calculate_interaction_zscores.R 54 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429
  1. suppressMessages({
  2. library("ggplot2")
  3. library("plotly")
  4. library("htmlwidgets")
  5. library("htmltools")
  6. library("dplyr")
  7. library("rlang")
  8. library("ggthemes")
  9. library("data.table")
  10. library("gridExtra")
  11. library("future")
  12. library("furrr")
  13. library("purrr")
  14. })
  15. # These parallelization libraries are very noisy
  16. suppressPackageStartupMessages({
  17. library("future")
  18. library("furrr")
  19. library("purrr")
  20. })
  21. options(warn = 2)
  22. # Constants for configuration
  23. plot_width <- 14
  24. plot_height <- 9
  25. base_size <- 14
  26. parse_arguments <- function() {
  27. args <- if (interactive()) {
  28. c(
  29. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/20240116_jhartman2_DoxoHLD",
  30. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/apps/r/SGD_features.tab",
  31. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/easy/20240116_jhartman2_DoxoHLD/results_std.txt",
  32. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/20240822_jhartman2_DoxoHLD/exp1",
  33. "Experiment 1: Doxo versus HLD",
  34. 3,
  35. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/20240822_jhartman2_DoxoHLD/exp2",
  36. "Experiment 2: HLD versus Doxo",
  37. 3
  38. )
  39. } else {
  40. commandArgs(trailingOnly = TRUE)
  41. }
  42. out_dir <- normalizePath(args[1], mustWork = FALSE)
  43. sgd_gene_list <- normalizePath(args[2], mustWork = FALSE)
  44. easy_results_file <- normalizePath(args[3], mustWork = FALSE)
  45. # The remaining arguments should be in groups of 3
  46. exp_args <- args[-(1:3)]
  47. if (length(exp_args) %% 3 != 0) {
  48. stop("Experiment arguments should be in groups of 3: path, name, sd.")
  49. }
  50. # Extract the experiments into a list
  51. experiments <- list()
  52. for (i in seq(1, length(exp_args), by = 3)) {
  53. exp_name <- exp_args[i + 1]
  54. experiments[[exp_name]] <- list(
  55. path = normalizePath(exp_args[i], mustWork = FALSE),
  56. sd = as.numeric(exp_args[i + 2])
  57. )
  58. }
  59. # Extract the trailing number from each path
  60. trailing_numbers <- sapply(experiments, function(x) {
  61. path <- x$path
  62. nums <- gsub("[^0-9]", "", basename(path))
  63. as.integer(nums)
  64. })
  65. # Sort the experiments based on the trailing numbers
  66. sorted_experiments <- experiments[order(trailing_numbers)]
  67. list(
  68. out_dir = out_dir,
  69. sgd_gene_list = sgd_gene_list,
  70. easy_results_file = easy_results_file,
  71. experiments = sorted_experiments
  72. )
  73. }
  74. args <- parse_arguments()
  75. # Should we keep output in exp dirs or combine in the study output dir?
  76. # dir.create(file.path(args$out_dir, "zscores"), showWarnings = FALSE)
  77. # dir.create(file.path(args$out_dir, "zscores", "qc"), showWarnings = FALSE)
  78. theme_publication <- function(base_size = 14, base_family = "sans", legend_position = NULL) {
  79. # Ensure that legend_position has a valid value or default to "none"
  80. legend_position <- if (is.null(legend_position) || length(legend_position) == 0) "none" else legend_position
  81. theme_foundation <- ggthemes::theme_foundation(base_size = base_size, base_family = base_family)
  82. theme_foundation %+replace%
  83. theme(
  84. plot.title = element_text(face = "bold", size = rel(1.6), hjust = 0.5),
  85. text = element_text(),
  86. panel.background = element_blank(),
  87. plot.background = element_blank(),
  88. panel.border = element_blank(),
  89. axis.title = element_text(face = "bold", size = rel(1.4)),
  90. axis.title.y = element_text(angle = 90, vjust = 2),
  91. axis.text = element_text(size = rel(1.2)),
  92. axis.line = element_line(colour = "black"),
  93. panel.grid.major = element_line(colour = "#f0f0f0"),
  94. panel.grid.minor = element_blank(),
  95. legend.key = element_rect(colour = NA),
  96. legend.position = legend_position,
  97. legend.direction =
  98. if (legend_position == "right") {
  99. "vertical"
  100. } else if (legend_position == "bottom") {
  101. "horizontal"
  102. } else {
  103. NULL # No legend direction if position is "none" or other values
  104. },
  105. legend.spacing = unit(0, "cm"),
  106. legend.title = element_text(face = "italic", size = rel(1.3)),
  107. legend.text = element_text(size = rel(1.2)),
  108. plot.margin = unit(c(10, 5, 5, 5), "mm")
  109. )
  110. }
  111. scale_fill_publication <- function(...) {
  112. discrete_scale("fill", "Publication", manual_pal(values = c(
  113. "#386cb0", "#fdb462", "#7fc97f", "#ef3b2c", "#662506",
  114. "#a6cee3", "#fb9a99", "#984ea3", "#ffff33"
  115. )), ...)
  116. }
  117. scale_colour_publication <- function(...) {
  118. discrete_scale("colour", "Publication", manual_pal(values = c(
  119. "#386cb0", "#fdb462", "#7fc97f", "#ef3b2c", "#662506",
  120. "#a6cee3", "#fb9a99", "#984ea3", "#ffff33"
  121. )), ...)
  122. }
  123. # Load the initial dataframe from the easy_results_file
  124. load_and_filter_data <- function(easy_results_file, sd = 3) {
  125. df <- read.delim(easy_results_file, skip = 2, as.is = TRUE, row.names = 1, strip.white = TRUE)
  126. df <- df %>%
  127. filter(!(.[[1]] %in% c("", "Scan"))) %>%
  128. filter(!is.na(ORF) & ORF != "" & !Gene %in% c("BLANK", "Blank", "blank") & Drug != "BMH21") %>%
  129. # Rename columns
  130. rename(L = l, num = Num., AUC = AUC96, scan = Scan, last_bg = LstBackgrd, first_bg = X1stBackgrd) %>%
  131. mutate(
  132. across(c(Col, Row, num, L, K, r, scan, AUC, last_bg, first_bg), as.numeric),
  133. delta_bg = last_bg - first_bg,
  134. delta_bg_tolerance = mean(delta_bg, na.rm = TRUE) + (sd * sd(delta_bg, na.rm = TRUE)),
