calculate_interaction_zscores.R 54 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482
  1. suppressMessages({
  2. library("ggplot2")
  3. library("plotly")
  4. library("htmlwidgets")
  5. library("dplyr")
  6. library("rlang")
  7. library("ggthemes")
  8. library("data.table")
  9. library("future")
  10. library("furrr")
  11. library("purrr")
  12. })
  13. # These parallelization libraries are very noisy
  14. suppressPackageStartupMessages({
  15. library("future")
  16. library("furrr")
  17. library("purrr")
  18. })
  19. options(warn = 2)
  20. # Constants for configuration
  21. plot_width <- 14
  22. plot_height <- 9
  23. base_size <- 14
  24. parse_arguments <- function() {
  25. args <- if (interactive()) {
  26. c(
  27. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/20240116_jhartman2_DoxoHLD",
  28. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/apps/r/SGD_features.tab",
  29. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/easy/20240116_jhartman2_DoxoHLD/results_std.txt",
  30. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/20240822_jhartman2_DoxoHLD/exp1",
  31. "Experiment 1: Doxo versus HLD",
  32. 3,
  33. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/20240822_jhartman2_DoxoHLD/exp2",
  34. "Experiment 2: HLD versus Doxo",
  35. 3
  36. )
  37. } else {
  38. commandArgs(trailingOnly = TRUE)
  39. }
  40. out_dir <- normalizePath(args[1], mustWork = FALSE)
  41. sgd_gene_list <- normalizePath(args[2], mustWork = FALSE)
  42. easy_results_file <- normalizePath(args[3], mustWork = FALSE)
  43. # The remaining arguments should be in groups of 3
  44. exp_args <- args[-(1:3)]
  45. if (length(exp_args) %% 3 != 0) {
  46. stop("Experiment arguments should be in groups of 3: path, name, sd.")
  47. }
  48. # Extract the experiments into a list
  49. experiments <- list()
  50. for (i in seq(1, length(exp_args), by = 3)) {
  51. exp_name <- exp_args[i + 1]
  52. experiments[[exp_name]] <- list(
  53. path = normalizePath(exp_args[i], mustWork = FALSE),
  54. sd = as.numeric(exp_args[i + 2])
  55. )
  56. }
  57. # Extract the trailing number from each path
  58. trailing_numbers <- sapply(experiments, function(x) {
  59. path <- x$path
  60. nums <- gsub("[^0-9]", "", basename(path))
  61. as.integer(nums)
  62. })
  63. # Sort the experiments based on the trailing numbers
  64. sorted_experiments <- experiments[order(trailing_numbers)]
  65. list(
  66. out_dir = out_dir,
  67. sgd_gene_list = sgd_gene_list,
  68. easy_results_file = easy_results_file,
  69. experiments = sorted_experiments
  70. )
  71. }
  72. args <- parse_arguments()
  73. # Should we keep output in exp dirs or combine in the study output dir?
  74. # dir.create(file.path(args$out_dir, "zscores"), showWarnings = FALSE)
  75. # dir.create(file.path(args$out_dir, "zscores", "qc"), showWarnings = FALSE)
  76. theme_publication <- function(base_size = 14, base_family = "sans", legend_position = "bottom") {
  77. theme_foundation <- ggthemes::theme_foundation(base_size = base_size, base_family = base_family)
  78. theme_foundation %+replace%
  79. theme(
  80. plot.title = element_text(face = "bold", size = rel(1.2), hjust = 0.5),
  81. text = element_text(),
  82. panel.border = element_rect(colour = NA),
  83. panel.background = element_rect(colour = NA),
  84. panel.border = element_rect(colour = NA),
  85. plot.background = element_rect(colour = NA),
  86. axis.title = element_text(face = "bold", size = rel(1)),
  87. axis.title.y = element_text(angle = 90, vjust = 2),
  88. axis.title.x = element_text(vjust = -0.2),
  89. axis.text = element_text(),
  90. axis.line = element_line(colour = "black"),
  91. axis.ticks = element_line(),
  92. panel.grid.major = element_line(colour = "#f0f0f0"),
  93. panel.grid.minor = element_blank(),
  94. legend.key = element_rect(colour = NA),
  95. legend.position = legend_position,
  96. legend.direction = ifelse(legend_position == "right", "vertical", "horizontal"),
  97. legend.key.size = unit(0.2, "cm"),
  98. legend.spacing = unit(0, "cm"),
  99. legend.title = element_text(face = "italic"),
  100. plot.margin = unit(c(10, 5, 5, 5), "mm"),
  101. strip.background = element_rect(colour = "#f0f0f0", fill = "#f0f0f0"),
  102. strip.text = element_text(face = "bold")
  103. )
  104. }
  105. scale_fill_publication <- function(...) {
  106. discrete_scale("fill", "Publication", manual_pal(values = c(
  107. "#386cb0", "#fdb462", "#7fc97f", "#ef3b2c", "#662506",
  108. "#a6cee3", "#fb9a99", "#984ea3", "#ffff33"
  109. )), ...)
  110. }
  111. scale_colour_publication <- function(...) {
  112. discrete_scale("colour", "Publication", manual_pal(values = c(
  113. "#386cb0", "#fdb462", "#7fc97f", "#ef3b2c", "#662506",
  114. "#a6cee3", "#fb9a99", "#984ea3", "#ffff33"
  115. )), ...)
  116. }
  117. # Load the initial dataframe from the easy_results_file
  118. load_and_filter_data <- function(easy_results_file, sd = 3) {
  119. df <- read.delim(easy_results_file, skip = 2, as.is = TRUE, row.names = 1, strip.white = TRUE)
  120. df <- df %>%
  121. filter(!(.[[1]] %in% c("", "Scan"))) %>%
  122. filter(!is.na(ORF) & ORF != "" & !Gene %in% c("BLANK", "Blank", "blank") & Drug != "BMH21") %>%
  123. # Rename columns
  124. rename(L = l, num = Num., AUC = AUC96, scan = Scan, last_bg = LstBackgrd, first_bg = X1stBackgrd) %>%
  125. mutate(
  126. across(c(Col, Row, num, L, K, r, scan, AUC, last_bg, first_bg), as.numeric),
  127. delta_bg = last_bg - first_bg,
  128. delta_bg_tolerance = mean(delta_bg, na.rm = TRUE) + (sd * sd(delta_bg, na.rm = TRUE)),
