calculate_interaction_zscores.R 53 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458
  1. suppressMessages({
  2. library("ggplot2")
  3. library("plotly")
  4. library("htmlwidgets")
  5. library("dplyr")
  6. library("rlang")
  7. library("ggthemes")
  8. library("data.table")
  9. library("future")
  10. library("furrr")
  11. library("purrr")
  12. })
  13. # These parallelization libraries are very noisy
  14. suppressPackageStartupMessages({
  15. library("future")
  16. library("furrr")
  17. library("purrr")
  18. })
  19. options(warn = 2)
  20. # Constants for configuration
  21. plot_width <- 14
  22. plot_height <- 9
  23. base_size <- 14
  24. parse_arguments <- function() {
  25. args <- if (interactive()) {
  26. c(
  27. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/20240116_jhartman2_DoxoHLD",
  28. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/apps/r/SGD_features.tab",
  29. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/easy/20240116_jhartman2_DoxoHLD/results_std.txt",
  30. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/20240822_jhartman2_DoxoHLD/exp1",
  31. "Experiment 1: Doxo versus HLD",
  32. 3,
  33. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/20240822_jhartman2_DoxoHLD/exp2",
  34. "Experiment 2: HLD versus Doxo",
  35. 3
  36. )
  37. } else {
  38. commandArgs(trailingOnly = TRUE)
  39. }
  40. out_dir <- normalizePath(args[1], mustWork = FALSE)
  41. sgd_gene_list <- normalizePath(args[2], mustWork = FALSE)
  42. easy_results_file <- normalizePath(args[3], mustWork = FALSE)
  43. # The remaining arguments should be in groups of 3
  44. exp_args <- args[-(1:3)]
  45. if (length(exp_args) %% 3 != 0) {
  46. stop("Experiment arguments should be in groups of 3: path, name, sd.")
  47. }
  48. experiments <- list()
  49. for (i in seq(1, length(exp_args), by = 3)) {
  50. exp_name <- exp_args[i + 1]
  51. experiments[[exp_name]] <- list(
  52. path = normalizePath(exp_args[i], mustWork = FALSE),
  53. sd = as.numeric(exp_args[i + 2])
  54. )
  55. }
  56. list(
  57. out_dir = out_dir,
  58. sgd_gene_list = sgd_gene_list,
  59. easy_results_file = easy_results_file,
  60. experiments = experiments
  61. )
  62. }
  63. args <- parse_arguments()
  64. # Should we keep output in exp dirs or combine in the study output dir?
  65. # dir.create(file.path(args$out_dir, "zscores"), showWarnings = FALSE)
  66. # dir.create(file.path(args$out_dir, "zscores", "qc"), showWarnings = FALSE)
  67. # Define themes and scales
  68. theme_publication <- function(base_size = 14, base_family = "sans", legend_position = "bottom") {
  69. theme_foundation <- ggplot2::theme_grey(base_size = base_size, base_family = base_family)
  70. theme_foundation %+replace%
  71. theme(
  72. plot.title = element_text(face = "bold", size = rel(1.2), hjust = 0.5),
  73. text = element_text(),
  74. panel.background = element_rect(colour = NA),
  75. plot.background = element_rect(colour = NA),
  76. panel.border = element_rect(colour = NA),
  77. axis.title = element_text(face = "bold", size = rel(1)),
  78. axis.title.y = element_text(angle = 90, vjust = 2, size = 18),
  79. axis.title.x = element_text(vjust = -0.2, size = 18),
  80. axis.line = element_line(colour = "black"),
  81. axis.text.x = element_text(size = 16),
  82. axis.text.y = element_text(size = 16),
  83. panel.grid.major = element_line(colour = "#f0f0f0"),
  84. panel.grid.minor = element_blank(),
  85. legend.key = element_rect(colour = NA),
  86. legend.position = legend_position,
  87. legend.direction = ifelse(legend_position == "right", "vertical", "horizontal"),
  88. plot.margin = unit(c(10, 5, 5, 5), "mm"),
  89. strip.background = element_rect(colour = "#f0f0f0", fill = "#f0f0f0"),
  90. strip.text = element_text(face = "bold")
  91. )
  92. }
  93. scale_fill_publication <- function(...) {
  94. discrete_scale("fill", "Publication", manual_pal(values = c(
  95. "#386cb0", "#fdb462", "#7fc97f", "#ef3b2c", "#662506",
  96. "#a6cee3", "#fb9a99", "#984ea3", "#ffff33"
  97. )), ...)
