. # Adjust missing values in Avg_Zscore and Z_lm columns, and apply rank to the specified variables
  468. df <- df %>%
  469. mutate(across(all_of(variables), list(
  470. Avg_Zscore = ~ if_else(is.na(get(paste0("Avg_Zscore_", cur_column()))), 0.001, get(paste0("Avg_Zscore_", cur_column()))),
  471. Z_lm = ~ if_else(is.na(get(paste0("Z_lm_", cur_column()))), 0.001, get(paste0("Z_lm_", cur_column()))),
  472. Rank = ~ rank(get(paste0("Avg_Zscore_", cur_column()))),
  473. Rank_lm = ~ rank(get(paste0("Z_lm_", cur_column())))
  474. ), .names = "{fn}_{col}"))
  475. return(df)
  476. }
  477. generate_interaction_plot_configs <- function(df, variables) {
  478. configs <- list()
  479. # Define common y-limits and other attributes for each variable dynamically
  480. limits_map <- list(L = c(-65, 65), K = c(-65, 65), r = c(-0.65, 0.65), AUC = c(-6500, 6500))
  481. # Define annotation positions based on the variable being plotted
  482. annotation_positions <- list(
  483. L = list(Z_Shift_L = 45, lm_ZScore = 25, NG = -25, DB = -35, SM = -45),
  484. K = list(Z_Shift_K = 45, lm_ZScore = 25, NG = -25, DB = -35, SM = -45),
  485. r = list(Z_Shift_r = 0.45, lm_ZScore = 0.25, NG = -0.25, DB = -0.35, SM = -0.45),
  486. AUC = list(Z_Shift_AUC = 4500, lm_ZScore = 2500, NG = -2500, DB = -3500, SM = -4500)
  487. )
  488. # Define which annotations to include for each plot
  489. annotation_labels <- list(
  490. ZShift = function(df, var) {
  491. val <- df[[paste0("Z_Shift_", var)]]
  492. if (is.numeric(val)) {
  493. paste("ZShift =", round(val, 2))
  494. } else {
  495. paste("ZShift =", val)
  496. }
  497. },
  498. lm_ZScore = function(df, var) {
  499. val <- df[[paste0("Z_lm_", var)]]
  500. if (is.numeric(val)) {
  501. paste("lm ZScore =", round(val, 2))
  502. } else {
  503. paste("lm ZScore =", val)
  504. }
  505. },
  506. NG = function(df, var) paste("NG =", df$NG),
  507. DB = function(df, var) paste("DB =", df$DB),
  508. SM = function(df, var) paste("SM =", df$SM)
  509. )
  510. for (variable in variables) {
  511. # Dynamically generate the names of the columns
  512. var_info <- list(
  513. ylim = limits_map[[variable]],
  514. sd_col = paste0("WT_sd_", variable)
  515. )
  516. # Extract the precomputed linear model coefficients
  517. lm_line <- list(
  518. intercept = df[[paste0("lm_intercept_", variable)]],
  519. slope = df[[paste0("lm_slope_", variable)]]
  520. )
  521. annotations <- lapply(names(annotation_positions[[variable]]), function(annotation_name) {
  522. y_pos <- annotation_positions[[variable]][[annotation_name]]
  523. # Check if the annotation_name exists in annotation_labels
  524. if (!is.null(annotation_labels[[annotation_name]])) {
  525. label <- annotation_labels[[annotation_name]](df, variable)
  526. list(x = 1, y = y_pos, label = label)
  527. } else {
  528. message(paste("Warning: No annotation function found for", annotation_name))
  529. NULL
  530. }
  531. })
  532. # Filter out any NULL annotations
  533. annotations <- Filter(Negate(is.null), annotations)
  534. # Add scatter plot configuration for this variable
  535. configs[[length(configs) + 1]] <- list(
  536. df = df,
  537. x_var = "conc_num_factor",
  538. y_var = variable,
  539. plot_type = "scatter",
  540. title = sprintf("%s %s", df$OrfRep[1], df$Gene[1]),
  541. ylim_vals = var_info$ylim,
  542. annotations = annotations,
  543. lm_line = lm_line, # Precomputed linear model
  544. error_bar = TRUE,
  545. x_breaks = unique(df$conc_num_factor),
  546. x_labels = unique(as.character(df$conc_num)),
  547. x_label = unique(df$Drug[1]),
  548. position = "jitter",
  549. coord_cartesian = c(0, max(var_info$ylim)) # You can customize this per plot as needed
  550. )
  551. # Add box plot configuration for this variable
  552. configs[[length(configs) + 1]] <- list(
  553. df = df,
  554. x_var = "conc_num_factor",
  555. y_var = variable,
  556. plot_type = "box",
  557. title = sprintf("%s %s (Boxplot)", df$OrfRep[1], df$Gene[1]),