  129. NG = if_else(L == 0 & !is.na(L), 1, 0),
  130. DB = if_else(delta_bg >= delta_bg_tolerance, 1, 0),
  131. SM = 0,
  132. OrfRep = if_else(ORF == "YDL227C", "YDL227C", OrfRep), # should these be hardcoded?
  133. conc_num = as.numeric(gsub("[^0-9\\.]", "", Conc)),
  134. conc_num_factor = factor(as.numeric(factor(conc_num)) - 1),
  135. conc_num_factor_num = as.numeric(conc_num_factor)
  136. )
  137. return(df)
  138. }
  139. # Update Gene names using the SGD gene list
  140. update_gene_names <- function(df, sgd_gene_list) {
  141. # Load SGD gene list
  142. genes <- read.delim(file = sgd_gene_list,
  143. quote = "", header = FALSE,
  144. colClasses = c(rep("NULL", 3), rep("character", 2), rep("NULL", 11)))
  145. # Create a named vector for mapping ORF to GeneName
  146. gene_map <- setNames(genes$V5, genes$V4)
  147. # Vectorized match to find the GeneName from gene_map
  148. mapped_genes <- gene_map[df$ORF]
  149. # Replace NAs in mapped_genes with original Gene names (preserves existing Gene names if ORF is not found)
  150. updated_genes <- ifelse(is.na(mapped_genes) | df$OrfRep == "YDL227C", df$Gene, mapped_genes)
  151. # Ensure Gene is not left blank or incorrectly updated to "OCT1"
  152. df <- df %>%
  153. mutate(Gene = ifelse(updated_genes == "" | updated_genes == "OCT1", OrfRep, updated_genes))
  154. return(df)
  155. }
  156. calculate_summary_stats <- function(df, variables, group_vars) {
  157. summary_stats <- df %>%
  158. group_by(across(all_of(group_vars))) %>%
  159. summarise(
  160. N = n(),
  161. across(all_of(variables),
  162. list(
  163. mean = ~mean(., na.rm = TRUE),
  164. median = ~median(., na.rm = TRUE),
  165. max = ~ifelse(all(is.na(.)), NA, max(., na.rm = TRUE)),
  166. min = ~ifelse(all(is.na(.)), NA, min(., na.rm = TRUE)),
  167. sd = ~sd(., na.rm = TRUE),
  168. se = ~sd(., na.rm = TRUE) / sqrt(N - 1) # TODO non-standard SE, needs explanation
  169. ),
  170. .names = "{.fn}_{.col}"
  171. ),
  172. .groups = "drop"
  173. )
  174. # Create a cleaned version of df that doesn't overlap with summary_stats
  175. cleaned_df <- df %>%
  176. select(-any_of(setdiff(intersect(names(df), names(summary_stats)), group_vars)))
  177. df_joined <- left_join(cleaned_df, summary_stats, by = group_vars)
  178. return(list(summary_stats = summary_stats, df_with_stats = df_joined))
  179. }
  180. calculate_interaction_scores <- function(df, max_conc, bg_stats,
  181. group_vars = c("OrfRep", "Gene", "num")) {
  182. # Calculate total concentration variables
  183. total_conc_num <- length(unique(df$conc_num))
  184. calculations <- df %>%
  185. group_by(across(all_of(group_vars))) %>%
  186. mutate(
  187. NG = sum(NG, na.rm = TRUE),
  188. DB = sum(DB, na.rm = TRUE),
  189. SM = sum(SM, na.rm = TRUE),
  190. num_non_removed_concs = total_conc_num - sum(DB, na.rm = TRUE) - 1,
  191. # Calculate raw data
  192. Raw_Shift_L = first(mean_L) - bg_stats$mean_L,
  193. Raw_Shift_K = first(mean_K) - bg_stats$mean_K,
  194. Raw_Shift_r = first(mean_r) - bg_stats$mean_r,
  195. Raw_Shift_AUC = first(mean_AUC) - bg_stats$mean_AUC,
  196. Z_Shift_L = first(Raw_Shift_L) / bg_stats$sd_L,
  197. Z_Shift_K = first(Raw_Shift_K) / bg_stats$sd_K,
  198. Z_Shift_r = first(Raw_Shift_r) / bg_stats$sd_r,
  199. Z_Shift_AUC = first(Raw_Shift_AUC) / bg_stats$sd_AUC,
  200. Exp_L = WT_L + Raw_Shift_L,
  201. Exp_K = WT_K + Raw_Shift_K,
  202. Exp_r = WT_r + Raw_Shift_r,
  203. Exp_AUC = WT_AUC + Raw_Shift_AUC,
  204. Delta_L = mean_L - Exp_L,
  205. Delta_K = mean_K - Exp_K,
  206. Delta_r = mean_r - Exp_r,
  207. Delta_AUC = mean_AUC - Exp_AUC,
  208. Delta_L = if_else(NG == 1, mean_L - WT_L, Delta_L),
  209. Delta_K = if_else(NG == 1, mean_K - WT_K, Delta_K),
  210. Delta_r = if_else(NG == 1, mean_r - WT_r, Delta_r),
  211. Delta_AUC = if_else(NG == 1, mean_AUC - WT_AUC, Delta_AUC),
  212. Delta_L = if_else(SM == 1, mean_L - WT_L, Delta_L),
  213. # Calculate Z-scores
  214. Zscore_L = Delta_L / WT_sd_L,
  215. Zscore_K = Delta_K / WT_sd_K,
  216. Zscore_r = Delta_r / WT_sd_r,
  217. Zscore_AUC = Delta_AUC / WT_sd_AUC,
  218. # Fit linear models and store in list-columns
  219. gene_lm_L = list(lm(Delta_L ~ conc_num_factor_num, data = pick(everything()))),
  220. gene_lm_K = list(lm(Delta_K ~ conc_num_factor_num, data = pick(everything()))),
  221. gene_lm_r = list(lm(Delta_r ~ conc_num_factor_num, data = pick(everything()))),
  222. gene_lm_AUC = list(lm(Delta_AUC ~ conc_num_factor_num, data = pick(everything()))),
  223. # Extract coefficients using purrr::map_dbl
  224. lm_intercept_L = map_dbl(gene_lm_L, ~ coef(.x)[1]),
  225. lm_slope_L = map_dbl(gene_lm_L, ~ coef(.x)[2]),
  226. lm_intercept_K = map_dbl(gene_lm_K, ~ coef(.x)[1]),
  227. lm_slope_K = map_dbl(gene_lm_K, ~ coef(.x)[2]),
  228. lm_intercept_r = map_dbl(gene_lm_r, ~ coef(.x)[1]),
  229. lm_slope_r = map_dbl(gene_lm_r, ~ coef(.x)[2]),
  230. lm_intercept_AUC = map_dbl(gene_lm_AUC, ~ coef(.x)[1]),
  231. lm_slope_AUC = map_dbl(gene_lm_AUC, ~ coef(.x)[2]),
  232. # Calculate lm_Score_* based on coefficients
  233. lm_Score_L = max_conc * lm_slope_L + lm_intercept_L,
  234. lm_Score_K = max_conc * lm_slope_K + lm_intercept_K,
  235. lm_Score_r = max_conc * lm_slope_r + lm_intercept_r,
  236. lm_Score_AUC = max_conc * lm_slope_AUC + lm_intercept_AUC,
  237. # Calculate R-squared values
  238. R_Squared_L = map_dbl(gene_lm_L, ~ summary(.x)$r.squared),
  239. R_Squared_K = map_dbl(gene_lm_K, ~ summary(.x)$r.squared),
  240. R_Squared_r = map_dbl(gene_lm_r, ~ summary(.x)$r.squared),
  241. R_Squared_AUC = map_dbl(gene_lm_AUC, ~ summary(.x)$r.squared)
  242. ) %>%
  243. ungroup()
  244. # Calculate overall mean and SD for lm_Score_* variables
  245. lm_means_sds <- calculations %>%
  246. summarise(
  247. lm_mean_L = mean(lm_Score_L, na.rm = TRUE),
  248. lm_sd_L = sd(lm_Score_L, na.rm = TRUE),
  249. lm_mean_K = mean(lm_Score_K, na.rm = TRUE),
  250. lm_sd_K = sd(lm_Score_K, na.rm = TRUE),
  251. lm_mean_r = mean(lm_Score_r, na.rm = TRUE),
  252. lm_sd_r = sd(lm_Score_r, na.rm = TRUE),
  253. lm_mean_AUC = mean(lm_Score_AUC, na.rm = TRUE),
  254. lm_sd_AUC = sd(lm_Score_AUC, na.rm = TRUE)
  255. )
  256. calculations <- calculations %>%
  257. mutate(
  258. Z_lm_L = (lm_Score_L - lm_means_sds$lm_mean_L) / lm_means_sds$lm_sd_L,
  259. Z_lm_K = (lm_Score_K - lm_means_sds$lm_mean_K) / lm_means_sds$lm_sd_K,
  260. Z_lm_r = (lm_Score_r - lm_means_sds$lm_mean_r) / lm_means_sds$lm_sd_r,
  261. Z_lm_AUC = (lm_Score_AUC - lm_means_sds$lm_mean_AUC) / lm_means_sds$lm_sd_AUC
  262. )
  263. # Summarize some of the stats
  264. interactions <- calculations %>%
  265. group_by(across(all_of(group_vars))) %>%
  266. mutate(
  267. # Calculate raw shifts
  268. Raw_Shift_L = first(Raw_Shift_L),
  269. Raw_Shift_K = first(Raw_Shift_K),
  270. Raw_Shift_r = first(Raw_Shift_r),
  271. Raw_Shift_AUC = first(Raw_Shift_AUC),
  272. # Calculate Z-shifts
  273. Z_Shift_L = first(Z_Shift_L),
  274. Z_Shift_K = first(Z_Shift_K),
  275. Z_Shift_r = first(Z_Shift_r),
  276. Z_Shift_AUC = first(Z_Shift_AUC),
  277. # Sum Z-scores
  278. Sum_Z_Score_L = sum(Zscore_L),
  279. Sum_Z_Score_K = sum(Zscore_K),
  280. Sum_Z_Score_r = sum(Zscore_r),
  281. Sum_Z_Score_AUC = sum(Zscore_AUC),
  282. # Calculate Average Z-scores
  283. Avg_Zscore_L = Sum_Z_Score_L / num_non_removed_concs,
  284. Avg_Zscore_K = Sum_Z_Score_K / num_non_removed_concs,
  285. Avg_Zscore_r = Sum_Z_Score_r / (total_conc_num - 1),
  286. Avg_Zscore_AUC = Sum_Z_Score_AUC / (total_conc_num - 1)
  287. ) %>%
  288. arrange(desc(Z_lm_L), desc(NG)) %>%
  289. ungroup()
  290. # Declare column order for output
  291. calculations <- calculations %>%
  292. select(
  293. "OrfRep", "Gene", "num", "conc_num", "conc_num_factor", "N",