  98. }
  99. scale_colour_publication <- function(...) {
  100. discrete_scale("colour", "Publication", manual_pal(values = c(
  101. "#386cb0", "#fdb462", "#7fc97f", "#ef3b2c", "#662506",
  102. "#a6cee3", "#fb9a99", "#984ea3", "#ffff33"
  103. )), ...)
  104. }
  105. # Load the initial dataframe from the easy_results_file
  106. load_and_filter_data <- function(easy_results_file, sd = 3) {
  107. df <- read.delim(easy_results_file, skip = 2, as.is = TRUE, row.names = 1, strip.white = TRUE)
  108. df <- df %>%
  109. filter(!(.[[1]] %in% c("", "Scan"))) %>%
  110. filter(!is.na(ORF) & ORF != "" & !Gene %in% c("BLANK", "Blank", "blank") & Drug != "BMH21") %>%
  111. # Rename columns
  112. rename(L = l, num = Num., AUC = AUC96, scan = Scan, last_bg = LstBackgrd, first_bg = X1stBackgrd) %>%
  113. mutate(
  114. across(c(Col, Row, num, L, K, r, scan, AUC, last_bg, first_bg), as.numeric),
  115. delta_bg = last_bg - first_bg,
  116. delta_bg_tolerance = mean(delta_bg, na.rm = TRUE) + (sd * sd(delta_bg, na.rm = TRUE)),
  117. NG = if_else(L == 0 & !is.na(L), 1, 0),
  118. DB = if_else(delta_bg >= delta_bg_tolerance, 1, 0),
  119. SM = 0,
  120. OrfRep = if_else(ORF == "YDL227C", "YDL227C", OrfRep), # should these be hardcoded?
  121. conc_num = as.numeric(gsub("[^0-9\\.]", "", Conc)),
  122. conc_num_factor = factor(as.numeric(factor(conc_num)) - 1),
  123. conc_num_factor_num = as.numeric(conc_num_factor)
  124. )
  125. return(df)
  126. }
  127. # Update Gene names using the SGD gene list
  128. update_gene_names <- function(df, sgd_gene_list) {
  129. # Load SGD gene list
  130. genes <- read.delim(file = sgd_gene_list,
  131. quote = "", header = FALSE,
  132. colClasses = c(rep("NULL", 3), rep("character", 2), rep("NULL", 11)))
  133. # Create a named vector for mapping ORF to GeneName
  134. gene_map <- setNames(genes$V5, genes$V4)
  135. # Vectorized match to find the GeneName from gene_map
  136. mapped_genes <- gene_map[df$ORF]
  137. # Replace NAs in mapped_genes with original Gene names (preserves existing Gene names if ORF is not found)
  138. updated_genes <- ifelse(is.na(mapped_genes) | df$OrfRep == "YDL227C", df$Gene, mapped_genes)
  139. # Ensure Gene is not left blank or incorrectly updated to "OCT1"
  140. df <- df %>%
  141. mutate(Gene = ifelse(updated_genes == "" | updated_genes == "OCT1", OrfRep, updated_genes))
  142. return(df)
  143. }
  144. calculate_summary_stats <- function(df, variables, group_vars) {
  145. summary_stats <- df %>%
  146. group_by(across(all_of(group_vars))) %>%
  147. summarise(
  148. N = n(),
  149. across(all_of(variables),
  150. list(
  151. mean = ~mean(., na.rm = TRUE),
  152. median = ~median(., na.rm = TRUE),
  153. max = ~ifelse(all(is.na(.)), NA, max(., na.rm = TRUE)),
  154. min = ~ifelse(all(is.na(.)), NA, min(., na.rm = TRUE)),
  155. sd = ~sd(., na.rm = TRUE),
  156. se = ~sd(., na.rm = TRUE) / sqrt(N - 1) # TODO non-standard SE, needs explanation
  157. ),
  158. .names = "{.fn}_{.col}"
  159. ),
  160. .groups = "drop"
  161. )
  162. # Create a cleaned version of df that doesn't overlap with summary_stats
  163. cleaned_df <- df %>%
  164. select(-any_of(setdiff(intersect(names(df), names(summary_stats)), group_vars)))
  165. df_joined <- left_join(cleaned_df, summary_stats, by = group_vars)