  558. ylim_vals = var_info$ylim,
  559. annotations = annotations,
  560. error_bar = FALSE,
  561. x_breaks = unique(df$conc_num_factor),
  562. x_labels = unique(as.character(df$conc_num)),
  563. x_label = unique(df$Drug[1]),
  564. coord_cartesian = c(0, max(var_info$ylim)) # Customize this as needed
  565. )
  566. }
  567. return(configs)
  568. }
  569. generate_rank_plot_configs <- function(df, rank_var, zscore_var, var, is_lm = FALSE) {
  570. configs <- list()
  571. plot_title_prefix <- if (is_lm) "Interaction Z score vs. Rank for" else "Average Z score vs. Rank for"
  572. # Single config with all sd bands
  573. configs[[length(configs) + 1]] <- list(
  574. df = df,
  575. x_var = rank_var,
  576. y_var = zscore_var,
  577. plot_type = "scatter",
  578. title = paste(plot_title_prefix, var, "Rank Plot"),
  579. sd_band = c(1, 2, 3), # Pass all sd bands at once
  580. enhancer_label = list(
  581. x = nrow(df) / 2, y = 10,
  582. label = paste("Deletion Enhancers =", nrow(df[df[[zscore_var]] >= 1, ])) # Example for the first SD band
  583. ),
  584. suppressor_label = list(
  585. x = nrow(df) / 2, y = -10,
  586. label = paste("Deletion Suppressors =", nrow(df[df[[zscore_var]] <= -1, ]))
  587. ),
  588. shape = 3,
  589. size = 0.1
  590. )
  591. # Non-annotated version
  592. configs[[length(configs) + 1]] <- list(
  593. df = df,
  594. x_var = rank_var,
  595. y_var = zscore_var,
  596. plot_type = "scatter",
  597. title = paste(plot_title_prefix, var, "Rank Plot No Annotations"),
  598. sd_band = c(1, 2, 3),
  599. enhancer_label = NULL,
  600. suppressor_label = NULL,
  601. shape = 3,
  602. size = 0.1,
  603. position = "jitter"
  604. )
  605. return(configs)
  606. }
  607. generate_correlation_plot_configs <- function(df, variables) {
  608. configs <- list()
  609. for (variable in variables) {
  610. z_lm_var <- paste0("Z_lm_", variable)
  611. avg_zscore_var <- paste0("Avg_Zscore_", variable)
  612. lm_r_squared_col <- paste0("lm_R_squared_", variable)
  613. configs[[length(configs) + 1]] <- list(
  614. df = df,
  615. x_var = avg_zscore_var,
  616. y_var = z_lm_var,
  617. plot_type = "scatter",
  618. title = paste("Avg Zscore vs lm", variable),
  619. color_var = "Overlap",
  620. correlation_text = paste("R-squared =", round(df[[lm_r_squared_col]][1], 2)),
  621. shape = 3,
  622. geom_smooth = TRUE,
  623. rect = list(xmin = -2, xmax = 2, ymin = -2, ymax = 2), # To add the geom_rect layer
  624. annotate_position = list(x = 0, y = 0), # Position for the R-squared text
  625. legend_position = "right"
  626. )
  627. }
  628. return(configs)
  629. }
  630. main <- function() {
  631. lapply(names(args$experiments), function(exp_name) {
  632. exp <- args$experiments[[exp_name]]
  633. exp_path <- exp$path
  634. exp_sd <- exp$sd
  635. out_dir <- file.path(exp_path, "zscores")
  636. out_dir_qc <- file.path(exp_path, "zscores", "qc")
  637. dir.create(out_dir, recursive = TRUE, showWarnings = FALSE)
  638. dir.create(out_dir_qc, recursive = TRUE, showWarnings = FALSE)
  639. summary_vars <- c("L", "K", "r", "AUC", "delta_bg") # fields to filter and calculate summary stats across
  640. group_vars <- c("OrfRep", "conc_num", "conc_num_factor") # default fields to group by
  641. orf_group_vars <- c("OrfRep", "Gene", "num")
  642. print_vars <- c("OrfRep", "Plate", "scan", "Col", "Row", "num", "OrfRep", "conc_num", "conc_num_factor",
  643. "delta_bg_tolerance", "delta_bg", "Gene", "L", "K", "r", "AUC", "NG", "DB")
  644. message("Loading and filtering data")
  645. df <- load_and_process_data(args$easy_results_file, sd = exp_sd)
  646. df <- update_gene_names(df, args$sgd_gene_list)
  647. df <- as_tibble(df)
  648. # Filter rows that are above tolerance for quality control plots
  649. df_above_tolerance <- df %>% filter(DB == 1)
  650. # Set L, r, K, AUC (and delta_bg?) to NA for rows that are above tolerance
  651. df_na <- df %>% mutate(across(all_of(summary_vars), ~ ifelse(DB == 1, NA, .)))