  135. NG = if_else(L == 0 & !is.na(L), 1, 0),
  136. DB = if_else(delta_bg >= delta_bg_tolerance, 1, 0),
  137. SM = 0,
  138. OrfRep = if_else(ORF == "YDL227C", "YDL227C", OrfRep), # should these be hardcoded?
  139. conc_num = as.numeric(gsub("[^0-9\\.]", "", Conc)),
  140. conc_num_factor = as.numeric(as.factor(conc_num)) - 1, # for legacy purposes
  141. conc_num_factor_factor = as.factor(conc_num)
  142. )
  143. return(df)
  144. }
  145. # Update Gene names using the SGD gene list
  146. update_gene_names <- function(df, sgd_gene_list) {
  147. # Load SGD gene list
  148. genes <- read.delim(file = sgd_gene_list,
  149. quote = "", header = FALSE,
  150. colClasses = c(rep("NULL", 3), rep("character", 2), rep("NULL", 11)))
  151. # Create a named vector for mapping ORF to GeneName
  152. gene_map <- setNames(genes$V5, genes$V4)
  153. # Vectorized match to find the GeneName from gene_map
  154. mapped_genes <- gene_map[df$ORF]
  155. # Replace NAs in mapped_genes with original Gene names (preserves existing Gene names if ORF is not found)
  156. updated_genes <- ifelse(is.na(mapped_genes) | df$OrfRep == "YDL227C", df$Gene, mapped_genes)
  157. # Ensure Gene is not left blank or incorrectly updated to "OCT1"
  158. df <- df %>%
  159. mutate(Gene = ifelse(updated_genes == "" | updated_genes == "OCT1", OrfRep, updated_genes))
  160. return(df)
  161. }
  162. calculate_summary_stats <- function(df, variables, group_vars) {
  163. summary_stats <- df %>%
  164. group_by(across(all_of(group_vars))) %>%
  165. summarise(
  166. N = n(),
  167. across(all_of(variables),
  168. list(
  169. mean = ~ mean(.x, na.rm = TRUE),
  170. median = ~ median(.x, na.rm = TRUE),
  171. max = ~ ifelse(all(is.na(.x)), NA, max(.x, na.rm = TRUE)),
  172. min = ~ ifelse(all(is.na(.x)), NA, min(.x, na.rm = TRUE)),
  173. sd = ~ sd(.x, na.rm = TRUE),
  174. se = ~ sd(.x, na.rm = TRUE) / sqrt(n() - 1)
  175. ),
  176. .names = "{.fn}_{.col}"
  177. ),
  178. .groups = "drop"
  179. )
  180. # Create a cleaned version of df that doesn't overlap with summary_stats
  181. cleaned_df <- df %>%
  182. select(-any_of(setdiff(intersect(names(df), names(summary_stats)), group_vars)))
  183. df_joined <- left_join(cleaned_df, summary_stats, by = group_vars)
  184. return(list(summary_stats = summary_stats, df_with_stats = df_joined))
  185. }
  186. calculate_interaction_scores <- function(df, max_conc, bg_stats,
  187. group_vars = c("OrfRep", "Gene", "num")) {
  188. # Calculate total concentration variables
  189. total_conc_num <- length(unique(df$conc_num))
  190. calculations <- df %>%
  191. group_by(across(all_of(group_vars))) %>%
  192. mutate(
  193. NG = sum(NG, na.rm = TRUE),
  194. DB = sum(DB, na.rm = TRUE),
  195. SM = sum(SM, na.rm = TRUE),
  196. num_non_removed_concs = total_conc_num - sum(DB, na.rm = TRUE) - 1,
  197. # Calculate raw data
  198. Raw_Shift_L = first(mean_L) - bg_stats$mean_L,
  199. Raw_Shift_K = first(mean_K) - bg_stats$mean_K,
  200. Raw_Shift_r = first(mean_r) - bg_stats$mean_r,
  201. Raw_Shift_AUC = first(mean_AUC) - bg_stats$mean_AUC,
  202. Z_Shift_L = first(Raw_Shift_L) / bg_stats$sd_L,
  203. Z_Shift_K = first(Raw_Shift_K) / bg_stats$sd_K,
  204. Z_Shift_r = first(Raw_Shift_r) / bg_stats$sd_r,
  205. Z_Shift_AUC = first(Raw_Shift_AUC) / bg_stats$sd_AUC,
  206. Exp_L = WT_L + Raw_Shift_L,
  207. Exp_K = WT_K + Raw_Shift_K,
  208. Exp_r = WT_r + Raw_Shift_r,
  209. Exp_AUC = WT_AUC + Raw_Shift_AUC,
  210. Delta_L = mean_L - Exp_L,
  211. Delta_K = mean_K - Exp_K,
  212. Delta_r = mean_r - Exp_r,
  213. Delta_AUC = mean_AUC - Exp_AUC,
  214. Delta_L = if_else(NG == 1, mean_L - WT_L, Delta_L),
  215. Delta_K = if_else(NG == 1, mean_K - WT_K, Delta_K),
  216. Delta_r = if_else(NG == 1, mean_r - WT_r, Delta_r),
  217. Delta_AUC = if_else(NG == 1, mean_AUC - WT_AUC, Delta_AUC),
  218. Delta_L = if_else(SM == 1, mean_L - WT_L, Delta_L),
  219. # Calculate Z-scores
  220. Zscore_L = Delta_L / WT_sd_L,
  221. Zscore_K = Delta_K / WT_sd_K,
  222. Zscore_r = Delta_r / WT_sd_r,
  223. Zscore_AUC = Delta_AUC / WT_sd_AUC,
  224. # Fit linear models and store in list-columns
  225. gene_lm_L = list(lm(Delta_L ~ conc_num_factor, data = pick(everything()))),
  226. gene_lm_K = list(lm(Delta_K ~ conc_num_factor, data = pick(everything()))),
  227. gene_lm_r = list(lm(Delta_r ~ conc_num_factor, data = pick(everything()))),
  228. gene_lm_AUC = list(lm(Delta_AUC ~ conc_num_factor, data = pick(everything()))),
  229. # Extract coefficients using purrr::map_dbl
  230. lm_intercept_L = map_dbl(gene_lm_L, ~ coef(.x)[1]),
  231. lm_slope_L = map_dbl(gene_lm_L, ~ coef(.x)[2]),
  232. lm_intercept_K = map_dbl(gene_lm_K, ~ coef(.x)[1]),
  233. lm_slope_K = map_dbl(gene_lm_K, ~ coef(.x)[2]),
  234. lm_intercept_r = map_dbl(gene_lm_r, ~ coef(.x)[1]),
  235. lm_slope_r = map_dbl(gene_lm_r, ~ coef(.x)[2]),
  236. lm_intercept_AUC = map_dbl(gene_lm_AUC, ~ coef(.x)[1]),
  237. lm_slope_AUC = map_dbl(gene_lm_AUC, ~ coef(.x)[2]),
  238. # Calculate lm_Score_* based on coefficients
  239. lm_Score_L = max_conc * lm_slope_L + lm_intercept_L,
  240. lm_Score_K = max_conc * lm_slope_K + lm_intercept_K,
  241. lm_Score_r = max_conc * lm_slope_r + lm_intercept_r,
  242. lm_Score_AUC = max_conc * lm_slope_AUC + lm_intercept_AUC,
  243. # Calculate R-squared values
  244. R_Squared_L = map_dbl(gene_lm_L, ~ summary(.x)$r.squared),
  245. R_Squared_K = map_dbl(gene_lm_K, ~ summary(.x)$r.squared),
  246. R_Squared_r = map_dbl(gene_lm_r, ~ summary(.x)$r.squared),
  247. R_Squared_AUC = map_dbl(gene_lm_AUC, ~ summary(.x)$r.squared)
  248. ) %>%
  249. ungroup()
  250. # Calculate overall mean and SD for lm_Score_* variables
  251. lm_means_sds <- calculations %>%
  252. summarise(
  253. lm_mean_L = mean(lm_Score_L, na.rm = TRUE),
  254. lm_sd_L = sd(lm_Score_L, na.rm = TRUE),
  255. lm_mean_K = mean(lm_Score_K, na.rm = TRUE),
  256. lm_sd_K = sd(lm_Score_K, na.rm = TRUE),
  257. lm_mean_r = mean(lm_Score_r, na.rm = TRUE),
  258. lm_sd_r = sd(lm_Score_r, na.rm = TRUE),
  259. lm_mean_AUC = mean(lm_Score_AUC, na.rm = TRUE),
  260. lm_sd_AUC = sd(lm_Score_AUC, na.rm = TRUE)
  261. )
  262. calculations <- calculations %>%
  263. mutate(
  264. Z_lm_L = (lm_Score_L - lm_means_sds$lm_mean_L) / lm_means_sds$lm_sd_L,
  265. Z_lm_K = (lm_Score_K - lm_means_sds$lm_mean_K) / lm_means_sds$lm_sd_K,
  266. Z_lm_r = (lm_Score_r - lm_means_sds$lm_mean_r) / lm_means_sds$lm_sd_r,
  267. Z_lm_AUC = (lm_Score_AUC - lm_means_sds$lm_mean_AUC) / lm_means_sds$lm_sd_AUC
  268. )
  269. # Summarize some of the stats
  270. interactions <- calculations %>%
  271. group_by(across(all_of(group_vars))) %>%
  272. mutate(
  273. # Calculate raw shifts
  274. Raw_Shift_L = first(Raw_Shift_L),
  275. Raw_Shift_K = first(Raw_Shift_K),
  276. Raw_Shift_r = first(Raw_Shift_r),
  277. Raw_Shift_AUC = first(Raw_Shift_AUC),
  278. # Calculate Z-shifts
  279. Z_Shift_L = first(Z_Shift_L),
  280. Z_Shift_K = first(Z_Shift_K),
  281. Z_Shift_r = first(Z_Shift_r),
  282. Z_Shift_AUC = first(Z_Shift_AUC),
  283. # Sum Z-scores
  284. Sum_Z_Score_L = sum(Zscore_L),
  285. Sum_Z_Score_K = sum(Zscore_K),
  286. Sum_Z_Score_r = sum(Zscore_r),
  287. Sum_Z_Score_AUC = sum(Zscore_AUC),
  288. # Calculate Average Z-scores
  289. Avg_Zscore_L = Sum_Z_Score_L / num_non_removed_concs,