  294. "mean_L", "mean_K", "mean_r", "mean_AUC",
  295. "median_L", "median_K", "median_r", "median_AUC",
  296. "sd_L", "sd_K", "sd_r", "sd_AUC",
  297. "se_L", "se_K", "se_r", "se_AUC",
  298. "Raw_Shift_L", "Raw_Shift_K", "Raw_Shift_r", "Raw_Shift_AUC",
  299. "Z_Shift_L", "Z_Shift_K", "Z_Shift_r", "Z_Shift_AUC",
  300. "WT_L", "WT_K", "WT_r", "WT_AUC",
  301. "WT_sd_L", "WT_sd_K", "WT_sd_r", "WT_sd_AUC",
  302. "Exp_L", "Exp_K", "Exp_r", "Exp_AUC",
  303. "Delta_L", "Delta_K", "Delta_r", "Delta_AUC",
  304. "Zscore_L", "Zscore_K", "Zscore_r", "Zscore_AUC",
  305. "NG", "SM", "DB")
  306. interactions <- interactions %>%
  307. select(
  308. "OrfRep", "Gene", "conc_num", "conc_num_factor", "num", "NG", "DB", "SM",
  309. "Raw_Shift_L", "Raw_Shift_K", "Raw_Shift_r", "Raw_Shift_AUC",
  310. "Z_Shift_L", "Z_Shift_K", "Z_Shift_r", "Z_Shift_AUC",
  311. "Sum_Z_Score_L", "Sum_Z_Score_K", "Sum_Z_Score_r", "Sum_Z_Score_AUC",
  312. "Avg_Zscore_L", "Avg_Zscore_K", "Avg_Zscore_r", "Avg_Zscore_AUC",
  313. "lm_Score_L", "lm_Score_K", "lm_Score_r", "lm_Score_AUC",
  314. "R_Squared_L", "R_Squared_K", "R_Squared_r", "R_Squared_AUC",
  315. "Z_lm_L", "Z_lm_K", "Z_lm_r", "Z_lm_AUC")
  316. cleaned_df <- df %>%
  317. select(-any_of(
  318. setdiff(intersect(names(df), names(interactions)),
  319. c("OrfRep", "Gene", "num", "conc_num", "conc_num_factor"))))
  320. interactions_joined <- left_join(cleaned_df, interactions, by = c("OrfRep", "Gene", "num", "conc_num", "conc_num_factor"))
  321. return(list(
  322. calculations = calculations,
  323. interactions = interactions,
  324. interactions_joined = interactions_joined))
  325. }
  326. generate_and_save_plots <- function(out_dir, filename, plot_configs, grid_layout = NULL) {
  327. message("Generating ", filename, ".pdf and ", filename, ".html")
  328. # Prepare lists to collect plots
  329. static_plots <- list()
  330. plotly_plots <- list()
  331. for (i in seq_along(plot_configs)) {
  332. config <- plot_configs[[i]]
  333. df <- config$df
  334. aes_mapping <- if (config$plot_type == "bar" || config$plot_type == "density") {
  335. if (is.null(config$color_var)) {
  336. aes(x = .data[[config$x_var]])
  337. } else {
  338. aes(x = .data[[config$x_var]], color = as.factor(.data[[config$color_var]]))
  339. }
  340. } else if (is.null(config$color_var)) {
  341. aes(x = .data[[config$x_var]], y = .data[[config$y_var]])
  342. } else {
  343. aes(x = .data[[config$x_var]], y = .data[[config$y_var]], color = as.factor(.data[[config$color_var]]))
  344. }
  345. # Start building the plot with aes_mapping
  346. plot_base <- ggplot(df, aes_mapping)
  347. # Use appropriate helper function based on plot type
  348. plot <- switch(config$plot_type,
  349. "scatter" = generate_scatter_plot(plot_base, config),
  350. "box" = generate_box_plot(plot_base, config),
  351. "density" = plot_base + geom_density(),
  352. "bar" = plot_base + geom_bar(),
  353. plot_base # default case if no type matches
  354. )
  355. # Apply additional settings
  356. if (!is.null(config$legend_position)) {
  357. plot <- plot + theme(legend.position = config$legend_position)
  358. }
  359. # Add title and labels
  360. if (!is.null(config$title)) {
  361. plot <- plot + ggtitle(config$title)
  362. }
  363. if (!is.null(config$x_label)) {
  364. plot <- plot + xlab(config$x_label)
  365. }
  366. if (!is.null(config$y_label)) {
  367. plot <- plot + ylab(config$y_label)
  368. }
  369. # Apply scale_color_discrete(guide = FALSE) when color_var is NULL
  370. if (is.null(config$color_var)) {
  371. plot <- plot + scale_color_discrete(guide = "none")
  372. }
  373. # Add interactive tooltips for plotly
  374. tooltip_vars <- c()
  375. if (config$plot_type == "scatter") {
  376. if (!is.null(config$delta_bg_point) && config$delta_bg_point) {
  377. tooltip_vars <- c(tooltip_vars, "OrfRep", "Gene", "delta_bg")
  378. } else if (!is.null(config$gene_point) && config$gene_point) {
  379. tooltip_vars <- c(tooltip_vars, "OrfRep", "Gene")
  380. } else if (!is.null(config$y_var) && !is.null(config$x_var)) {
  381. tooltip_vars <- c(config$x_var, config$y_var)
  382. }
  383. }
  384. # Convert to plotly object
  385. if (length(tooltip_vars) > 0) {
  386. plotly_plot <- ggplotly(plot, tooltip = tooltip_vars)
  387. } else {
  388. plotly_plot <- ggplotly(plot, tooltip = "none")
  389. }
  390. # Adjust legend position if specified
  391. if (!is.null(config$legend_position) && config$legend_position == "bottom") {
  392. plotly_plot <- plotly_plot %>% layout(legend = list(orientation = "h"))
  393. }
  394. # Add plots to lists
  395. static_plots[[i]] <- plot
  396. plotly_plots[[i]] <- plotly_plot
  397. }
  398. # Save static PDF plots
  399. pdf(file.path(out_dir, paste0(filename, ".pdf")), width = 14, height = 9)
  400. lapply(static_plots, print)
  401. dev.off()
  402. # Combine and save interactive HTML plots
  403. combined_plot <- subplot(
  404. plotly_plots,
  405. nrows = if (!is.null(grid_layout) && !is.null(grid_layout$nrow)) {
  406. grid_layout$nrow
  407. } else {
  408. # Calculate nrow based on the length of plotly_plots (default 1 row if only one plot)
  409. ceiling(length(plotly_plots) / ifelse(!is.null(grid_layout) && !is.null(grid_layout$ncol), grid_layout$ncol, 1))
  410. },
  411. margin = 0.05
  412. )
  413. saveWidget(combined_plot, file = file.path(out_dir, paste0(filename, ".html")), selfcontained = TRUE)
  414. }
  415. generate_scatter_plot <- function(plot, config) {
  416. shape <- if (!is.null(config$shape)) config$shape else 3
  417. size <- if (!is.null(config$size)) config$size else 0.1
  418. position <-
  419. if (!is.null(config$position) && config$position == "jitter") {
  420. position_jitter(width = 0.1, height = 0)
  421. } else {
  422. "identity"
  423. }
  424. plot <- plot + geom_point(
  425. shape = shape,
  426. size = size,
  427. position = position
  428. )
  429. if (!is.null(config$cyan_points) && config$cyan_points) {
  430. plot <- plot + geom_point(
  431. aes(x = .data[[config$x_var]], y = .data[[config$y_var]]),
  432. color = "cyan",
  433. shape = 3,
  434. size = 0.5
  435. )
  436. }
  437. # Add Smooth Line if specified
  438. if (!is.null(config$smooth) && config$smooth) {
  439. smooth_color <- if (!is.null(config$smooth_color)) config$smooth_color else "blue"
  440. if (!is.null(config$lm_line)) {
  441. plot <- plot +
  442. geom_abline(
  443. intercept = config$lm_line$intercept,
  444. slope = config$lm_line$slope,
  445. color = smooth_color
  446. )
  447. } else {
  448. plot <- plot +
  449. geom_smooth(
  450. method = "lm",
  451. se = FALSE,
  452. color = smooth_color
  453. )
  454. }
  455. }
  456. # Add SD Bands if specified
  457. if (!is.null(config$sd_band)) {
  458. plot <- plot +
  459. annotate(
  460. "rect",
  461. xmin = -Inf, xmax = Inf,
  462. ymin = config$sd_band, ymax = Inf,
  463. fill = ifelse(!is.null(config$fill_positive), config$fill_positive, "#542788"),
  464. alpha = ifelse(!is.null(config$alpha_positive), config$alpha_positive, 0.3)
  465. ) +
  466. annotate(
  467. "rect",
  468. xmin = -Inf, xmax = Inf,
  469. ymin = -config$sd_band, ymax = -Inf,
  470. fill = ifelse(!is.null(config$fill_negative), config$fill_negative, "orange"),
  471. alpha = ifelse(!is.null(config$alpha_negative), config$alpha_negative, 0.3)
  472. ) +
  473. geom_hline(
  474. yintercept = c(-config$sd_band, config$sd_band),
  475. color = ifelse(!is.null(config$hl_color), config$hl_color, "gray")
  476. )
  477. }
  478. # Add Rectangles if specified
  479. if (!is.null(config$rectangles)) {
  480. for (rect in config$rectangles) {
  481. plot <- plot + annotate(
  482. "rect",
  483. xmin = rect$xmin,