  652. # Remove rows with 0 values in L
  653. df_no_zeros <- df_na %>% filter(L > 0)
  654. # Save some constants
  655. max_conc <- max(df$conc_num_factor)
  656. l_half_median <- (median(df_above_tolerance$L, na.rm = TRUE)) / 2
  657. k_half_median <- (median(df_above_tolerance$K, na.rm = TRUE)) / 2
  658. message("Calculating summary statistics before quality control")
  659. ss <- calculate_summary_stats(df, summary_vars, group_vars = group_vars)
  660. # df_ss <- ss$summary_stats
  661. df_stats <- ss$df_with_stats
  662. df_filtered_stats <- df_stats %>%
  663. {
  664. non_finite_rows <- filter(., if_any(c(L), ~ !is.finite(.)))
  665. if (nrow(non_finite_rows) > 0) {
  666. message("Filtering out the following non-finite rows:")
  667. print(non_finite_rows %>% select(any_of(print_vars)), n = 200)
  668. }
  669. filter(., if_all(c(L), is.finite))
  670. }
  671. message("Calculating summary statistics after quality control")
  672. ss <- calculate_summary_stats(df_na, summary_vars, group_vars = group_vars)
  673. df_na_ss <- ss$summary_stats
  674. df_na_stats <- ss$df_with_stats
  675. write.csv(df_na_ss, file = file.path(out_dir, "summary_stats_all_strains.csv"), row.names = FALSE)
  676. # Filter out non-finite rows for plotting
  677. df_na_filtered_stats <- df_na_stats %>%
  678. {
  679. non_finite_rows <- filter(., if_any(c(L), ~ !is.finite(.)))
  680. if (nrow(non_finite_rows) > 0) {
  681. message("Removed the following non-finite rows:")
  682. print(non_finite_rows %>% select(any_of(print_vars)), n = 200)
  683. }
  684. filter(., if_all(c(L), is.finite))
  685. }
  686. message("Calculating summary statistics after quality control excluding zero values")
  687. ss <- calculate_summary_stats(df_no_zeros, summary_vars, group_vars = group_vars)
  688. df_no_zeros_stats <- ss$df_with_stats
  689. df_no_zeros_filtered_stats <- df_no_zeros_stats %>%
  690. {
  691. non_finite_rows <- filter(., if_any(c(L), ~ !is.finite(.)))
  692. if (nrow(non_finite_rows) > 0) {
  693. message("Removed the following non-finite rows:")
  694. print(non_finite_rows %>% select(any_of(print_vars)), n = 200)
  695. }
  696. filter(., if_all(c(L), is.finite))
  697. }
  698. message("Filtering by 2SD of K")
  699. df_na_within_2sd_k <- df_na_stats %>%
  700. filter(K >= (mean_K - 2 * sd_K) & K <= (mean_K + 2 * sd_K))
  701. df_na_outside_2sd_k <- df_na_stats %>%
  702. filter(K < (mean_K - 2 * sd_K) | K > (mean_K + 2 * sd_K))
  703. message("Calculating summary statistics for L within 2SD of K")
  704. # TODO We're omitting the original z_max calculation, not sure if needed?