  290. Avg_Zscore_K = Sum_Z_Score_K / num_non_removed_concs,
  291. Avg_Zscore_r = Sum_Z_Score_r / (total_conc_num - 1),
  292. Avg_Zscore_AUC = Sum_Z_Score_AUC / (total_conc_num - 1)
  293. ) %>%
  294. arrange(desc(Z_lm_L), desc(NG)) %>%
  295. ungroup()
  296. # Declare column order for output
  297. calculations <- calculations %>%
  298. select(
  299. "OrfRep", "Gene", "num", "N",
  300. "conc_num", "conc_num_factor", "conc_num_factor_factor",
  301. "mean_L", "mean_K", "mean_r", "mean_AUC",
  302. "median_L", "median_K", "median_r", "median_AUC",
  303. "sd_L", "sd_K", "sd_r", "sd_AUC",
  304. "se_L", "se_K", "se_r", "se_AUC",
  305. "Raw_Shift_L", "Raw_Shift_K", "Raw_Shift_r", "Raw_Shift_AUC",
  306. "Z_Shift_L", "Z_Shift_K", "Z_Shift_r", "Z_Shift_AUC",
  307. "WT_L", "WT_K", "WT_r", "WT_AUC",
  308. "WT_sd_L", "WT_sd_K", "WT_sd_r", "WT_sd_AUC",
  309. "Exp_L", "Exp_K", "Exp_r", "Exp_AUC",
  310. "Delta_L", "Delta_K", "Delta_r", "Delta_AUC",
  311. "Zscore_L", "Zscore_K", "Zscore_r", "Zscore_AUC",
  312. "NG", "SM", "DB"
  313. )
  314. interactions <- interactions %>%
  315. select(
  316. "OrfRep", "Gene", "num", "NG", "DB", "SM",
  317. "conc_num", "conc_num_factor", "conc_num_factor_factor",
  318. "Raw_Shift_L", "Raw_Shift_K", "Raw_Shift_r", "Raw_Shift_AUC",
  319. "Z_Shift_L", "Z_Shift_K", "Z_Shift_r", "Z_Shift_AUC",
  320. "Sum_Z_Score_L", "Sum_Z_Score_K", "Sum_Z_Score_r", "Sum_Z_Score_AUC",
  321. "Avg_Zscore_L", "Avg_Zscore_K", "Avg_Zscore_r", "Avg_Zscore_AUC",
  322. "lm_Score_L", "lm_Score_K", "lm_Score_r", "lm_Score_AUC",
  323. "R_Squared_L", "R_Squared_K", "R_Squared_r", "R_Squared_AUC",
  324. "Z_lm_L", "Z_lm_K", "Z_lm_r", "Z_lm_AUC"
  325. )
  326. # Clean the original dataframe by removing overlapping columns
  327. cleaned_df <- df %>%
  328. select(-any_of(
  329. setdiff(intersect(names(df), names(calculations)),
  330. c("OrfRep", "Gene", "num", "conc_num", "conc_num_factor", "conc_num_factor_factor"))))
  331. # Join the original dataframe with calculations
  332. df_with_calculations <- left_join(cleaned_df, calculations,
  333. by = c("OrfRep", "Gene", "num", "conc_num", "conc_num_factor", "conc_num_factor_factor"))
  334. # Remove overlapping columns between df_with_calculations and interactions
  335. df_with_calculations_clean <- df_with_calculations %>%
  336. select(-any_of(
  337. setdiff(intersect(names(df_with_calculations), names(interactions)),
  338. c("OrfRep", "Gene", "num", "conc_num", "conc_num_factor", "conc_num_factor_factor"))))
  339. # Join with interactions to create the full dataset
  340. full_data <- left_join(df_with_calculations_clean, interactions,
  341. by = c("OrfRep", "Gene", "num", "conc_num", "conc_num_factor", "conc_num_factor_factor"))
  342. return(list(
  343. calculations = calculations,
  344. interactions = interactions,
  345. full_data = full_data
  346. ))
  347. }
  348. generate_and_save_plots <- function(out_dir, filename, plot_configs) {
  349. message("Generating ", filename, ".pdf and ", filename, ".html")
  350. # Check if we're dealing with multiple plot groups
  351. plot_groups <- if ("plots" %in% names(plot_configs)) {
  352. list(plot_configs) # Single group
  353. } else {
  354. plot_configs # Multiple groups
  355. }
  356. for (group in plot_groups) {
  357. static_plots <- list()
  358. plotly_plots <- list()
  359. grid_layout <- group$grid_layout
  360. plots <- group$plots
  361. for (i in seq_along(plots)) {
  362. config <- plots[[i]]
  363. df <- config$df
  364. if (config$plot_type == "bar") {
  365. if (!is.null(config$color_var)) {
  366. aes_mapping <- aes(x = .data[[config$x_var]], fill = .data[[config$color_var]], color = .data[[config$color_var]])
  367. } else {
  368. aes_mapping <- aes(x = .data[[config$x_var]])
  369. }
  370. } else if (config$plot_type == "density") {
  371. if (!is.null(config$color_var)) {
  372. aes_mapping <- aes(x = .data[[config$x_var]], color = .data[[config$color_var]])
  373. } else {
  374. aes_mapping <- aes(x = .data[[config$x_var]])
  375. }
  376. } else {
  377. # For other plot types
  378. if (!is.null(config$y_var) && !is.null(config$color_var)) {
  379. aes_mapping <- aes(x = .data[[config$x_var]], y = .data[[config$y_var]], color = .data[[config$color_var]])
  380. } else if (!is.null(config$y_var)) {
  381. aes_mapping <- aes(x = .data[[config$x_var]], y = .data[[config$y_var]])
  382. } else {
  383. aes_mapping <- aes(x = .data[[config$x_var]])
  384. }
  385. }
  386. plot <- ggplot(df, aes_mapping) + theme_publication(legend_position = config$legend_position)
  387. plot <- switch(config$plot_type,
  388. "scatter" = generate_scatter_plot(plot, config),
  389. "box" = generate_boxplot(plot, config),
  390. "density" = plot + geom_density(),
  391. "bar" = plot + geom_bar(),
  392. plot # default (unused)
  393. )
  394. if (!is.null(config$title)) plot <- plot + ggtitle(config$title)
  395. if (!is.null(config$x_label)) plot <- plot + xlab(config$x_label)
  396. if (!is.null(config$y_label)) plot <- plot + ylab(config$y_label)
  397. if (!is.null(config$coord_cartesian)) plot <- plot + coord_cartesian(ylim = config$coord_cartesian)
  398. plotly_plot <- suppressWarnings(plotly::ggplotly(plot))
  399. static_plots[[i]] <- plot
  400. plotly_plots[[i]] <- plotly_plot
  401. }
  402. pdf(file.path(out_dir, paste0(filename, ".pdf")), width = 16, height = 9)
  403. if (is.null(grid_layout)) {
  404. for (plot in static_plots) {
  405. print(plot)
  406. }
  407. } else {
  408. grid.arrange(
  409. grobs = static_plots,
  410. ncol = grid_layout$ncol,
  411. nrow = grid_layout$nrow
  412. )
  413. }
  414. dev.off()
  415. out_html_file <- file.path(out_dir, paste0(filename, ".html"))
  416. message("Saving combined HTML file: ", out_html_file)
  417. htmltools::save_html(
  418. htmltools::tagList(plotly_plots),
  419. file = out_html_file
  420. )
  421. }
  422. }
  423. generate_scatter_plot <- function(plot, config) {
  424. # Define the points
  425. shape <- if (!is.null(config$shape)) config$shape else 3
  426. size <- if (!is.null(config$size)) config$size else 1.5
  427. position <-
  428. if (!is.null(config$position) && config$position == "jitter") {
  429. position_jitter(width = 0.1, height = 0)
  430. } else {
  431. "identity"
  432. }
  433. plot <- plot + geom_point(
  434. shape = shape,
  435. size = size,
  436. position = position
  437. )
  438. if (!is.null(config$cyan_points) && config$cyan_points) {
  439. plot <- plot + geom_point(
  440. aes(x = .data[[config$x_var]], y = .data[[config$y_var]]),
  441. color = "cyan",
  442. shape = 3,
  443. size = 0.5
  444. )
  445. }
  446. # Add Smooth Line if specified
  447. if (!is.null(config$smooth) && config$smooth) {
  448. smooth_color <- if (!is.null(config$smooth_color)) config$smooth_color else "blue"
  449. if (!is.null(config$lm_line)) {
  450. plot <- plot +
  451. geom_abline(
  452. intercept = config$lm_line$intercept,
  453. slope = config$lm_line$slope,
  454. color = smooth_color
  455. )
  456. } else {
  457. plot <- plot +
  458. geom_smooth(
  459. method = "lm",
  460. se = FALSE,
  461. color = smooth_color
  462. )
  463. }
  464. }
  465. # Add SD Bands if specified
  466. if (!is.null(config$sd_band)) {
  467. plot <- plot +
  468. annotate(
  469. "rect",