  484. xmax = rect$xmax,
  485. ymin = rect$ymin,
  486. ymax = rect$ymax,
  487. fill = ifelse(is.null(rect$fill), NA, rect$fill),
  488. color = ifelse(is.null(rect$color), "black", rect$color),
  489. alpha = ifelse(is.null(rect$alpha), 0.1, rect$alpha)
  490. )
  491. }
  492. }
  493. # Add Error Bars if specified
  494. if (!is.null(config$error_bar) && config$error_bar && !is.null(config$y_var)) {
  495. y_mean_col <- paste0("mean_", config$y_var)
  496. y_sd_col <- paste0("sd_", config$y_var)
  497. plot <- plot +
  498. geom_errorbar(
  499. aes(
  500. ymin = !!sym(y_mean_col) - !!sym(y_sd_col),
  501. ymax = !!sym(y_mean_col) + !!sym(y_sd_col)
  502. ),
  503. alpha = 0.3
  504. )
  505. }
  506. # Customize X-axis if specified
  507. if (!is.null(config$x_breaks) && !is.null(config$x_labels) && !is.null(config$x_label)) {
  508. plot <- plot +
  509. scale_x_discrete(
  510. name = config$x_label,
  511. breaks = config$x_breaks,
  512. labels = config$x_labels
  513. )
  514. }
  515. # Apply coord_cartesian if specified
  516. if (!is.null(config$coord_cartesian)) {
  517. plot <- plot + coord_cartesian(ylim = config$coord_cartesian)
  518. }
  519. # Set Y-axis limits if specified
  520. if (!is.null(config$ylim_vals)) {
  521. plot <- plot + scale_y_continuous(limits = config$ylim_vals)
  522. }
  523. # Add Annotations if specified
  524. if (!is.null(config$annotations)) {
  525. for (annotation in config$annotations) {
  526. plot <- plot +
  527. annotate(
  528. "text",
  529. x = annotation$x,
  530. y = annotation$y,
  531. label = annotation$label,
  532. hjust = ifelse(is.null(annotation$hjust), 0.5, annotation$hjust),
  533. vjust = ifelse(is.null(annotation$vjust), 0.5, annotation$vjust),
  534. size = ifelse(is.null(annotation$size), 4, annotation$size),
  535. color = ifelse(is.null(annotation$color), "black", annotation$color)
  536. )
  537. }
  538. }
  539. # Add Title if specified
  540. if (!is.null(config$title)) {
  541. plot <- plot + ggtitle(config$title)
  542. }
  543. # Adjust Legend Position if specified
  544. if (!is.null(config$legend_position)) {
  545. plot <- plot + theme(legend.position = config$legend_position)
  546. }
  547. return(plot)
  548. }
  549. generate_box_plot <- function(plot, config) {
  550. plot <- plot + geom_boxplot()
  551. if (!is.null(config$x_breaks) && !is.null(config$x_labels) && !is.null(config$x_label)) {
  552. plot <- plot + scale_x_discrete(
  553. name = config$x_label,
  554. breaks = config$x_breaks,
  555. labels = config$x_labels
  556. )
  557. }
  558. if (!is.null(config$coord_cartesian)) {
  559. plot <- plot + coord_cartesian(ylim = config$coord_cartesian)
  560. }
  561. return(plot)
  562. }
  563. generate_plate_analysis_plot_configs <- function(variables, stages = c("before", "after"),
  564. df_before = NULL, df_after = NULL, plot_type = "scatter") {
  565. plots <- list()
  566. for (var in variables) {
  567. for (stage in stages) {
  568. df_plot <- if (stage == "before") df_before else df_after
  569. # Check for non-finite values in the y-variable
  570. df_plot_filtered <- df_plot %>%
  571. filter(is.finite(!!sym(var)))
  572. # Count removed rows
  573. removed_rows <- nrow(df_plot) - nrow(df_plot_filtered)
  574. if (removed_rows > 0) {
  575. message(sprintf("Removed %d non-finite values for variable %s during stage %s", removed_rows, var, stage))
  576. }
  577. # Adjust settings based on plot_type
  578. if (plot_type == "scatter") {
  579. error_bar <- TRUE
  580. position <- "jitter"
  581. } else if (plot_type == "box") {
  582. error_bar <- FALSE
  583. position <- NULL
  584. }
  585. config <- list(
  586. df = df_plot,
  587. x_var = "scan",
  588. y_var = var,
  589. plot_type = plot_type,
  590. title = paste("Plate analysis by Drug Conc for", var, stage, "quality control"),
  591. error_bar = error_bar,
  592. color_var = "conc_num_factor",
  593. position = position
  594. )
  595. plots <- append(plots, list(config))
  596. }
  597. }
  598. return(plots)
  599. }
  600. generate_interaction_plot_configs <- function(df, limits_map = NULL) {
  601. # Default limits_map if not provided
  602. if (is.null(limits_map)) {
  603. limits_map <- list(
  604. L = c(-65, 65),
  605. K = c(-65, 65),
  606. r = c(-0.65, 0.65),
  607. AUC = c(-6500, 6500)
  608. )
  609. }
  610. # Filter data
  611. df_filtered <- df
  612. for (var in names(limits_map)) {
  613. df_filtered <- df_filtered %>%
  614. filter(!is.na(!!sym(var)) &
  615. !!sym(var) >= limits_map[[var]][1] &
  616. !!sym(var) <= limits_map[[var]][2])
  617. }
  618. configs <- list()
  619. for (var in names(limits_map)) {
  620. y_range <- limits_map[[var]]
  621. # Calculate annotation positions
  622. y_min <- min(y_range)
  623. y_max <- max(y_range)
  624. y_span <- y_max - y_min
  625. annotation_positions <- list(
  626. ZShift = y_max - 0.1 * y_span,
  627. lm_ZScore = y_max - 0.2 * y_span,
  628. NG = y_min + 0.2 * y_span,
  629. DB = y_min + 0.1 * y_span,
  630. SM = y_min + 0.05 * y_span
  631. )
  632. # Prepare linear model line
  633. lm_line <- list(
  634. intercept = df_filtered[[paste0("lm_intercept_", var)]],
  635. slope = df_filtered[[paste0("lm_slope_", var)]]
  636. )
  637. # Calculate x-axis position for annotations
  638. num_levels <- length(levels(df_filtered$conc_num_factor))
  639. x_pos <- (1 + num_levels) / 2
  640. # Generate annotations
  641. annotations <- lapply(names(annotation_positions), function(annotation_name) {
  642. label <- switch(annotation_name,
  643. ZShift = paste("ZShift =", round(df_filtered[[paste0("Z_Shift_", var)]], 2)),
  644. lm_ZScore = paste("lm ZScore =", round(df_filtered[[paste0("Z_lm_", var)]], 2)),
  645. NG = paste("NG =", df_filtered$NG),
  646. DB = paste("DB =", df_filtered$DB),
  647. SM = paste("SM =", df_filtered$SM),
  648. NULL
  649. )
  650. if (!is.null(label)) {
  651. list(x = x_pos, y = annotation_positions[[annotation_name]], label = label)
  652. } else {
  653. NULL
  654. }
  655. })
  656. annotations <- Filter(Negate(is.null), annotations)
  657. # Shared plot settings
  658. plot_settings <- list(
  659. df = df_filtered,
  660. x_var = "conc_num_factor",
  661. y_var = var,
  662. ylim_vals = y_range,
  663. annotations = annotations,
  664. lm_line = lm_line,
  665. x_breaks = levels(df_filtered$conc_num_factor),
  666. x_labels = levels(df_filtered$conc_num_factor),
  667. x_label = unique(df_filtered$Drug[1]),
  668. coord_cartesian = y_range
  669. )
  670. # Scatter plot config
  671. configs[[length(configs) + 1]] <- modifyList(plot_settings, list(
  672. plot_type = "scatter",
  673. title = sprintf("%s %s", df_filtered$OrfRep[1], df_filtered$Gene[1]),
  674. error_bar = TRUE,
  675. position = "jitter"
  676. ))
  677. # Box plot config
  678. configs[[length(configs) + 1]] <- modifyList(plot_settings, list(
  679. plot_type = "box",
  680. title = sprintf("%s %s (box plot)", df_filtered$OrfRep[1], df_filtered$Gene[1]),
  681. error_bar = FALSE
  682. ))
  683. }
  684. return(configs)
  685. }
  686. generate_rank_plot_configs <- function(df, variables, is_lm = FALSE, adjust = FALSE, overlap_color = FALSE) {
  687. sd_bands <- c(1, 2, 3)
  688. avg_zscore_cols <- paste0("Avg_Zscore_", variables)
  689. z_lm_cols <- paste0("Z_lm_", variables)
  690. rank_avg_zscore_cols <- paste0("Rank_", variables)
  691. rank_z_lm_cols <- paste0("Rank_lm_", variables)
  692. configs <- list()
  693. if (adjust) {
  694. message("Replacing NA with 0.001 for Avg_Zscore_ and Z_lm_ columns for ranks")
  695. df <- df %>%
  696. mutate(
  697. across(all_of(avg_zscore_cols), ~ifelse(is.na(.), 0.001, .)),
  698. across(all_of(z_lm_cols), ~ifelse(is.na(.), 0.001, .))