  705. ss <- calculate_summary_stats(df_na_within_2sd_k, "L", group_vars = c("conc_num", "conc_num_factor"))
  706. l_within_2sd_k_ss <- ss$summary_stats
  707. df_na_l_within_2sd_k_stats <- ss$df_with_stats
  708. write.csv(l_within_2sd_k_ss,
  709. file = file.path(out_dir_qc, "max_observed_L_vals_for_spots_within_2sd_K.csv"), row.names = FALSE)
  710. message("Calculating summary statistics for L outside 2SD of K")
  711. ss <- calculate_summary_stats(df_na_outside_2sd_k, "L", group_vars = c("conc_num", "conc_num_factor"))
  712. l_outside_2sd_k_ss <- ss$summary_stats
  713. df_na_l_outside_2sd_k_stats <- ss$df_with_stats
  714. write.csv(l_outside_2sd_k_ss,
  715. file = file.path(out_dir, "max_observed_L_vals_for_spots_outside_2sd_K.csv"), row.names = FALSE)
  716. # Each plots list corresponds to a file
  717. message("Generating quality control plot configurations")
  718. l_vs_k_plots <- list(
  719. list(
  720. df = df,
  721. x_var = "L",
  722. y_var = "K",
  723. plot_type = "scatter",
  724. delta_bg_point = TRUE,
  725. title = "Raw L vs K before quality control",
  726. color_var = "conc_num",
  727. error_bar = FALSE,
  728. legend_position = "right"
  729. )
  730. )
  731. frequency_delta_bg_plots <- list(
  732. list(
  733. df = df_filtered_stats,
  734. x_var = "delta_bg",
  735. y_var = NULL,
  736. plot_type = "density",
  737. title = "Plate analysis by Drug Conc for Delta Background before quality control",
  738. color_var = "conc_num",
  739. x_label = "Delta Background",
  740. y_label = "Density",
  741. error_bar = FALSE,
  742. legend_position = "right"),
  743. list(
  744. df = df_filtered_stats,
  745. x_var = "delta_bg",
  746. y_var = NULL,
  747. plot_type = "bar",
  748. title = "Plate analysis by Drug Conc for Delta Background before quality control",
  749. color_var = "conc_num",
  750. x_label = "Delta Background",
  751. y_label = "Count",
  752. error_bar = FALSE,
  753. legend_position = "right")
  754. )
  755. above_threshold_plots <- list(
  756. list(
  757. df = df_above_tolerance,
  758. x_var = "L",
  759. y_var = "K",
  760. plot_type = "scatter",
  761. delta_bg_point = TRUE,
  762. title = paste("Raw L vs K for strains above Delta Background threshold of",
  763. df_above_tolerance$delta_bg_tolerance[[1]], "or above"),
  764. color_var = "conc_num",
  765. position = "jitter",
  766. annotations = list(
  767. x = l_half_median,
  768. y = k_half_median,
  769. label = paste("# strains above Delta Background tolerance =", nrow(df_above_tolerance))
  770. ),
  771. error_bar = FALSE,
  772. legend_position = "right"
  773. )
  774. )
  775. plate_analysis_plots <- list()
  776. for (var in summary_vars) {
  777. for (stage in c("before", "after")) {
  778. if (stage == "before") {
  779. df_plot <- df_filtered_stats
  780. } else {
  781. df_plot <- df_na_filtered_stats
  782. }
  783. config <- list(
  784. df = df_plot,
  785. x_var = "scan",
  786. y_var = var,
  787. plot_type = "scatter",
  788. title = paste("Plate analysis by Drug Conc for", var, stage, "quality control"),
  789. error_bar = TRUE,
  790. color_var = "conc_num",
  791. position = "jitter")
  792. plate_analysis_plots <- append(plate_analysis_plots, list(config))
  793. }
  794. }
  795. plate_analysis_boxplots <- list()
  796. for (var in summary_vars) {
  797. for (stage in c("before", "after")) {
  798. if (stage == "before") {
  799. df_plot <- df_filtered_stats
  800. } else {
  801. df_plot <- df_na_filtered_stats
  802. }
  803. config <- list(
  804. df = df_plot,
  805. x_var = "scan",
  806. y_var = var,
  807. plot_type = "box",
  808. title = paste("Plate analysis by Drug Conc for", var, stage, "quality control"),
  809. error_bar = FALSE,
  810. color_var = "conc_num")
  811. plate_analysis_boxplots <- append(plate_analysis_boxplots, list(config))