  470. xmin = -Inf, xmax = Inf,
  471. ymin = config$sd_band, ymax = Inf,
  472. fill = ifelse(!is.null(config$fill_positive), config$fill_positive, "#542788"),
  473. alpha = ifelse(!is.null(config$alpha_positive), config$alpha_positive, 0.3)
  474. ) +
  475. annotate(
  476. "rect",
  477. xmin = -Inf, xmax = Inf,
  478. ymin = -config$sd_band, ymax = -Inf,
  479. fill = ifelse(!is.null(config$fill_negative), config$fill_negative, "orange"),
  480. alpha = ifelse(!is.null(config$alpha_negative), config$alpha_negative, 0.3)
  481. ) +
  482. geom_hline(
  483. yintercept = c(-config$sd_band, config$sd_band),
  484. color = ifelse(!is.null(config$hl_color), config$hl_color, "gray")
  485. )
  486. }
  487. # Add Rectangles if specified
  488. if (!is.null(config$rectangles)) {
  489. for (rect in config$rectangles) {
  490. plot <- plot + annotate(
  491. "rect",
  492. xmin = rect$xmin,
  493. xmax = rect$xmax,
  494. ymin = rect$ymin,
  495. ymax = rect$ymax,
  496. fill = ifelse(is.null(rect$fill), NA, rect$fill),
  497. color = ifelse(is.null(rect$color), "black", rect$color),
  498. alpha = ifelse(is.null(rect$alpha), 0.1, rect$alpha)
  499. )
  500. }
  501. }
  502. # Add error bars if specified
  503. if (!is.null(config$error_bar) && config$error_bar && !is.null(config$y_var)) {
  504. if (!is.null(config$error_bar_params)) {
  505. # Error bar params are constants, so set them outside aes
  506. plot <- plot +
  507. geom_errorbar(
  508. aes(
  509. ymin = !!sym(config$y_var), # y_var mapped to y-axis
  510. ymax = !!sym(config$y_var)
  511. ),
  512. ymin = config$error_bar_params$ymin, # Constant values
  513. ymax = config$error_bar_params$ymax, # Constant values
  514. alpha = 0.3,
  515. linewidth = 0.5
  516. )
  517. } else {
  518. # Dynamically generate ymin and ymax based on column names
  519. y_mean_col <- paste0("mean_", config$y_var)
  520. y_sd_col <- paste0("sd_", config$y_var)
  521. plot <- plot +
  522. geom_errorbar(
  523. aes(
  524. ymin = !!sym(y_mean_col) - !!sym(y_sd_col), # Calculating ymin in aes
  525. ymax = !!sym(y_mean_col) + !!sym(y_sd_col) # Calculating ymax in aes
  526. ),
  527. alpha = 0.3,
  528. linewidth = 0.5
  529. )
  530. }
  531. }
  532. # Customize X-axis if specified
  533. if (!is.null(config$x_breaks) && !is.null(config$x_labels) && !is.null(config$x_label)) {
  534. if (is.factor(df[[config$x_var]]) || is.character(df[[config$x_var]])) {
  535. plot <- plot +
  536. scale_x_discrete(
  537. name = config$x_label,
  538. breaks = config$x_breaks,
  539. labels = config$x_labels
  540. )
  541. } else {
  542. plot <- plot +
  543. scale_x_continuous(
  544. name = config$x_label,
  545. breaks = config$x_breaks,
  546. labels = config$x_labels
  547. )
  548. }
  549. }
  550. # Set Y-axis limits if specified
  551. if (!is.null(config$ylim_vals)) {
  552. plot <- plot + scale_y_continuous(limits = config$ylim_vals)
  553. }
  554. # Add annotations if specified
  555. if (!is.null(config$annotations)) {
  556. for (annotation in config$annotations) {
  557. plot <- plot +
  558. annotate(
  559. "text",
  560. x = annotation$x,
  561. y = annotation$y,
  562. label = annotation$label,
  563. hjust = ifelse(is.null(annotation$hjust), 0.5, annotation$hjust),
  564. vjust = ifelse(is.null(annotation$vjust), 0.5, annotation$vjust),
  565. size = ifelse(is.null(annotation$size), 6, annotation$size),
  566. color = ifelse(is.null(annotation$color), "black", annotation$color)
  567. )
  568. }
  569. }
  570. return(plot)
  571. }
  572. generate_boxplot <- function(plot, config) {
  573. # Convert x_var to a factor within aes mapping
  574. plot <- plot + geom_boxplot(aes(x = factor(.data[[config$x_var]])))
  575. # Customize X-axis if specified
  576. if (!is.null(config$x_breaks) && !is.null(config$x_labels) && !is.null(config$x_label)) {
  577. if (is.factor(df[[config$x_var]]) || is.character(df[[config$x_var]])) {
  578. plot <- plot +
  579. scale_x_discrete(
  580. name = config$x_label,
  581. breaks = config$x_breaks,
  582. labels = config$x_labels
  583. )
  584. } else {
  585. plot <- plot +
  586. scale_x_continuous(
  587. name = config$x_label,
  588. breaks = config$x_breaks,
  589. labels = config$x_labels
  590. )
  591. }
  592. }
  593. return(plot)
  594. }
  595. generate_plate_analysis_plot_configs <- function(variables, df_before = NULL, df_after = NULL,
  596. plot_type = "scatter", stages = c("before", "after")) {
  597. plot_configs <- list()
  598. for (var in variables) {
  599. for (stage in stages) {
  600. df_plot <- if (stage == "before") df_before else df_after
  601. # Check for non-finite values in the y-variable
  602. df_plot_filtered <- df_plot %>% filter(is.finite(!!sym(var)))
  603. # Adjust settings based on plot_type
  604. plot_config <- list(
  605. df = df_plot_filtered,
  606. x_var = "scan",
  607. y_var = var,
  608. plot_type = plot_type,
  609. title = paste("Plate analysis by Drug Conc for", var, stage, "quality control"),
  610. color_var = "conc_num_factor_factor",
  611. position = if (plot_type == "scatter") "jitter" else NULL,
  612. size = 0.2,
  613. error_bar = (plot_type == "scatter")
  614. )
  615. # Add config to plots list
  616. plot_configs <- append(plot_configs, list(plot_config))
  617. }
  618. }
  619. return(list(plots = plot_configs))
  620. }
  621. generate_interaction_plot_configs <- function(df, plot_type = "reference") {
  622. limits_map <- list(
  623. L = c(0, 130),
  624. K = c(-20, 160),
  625. r = c(0, 1),
  626. AUC = c(0, 12500)
  627. )
  628. delta_limits_map <- list(
  629. Delta_L = c(-60, 60),
  630. Delta_K = c(-60, 60),
  631. Delta_r = c(-0.6, 0.6),
  632. Delta_AUC = c(-6000, 6000)
  633. )
  634. group_vars <- if (plot_type == "reference") c("OrfRep", "Gene", "num") else c("OrfRep", "Gene")
  635. df_filtered <- df %>%
  636. mutate(OrfRepCombined = if (plot_type == "reference") paste(OrfRep, Gene, num, sep = "_") else paste(OrfRep, Gene, sep = "_"))
  637. overall_plot_configs <- list()
  638. delta_plot_configs <- list()
  639. # Overall plots
  640. for (var in names(limits_map)) {
  641. y_limits <- limits_map[[var]]
  642. plot_config <- list(
  643. df = df_filtered,
  644. plot_type = "scatter",
  645. x_var = "conc_num_factor_factor",
  646. y_var = var,
  647. x_label = unique(df_filtered$Drug)[1],
  648. title = sprintf("Scatter RF for %s with SD", var),
  649. coord_cartesian = y_limits,
  650. error_bar = TRUE,
  651. x_breaks = unique(df_filtered$conc_num_factor_factor),
  652. x_labels = as.character(unique(df_filtered$conc_num)),
  653. position = "jitter",
  654. smooth = TRUE
  655. )
  656. overall_plot_configs <- append(overall_plot_configs, list(plot_config))
  657. }
  658. # Delta plots
  659. unique_groups <- df_filtered %>% select(all_of(group_vars)) %>% distinct()
  660. for (i in seq_len(nrow(unique_groups))) {
  661. group <- unique_groups[i, ]
  662. group_data <- df_filtered %>% semi_join(group, by = group_vars)
  663. OrfRep <- as.character(group$OrfRep)
  664. Gene <- if ("Gene" %in% names(group)) as.character(group$Gene) else ""
  665. num <- if ("num" %in% names(group)) as.character(group$num) else ""
  666. for (var in names(delta_limits_map)) {
  667. y_limits <- delta_limits_map[[var]]
  668. y_span <- y_limits[2] - y_limits[1]