  166. return(list(summary_stats = summary_stats, df_with_stats = df_joined))
  167. }
  168. calculate_interaction_scores <- function(df, max_conc, bg_stats,
  169. group_vars = c("OrfRep", "Gene", "num")) {
  170. # Calculate total concentration variables
  171. total_conc_num <- length(unique(df$conc_num))
  172. calculations <- df %>%
  173. group_by(across(all_of(group_vars))) %>%
  174. mutate(
  175. NG = sum(NG, na.rm = TRUE),
  176. DB = sum(DB, na.rm = TRUE),
  177. SM = sum(SM, na.rm = TRUE),
  178. num_non_removed_concs = total_conc_num - sum(DB, na.rm = TRUE) - 1,
  179. # Calculate raw data
  180. Raw_Shift_L = first(mean_L) - bg_stats$mean_L,
  181. Raw_Shift_K = first(mean_K) - bg_stats$mean_K,
  182. Raw_Shift_r = first(mean_r) - bg_stats$mean_r,
  183. Raw_Shift_AUC = first(mean_AUC) - bg_stats$mean_AUC,
  184. Z_Shift_L = first(Raw_Shift_L) / bg_stats$sd_L,
  185. Z_Shift_K = first(Raw_Shift_K) / bg_stats$sd_K,
  186. Z_Shift_r = first(Raw_Shift_r) / bg_stats$sd_r,
  187. Z_Shift_AUC = first(Raw_Shift_AUC) / bg_stats$sd_AUC,
  188. Exp_L = WT_L + Raw_Shift_L,
  189. Exp_K = WT_K + Raw_Shift_K,
  190. Exp_r = WT_r + Raw_Shift_r,
  191. Exp_AUC = WT_AUC + Raw_Shift_AUC,
  192. Delta_L = mean_L - Exp_L,
  193. Delta_K = mean_K - Exp_K,
  194. Delta_r = mean_r - Exp_r,
  195. Delta_AUC = mean_AUC - Exp_AUC,
  196. Delta_L = if_else(NG == 1, mean_L - WT_L, Delta_L),
  197. Delta_K = if_else(NG == 1, mean_K - WT_K, Delta_K),
  198. Delta_r = if_else(NG == 1, mean_r - WT_r, Delta_r),
  199. Delta_AUC = if_else(NG == 1, mean_AUC - WT_AUC, Delta_AUC),
  200. Delta_L = if_else(SM == 1, mean_L - WT_L, Delta_L),
  201. # Calculate Z-scores
  202. Zscore_L = Delta_L / WT_sd_L,
  203. Zscore_K = Delta_K / WT_sd_K,
  204. Zscore_r = Delta_r / WT_sd_r,
  205. Zscore_AUC = Delta_AUC / WT_sd_AUC,
  206. # Fit linear models and store in list-columns
  207. gene_lm_L = list(lm(Delta_L ~ conc_num_factor_num, data = pick(everything()))),
  208. gene_lm_K = list(lm(Delta_K ~ conc_num_factor_num, data = pick(everything()))),
  209. gene_lm_r = list(lm(Delta_r ~ conc_num_factor_num, data = pick(everything()))),
  210. gene_lm_AUC = list(lm(Delta_AUC ~ conc_num_factor_num, data = pick(everything()))),
  211. # Extract coefficients using purrr::map_dbl
  212. lm_intercept_L = map_dbl(gene_lm_L, ~ coef(.x)[1]),
  213. lm_slope_L = map_dbl(gene_lm_L, ~ coef(.x)[2]),
  214. lm_intercept_K = map_dbl(gene_lm_K, ~ coef(.x)[1]),
  215. lm_slope_K = map_dbl(gene_lm_K, ~ coef(.x)[2]),
  216. lm_intercept_r = map_dbl(gene_lm_r, ~ coef(.x)[1]),
  217. lm_slope_r = map_dbl(gene_lm_r, ~ coef(.x)[2]),
  218. lm_intercept_AUC = map_dbl(gene_lm_AUC, ~ coef(.x)[1]),
  219. lm_slope_AUC = map_dbl(gene_lm_AUC, ~ coef(.x)[2]),
  220. # Calculate lm_Score_* based on coefficients
  221. lm_Score_L = max_conc * lm_slope_L + lm_intercept_L,
  222. lm_Score_K = max_conc * lm_slope_K + lm_intercept_K,
  223. lm_Score_r = max_conc * lm_slope_r + lm_intercept_r,
  224. lm_Score_AUC = max_conc * lm_slope_AUC + lm_intercept_AUC,
  225. # Calculate R-squared values
  226. R_Squared_L = map_dbl(gene_lm_L, ~ summary(.x)$r.squared),
  227. R_Squared_K = map_dbl(gene_lm_K, ~ summary(.x)$r.squared),
  228. R_Squared_r = map_dbl(gene_lm_r, ~ summary(.x)$r.squared),