  812. }
  813. }
  814. plate_analysis_no_zeros_plots <- list()
  815. for (var in summary_vars) {
  816. config <- list(
  817. df = df_no_zeros_filtered_stats,
  818. x_var = "scan",
  819. y_var = var,
  820. plot_type = "scatter",
  821. title = paste("Plate analysis by Drug Conc for", var, "after quality control"),
  822. error_bar = TRUE,
  823. color_var = "conc_num",
  824. position = "jitter")
  825. plate_analysis_no_zeros_plots <- append(plate_analysis_no_zeros_plots, list(config))
  826. }
  827. plate_analysis_no_zeros_boxplots <- list()
  828. for (var in summary_vars) {
  829. config <- list(
  830. df = df_no_zeros_filtered_stats,
  831. x_var = "scan",
  832. y_var = var,
  833. plot_type = "box",
  834. title = paste("Plate analysis by Drug Conc for", var, "after quality control"),
  835. error_bar = FALSE,
  836. color_var = "conc_num"
  837. )
  838. plate_analysis_no_zeros_boxplots <- append(plate_analysis_no_zeros_boxplots, list(config))
  839. }
  840. l_outside_2sd_k_plots <- list(
  841. list(
  842. df = df_na_l_outside_2sd_k_stats,
  843. x_var = "L",
  844. y_var = "K",
  845. plot_type = "scatter",
  846. delta_bg_point = TRUE,
  847. title = "Raw L vs K for strains falling outside 2SD of the K mean at each Conc",
  848. color_var = "conc_num",
  849. position = "jitter",
  850. legend_position = "right"
  851. )
  852. )
  853. delta_bg_outside_2sd_k_plots <- list(
  854. list(
  855. df = df_na_l_outside_2sd_k_stats,
  856. x_var = "delta_bg",
  857. y_var = "K",
  858. plot_type = "scatter",
  859. gene_point = TRUE,
  860. title = "Delta Background vs K for strains falling outside 2SD of the K mean at each Conc",
  861. color_var = "conc_num",
  862. position = "jitter",
  863. legend_position = "right"
  864. )
  865. )
  866. # message("Generating quality control plots")
  867. # generate_and_save_plots(out_dir_qc, "L_vs_K_before_quality_control", l_vs_k_plots)
  868. # generate_and_save_plots(out_dir_qc, "frequency_delta_background", frequency_delta_bg_plots)
  869. # generate_and_save_plots(out_dir_qc, "L_vs_K_above_threshold", above_threshold_plots)
  870. # generate_and_save_plots(out_dir_qc, "plate_analysis", plate_analysis_plots)
  871. # generate_and_save_plots(out_dir_qc, "plate_analysis_boxplots", plate_analysis_boxplots)
  872. # generate_and_save_plots(out_dir_qc, "plate_analysis_no_zeros", plate_analysis_no_zeros_plots)
  873. # generate_and_save_plots(out_dir_qc, "plate_analysis_no_zeros_boxplots", plate_analysis_no_zeros_boxplots)
  874. # generate_and_save_plots(out_dir_qc, "L_vs_K_for_strains_2SD_outside_mean_K", l_outside_2sd_k_plots)
  875. # generate_and_save_plots(out_dir_qc, "delta_background_vs_K_for_strains_2sd_outside_mean_K", delta_bg_outside_2sd_k_plots)
  876. # Clean up
  877. rm(df, df_above_tolerance, df_no_zeros, df_no_zeros_stats, df_no_zeros_filtered_stats, ss)
  878. gc()
  879. # TODO: Originally this filtered L NA's
  880. # Let's try to avoid for now since stats have already been calculated
  881. # Process background strains
  882. bg_strains <- c("YDL227C")
  883. lapply(bg_strains, function(strain) {
  884. message("Processing background strain: ", strain)
  885. # Handle missing data by setting zero values to NA
  886. # and then removing any rows with NA in L col
  887. df_bg <- df_na %>%
  888. filter(OrfRep == strain) %>%
  889. mutate(
  890. L = if_else(L == 0, NA, L),
  891. K = if_else(K == 0, NA, K),
  892. r = if_else(r == 0, NA, r),
  893. AUC = if_else(AUC == 0, NA, AUC)
  894. ) %>%
  895. filter(!is.na(L))
  896. # Recalculate summary statistics for the background strain
  897. message("Calculating summary statistics for background strain")
  898. ss_bg <- calculate_summary_stats(df_bg, summary_vars, group_vars = group_vars)