  699. )
  700. }
  701. message("Calculating ranks for Avg_Zscore and Z_lm columns")
  702. rank_col_mapping <- setNames(rank_avg_zscore_cols, avg_zscore_cols)
  703. df_ranked <- df %>%
  704. mutate(across(all_of(avg_zscore_cols), ~rank(., na.last = "keep"), .names = "{rank_col_mapping[.col]}"))
  705. rank_lm_col_mapping <- setNames(rank_z_lm_cols, z_lm_cols)
  706. df_ranked <- df_ranked %>%
  707. mutate(across(all_of(z_lm_cols), ~rank(., na.last = "keep"), .names = "{rank_lm_col_mapping[.col]}"))
  708. # SD-based plots for L and K
  709. for (variable in c("L", "K")) {
  710. if (is_lm) {
  711. rank_var <- paste0("Rank_lm_", variable)
  712. zscore_var <- paste0("Z_lm_", variable)
  713. y_label <- paste("Int Z score", variable)
  714. } else {
  715. rank_var <- paste0("Rank_", variable)
  716. zscore_var <- paste0("Avg_Zscore_", variable)
  717. y_label <- paste("Avg Z score", variable)
  718. }
  719. for (sd_band in sd_bands) {
  720. num_enhancers <- sum(df_ranked[[zscore_var]] >= sd_band, na.rm = TRUE)
  721. num_suppressors <- sum(df_ranked[[zscore_var]] <= -sd_band, na.rm = TRUE)
  722. # Annotated plot configuration
  723. configs[[length(configs) + 1]] <- list(
  724. df = df_ranked,
  725. x_var = rank_var,
  726. y_var = zscore_var,
  727. plot_type = "scatter",
  728. title = paste(y_label, "vs. Rank for", variable, "above", sd_band, "SD"),
  729. sd_band = sd_band,
  730. fill_positive = "#542788",
  731. fill_negative = "orange",
  732. alpha_positive = 0.3,
  733. alpha_negative = 0.3,
  734. annotations = list(
  735. list(
  736. x = median(df_ranked[[rank_var]], na.rm = TRUE),
  737. y = 10,
  738. label = paste("Deletion Enhancers =", num_enhancers),
  739. hjust = 0.5,
  740. vjust = 1
  741. ),
  742. list(
  743. x = median(df_ranked[[rank_var]], na.rm = TRUE),
  744. y = -10,
  745. label = paste("Deletion Suppressors =", num_suppressors),
  746. hjust = 0.5,
  747. vjust = 0
  748. )
  749. ),
  750. shape = 3,
  751. size = 0.1,
  752. y_label = y_label,
  753. x_label = "Rank",
  754. legend_position = "none"
  755. )
  756. # Non-Annotated Plot Configuration
  757. configs[[length(configs) + 1]] <- list(
  758. df = df_ranked,
  759. x_var = rank_var,
  760. y_var = zscore_var,
  761. plot_type = "scatter",
  762. title = paste(y_label, "vs. Rank for", variable, "above", sd_band, "SD No Annotations"),
  763. sd_band = sd_band,
  764. fill_positive = "#542788",
  765. fill_negative = "orange",
  766. alpha_positive = 0.3,
  767. alpha_negative = 0.3,
  768. annotations = NULL,
  769. shape = 3,
  770. size = 0.1,
  771. y_label = y_label,
  772. x_label = "Rank",
  773. legend_position = "none"
  774. )
  775. }
  776. }
  777. # Avg ZScore and Rank Avg ZScore Plots for r, L, K, and AUC
  778. for (variable in variables) {
  779. for (plot_type in c("Avg Zscore vs lm", "Rank Avg Zscore vs lm")) {
  780. title <- paste(plot_type, variable)
  781. # Define specific variables based on plot type
  782. if (plot_type == "Avg Zscore vs lm") {
  783. x_var <- paste0("Avg_Zscore_", variable)
  784. y_var <- paste0("Z_lm_", variable)
  785. rectangles <- list(
  786. list(xmin = -2, xmax = 2, ymin = -2, ymax = 2,
  787. fill = NA, color = "grey20", alpha = 0.1
  788. )
  789. )
  790. } else if (plot_type == "Rank Avg Zscore vs lm") {
  791. x_var <- paste0("Rank_", variable)
  792. y_var <- paste0("Rank_lm_", variable)
  793. rectangles <- NULL
  794. }
  795. # Fit the linear model
  796. lm_model <- lm(as.formula(paste(y_var, "~", x_var)), data = df_ranked)
  797. # Extract intercept and slope from the model coefficients
  798. intercept <- coef(lm_model)[1]
  799. slope <- coef(lm_model)[2]
  800. configs[[length(configs) + 1]] <- list(
  801. df = df_ranked,
  802. x_var = x_var,
  803. y_var = y_var,
  804. plot_type = "scatter",
  805. title = title,
  806. annotations = list(
  807. list(
  808. x = median(df_ranked[[rank_var]], na.rm = TRUE),
  809. y = 10,
  810. label = paste("Deletion Enhancers =", num_enhancers),
  811. hjust = 0.5,
  812. vjust = 1
  813. ),
  814. list(
  815. x = median(df_ranked[[rank_var]], na.rm = TRUE),
  816. y = -10,
  817. label = paste("Deletion Suppressors =", num_suppressors),
  818. hjust = 0.5,
  819. vjust = 0
  820. )
  821. ),
  822. shape = 3,
  823. size = 0.1,
  824. smooth = TRUE,
  825. smooth_color = "black",
  826. lm_line = list(intercept = intercept, slope = slope),
  827. legend_position = "right",
  828. color_var = if (overlap_color) "Overlap" else NULL,
  829. x_label = x_var,
  830. y_label = y_var,
  831. rectangles = rectangles
  832. )
  833. }
  834. }
  835. return(configs)
  836. }
  837. generate_correlation_plot_configs <- function(df) {
  838. # Define relationships for plotting
  839. relationships <- list(
  840. list(x = "Z_lm_L", y = "Z_lm_K", label = "Interaction L vs. Interaction K"),
  841. list(x = "Z_lm_L", y = "Z_lm_r", label = "Interaction L vs. Interaction r"),
  842. list(x = "Z_lm_L", y = "Z_lm_AUC", label = "Interaction L vs. Interaction AUC"),
  843. list(x = "Z_lm_K", y = "Z_lm_r", label = "Interaction K vs. Interaction r"),
  844. list(x = "Z_lm_K", y = "Z_lm_AUC", label = "Interaction K vs. Interaction AUC"),
  845. list(x = "Z_lm_r", y = "Z_lm_AUC", label = "Interaction r vs. Interaction AUC")
  846. )
  847. configs <- list()
  848. for (rel in relationships) {
  849. # Fit linear model
  850. lm_model <- lm(as.formula(paste(rel$y, "~", rel$x)), data = df)
  851. lm_summary <- summary(lm_model)
  852. # Construct plot configuration
  853. config <- list(
  854. df = df,
  855. x_var = rel$x,
  856. y_var = rel$y,
  857. plot_type = "scatter",
  858. title = rel$label,
  859. x_label = paste("z-score", gsub("Z_lm_", "", rel$x)),
  860. y_label = paste("z-score", gsub("Z_lm_", "", rel$y)),
  861. annotations = list(
  862. list(
  863. x = Inf,
  864. y = Inf,
  865. label = paste("R-squared =", round(lm_summary$r.squared, 3)),
  866. hjust = 1.1,
  867. vjust = 2,
  868. size = 4,
  869. color = "black"
  870. )
  871. ),
  872. smooth = TRUE,
  873. smooth_color = "tomato3",
  874. lm_line = list(intercept = coef(lm_model)[1], slope = coef(lm_model)[2]),
  875. legend_position = "right",
  876. shape = 3,
  877. size = 0.5,
  878. color_var = "Overlap",
  879. rectangles = list(
  880. list(
  881. xmin = -2, xmax = 2, ymin = -2, ymax = 2,
  882. fill = NA, color = "grey20", alpha = 0.1
  883. )
  884. ),
  885. cyan_points = TRUE
  886. )
  887. configs[[length(configs) + 1]] <- config
  888. }
  889. return(configs)
  890. }
  891. main <- function() {
  892. lapply(names(args$experiments), function(exp_name) {
  893. exp <- args$experiments[[exp_name]]
  894. exp_path <- exp$path
  895. exp_sd <- exp$sd
  896. out_dir <- file.path(exp_path, "zscores")
  897. out_dir_qc <- file.path(exp_path, "zscores", "qc")
  898. dir.create(out_dir, recursive = TRUE, showWarnings = FALSE)
  899. dir.create(out_dir_qc, recursive = TRUE, showWarnings = FALSE)