  229. R_Squared_AUC = map_dbl(gene_lm_AUC, ~ summary(.x)$r.squared)
  230. ) %>%
  231. ungroup()
  232. # Calculate overall mean and SD for lm_Score_* variables
  233. lm_means_sds <- calculations %>%
  234. summarise(
  235. lm_mean_L = mean(lm_Score_L, na.rm = TRUE),
  236. lm_sd_L = sd(lm_Score_L, na.rm = TRUE),
  237. lm_mean_K = mean(lm_Score_K, na.rm = TRUE),
  238. lm_sd_K = sd(lm_Score_K, na.rm = TRUE),
  239. lm_mean_r = mean(lm_Score_r, na.rm = TRUE),
  240. lm_sd_r = sd(lm_Score_r, na.rm = TRUE),
  241. lm_mean_AUC = mean(lm_Score_AUC, na.rm = TRUE),
  242. lm_sd_AUC = sd(lm_Score_AUC, na.rm = TRUE)
  243. )
  244. calculations <- calculations %>%
  245. mutate(
  246. Z_lm_L = (lm_Score_L - lm_means_sds$lm_mean_L) / lm_means_sds$lm_sd_L,
  247. Z_lm_K = (lm_Score_K - lm_means_sds$lm_mean_K) / lm_means_sds$lm_sd_K,
  248. Z_lm_r = (lm_Score_r - lm_means_sds$lm_mean_r) / lm_means_sds$lm_sd_r,
  249. Z_lm_AUC = (lm_Score_AUC - lm_means_sds$lm_mean_AUC) / lm_means_sds$lm_sd_AUC
  250. )
  251. # Summarize some of the stats
  252. interactions <- calculations %>%
  253. group_by(across(all_of(group_vars))) %>%
  254. mutate(
  255. # Calculate raw shifts
  256. Raw_Shift_L = first(Raw_Shift_L),
  257. Raw_Shift_K = first(Raw_Shift_K),
  258. Raw_Shift_r = first(Raw_Shift_r),
  259. Raw_Shift_AUC = first(Raw_Shift_AUC),
  260. # Calculate Z-shifts
  261. Z_Shift_L = first(Z_Shift_L),
  262. Z_Shift_K = first(Z_Shift_K),
  263. Z_Shift_r = first(Z_Shift_r),
  264. Z_Shift_AUC = first(Z_Shift_AUC),
  265. # Sum Z-scores
  266. Sum_Z_Score_L = sum(Zscore_L),
  267. Sum_Z_Score_K = sum(Zscore_K),
  268. Sum_Z_Score_r = sum(Zscore_r),
  269. Sum_Z_Score_AUC = sum(Zscore_AUC),
  270. # Calculate Average Z-scores
  271. Avg_Zscore_L = Sum_Z_Score_L / num_non_removed_concs,
  272. Avg_Zscore_K = Sum_Z_Score_K / num_non_removed_concs,
  273. Avg_Zscore_r = Sum_Z_Score_r / (total_conc_num - 1),
  274. Avg_Zscore_AUC = Sum_Z_Score_AUC / (total_conc_num - 1)
  275. ) %>%
  276. arrange(desc(Z_lm_L), desc(NG)) %>%
  277. ungroup()
  278. # Declare column order for output
  279. calculations <- calculations %>%
  280. select(
  281. "OrfRep", "Gene", "num", "conc_num", "conc_num_factor", "N",
  282. "mean_L", "mean_K", "mean_r", "mean_AUC",
  283. "median_L", "median_K", "median_r", "median_AUC",
  284. "sd_L", "sd_K", "sd_r", "sd_AUC",
  285. "se_L", "se_K", "se_r", "se_AUC",
  286. "Raw_Shift_L", "Raw_Shift_K", "Raw_Shift_r", "Raw_Shift_AUC",
  287. "Z_Shift_L", "Z_Shift_K", "Z_Shift_r", "Z_Shift_AUC",
  288. "WT_L", "WT_K", "WT_r", "WT_AUC",
  289. "WT_sd_L", "WT_sd_K", "WT_sd_r", "WT_sd_AUC",
  290. "Exp_L", "Exp_K", "Exp_r", "Exp_AUC",
  291. "Delta_L", "Delta_K", "Delta_r", "Delta_AUC",
  292. "Zscore_L", "Zscore_K", "Zscore_r", "Zscore_AUC",
  293. "NG", "SM", "DB")
  294. interactions <- interactions %>%
  295. select(
  296. "OrfRep", "Gene", "conc_num", "conc_num_factor", "num", "NG", "DB", "SM",
  297. "Raw_Shift_L", "Raw_Shift_K", "Raw_Shift_r", "Raw_Shift_AUC",
  298. "Z_Shift_L", "Z_Shift_K", "Z_Shift_r", "Z_Shift_AUC",
  299. "Sum_Z_Score_L", "Sum_Z_Score_K", "Sum_Z_Score_r", "Sum_Z_Score_AUC",
  300. "Avg_Zscore_L", "Avg_Zscore_K", "Avg_Zscore_r", "Avg_Zscore_AUC",