  899. summary_stats_bg <- ss_bg$summary_stats
  900. # df_bg_stats <- ss_bg$df_with_stats
  901. write.csv(summary_stats_bg,
  902. file = file.path(out_dir, paste0("SummaryStats_BackgroundStrains_", strain, ".csv")),
  903. row.names = FALSE)
  904. # Filter reference and deletion strains
  905. # Formerly X2_RF (reference strains)
  906. df_reference <- df_na_stats %>%
  907. filter(OrfRep == strain) %>%
  908. mutate(SM = 0)
  909. # Formerly X2 (deletion strains)
  910. df_deletion <- df_na_stats %>%
  911. filter(OrfRep != strain) %>%
  912. mutate(SM = 0)
  913. # Set the missing values to the highest theoretical value at each drug conc for L
  914. # Leave other values as 0 for the max/min
  915. reference_strain <- df_reference %>%
  916. group_by(conc_num) %>%
  917. mutate(
  918. max_l_theoretical = max(max_L, na.rm = TRUE),
  919. L = ifelse(L == 0 & !is.na(L) & conc_num > 0, max_l_theoretical, L),
  920. SM = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, 1, SM),
  921. L = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, max_l_theoretical, L)) %>%
  922. ungroup()
  923. # Ditto for deletion strains
  924. deletion_strains <- df_deletion %>%
  925. group_by(conc_num) %>%
  926. mutate(
  927. max_l_theoretical = max(max_L, na.rm = TRUE),
  928. L = ifelse(L == 0 & !is.na(L) & conc_num > 0, max_l_theoretical, L),
  929. SM = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, 1, SM),
  930. L = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, max_l_theoretical, L)) %>%
  931. ungroup()
  932. message("Calculating interaction scores")
  933. interaction_vars <- c("L", "K", "r", "AUC")
  934. message("Calculating reference strain(s)")
  935. reference_results <- calculate_interaction_scores(reference_strain, max_conc, interaction_vars, group_vars = orf_group_vars)
  936. zscores_calculations_reference <- reference_results$calculations
  937. zscores_interactions_reference <- reference_results$interactions
  938. zscores_calculations_reference_joined <- reference_results$calculations_joined
  939. zscores_interactions_reference_joined <- reference_results$interactions_joined
  940. message("Calculating deletion strain(s)")
  941. deletion_results <- calculate_interaction_scores(deletion_strains, max_conc, interaction_vars, group_vars = orf_group_vars)
  942. zscores_calculations <- deletion_results$calculations
  943. zscores_interactions <- deletion_results$interactions
  944. zscores_calculations_joined <- deletion_results$calculations_joined
  945. zscores_interactions_joined <- deletion_results$interactions_joined
  946. # Writing Z-Scores to file
  947. write.csv(zscores_calculations_reference, file = file.path(out_dir, "RF_ZScores_Calculations.csv"), row.names = FALSE)
  948. write.csv(zscores_calculations, file = file.path(out_dir, "ZScores_Calculations.csv"), row.names = FALSE)
  949. write.csv(zscores_interactions_reference, file = file.path(out_dir, "RF_ZScores_Interaction.csv"), row.names = FALSE)
  950. write.csv(zscores_interactions, file = file.path(out_dir, "ZScores_Interaction.csv"), row.names = FALSE)
  951. # Create interaction plots
  952. message("Generating interaction plot configurations")
  953. reference_plot_configs <- generate_interaction_plot_configs(zscores_interactions_reference_joined, interaction_vars)
  954. deletion_plot_configs <- generate_interaction_plot_configs(zscores_interactions_joined, interaction_vars)
  955. message("Generating interaction plots")
  956. generate_and_save_plots(out_dir, "RF_interactionPlots", reference_plot_configs, grid_layout = list(ncol = 4, nrow = 3))
  957. generate_and_save_plots(out_dir, "InteractionPlots", deletion_plot_configs, grid_layout = list(ncol = 4, nrow = 3))
  958. # Define conditions for enhancers and suppressors
  959. # TODO Add to study config file?