  900. summary_vars <- c("L", "K", "r", "AUC", "delta_bg") # fields to filter and calculate summary stats across
  901. interaction_vars <- c("L", "K", "r", "AUC") # fields to calculate interaction z-scores
  902. print_vars <- c("OrfRep", "Plate", "scan", "Col", "Row", "num", "OrfRep", "conc_num", "conc_num_factor",
  903. "delta_bg_tolerance", "delta_bg", "Gene", "L", "K", "r", "AUC", "NG", "DB")
  904. message("Loading and filtering data for experiment: ", exp_name)
  905. df <- load_and_filter_data(args$easy_results_file, sd = exp_sd) %>%
  906. update_gene_names(args$sgd_gene_list) %>%
  907. as_tibble()
  908. # Filter rows above delta background tolerance
  909. df_above_tolerance <- df %>% filter(DB == 1)
  910. df_na <- df %>% mutate(across(all_of(summary_vars), ~ ifelse(DB == 1, NA, .))) # formerly X
  911. df_no_zeros <- df_na %>% filter(L > 0) # formerly X_noZero
  912. # Save some constants
  913. max_conc <- max(df$conc_num_factor_num)
  914. l_half_median <- (median(df_above_tolerance$L, na.rm = TRUE)) / 2
  915. k_half_median <- (median(df_above_tolerance$K, na.rm = TRUE)) / 2
  916. message("Calculating summary statistics before quality control")
  917. df_stats <- calculate_summary_stats(
  918. df = df,
  919. variables = summary_vars,
  920. group_vars = c("conc_num", "conc_num_factor"))$df_with_stats
  921. message("Calculating summary statistics after quality control")
  922. ss <- calculate_summary_stats(
  923. df = df_na,
  924. variables = summary_vars,
  925. group_vars = c("conc_num", "conc_num_factor"))
  926. df_na_ss <- ss$summary_stats
  927. df_na_stats <- ss$df_with_stats
  928. write.csv(df_na_ss, file = file.path(out_dir, "summary_stats_all_strains.csv"), row.names = FALSE)
  929. # For plotting (ggplot warns on NAs)
  930. df_na_stats_filtered <- df_na_stats %>% filter(if_all(all_of(summary_vars), is.finite))
  931. df_na_stats <- df_na_stats %>%
  932. mutate(
  933. WT_L = mean_L,
  934. WT_K = mean_K,
  935. WT_r = mean_r,
  936. WT_AUC = mean_AUC,
  937. WT_sd_L = sd_L,
  938. WT_sd_K = sd_K,
  939. WT_sd_r = sd_r,
  940. WT_sd_AUC = sd_AUC
  941. )
  942. # Pull the background means and standard deviations from zero concentration for interactions
  943. bg_stats <- df_na_stats %>%
  944. filter(conc_num == 0) %>%
  945. summarise(
  946. mean_L = first(mean_L),
  947. mean_K = first(mean_K),
  948. mean_r = first(mean_r),
  949. mean_AUC = first(mean_AUC),
  950. sd_L = first(sd_L),
  951. sd_K = first(sd_K),
  952. sd_r = first(sd_r),
  953. sd_AUC = first(sd_AUC)
  954. )
  955. message("Calculating summary statistics after quality control excluding zero values")
  956. df_no_zeros_stats <- calculate_summary_stats(
  957. df = df_no_zeros,
  958. variables = summary_vars,
  959. group_vars = c("conc_num", "conc_num_factor")
  960. )$df_with_stats
  961. message("Filtering by 2SD of K")
  962. df_na_within_2sd_k <- df_na_stats %>%
  963. filter(K >= (mean_K - 2 * sd_K) & K <= (mean_K + 2 * sd_K))
  964. df_na_outside_2sd_k <- df_na_stats %>%
  965. filter(K < (mean_K - 2 * sd_K) | K > (mean_K + 2 * sd_K))
  966. message("Calculating summary statistics for L within 2SD of K")
  967. # TODO We're omitting the original z_max calculation, not sure if needed?
  968. ss <- calculate_summary_stats(df_na_within_2sd_k, "L", group_vars = c("conc_num", "conc_num_factor"))$summary_stats
  969. write.csv(ss,
  970. file = file.path(out_dir_qc, "max_observed_L_vals_for_spots_within_2sd_K.csv"),
  971. row.names = FALSE)
  972. message("Calculating summary statistics for L outside 2SD of K")
  973. ss <- calculate_summary_stats(df_na_outside_2sd_k, "L", group_vars = c("conc_num", "conc_num_factor"))
  974. df_na_l_outside_2sd_k_stats <- ss$df_with_stats
  975. write.csv(ss$summary_stats,
  976. file = file.path(out_dir, "max_observed_L_vals_for_spots_outside_2sd_K.csv"),
  977. row.names = FALSE)
  978. # Each plots list corresponds to a file
  979. l_vs_k_plot_configs <- list(
  980. list(
  981. df = df,
  982. x_var = "L",
  983. y_var = "K",
  984. plot_type = "scatter",
  985. delta_bg_point = TRUE,
  986. title = "Raw L vs K before quality control",
  987. color_var = "conc_num_factor",
  988. error_bar = FALSE,
  989. legend_position = "right"
  990. )
  991. )
  992. frequency_delta_bg_plot_configs <- list(
  993. list(
  994. df = df_stats,
  995. x_var = "delta_bg",
  996. y_var = NULL,
  997. plot_type = "density",
  998. title = "Density plot for Delta Background by Conc All Data",
  999. color_var = "conc_num_factor",
  1000. x_label = "Delta Background",
  1001. y_label = "Density",
  1002. error_bar = FALSE,
  1003. legend_position = "right"),
  1004. list(
  1005. df = df_stats,
  1006. x_var = "delta_bg",
  1007. y_var = NULL,
  1008. plot_type = "bar",
  1009. title = "Bar plot for Delta Background by Conc All Data",
  1010. color_var = "conc_num_factor",
  1011. x_label = "Delta Background",
  1012. y_label = "Count",
  1013. error_bar = FALSE,
  1014. legend_position = "right")
  1015. )
  1016. above_threshold_plot_configs <- list(
  1017. list(
  1018. df = df_above_tolerance,
  1019. x_var = "L",
  1020. y_var = "K",
  1021. plot_type = "scatter",
  1022. delta_bg_point = TRUE,
  1023. title = paste("Raw L vs K for strains above Delta Background threshold of",
  1024. df_above_tolerance$delta_bg_tolerance[[1]], "or above"),
  1025. color_var = "conc_num_factor",
  1026. position = "jitter",
  1027. annotations = list(
  1028. list(
  1029. x = l_half_median,
  1030. y = k_half_median,
  1031. label = paste("# strains above Delta Background tolerance =", nrow(df_above_tolerance))
  1032. )
  1033. ),
  1034. error_bar = FALSE,
  1035. legend_position = "right"
  1036. )
  1037. )
  1038. plate_analysis_plot_configs <- generate_plate_analysis_plot_configs(
  1039. variables = summary_vars,
  1040. df_before = df_stats,
  1041. df_after = df_na_stats_filtered
  1042. )
  1043. plate_analysis_boxplot_configs <- generate_plate_analysis_plot_configs(
  1044. variables = summary_vars,
  1045. df_before = df_stats,
  1046. df_after = df_na_stats_filtered,
  1047. plot_type = "box"
  1048. )
  1049. plate_analysis_no_zeros_plot_configs <- generate_plate_analysis_plot_configs(
  1050. variables = summary_vars,
  1051. stages = c("after"), # Only after QC
  1052. df_after = df_no_zeros_stats
  1053. )
  1054. plate_analysis_no_zeros_boxplot_configs <- generate_plate_analysis_plot_configs(
  1055. variables = summary_vars,
  1056. stages = c("after"), # Only after QC
  1057. df_after = df_no_zeros_stats,
  1058. plot_type = "box"
  1059. )
  1060. l_outside_2sd_k_plot_configs <- list(
  1061. list(
  1062. df = df_na_l_outside_2sd_k_stats,
  1063. x_var = "L",
  1064. y_var = "K",
  1065. plot_type = "scatter",
  1066. delta_bg_point = TRUE,
  1067. title = "Raw L vs K for strains falling outside 2SD of the K mean at each Conc",
  1068. color_var = "conc_num_factor",