  301. "lm_Score_L", "lm_Score_K", "lm_Score_r", "lm_Score_AUC",
  302. "R_Squared_L", "R_Squared_K", "R_Squared_r", "R_Squared_AUC",
  303. "Z_lm_L", "Z_lm_K", "Z_lm_r", "Z_lm_AUC")
  304. cleaned_df <- df %>%
  305. select(-any_of(
  306. setdiff(intersect(names(df), names(interactions)),
  307. c("OrfRep", "Gene", "num", "conc_num", "conc_num_factor"))))
  308. interactions_joined <- left_join(cleaned_df, interactions, by = c("OrfRep", "Gene", "num", "conc_num", "conc_num_factor"))
  309. return(list(
  310. calculations = calculations,
  311. interactions = interactions,
  312. interactions_joined = interactions_joined))
  313. }
  314. generate_and_save_plots <- function(out_dir, filename, plot_configs, grid_layout = NULL) {
  315. message("Generating ", filename, ".pdf and ", filename, ".html")
  316. # Prepare lists to collect plots
  317. static_plots <- list()
  318. plotly_plots <- list()
  319. for (i in seq_along(plot_configs)) {
  320. config <- plot_configs[[i]]
  321. df <- config$df
  322. aes_mapping <- if (config$plot_type == "bar" || config$plot_type == "density") {
  323. if (is.null(config$color_var)) {
  324. aes(x = .data[[config$x_var]])
  325. } else {
  326. aes(x = .data[[config$x_var]], color = as.factor(.data[[config$color_var]]))
  327. }
  328. } else if (is.null(config$color_var)) {
  329. aes(x = .data[[config$x_var]], y = .data[[config$y_var]])
  330. } else {
  331. aes(x = .data[[config$x_var]], y = .data[[config$y_var]], color = as.factor(.data[[config$color_var]]))
  332. }
  333. # Start building the plot with aes_mapping
  334. plot_base <- ggplot(df, aes_mapping)
  335. # Use appropriate helper function based on plot type
  336. plot <- switch(config$plot_type,
  337. "scatter" = generate_scatter_plot(plot_base, config),
  338. "box" = generate_box_plot(plot_base, config),
  339. "density" = plot_base + geom_density(),
  340. "bar" = plot_base + geom_bar(),
  341. plot_base # default case if no type matches
  342. )
  343. # Apply additional settings
  344. if (!is.null(config$legend_position)) {
  345. plot <- plot + theme(legend.position = config$legend_position)
  346. }
  347. # Add title and labels
  348. if (!is.null(config$title)) {
  349. plot <- plot + ggtitle(config$title)
  350. }
  351. if (!is.null(config$x_label)) {
  352. plot <- plot + xlab(config$x_label)
  353. }
  354. if (!is.null(config$y_label)) {
  355. plot <- plot + ylab(config$y_label)
  356. }
  357. # Apply scale_color_discrete(guide = FALSE) when color_var is NULL
  358. if (is.null(config$color_var)) {
  359. plot <- plot + scale_color_discrete(guide = "none")
  360. }
  361. # Add interactive tooltips for plotly
  362. tooltip_vars <- c()
  363. if (config$plot_type == "scatter") {
  364. if (!is.null(config$delta_bg_point) && config$delta_bg_point) {
  365. tooltip_vars <- c(tooltip_vars, "OrfRep", "Gene", "delta_bg")
  366. } else if (!is.null(config$gene_point) && config$gene_point) {
  367. tooltip_vars <- c(tooltip_vars, "OrfRep", "Gene")
  368. } else if (!is.null(config$y_var) && !is.null(config$x_var)) {
  369. tooltip_vars <- c(config$x_var, config$y_var)
  370. }
  371. }
  372. # Convert to plotly object
  373. if (length(tooltip_vars) > 0) {
  374. plotly_plot <- ggplotly(plot, tooltip = tooltip_vars)
  375. } else {