  960. threshold <- 2
  961. enhancer_condition_L <- zscores_interactions$Avg_Zscore_L >= threshold
  962. suppressor_condition_L <- zscores_interactions$Avg_Zscore_L <= -threshold
  963. enhancer_condition_K <- zscores_interactions$Avg_Zscore_K >= threshold
  964. suppressor_condition_K <- zscores_interactions$Avg_Zscore_K <= -threshold
  965. # Subset data
  966. enhancers_L <- zscores_interactions[enhancer_condition_L, ]
  967. suppressors_L <- zscores_interactions[suppressor_condition_L, ]
  968. enhancers_K <- zscores_interactions[enhancer_condition_K, ]
  969. suppressors_K <- zscores_interactions[suppressor_condition_K, ]
  970. # Save enhancers and suppressors
  971. message("Writing enhancer/suppressor csv files")
  972. write.csv(enhancers_L, file = file.path(out_dir, "ZScores_Interaction_Deletion_Enhancers_L.csv"), row.names = FALSE)
  973. write.csv(suppressors_L, file = file.path(out_dir, "ZScores_Interaction_Deletion_Suppressors_L.csv"), row.names = FALSE)
  974. write.csv(enhancers_K, file = file.path(out_dir, "ZScores_Interaction_Deletion_Enhancers_K.csv"), row.names = FALSE)
  975. write.csv(suppressors_K, file = file.path(out_dir, "ZScores_Interaction_Deletion_Suppressors_K.csv"), row.names = FALSE)
  976. # Combine conditions for enhancers and suppressors
  977. enhancers_and_suppressors_L <- zscores_interactions[enhancer_condition_L | suppressor_condition_L, ]
  978. enhancers_and_suppressors_K <- zscores_interactions[enhancer_condition_K | suppressor_condition_K, ]
  979. # Save combined enhancers and suppressors
  980. write.csv(enhancers_and_suppressors_L,
  981. file = file.path(out_dir, "ZScores_Interaction_Deletion_Enhancers_and_Suppressors_L.csv"), row.names = FALSE)
  982. write.csv(enhancers_and_suppressors_K,
  983. file = file.path(out_dir, "ZScores_Interaction_Deletion_Enhancers_and_Suppressors_K.csv"), row.names = FALSE)
  984. # Handle linear model based enhancers and suppressors
  985. lm_threshold <- 2
  986. enhancers_lm_L <- zscores_interactions[zscores_interactions$Z_lm_L >= lm_threshold, ]
  987. suppressors_lm_L <- zscores_interactions[zscores_interactions$Z_lm_L <= -lm_threshold, ]
  988. enhancers_lm_K <- zscores_interactions[zscores_interactions$Z_lm_K >= lm_threshold, ]
  989. suppressors_lm_K <- zscores_interactions[zscores_interactions$Z_lm_K <= -lm_threshold, ]
  990. # Save linear model based enhancers and suppressors
  991. message("Writing linear model enhancer/suppressor csv files")
  992. write.csv(enhancers_lm_L,
  993. file = file.path(out_dir, "ZScores_Interaction_Deletion_Enhancers_L_lm.csv"), row.names = FALSE)
  994. write.csv(suppressors_lm_L,
  995. file = file.path(out_dir, "ZScores_Interaction_Deletion_Suppressors_L_lm.csv"), row.names = FALSE)
  996. write.csv(enhancers_lm_K,
  997. file = file.path(out_dir, "ZScores_Interaction_Deletion_Enhancers_K_lm.csv"), row.names = FALSE)
  998. write.csv(suppressors_lm_K,
  999. file = file.path(out_dir, "ZScores_Interaction_Deletion_Suppressors_K_lm.csv"), row.names = FALSE)
  1000. # TODO needs explanation
  1001. zscores_interactions_adjusted <- adjust_missing_and_rank(zscores_interactions)
  1002. rank_plot_configs <- c(
  1003. generate_rank_plot_configs(zscores_interactions_adjusted, "Rank_L", "Avg_Zscore_L", "L"),