  669. WT_sd_var <- paste0("WT_sd_", sub("Delta_", "", var))
  670. WT_sd_value <- group_data[[WT_sd_var]][1]
  671. error_bar_ymin <- 0 - (2 * WT_sd_value)
  672. error_bar_ymax <- 0 + (2 * WT_sd_value)
  673. Z_Shift_value <- round(group_data[[paste0("Z_Shift_", sub("Delta_", "", var))]][1], 2)
  674. Z_lm_value <- round(group_data[[paste0("Z_lm_", sub("Delta_", "", var))]][1], 2)
  675. NG_value <- group_data$NG[1]
  676. DB_value <- group_data$DB[1]
  677. SM_value <- group_data$SM[1]
  678. annotations <- list(
  679. list(x = 1, y = y_limits[2] - 0.2 * y_span, label = paste("ZShift =", Z_Shift_value)),
  680. list(x = 1, y = y_limits[2] - 0.3 * y_span, label = paste("lm ZScore =", Z_lm_value)),
  681. list(x = 1, y = y_limits[1] + 0.2 * y_span, label = paste("NG =", NG_value)),
  682. list(x = 1, y = y_limits[1] + 0.1 * y_span, label = paste("DB =", DB_value)),
  683. list(x = 1, y = y_limits[1], label = paste("SM =", SM_value))
  684. )
  685. plot_config <- list(
  686. df = group_data,
  687. plot_type = "scatter",
  688. x_var = "conc_num_factor_factor",
  689. y_var = var,
  690. x_label = unique(group_data$Drug)[1],
  691. title = paste(OrfRep, Gene, sep = " "),
  692. coord_cartesian = y_limits,
  693. annotations = annotations,
  694. error_bar = TRUE,
  695. error_bar_params = list(
  696. ymin = error_bar_ymin,
  697. ymax = error_bar_ymax
  698. ),
  699. smooth = TRUE,
  700. x_breaks = unique(group_data$conc_num_factor_factor),
  701. x_labels = as.character(unique(group_data$conc_num)),
  702. ylim_vals = y_limits
  703. )
  704. delta_plot_configs <- append(delta_plot_configs, list(plot_config))
  705. }
  706. }
  707. return(list(
  708. list(grid_layout = list(ncol = 2, nrow = 2), plots = overall_plot_configs),
  709. list(grid_layout = list(ncol = 4, nrow = 3), plots = delta_plot_configs)
  710. ))
  711. }
  712. generate_rank_plot_configs <- function(df, variables, is_lm = FALSE, adjust = FALSE, overlap_color = FALSE) {
  713. sd_bands <- c(1, 2, 3)
  714. plot_configs <- list()
  715. variables <- c("L", "K")
  716. # Adjust (if necessary) and rank columns
  717. for (variable in variables) {
  718. if (adjust) {
  719. df[[paste0("Avg_Zscore_", variable)]] <- ifelse(is.na(df[[paste0("Avg_Zscore_", variable)]]), 0.001, df[[paste0("Avg_Zscore_", variable)]])
  720. df[[paste0("Z_lm_", variable)]] <- ifelse(is.na(df[[paste0("Z_lm_", variable)]]), 0.001, df[[paste0("Z_lm_", variable)]])
  721. }
  722. df[[paste0("Rank_", variable)]] <- rank(df[[paste0("Avg_Zscore_", variable)]], na.last = "keep")
  723. df[[paste0("Rank_lm_", variable)]] <- rank(df[[paste0("Z_lm_", variable)]], na.last = "keep")
  724. }
  725. # Helper function to create a plot configuration
  726. create_plot_config <- function(variable, rank_var, zscore_var, y_label, sd_band, with_annotations = TRUE) {
  727. num_enhancers <- sum(df[[zscore_var]] >= sd_band, na.rm = TRUE)
  728. num_suppressors <- sum(df[[zscore_var]] <= -sd_band, na.rm = TRUE)
  729. # Default plot config
  730. plot_config <- list(
  731. df = df,
  732. x_var = rank_var,
  733. y_var = zscore_var,
  734. plot_type = "scatter",
  735. title = paste(y_label, "vs. Rank for", variable, "above", sd_band),
  736. sd_band = sd_band,
  737. fill_positive = "#542788",
  738. fill_negative = "orange",
  739. alpha_positive = 0.3,
  740. alpha_negative = 0.3,
  741. annotations = NULL,
  742. shape = 3,
  743. size = 0.1,
  744. y_label = y_label,
  745. x_label = "Rank",
  746. legend_position = "none"
  747. )
  748. if (with_annotations) {
  749. # Add specific annotations for plots with annotations
  750. plot_config$annotations <- list(
  751. list(
  752. x = median(df[[rank_var]], na.rm = TRUE),
  753. y = max(df[[zscore_var]], na.rm = TRUE) * 0.9,
  754. label = paste("Deletion Enhancers =", num_enhancers)
  755. ),
  756. list(
  757. x = median(df[[rank_var]], na.rm = TRUE),
  758. y = min(df[[zscore_var]], na.rm = TRUE) * 0.9,
  759. label = paste("Deletion Suppressors =", num_suppressors)
  760. )
  761. )
  762. }
  763. return(plot_config)
  764. }
  765. # Generate plots for each variable
  766. for (variable in variables) {
  767. rank_var <- if (is_lm) paste0("Rank_lm_", variable) else paste0("Rank_", variable)
  768. zscore_var <- if (is_lm) paste0("Z_lm_", variable) else paste0("Avg_Zscore_", variable)
  769. y_label <- if (is_lm) paste("Int Z score", variable) else paste("Avg Z score", variable)
  770. # Loop through SD bands
  771. for (sd_band in sd_bands) {
  772. # Create plot with annotations
  773. plot_configs[[length(plot_configs) + 1]] <- create_plot_config(variable, rank_var, zscore_var, y_label, sd_band, with_annotations = TRUE)
  774. # Create plot without annotations
  775. plot_configs[[length(plot_configs) + 1]] <- create_plot_config(variable, rank_var, zscore_var, y_label, sd_band, with_annotations = FALSE)
  776. }
  777. }
  778. # Calculate dynamic grid layout based on the number of plots
  779. grid_ncol <- 3
  780. num_plots <- length(plot_configs)
  781. grid_nrow <- ceiling(num_plots / grid_ncol) # Automatically calculate the number of rows
  782. return(list(grid_layout = list(ncol = grid_ncol, nrow = grid_nrow), plots = plot_configs))
  783. }
  784. generate_correlation_plot_configs <- function(df, highlight_cyan = FALSE) {
  785. relationships <- list(
  786. list(x = "Z_lm_L", y = "Z_lm_K", label = "Interaction L vs. Interaction K"),
  787. list(x = "Z_lm_L", y = "Z_lm_r", label = "Interaction L vs. Interaction r"),
  788. list(x = "Z_lm_L", y = "Z_lm_AUC", label = "Interaction L vs. Interaction AUC"),
  789. list(x = "Z_lm_K", y = "Z_lm_r", label = "Interaction K vs. Interaction r"),
  790. list(x = "Z_lm_K", y = "Z_lm_AUC", label = "Interaction K vs. Interaction AUC"),
  791. list(x = "Z_lm_r", y = "Z_lm_AUC", label = "Interaction r vs. Interaction AUC")
  792. )
  793. plot_configs <- list()
  794. for (rel in relationships) {
  795. lm_model <- lm(as.formula(paste(rel$y, "~", rel$x)), data = df)
  796. r_squared <- summary(lm_model)$r.squared
  797. plot_config <- list(
  798. df = df,
  799. x_var = rel$x,
  800. y_var = rel$y,
  801. plot_type = "scatter",
  802. title = rel$label,
  803. annotations = list(
  804. list(
  805. x = mean(df[[rel$x]], na.rm = TRUE),
  806. y = mean(df[[rel$y]], na.rm = TRUE),
  807. label = paste("R-squared =", round(r_squared, 3)))
  808. ),
  809. smooth = TRUE,
  810. smooth_color = "tomato3",
  811. lm_line = list(intercept = coef(lm_model)[1], slope = coef(lm_model)[2]),
  812. shape = 3,
  813. size = 0.5,
  814. color_var = "Overlap",
  815. cyan_points = highlight_cyan
  816. )
  817. plot_configs <- append(plot_configs, list(plot_config))
  818. }
  819. return(list(plots = plot_configs))
  820. }
  821. main <- function() {
  822. lapply(names(args$experiments), function(exp_name) {
  823. exp <- args$experiments[[exp_name]]
  824. exp_path <- exp$path
  825. exp_sd <- exp$sd
  826. out_dir <- file.path(exp_path, "zscores")
  827. out_dir_qc <- file.path(exp_path, "zscores", "qc")
  828. dir.create(out_dir, recursive = TRUE, showWarnings = FALSE)
  829. dir.create(out_dir_qc, recursive = TRUE, showWarnings = FALSE)
  830. summary_vars <- c("L", "K", "r", "AUC", "delta_bg") # fields to filter and calculate summary stats across