  376. plotly_plot <- ggplotly(plot, tooltip = "none")
  377. }
  378. # Adjust legend position if specified
  379. if (!is.null(config$legend_position) && config$legend_position == "bottom") {
  380. plotly_plot <- plotly_plot %>% layout(legend = list(orientation = "h"))
  381. }
  382. # Add plots to lists
  383. static_plots[[i]] <- plot
  384. plotly_plots[[i]] <- plotly_plot
  385. }
  386. # Save static PDF plots
  387. pdf(file.path(out_dir, paste0(filename, ".pdf")), width = 14, height = 9)
  388. lapply(static_plots, print)
  389. dev.off()
  390. # Combine and save interactive HTML plots
  391. combined_plot <- subplot(
  392. plotly_plots,
  393. nrows = if (!is.null(grid_layout) && !is.null(grid_layout$nrow)) {
  394. grid_layout$nrow
  395. } else {
  396. # Calculate nrow based on the length of plotly_plots (default 1 row if only one plot)
  397. ceiling(length(plotly_plots) / ifelse(!is.null(grid_layout) && !is.null(grid_layout$ncol), grid_layout$ncol, 1))
  398. },
  399. margin = 0.05
  400. )
  401. saveWidget(combined_plot, file = file.path(out_dir, paste0(filename, ".html")), selfcontained = TRUE)
  402. }
  403. generate_scatter_plot <- function(plot, config) {
  404. shape <- if (!is.null(config$shape)) config$shape else 3
  405. size <- if (!is.null(config$size)) config$size else 0.1
  406. position <-
  407. if (!is.null(config$position) && config$position == "jitter") {
  408. position_jitter(width = 0.1, height = 0)
  409. } else {
  410. "identity"
  411. }
  412. plot <- plot + geom_point(
  413. shape = shape,
  414. size = size,
  415. position = position
  416. )
  417. if (!is.null(config$cyan_points) && config$cyan_points) {
  418. plot <- plot + geom_point(
  419. aes(x = .data[[config$x_var]], y = .data[[config$y_var]]),
  420. color = "cyan",
  421. shape = 3,
  422. size = 0.5
  423. )
  424. }
  425. # Add Smooth Line if specified
  426. if (!is.null(config$smooth) && config$smooth) {
  427. smooth_color <- if (!is.null(config$smooth_color)) config$smooth_color else "blue"
  428. if (!is.null(config$lm_line)) {
  429. plot <- plot +
  430. geom_abline(
  431. intercept = config$lm_line$intercept,
  432. slope = config$lm_line$slope,
  433. color = smooth_color
  434. )
  435. } else {
  436. plot <- plot +
  437. geom_smooth(
  438. method = "lm",
  439. se = FALSE,
  440. color = smooth_color
  441. )
  442. }
  443. }
  444. # Add SD Bands if specified
  445. if (!is.null(config$sd_band)) {
  446. plot <- plot +
  447. annotate(
  448. "rect",
  449. xmin = -Inf, xmax = Inf,
  450. ymin = config$sd_band, ymax = Inf,
  451. fill = ifelse(!is.null(config$fill_positive), config$fill_positive, "#542788"),
  452. alpha = ifelse(!is.null(config$alpha_positive), config$alpha_positive, 0.3)
  453. ) +
  454. annotate(
  455. "rect",
  456. xmin = -Inf, xmax = Inf,
  457. ymin = -config$sd_band, ymax = -Inf,
  458. fill = ifelse(!is.null(config$fill_negative), config$fill_negative, "orange"),
  459. alpha = ifelse(!is.null(config$alpha_negative), config$alpha_negative, 0.3)
  460. ) +
  461. geom_hline(
  462. yintercept = c(-config$sd_band, config$sd_band),
  463. color = ifelse(!is.null(config$hl_color), config$hl_color, "gray")
  464. )
  465. }
  466. # Add Rectangles if specified