  1069. position = "jitter",
  1070. legend_position = "right"
  1071. )
  1072. )
  1073. delta_bg_outside_2sd_k_plot_configs <- list(
  1074. list(
  1075. df = df_na_l_outside_2sd_k_stats,
  1076. x_var = "delta_bg",
  1077. y_var = "K",
  1078. plot_type = "scatter",
  1079. gene_point = TRUE,
  1080. title = "Delta Background vs K for strains falling outside 2SD of the K mean at each Conc",
  1081. color_var = "conc_num_factor",
  1082. position = "jitter",
  1083. legend_position = "right"
  1084. )
  1085. )
  1086. message("Generating quality control plots in parallel")
  1087. # future::plan(future::multicore, workers = parallel::detectCores())
  1088. future::plan(future::multisession, workers = 3) # generate 3 plots in parallel
  1089. plot_configs <- list(
  1090. list(out_dir = out_dir_qc, filename = "L_vs_K_before_quality_control",
  1091. plot_configs = l_vs_k_plot_configs),
  1092. list(out_dir = out_dir_qc, filename = "frequency_delta_background",
  1093. plot_configs = frequency_delta_bg_plot_configs),
  1094. list(out_dir = out_dir_qc, filename = "L_vs_K_above_threshold",
  1095. plot_configs = above_threshold_plot_configs),
  1096. list(out_dir = out_dir_qc, filename = "plate_analysis",
  1097. plot_configs = plate_analysis_plot_configs),
  1098. list(out_dir = out_dir_qc, filename = "plate_analysis_boxplots",
  1099. plot_configs = plate_analysis_boxplot_configs),
  1100. list(out_dir = out_dir_qc, filename = "plate_analysis_no_zeros",
  1101. plot_configs = plate_analysis_no_zeros_plot_configs),
  1102. list(out_dir = out_dir_qc, filename = "plate_analysis_no_zeros_boxplots",
  1103. plot_configs = plate_analysis_no_zeros_boxplot_configs),
  1104. list(out_dir = out_dir_qc, name = "L_vs_K_for_strains_2SD_outside_mean_K",
  1105. plot_configs = l_outside_2sd_k_plot_configs),
  1106. list(out_dir = out_dir_qc, name = "delta_background_vs_K_for_strains_2sd_outside_mean_K",
  1107. plot_configs = delta_bg_outside_2sd_k_plot_configs)
  1108. )
  1109. # Generating quality control plots in parallel
  1110. furrr::future_map(plot_configs, function(config) {
  1111. generate_and_save_plots(config$out_dir, config$filename, config$plot_configs)
  1112. }, .options = furrr_options(seed = TRUE))
  1113. # Process background strains
  1114. bg_strains <- c("YDL227C")
  1115. lapply(bg_strains, function(strain) {
  1116. message("Processing background strain: ", strain)
  1117. # Handle missing data by setting zero values to NA
  1118. # and then removing any rows with NA in L col
  1119. df_bg <- df_na %>%
  1120. filter(OrfRep == strain) %>%
  1121. mutate(
  1122. L = if_else(L == 0, NA, L),
  1123. K = if_else(K == 0, NA, K),
  1124. r = if_else(r == 0, NA, r),
  1125. AUC = if_else(AUC == 0, NA, AUC)
  1126. ) %>%
  1127. filter(!is.na(L))
  1128. # Recalculate summary statistics for the background strain
  1129. message("Calculating summary statistics for background strain")
  1130. ss_bg <- calculate_summary_stats(df_bg, summary_vars, group_vars = c("OrfRep", "conc_num", "conc_num_factor"))
  1131. summary_stats_bg <- ss_bg$summary_stats
  1132. write.csv(summary_stats_bg,
  1133. file = file.path(out_dir, paste0("summary_stats_background_strain_", strain, ".csv")),
  1134. row.names = FALSE)
  1135. # Set the missing values to the highest theoretical value at each drug conc for L
  1136. # Leave other values as 0 for the max/min
  1137. df_reference <- df_na_stats %>% # formerly X2_RF
  1138. filter(OrfRep == strain) %>%
  1139. filter(!is.na(L)) %>%
  1140. group_by(conc_num, conc_num_factor) %>%
  1141. mutate(
  1142. max_l_theoretical = max(max_L, na.rm = TRUE),
  1143. L = ifelse(L == 0 & !is.na(L) & conc_num > 0, max_l_theoretical, L),
  1144. SM = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, 1, 0),
  1145. L = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, max_l_theoretical, L)) %>%
  1146. ungroup()
  1147. # Ditto for deletion strains
  1148. df_deletion <- df_na_stats %>% # formerly X2
  1149. filter(OrfRep != strain) %>%
  1150. filter(!is.na(L)) %>%
  1151. mutate(SM = 0) %>%
  1152. group_by(conc_num, conc_num_factor) %>%
  1153. mutate(
  1154. max_l_theoretical = max(max_L, na.rm = TRUE),
  1155. L = ifelse(L == 0 & !is.na(L) & conc_num > 0, max_l_theoretical, L),
  1156. SM = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, 1, SM),
  1157. L = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, max_l_theoretical, L)) %>%
  1158. ungroup()
  1159. message("Calculating reference strain interaction scores")
  1160. df_reference_stats <- calculate_summary_stats(
  1161. df = df_reference,
  1162. variables = interaction_vars,
  1163. group_vars = c("OrfRep", "Gene", "num", "conc_num", "conc_num_factor")
  1164. )$df_with_stats
  1165. reference_results <- calculate_interaction_scores(df_reference_stats, max_conc, bg_stats, group_vars = c("OrfRep", "Gene", "num"))
  1166. zscore_calculations_reference <- reference_results$calculations
  1167. zscore_interactions_reference <- reference_results$interactions
  1168. zscore_interactions_reference_joined <- reference_results$interactions_joined
  1169. message("Calculating deletion strain(s) interactions scores")
  1170. df_deletion_stats <- calculate_summary_stats(
  1171. df = df_deletion,
  1172. variables = interaction_vars,
  1173. group_vars = c("OrfRep", "Gene", "conc_num", "conc_num_factor")
  1174. )$df_with_stats
  1175. deletion_results <- calculate_interaction_scores(df_deletion_stats, max_conc, bg_stats, group_vars = c("OrfRep"))
  1176. zscore_calculations <- deletion_results$calculations
  1177. zscore_interactions <- deletion_results$interactions
  1178. zscore_interactions_joined <- deletion_results$interactions_joined
  1179. # Writing Z-Scores to file
  1180. write.csv(zscore_calculations_reference, file = file.path(out_dir, "zscore_calculations_reference.csv"), row.names = FALSE)
  1181. write.csv(zscore_calculations, file = file.path(out_dir, "zscore_calculations.csv"), row.names = FALSE)
  1182. write.csv(zscore_interactions_reference, file = file.path(out_dir, "zscore_interactions_reference.csv"), row.names = FALSE)
  1183. write.csv(zscore_interactions, file = file.path(out_dir, "zscore_interactions.csv"), row.names = FALSE)
  1184. # Create interaction plots
  1185. message("Generating reference interaction plots")
  1186. reference_plot_configs <- generate_interaction_plot_configs(zscore_interactions_reference_joined)
  1187. generate_and_save_plots(out_dir, "interaction_plots_reference", reference_plot_configs, grid_layout = list(ncol = 4, nrow = 3))
  1188. message("Generating deletion interaction plots")
  1189. deletion_plot_configs <- generate_interaction_plot_configs(zscore_interactions_joined)
  1190. generate_and_save_plots(out_dir, "interaction_plots", deletion_plot_configs, grid_layout = list(ncol = 4, nrow = 3))
  1191. # Define conditions for enhancers and suppressors
  1192. # TODO Add to study config?