  831. interaction_vars <- c("L", "K", "r", "AUC") # fields to calculate interaction z-scores
  832. message("Loading and filtering data for experiment: ", exp_name)
  833. df <- load_and_filter_data(args$easy_results_file, sd = exp_sd) %>%
  834. update_gene_names(args$sgd_gene_list) %>%
  835. as_tibble()
  836. # Filter rows above delta background tolerance
  837. df_above_tolerance <- df %>% filter(DB == 1)
  838. df_na <- df %>% mutate(across(all_of(summary_vars), ~ ifelse(DB == 1, NA, .))) # formerly X
  839. df_no_zeros <- df_na %>% filter(L > 0) # formerly X_noZero
  840. # Save some constants
  841. max_conc <- max(df$conc_num_factor)
  842. message("Calculating summary statistics before quality control")
  843. df_stats <- calculate_summary_stats(
  844. df = df,
  845. variables = summary_vars,
  846. group_vars = c("conc_num", "conc_num_factor", "conc_num_factor_factor"))$df_with_stats
  847. message("Calculating summary statistics after quality control")
  848. ss <- calculate_summary_stats(
  849. df = df_na,
  850. variables = summary_vars,
  851. group_vars = c("conc_num", "conc_num_factor", "conc_num_factor_factor"))
  852. df_na_ss <- ss$summary_stats
  853. df_na_stats <- ss$df_with_stats
  854. write.csv(df_na_ss, file = file.path(out_dir, "summary_stats_all_strains.csv"), row.names = FALSE)
  855. # For plotting (ggplot warns on NAs)
  856. df_na_stats_filtered <- df_na_stats %>% filter(if_all(all_of(summary_vars), is.finite))
  857. df_na_stats <- df_na_stats %>%
  858. mutate(
  859. WT_L = mean_L,
  860. WT_K = mean_K,
  861. WT_r = mean_r,
  862. WT_AUC = mean_AUC,
  863. WT_sd_L = sd_L,
  864. WT_sd_K = sd_K,
  865. WT_sd_r = sd_r,
  866. WT_sd_AUC = sd_AUC
  867. )
  868. # Pull the background means and standard deviations from zero concentration for interactions
  869. bg_stats <- df_na_stats %>%
  870. filter(conc_num == 0) %>%
  871. summarise(
  872. mean_L = first(mean_L),
  873. mean_K = first(mean_K),
  874. mean_r = first(mean_r),
  875. mean_AUC = first(mean_AUC),
  876. sd_L = first(sd_L),
  877. sd_K = first(sd_K),
  878. sd_r = first(sd_r),
  879. sd_AUC = first(sd_AUC)
  880. )
  881. message("Calculating summary statistics after quality control excluding zero values")
  882. df_no_zeros_stats <- calculate_summary_stats(
  883. df = df_no_zeros,
  884. variables = summary_vars,
  885. group_vars = c("conc_num", "conc_num_factor", "conc_num_factor_factor")
  886. )$df_with_stats
  887. message("Filtering by 2SD of K")
  888. df_na_within_2sd_k <- df_na_stats %>%
  889. filter(K >= (mean_K - 2 * sd_K) & K <= (mean_K + 2 * sd_K))
  890. df_na_outside_2sd_k <- df_na_stats %>%
  891. filter(K < (mean_K - 2 * sd_K) | K > (mean_K + 2 * sd_K))
  892. message("Calculating summary statistics for L within 2SD of K")
  893. # TODO We're omitting the original z_max calculation, not sure if needed?
  894. ss <- calculate_summary_stats(df_na_within_2sd_k, "L", group_vars = c("conc_num", "conc_num_factor", "conc_num_factor_factor"))$summary_stats
  895. write.csv(ss,
  896. file = file.path(out_dir_qc, "max_observed_L_vals_for_spots_within_2sd_K.csv"),
  897. row.names = FALSE)
  898. message("Calculating summary statistics for L outside 2SD of K")
  899. ss <- calculate_summary_stats(df_na_outside_2sd_k, "L", group_vars = c("conc_num", "conc_num_factor", "conc_num_factor_factor"))
  900. df_na_l_outside_2sd_k_stats <- ss$df_with_stats
  901. write.csv(ss$summary_stats,
  902. file = file.path(out_dir, "max_observed_L_vals_for_spots_outside_2sd_K.csv"),
  903. row.names = FALSE)
  904. # Each plots list corresponds to a file
  905. l_vs_k_plot_configs <- list(
  906. plots = list(
  907. list(
  908. df = df,
  909. x_var = "L",
  910. y_var = "K",
  911. plot_type = "scatter",
  912. tooltip_vars = c("OrfRep", "Gene", "delta_bg"),
  913. title = "Raw L vs K before quality control",
  914. color_var = "conc_num_factor_factor",
  915. error_bar = FALSE,
  916. legend_position = "right"
  917. )
  918. )
  919. )
  920. frequency_delta_bg_plot_configs <- list(
  921. plots = list(
  922. list(
  923. df = df_stats,
  924. x_var = "delta_bg",
  925. y_var = NULL,
  926. plot_type = "density",
  927. title = "Density plot for Delta Background by [Drug] (All Data)",
  928. color_var = "conc_num_factor_factor",
  929. x_label = "Delta Background",
  930. y_label = "Density",
  931. error_bar = FALSE,
  932. legend_position = "right"
  933. ),
  934. list(
  935. df = df_stats,
  936. x_var = "delta_bg",
  937. y_var = NULL,
  938. plot_type = "bar",
  939. title = "Bar plot for Delta Background by [Drug] (All Data)",
  940. color_var = "conc_num_factor_factor",
  941. x_label = "Delta Background",
  942. y_label = "Count",
  943. error_bar = FALSE,
  944. legend_position = "right"
  945. )
  946. )
  947. )
  948. above_threshold_plot_configs <- list(
  949. plots = list(
  950. list(
  951. df = df_above_tolerance,
  952. x_var = "L",
  953. y_var = "K",
  954. plot_type = "scatter",
  955. tooltip_vars = c("OrfRep", "Gene", "delta_bg"),
  956. title = paste("Raw L vs K for strains above Delta Background threshold of",
  957. round(df_above_tolerance$delta_bg_tolerance[[1]], 3), "or above"),
  958. color_var = "conc_num_factor_factor",
  959. position = "jitter",
  960. annotations = list(
  961. list(
  962. x = median(df_above_tolerance$L, na.rm = TRUE) / 2,
  963. y = median(df_above_tolerance$K, na.rm = TRUE) / 2,
  964. label = paste("# strains above Delta Background tolerance =", nrow(df_above_tolerance))
  965. )
  966. ),
  967. error_bar = FALSE,
  968. legend_position = "right"
  969. )
  970. )
  971. )
  972. plate_analysis_plot_configs <- generate_plate_analysis_plot_configs(
  973. variables = summary_vars,
  974. df_before = df_stats,
  975. df_after = df_na_stats_filtered
  976. )
  977. plate_analysis_boxplot_configs <- generate_plate_analysis_plot_configs(
  978. variables = summary_vars,
  979. df_before = df_stats,
  980. df_after = df_na_stats_filtered,
  981. plot_type = "box"
  982. )
  983. plate_analysis_no_zeros_plot_configs <- generate_plate_analysis_plot_configs(
  984. variables = summary_vars,
  985. stages = c("after"), # Only after QC
  986. df_after = df_no_zeros_stats
  987. )
  988. plate_analysis_no_zeros_boxplot_configs <- generate_plate_analysis_plot_configs(
  989. variables = summary_vars,
  990. stages = c("after"), # Only after QC
  991. df_after = df_no_zeros_stats,
  992. plot_type = "box"
  993. )
  994. l_outside_2sd_k_plot_configs <- list(
  995. plots = list(
  996. list(
  997. df = df_na_l_outside_2sd_k_stats,
  998. x_var = "L",
  999. y_var = "K",
  1000. plot_type = "scatter",
  1001. title = "Raw L vs K for strains falling outside 2SD of the K mean at each Conc",
  1002. color_var = "conc_num_factor_factor",
  1003. position = "jitter", # Apply jitter for better visibility
  1004. tooltip_vars = c("OrfRep", "Gene", "delta_bg"),
  1005. annotations = list(
  1006. list(
  1007. x = median(df_na_l_outside_2sd_k_stats$L, na.rm = TRUE) / 2,
  1008. y = median(df_na_l_outside_2sd_k_stats$K, na.rm = TRUE) / 2,
  1009. label = paste("Total strains:", nrow(df_na_l_outside_2sd_k_stats))
  1010. )
  1011. ),
  1012. error_bar = FALSE,
  1013. legend_position = "right"
  1014. )
  1015. )
  1016. )
  1017. delta_bg_outside_2sd_k_plot_configs <- list(