  467. if (!is.null(config$rectangles)) {
  468. for (rect in config$rectangles) {
  469. plot <- plot + annotate(
  470. "rect",
  471. xmin = rect$xmin,
  472. xmax = rect$xmax,
  473. ymin = rect$ymin,
  474. ymax = rect$ymax,
  475. fill = ifelse(is.null(rect$fill), NA, rect$fill),
  476. color = ifelse(is.null(rect$color), "black", rect$color),
  477. alpha = ifelse(is.null(rect$alpha), 0.1, rect$alpha)
  478. )
  479. }
  480. }
  481. # Add Error Bars if specified
  482. if (!is.null(config$error_bar) && config$error_bar && !is.null(config$y_var)) {
  483. y_mean_col <- paste0("mean_", config$y_var)
  484. y_sd_col <- paste0("sd_", config$y_var)
  485. plot <- plot +
  486. geom_errorbar(
  487. aes(
  488. ymin = !!sym(y_mean_col) - !!sym(y_sd_col),
  489. ymax = !!sym(y_mean_col) + !!sym(y_sd_col)
  490. ),
  491. alpha = 0.3
  492. )
  493. }
  494. # Customize X-axis if specified
  495. if (!is.null(config$x_breaks) && !is.null(config$x_labels) && !is.null(config$x_label)) {
  496. plot <- plot +
  497. scale_x_discrete(
  498. name = config$x_label,
  499. breaks = config$x_breaks,
  500. labels = config$x_labels
  501. )
  502. }
  503. # Apply coord_cartesian if specified
  504. if (!is.null(config$coord_cartesian)) {
  505. plot <- plot + coord_cartesian(ylim = config$coord_cartesian)
  506. }
  507. # Set Y-axis limits if specified
  508. if (!is.null(config$ylim_vals)) {
  509. plot <- plot + scale_y_continuous(limits = config$ylim_vals)
  510. }
  511. # Add Annotations if specified
  512. if (!is.null(config$annotations)) {
  513. for (annotation in config$annotations) {
  514. plot <- plot +
  515. annotate(
  516. "text",
  517. x = annotation$x,
  518. y = annotation$y,
  519. label = annotation$label,
  520. hjust = ifelse(is.null(annotation$hjust), 0.5, annotation$hjust),
  521. vjust = ifelse(is.null(annotation$vjust), 0.5, annotation$vjust),
  522. size = ifelse(is.null(annotation$size), 4, annotation$size),
  523. color = ifelse(is.null(annotation$color), "black", annotation$color)
  524. )
  525. }
  526. }
  527. # Add Title if specified
  528. if (!is.null(config$title)) {
  529. plot <- plot + ggtitle(config$title)
  530. }
  531. # Adjust Legend Position if specified
  532. if (!is.null(config$legend_position)) {
  533. plot <- plot + theme(legend.position = config$legend_position)
  534. }
  535. return(plot)
  536. }
  537. generate_box_plot <- function(plot, config) {
  538. plot <- plot + geom_boxplot()
  539. if (!is.null(config$x_breaks) && !is.null(config$x_labels) && !is.null(config$x_label)) {
  540. plot <- plot + scale_x_discrete(
  541. name = config$x_label,
  542. breaks = config$x_breaks,
  543. labels = config$x_labels
  544. )
  545. }
  546. if (!is.null(config$coord_cartesian)) {
  547. plot <- plot + coord_cartesian(ylim = config$coord_cartesian)
  548. }
  549. return(plot)
  550. }
  551. generate_plate_analysis_plot_configs <- function(variables, stages = c("before", "after"),
  552. df_before = NULL, df_after = NULL, plot_type = "scatter") {
  553. plots <- list()
  554. for (var in variables) {
  555. for (stage in stages) {
  556. df_plot <- if (stage == "before") df_before else df_after
  557. # Adjust settings based on plot_type
  558. if (plot_type == "scatter") {
  559. error_bar <- TRUE