  1004. generate_rank_plot_configs(zscores_interactions_adjusted, "Rank_K", "Avg_Zscore_K", "K")
  1005. )
  1006. generate_and_save_plots(output_dir = out_dir, file_name = "RankPlots",
  1007. plot_configs = rank_plot_configs, grid_layout = list(ncol = 3, nrow = 2))
  1008. rank_lm_plot_config <- c(
  1009. generate_rank_plot_configs(zscores_interactions_adjusted, "Rank_lm_L", "Z_lm_L", "L", is_lm = TRUE),
  1010. generate_rank_plot_configs(zscores_interactions_adjusted, "Rank_lm_K", "Z_lm_K", "K", is_lm = TRUE)
  1011. )
  1012. generate_and_save_plots(output_dir = out_dir, file_name = "RankPlots_lm",
  1013. plot_configs = rank_lm_plot_config, grid_layout = list(ncol = 3, nrow = 2))
  1014. # Formerly X_NArm
  1015. zscores_interactions_filtered <- zscores_interactions %>%
  1016. group_by(across(all_of(orf_group_vars))) %>%
  1017. filter(!is.na(Z_lm_L) | !is.na(Avg_Zscore_L))
  1018. # Final filtered correlation calculations and plots
  1019. lm_results <- zscores_interactions_filtered %>%
  1020. summarise(
  1021. lm_R_squared_L = if (n() > 1) summary(lm(Z_lm_L ~ Avg_Zscore_L))$r.squared else NA,
  1022. lm_R_squared_K = if (n() > 1) summary(lm(Z_lm_K ~ Avg_Zscore_K))$r.squared else NA,
  1023. lm_R_squared_r = if (n() > 1) summary(lm(Z_lm_r ~ Avg_Zscore_r))$r.squared else NA,
  1024. lm_R_squared_AUC = if (n() > 1) summary(lm(Z_lm_AUC ~ Avg_Zscore_AUC))$r.squared else NA
  1025. )
  1026. zscores_interactions_filtered <- zscores_interactions_filtered %>%
  1027. left_join(lm_results, by = orf_group_vars) %>%
  1028. mutate(
  1029. Overlap = case_when(
  1030. Z_lm_L >= 2 & Avg_Zscore_L >= 2 ~ "Deletion Enhancer Both",
  1031. Z_lm_L <= -2 & Avg_Zscore_L <= -2 ~ "Deletion Suppressor Both",
  1032. Z_lm_L >= 2 & Avg_Zscore_L <= 2 ~ "Deletion Enhancer lm only",
  1033. Z_lm_L <= -2 & Avg_Zscore_L >= -2 ~ "Deletion Suppressor lm only",
  1034. Z_lm_L >= 2 & Avg_Zscore_L <= -2 ~ "Deletion Enhancer lm, Deletion Suppressor Avg Z score",
  1035. Z_lm_L <= -2 & Avg_Zscore_L >= 2 ~ "Deletion Suppressor lm, Deletion Enhancer Avg Z score",
  1036. TRUE ~ "No Effect"
  1037. )
  1038. ) %>%
  1039. ungroup()
  1040. rank_plot_configs <- c(
  1041. generate_rank_plot_configs(zscores_interactions_filtered, "Rank_L", "Avg_Zscore_L", "L"),
  1042. generate_rank_plot_configs(zscores_interactions_filtered, "Rank_K", "Avg_Zscore_K", "K")
  1043. )
  1044. generate_and_save_plots(output_dir = out_dir, file_name = "RankPlots",
  1045. plot_configs = rank_plot_configs, grid_layout = list(ncol = 3, nrow = 2))
  1046. rank_lm_plot_configs <- c(
  1047. generate_rank_plot_configs(zscores_interactions_filtered, "Rank_lm_L", "Z_lm_L", "L", is_lm = TRUE),
  1048. generate_rank_plot_configs(zscores_interactions_filtered, "Rank_lm_K", "Z_lm_K", "K", is_lm = TRUE)
  1049. )
  1050. generate_and_save_plots(output_dir = out_dir, file_name = "RankPlots_lm",
  1051. plot_configs = rank_lm_plot_configs, grid_layout = list(ncol = 3, nrow = 2))
  1052. correlation_plot_configs <- generate_correlation_plot_configs(zscores_interactions_filtered, interaction_vars)
  1053. generate_and_save_plots(output_dir = out_dir, file_name = "Avg_Zscore_vs_lm_NA_rm",
  1054. plot_configs = correlation_plot_configs, grid_layout = list(ncol = 2, nrow = 2))
  1055. })
  1056. })
  1057. }
  1058. main()