  1018. plots = list(
  1019. list(
  1020. df = df_na_l_outside_2sd_k_stats,
  1021. x_var = "delta_bg",
  1022. y_var = "K",
  1023. plot_type = "scatter",
  1024. title = "Delta Background vs K for strains falling outside 2SD of the K mean at each Conc",
  1025. color_var = "conc_num_factor_factor",
  1026. position = "jitter", # Apply jitter for better visibility
  1027. tooltip_vars = c("OrfRep", "Gene", "delta_bg"),
  1028. annotations = list(
  1029. list(
  1030. x = median(df_na_l_outside_2sd_k_stats$delta_bg, na.rm = TRUE) / 2,
  1031. y = median(df_na_l_outside_2sd_k_stats$K, na.rm = TRUE) / 2,
  1032. label = paste("Total strains:", nrow(df_na_l_outside_2sd_k_stats))
  1033. )
  1034. ),
  1035. error_bar = FALSE,
  1036. legend_position = "right"
  1037. )
  1038. )
  1039. )
  1040. message("Generating quality control plots in parallel")
  1041. # # future::plan(future::multicore, workers = parallel::detectCores())
  1042. future::plan(future::multisession, workers = 3) # generate 3 plots in parallel
  1043. plot_configs <- list(
  1044. list(out_dir = out_dir_qc, filename = "L_vs_K_before_quality_control",
  1045. plot_configs = l_vs_k_plot_configs),
  1046. list(out_dir = out_dir_qc, filename = "frequency_delta_background",
  1047. plot_configs = frequency_delta_bg_plot_configs),
  1048. list(out_dir = out_dir_qc, filename = "L_vs_K_above_threshold",
  1049. plot_configs = above_threshold_plot_configs),
  1050. list(out_dir = out_dir_qc, filename = "plate_analysis",
  1051. plot_configs = plate_analysis_plot_configs),
  1052. list(out_dir = out_dir_qc, filename = "plate_analysis_boxplots",
  1053. plot_configs = plate_analysis_boxplot_configs),
  1054. list(out_dir = out_dir_qc, filename = "plate_analysis_no_zeros",
  1055. plot_configs = plate_analysis_no_zeros_plot_configs),
  1056. list(out_dir = out_dir_qc, filename = "plate_analysis_no_zeros_boxplots",
  1057. plot_configs = plate_analysis_no_zeros_boxplot_configs),
  1058. list(out_dir = out_dir_qc, filename = "L_vs_K_for_strains_2SD_outside_mean_K",
  1059. plot_configs = l_outside_2sd_k_plot_configs),
  1060. list(out_dir = out_dir_qc, filename = "delta_background_vs_K_for_strains_2sd_outside_mean_K",
  1061. plot_configs = delta_bg_outside_2sd_k_plot_configs)
  1062. )
  1063. # Generating quality control plots in parallel
  1064. furrr::future_map(plot_configs, function(config) {
  1065. generate_and_save_plots(config$out_dir, config$filename, config$plot_configs)
  1066. }, .options = furrr_options(seed = TRUE))
  1067. # Process background strains
  1068. bg_strains <- c("YDL227C")
  1069. lapply(bg_strains, function(strain) {
  1070. message("Processing background strain: ", strain)
  1071. # Handle missing data by setting zero values to NA
  1072. # and then removing any rows with NA in L col
  1073. df_bg <- df_na %>%
  1074. filter(OrfRep == strain) %>%
  1075. mutate(
  1076. L = if_else(L == 0, NA, L),
  1077. K = if_else(K == 0, NA, K),
  1078. r = if_else(r == 0, NA, r),
  1079. AUC = if_else(AUC == 0, NA, AUC)
  1080. ) %>%
  1081. filter(!is.na(L))
  1082. # Recalculate summary statistics for the background strain
  1083. message("Calculating summary statistics for background strain")
  1084. ss_bg <- calculate_summary_stats(df_bg, summary_vars, group_vars = c("OrfRep", "conc_num", "conc_num_factor", "conc_num_factor_factor"))
  1085. summary_stats_bg <- ss_bg$summary_stats
  1086. write.csv(summary_stats_bg,
  1087. file = file.path(out_dir, paste0("summary_stats_background_strain_", strain, ".csv")),
  1088. row.names = FALSE)
  1089. # Set the missing values to the highest theoretical value at each drug conc for L
  1090. # Leave other values as 0 for the max/min
  1091. df_reference <- df_na_stats %>% # formerly X2_RF
  1092. filter(OrfRep == strain) %>%
  1093. filter(!is.na(L)) %>%
  1094. group_by(conc_num, conc_num_factor, conc_num_factor_factor) %>%
  1095. mutate(
  1096. max_l_theoretical = max(max_L, na.rm = TRUE),
  1097. L = ifelse(L == 0 & !is.na(L) & conc_num > 0, max_l_theoretical, L),
  1098. SM = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, 1, 0),
  1099. L = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, max_l_theoretical, L)) %>%
  1100. ungroup()
  1101. # Ditto for deletion strains
  1102. df_deletion <- df_na_stats %>% # formerly X2
  1103. filter(OrfRep != strain) %>%
  1104. filter(!is.na(L)) %>%
  1105. mutate(SM = 0) %>%
  1106. group_by(conc_num, conc_num_factor, conc_num_factor_factor) %>%
  1107. mutate(
  1108. max_l_theoretical = max(max_L, na.rm = TRUE),
  1109. L = ifelse(L == 0 & !is.na(L) & conc_num > 0, max_l_theoretical, L),
  1110. SM = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, 1, SM),
  1111. L = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, max_l_theoretical, L)) %>%
  1112. ungroup()
  1113. message("Calculating reference strain interaction scores")
  1114. df_reference_stats <- calculate_summary_stats(
  1115. df = df_reference,
  1116. variables = interaction_vars,
  1117. group_vars = c("OrfRep", "Gene", "num", "conc_num", "conc_num_factor", "conc_num_factor_factor")
  1118. )$df_with_stats
  1119. reference_results <- calculate_interaction_scores(df_reference_stats, max_conc, bg_stats, group_vars = c("OrfRep", "Gene", "num"))
  1120. zscore_calculations_reference <- reference_results$calculations
  1121. zscore_interactions_reference <- reference_results$interactions
  1122. zscore_interactions_reference_joined <- reference_results$full_data
  1123. message("Calculating deletion strain(s) interactions scores")
  1124. df_deletion_stats <- calculate_summary_stats(
  1125. df = df_deletion,
  1126. variables = interaction_vars,
  1127. group_vars = c("OrfRep", "Gene", "conc_num", "conc_num_factor", "conc_num_factor_factor")
  1128. )$df_with_stats
  1129. deletion_results <- calculate_interaction_scores(df_deletion_stats, max_conc, bg_stats, group_vars = c("OrfRep", "Gene"))
  1130. zscore_calculations <- deletion_results$calculations
  1131. zscore_interactions <- deletion_results$interactions
  1132. zscore_interactions_joined <- deletion_results$full_data
  1133. # Writing Z-Scores to file
  1134. write.csv(zscore_calculations_reference, file = file.path(out_dir, "zscore_calculations_reference.csv"), row.names = FALSE)
  1135. write.csv(zscore_calculations, file = file.path(out_dir, "zscore_calculations.csv"), row.names = FALSE)
  1136. write.csv(zscore_interactions_reference, file = file.path(out_dir, "zscore_interactions_reference.csv"), row.names = FALSE)
  1137. write.csv(zscore_interactions, file = file.path(out_dir, "zscore_interactions.csv"), row.names = FALSE)
  1138. # Create interaction plots
  1139. message("Generating reference interaction plots")
  1140. reference_plot_configs <- generate_interaction_plot_configs(zscore_interactions_reference_joined, plot_type = "reference")
  1141. generate_and_save_plots(out_dir, "interaction_plots_reference", reference_plot_configs)
  1142. message("Generating deletion interaction plots")
  1143. deletion_plot_configs <- generate_interaction_plot_configs(zscore_interactions_joined, plot_type = "deletion")
  1144. generate_and_save_plots(out_dir, "interaction_plots", deletion_plot_configs)
  1145. # Define conditions for enhancers and suppressors
  1146. # TODO Add to study config?