  1193. threshold <- 2
  1194. enhancer_condition_L <- zscore_interactions$Avg_Zscore_L >= threshold
  1195. suppressor_condition_L <- zscore_interactions$Avg_Zscore_L <= -threshold
  1196. enhancer_condition_K <- zscore_interactions$Avg_Zscore_K >= threshold
  1197. suppressor_condition_K <- zscore_interactions$Avg_Zscore_K <= -threshold
  1198. # Subset data
  1199. enhancers_L <- zscore_interactions[enhancer_condition_L, ]
  1200. suppressors_L <- zscore_interactions[suppressor_condition_L, ]
  1201. enhancers_K <- zscore_interactions[enhancer_condition_K, ]
  1202. suppressors_K <- zscore_interactions[suppressor_condition_K, ]
  1203. # Save enhancers and suppressors
  1204. message("Writing enhancer/suppressor csv files")
  1205. write.csv(enhancers_L, file = file.path(out_dir, "zscore_interactions_deletion_enhancers_L.csv"), row.names = FALSE)
  1206. write.csv(suppressors_L, file = file.path(out_dir, "zscore_interactions_deletion_suppressors_L.csv"), row.names = FALSE)
  1207. write.csv(enhancers_K, file = file.path(out_dir, "zscore_interactions_deletion_enhancers_K.csv"), row.names = FALSE)
  1208. write.csv(suppressors_K, file = file.path(out_dir, "zscore_interactions_deletion_suppressors_K.csv"), row.names = FALSE)
  1209. # Combine conditions for enhancers and suppressors
  1210. enhancers_and_suppressors_L <- zscore_interactions[enhancer_condition_L | suppressor_condition_L, ]
  1211. enhancers_and_suppressors_K <- zscore_interactions[enhancer_condition_K | suppressor_condition_K, ]
  1212. # Save combined enhancers and suppressors
  1213. write.csv(enhancers_and_suppressors_L,
  1214. file = file.path(out_dir, "zscore_interactions_deletion_enhancers_and_suppressors_L.csv"), row.names = FALSE)
  1215. write.csv(enhancers_and_suppressors_K,
  1216. file = file.path(out_dir, "zscore_interaction_deletion_enhancers_and_suppressors_K.csv"), row.names = FALSE)
  1217. # Handle linear model based enhancers and suppressors
  1218. lm_threshold <- 2 # TODO add to study config?
  1219. enhancers_lm_L <- zscore_interactions[zscore_interactions$Z_lm_L >= lm_threshold, ]
  1220. suppressors_lm_L <- zscore_interactions[zscore_interactions$Z_lm_L <= -lm_threshold, ]
  1221. enhancers_lm_K <- zscore_interactions[zscore_interactions$Z_lm_K >= lm_threshold, ]
  1222. suppressors_lm_K <- zscore_interactions[zscore_interactions$Z_lm_K <= -lm_threshold, ]
  1223. # Save linear model based enhancers and suppressors
  1224. message("Writing linear model enhancer/suppressor csv files")
  1225. write.csv(enhancers_lm_L,
  1226. file = file.path(out_dir, "zscore_interactions_deletion_enhancers_lm_L.csv"), row.names = FALSE)
  1227. write.csv(suppressors_lm_L,
  1228. file = file.path(out_dir, "zscore_interactions_deletion_suppressors_lm_L.csv"), row.names = FALSE)
  1229. write.csv(enhancers_lm_K,
  1230. file = file.path(out_dir, "zscore_interactions_deletion_enhancers_lm_K.csv"), row.names = FALSE)
  1231. write.csv(suppressors_lm_K,
  1232. file = file.path(out_dir, "zscore_interactions_deletion_suppressors_lm_K.csv"), row.names = FALSE)
  1233. message("Generating rank plots")
  1234. rank_plot_configs <- generate_rank_plot_configs(
  1235. df = zscore_interactions_joined,
  1236. variables = interaction_vars,
  1237. is_lm = FALSE,
  1238. adjust = TRUE
  1239. )
  1240. generate_and_save_plots(out_dir = out_dir, filename = "rank_plots",
  1241. plot_configs = rank_plot_configs, grid_layout = list(ncol = 3, nrow = 2))
  1242. message("Generating ranked linear model plots")
  1243. rank_lm_plot_configs <- generate_rank_plot_configs(
  1244. df = zscore_interactions_joined,
  1245. variables = interaction_vars,
  1246. is_lm = TRUE,
  1247. adjust = TRUE
  1248. )
  1249. generate_and_save_plots(out_dir = out_dir, filename = "rank_plots_lm",
  1250. plot_configs = rank_lm_plot_configs, grid_layout = list(ncol = 3, nrow = 2))
  1251. message("Filtering and reranking plots")
  1252. interaction_threshold <- 2 # TODO add to study config?
  1253. # Formerly X_NArm
  1254. zscore_interactions_filtered <- zscore_interactions_joined %>%
  1255. filter(!is.na(Z_lm_L) & !is.na(Avg_Zscore_L)) %>%
  1256. mutate(
  1257. Overlap = case_when(
  1258. Z_lm_L >= interaction_threshold & Avg_Zscore_L >= interaction_threshold ~ "Deletion Enhancer Both",
  1259. Z_lm_L <= -interaction_threshold & Avg_Zscore_L <= -interaction_threshold ~ "Deletion Suppressor Both",
  1260. Z_lm_L >= interaction_threshold & Avg_Zscore_L <= interaction_threshold ~ "Deletion Enhancer lm only",
  1261. Z_lm_L <= interaction_threshold & Avg_Zscore_L >= interaction_threshold ~ "Deletion Enhancer Avg Zscore only",
  1262. Z_lm_L <= -interaction_threshold & Avg_Zscore_L >= -interaction_threshold ~ "Deletion Suppressor lm only",
  1263. Z_lm_L >= -interaction_threshold & Avg_Zscore_L <= -interaction_threshold ~ "Deletion Suppressor Avg Zscore only",
  1264. Z_lm_L >= interaction_threshold & Avg_Zscore_L <= -interaction_threshold ~ "Deletion Enhancer lm, Deletion Suppressor Avg Z score",
  1265. Z_lm_L <= -interaction_threshold & Avg_Zscore_L >= interaction_threshold ~ "Deletion Suppressor lm, Deletion Enhancer Avg Z score",
  1266. TRUE ~ "No Effect"
  1267. ),
  1268. lm_R_squared_L = summary(lm(Z_lm_L ~ Avg_Zscore_L))$r.squared,
  1269. lm_R_squared_K = summary(lm(Z_lm_K ~ Avg_Zscore_K))$r.squared,
  1270. lm_R_squared_r = summary(lm(Z_lm_r ~ Avg_Zscore_r))$r.squared,
  1271. lm_R_squared_AUC = summary(lm(Z_lm_AUC ~ Avg_Zscore_AUC))$r.squared
  1272. )
  1273. message("Generating filtered ranked plots")
  1274. rank_plot_filtered_configs <- generate_rank_plot_configs(
  1275. df = zscore_interactions_filtered,
  1276. variables = interaction_vars,
  1277. is_lm = FALSE,
  1278. adjust = FALSE,
  1279. overlap_color = TRUE
  1280. )
  1281. generate_and_save_plots(
  1282. out_dir = out_dir,
  1283. filename = "RankPlots_na_rm",
  1284. plot_configs = rank_plot_filtered_configs,
  1285. grid_layout = list(ncol = 3, nrow = 2))
  1286. message("Generating filtered ranked linear model plots")
  1287. rank_plot_lm_filtered_configs <- generate_rank_plot_configs(
  1288. df = zscore_interactions_filtered,
  1289. variables = interaction_vars,
  1290. is_lm = TRUE,
  1291. adjust = FALSE,
  1292. overlap_color = TRUE
  1293. )
  1294. generate_and_save_plots(
  1295. out_dir = out_dir,
  1296. filename = "rank_plots_lm_na_rm",
  1297. plot_configs = rank_plot_lm_filtered_configs,
  1298. grid_layout = list(ncol = 3, nrow = 2))
  1299. message("Generating correlation curve parameter pair plots")
  1300. correlation_plot_configs <- generate_correlation_plot_configs(zscore_interactions_filtered)
  1301. generate_and_save_plots(
  1302. out_dir = out_dir,
  1303. filename = "correlation_cpps",
  1304. plot_configs = correlation_plot_configs,
  1305. grid_layout = list(ncol = 2, nrow = 2))
  1306. })
  1307. })
  1308. }
  1309. main()