  1147. threshold <- 2
  1148. enhancer_condition_L <- zscore_interactions$Avg_Zscore_L >= threshold
  1149. suppressor_condition_L <- zscore_interactions$Avg_Zscore_L <= -threshold
  1150. enhancer_condition_K <- zscore_interactions$Avg_Zscore_K >= threshold
  1151. suppressor_condition_K <- zscore_interactions$Avg_Zscore_K <= -threshold
  1152. # Subset data
  1153. enhancers_L <- zscore_interactions[enhancer_condition_L, ]
  1154. suppressors_L <- zscore_interactions[suppressor_condition_L, ]
  1155. enhancers_K <- zscore_interactions[enhancer_condition_K, ]
  1156. suppressors_K <- zscore_interactions[suppressor_condition_K, ]
  1157. # Save enhancers and suppressors
  1158. message("Writing enhancer/suppressor csv files")
  1159. write.csv(enhancers_L, file = file.path(out_dir, "zscore_interactions_deletion_enhancers_L.csv"), row.names = FALSE)
  1160. write.csv(suppressors_L, file = file.path(out_dir, "zscore_interactions_deletion_suppressors_L.csv"), row.names = FALSE)
  1161. write.csv(enhancers_K, file = file.path(out_dir, "zscore_interactions_deletion_enhancers_K.csv"), row.names = FALSE)
  1162. write.csv(suppressors_K, file = file.path(out_dir, "zscore_interactions_deletion_suppressors_K.csv"), row.names = FALSE)
  1163. # Combine conditions for enhancers and suppressors
  1164. enhancers_and_suppressors_L <- zscore_interactions[enhancer_condition_L | suppressor_condition_L, ]
  1165. enhancers_and_suppressors_K <- zscore_interactions[enhancer_condition_K | suppressor_condition_K, ]
  1166. # Save combined enhancers and suppressors
  1167. write.csv(enhancers_and_suppressors_L,
  1168. file = file.path(out_dir, "zscore_interactions_deletion_enhancers_and_suppressors_L.csv"), row.names = FALSE)
  1169. write.csv(enhancers_and_suppressors_K,
  1170. file = file.path(out_dir, "zscore_interaction_deletion_enhancers_and_suppressors_K.csv"), row.names = FALSE)
  1171. # Handle linear model based enhancers and suppressors
  1172. lm_threshold <- 2 # TODO add to study config?
  1173. enhancers_lm_L <- zscore_interactions[zscore_interactions$Z_lm_L >= lm_threshold, ]
  1174. suppressors_lm_L <- zscore_interactions[zscore_interactions$Z_lm_L <= -lm_threshold, ]
  1175. enhancers_lm_K <- zscore_interactions[zscore_interactions$Z_lm_K >= lm_threshold, ]
  1176. suppressors_lm_K <- zscore_interactions[zscore_interactions$Z_lm_K <= -lm_threshold, ]
  1177. # Save linear model based enhancers and suppressors
  1178. message("Writing linear model enhancer/suppressor csv files")
  1179. write.csv(enhancers_lm_L,
  1180. file = file.path(out_dir, "zscore_interactions_deletion_enhancers_lm_L.csv"), row.names = FALSE)
  1181. write.csv(suppressors_lm_L,
  1182. file = file.path(out_dir, "zscore_interactions_deletion_suppressors_lm_L.csv"), row.names = FALSE)
  1183. write.csv(enhancers_lm_K,
  1184. file = file.path(out_dir, "zscore_interactions_deletion_enhancers_lm_K.csv"), row.names = FALSE)
  1185. write.csv(suppressors_lm_K,
  1186. file = file.path(out_dir, "zscore_interactions_deletion_suppressors_lm_K.csv"), row.names = FALSE)
  1187. message("Generating rank plots")
  1188. rank_plot_configs <- generate_rank_plot_configs(
  1189. df = zscore_interactions_joined,
  1190. is_lm = FALSE,
  1191. adjust = TRUE
  1192. )
  1193. generate_and_save_plots(out_dir = out_dir, filename = "rank_plots",
  1194. plot_configs = rank_plot_configs)
  1195. message("Generating ranked linear model plots")
  1196. rank_lm_plot_configs <- generate_rank_plot_configs(
  1197. df = zscore_interactions_joined,
  1198. is_lm = TRUE,
  1199. adjust = TRUE
  1200. )
  1201. generate_and_save_plots(out_dir = out_dir, filename = "rank_plots_lm",
  1202. plot_configs = rank_lm_plot_configs)
  1203. message("Filtering and reranking plots")
  1204. interaction_threshold <- 2 # TODO add to study config?
  1205. # Formerly X_NArm
  1206. zscore_interactions_filtered <- zscore_interactions_joined %>%
  1207. filter(!is.na(Z_lm_L) & !is.na(Avg_Zscore_L)) %>%
  1208. mutate(
  1209. Overlap = case_when(
  1210. Z_lm_L >= interaction_threshold & Avg_Zscore_L >= interaction_threshold ~ "Deletion Enhancer Both",
  1211. Z_lm_L <= -interaction_threshold & Avg_Zscore_L <= -interaction_threshold ~ "Deletion Suppressor Both",
  1212. Z_lm_L >= interaction_threshold & Avg_Zscore_L <= interaction_threshold ~ "Deletion Enhancer lm only",
  1213. Z_lm_L <= interaction_threshold & Avg_Zscore_L >= interaction_threshold ~ "Deletion Enhancer Avg Zscore only",
  1214. Z_lm_L <= -interaction_threshold & Avg_Zscore_L >= -interaction_threshold ~ "Deletion Suppressor lm only",
  1215. Z_lm_L >= -interaction_threshold & Avg_Zscore_L <= -interaction_threshold ~ "Deletion Suppressor Avg Zscore only",
  1216. Z_lm_L >= interaction_threshold & Avg_Zscore_L <= -interaction_threshold ~ "Deletion Enhancer lm, Deletion Suppressor Avg Z score",
  1217. Z_lm_L <= -interaction_threshold & Avg_Zscore_L >= interaction_threshold ~ "Deletion Suppressor lm, Deletion Enhancer Avg Z score",
  1218. TRUE ~ "No Effect"
  1219. ),
  1220. lm_R_squared_L = summary(lm(Z_lm_L ~ Avg_Zscore_L))$r.squared,
  1221. lm_R_squared_K = summary(lm(Z_lm_K ~ Avg_Zscore_K))$r.squared,
  1222. lm_R_squared_r = summary(lm(Z_lm_r ~ Avg_Zscore_r))$r.squared,
  1223. lm_R_squared_AUC = summary(lm(Z_lm_AUC ~ Avg_Zscore_AUC))$r.squared
  1224. )
  1225. message("Generating filtered ranked plots")
  1226. rank_plot_filtered_configs <- generate_rank_plot_configs(
  1227. df = zscore_interactions_filtered,
  1228. is_lm = FALSE,
  1229. adjust = FALSE,
  1230. overlap_color = TRUE
  1231. )
  1232. generate_and_save_plots(
  1233. out_dir = out_dir,
  1234. filename = "RankPlots_na_rm",
  1235. plot_configs = rank_plot_filtered_configs)
  1236. message("Generating filtered ranked linear model plots")
  1237. rank_plot_lm_filtered_configs <- generate_rank_plot_configs(
  1238. df = zscore_interactions_filtered,
  1239. is_lm = TRUE,
  1240. adjust = FALSE,
  1241. overlap_color = TRUE
  1242. )
  1243. generate_and_save_plots(
  1244. out_dir = out_dir,
  1245. filename = "rank_plots_lm_na_rm",
  1246. plot_configs = rank_plot_lm_filtered_configs)
  1247. message("Generating correlation curve parameter pair plots")
  1248. correlation_plot_configs <- generate_correlation_plot_configs(zscore_interactions_filtered)
  1249. generate_and_save_plots(
  1250. out_dir = out_dir,
  1251. filename = "correlation_cpps",
  1252. plot_configs = correlation_plot_configs,
  1253. )
  1254. })
  1255. })
  1256. }
  1257. main()