  560. position <- "jitter"
  561. } else if (plot_type == "box") {
  562. error_bar <- FALSE
  563. position <- NULL
  564. }
  565. config <- list(
  566. df = df_plot,
  567. x_var = "scan",
  568. y_var = var,
  569. plot_type = plot_type,
  570. title = paste("Plate analysis by Drug Conc for", var, stage, "quality control"),
  571. error_bar = error_bar,
  572. color_var = "conc_num_factor",
  573. position = position
  574. )
  575. plots <- append(plots, list(config))
  576. }
  577. }
  578. return(plots)
  579. }
  580. generate_interaction_plot_configs <- function(df, variables, limits_map = NULL) {
  581. # Default limits_map if not provided
  582. if (is.null(limits_map)) {
  583. limits_map <- list(
  584. L = c(-65, 65),
  585. K = c(-65, 65),
  586. r = c(-0.65, 0.65),
  587. AUC = c(-6500, 6500)
  588. )
  589. }
  590. # Filter data
  591. df_filtered <- df
  592. for (var in names(limits_map)) {
  593. df_filtered <- df_filtered %>%
  594. filter(!is.na(!!sym(var)) &
  595. !!sym(var) >= limits_map[[var]][1] &
  596. !!sym(var) <= limits_map[[var]][2])
  597. }
  598. configs <- list()
  599. for (variable in variables) {
  600. y_range <- limits_map[[variable]]
  601. # Calculate annotation positions
  602. y_min <- min(y_range)
  603. y_max <- max(y_range)
  604. y_span <- y_max - y_min
  605. annotation_positions <- list(
  606. ZShift = y_max - 0.1 * y_span,
  607. lm_ZScore = y_max - 0.2 * y_span,
  608. NG = y_min + 0.2 * y_span,
  609. DB = y_min + 0.1 * y_span,
  610. SM = y_min + 0.05 * y_span
  611. )
  612. # Prepare linear model line
  613. lm_line <- list(
  614. intercept = df_filtered[[paste0("lm_intercept_", variable)]],
  615. slope = df_filtered[[paste0("lm_slope_", variable)]]
  616. )
  617. # Calculate x-axis position for annotations
  618. num_levels <- length(levels(df_filtered$conc_num_factor))
  619. x_pos <- (1 + num_levels) / 2
  620. # Generate annotations
  621. annotations <- lapply(names(annotation_positions), function(annotation_name) {
  622. label <- switch(annotation_name,
  623. ZShift = paste("ZShift =", round(df_filtered[[paste0("Z_Shift_", variable)]], 2)),
  624. lm_ZScore = paste("lm ZScore =", round(df_filtered[[paste0("Z_lm_", variable)]], 2)),
  625. NG = paste("NG =", df_filtered$NG),
  626. DB = paste("DB =", df_filtered$DB),
  627. SM = paste("SM =", df_filtered$SM),
  628. NULL
  629. )
  630. if (!is.null(label)) {
  631. list(x = x_pos, y = annotation_positions[[annotation_name]], label = label)
  632. } else {
  633. NULL
  634. }
  635. })
  636. annotations <- Filter(Negate(is.null), annotations)
  637. # Shared plot settings
  638. plot_settings <- list(
  639. df = df_filtered,
  640. x_var = "conc_num_factor",
  641. y_var = variable,
  642. ylim_vals = y_range,
  643. annotations = annotations,
  644. lm_line = lm_line,
  645. x_breaks = levels(df_filtered$conc_num_factor),
  646. x_labels = levels(df_filtered$conc_num_factor),
  647. x_label = unique(df_filtered$Drug[1]),
  648. coord_cartesian = y_range
  649. )
  650. # Scatter plot config
  651. configs[[length(configs) + 1]] <- modifyList(plot_settings, list(
  652. plot_type = "scatter",
  653. title = sprintf("%s %s", df_filtered$OrfRep[1], df_filtered$Gene[1]),
  654. error_bar = TRUE,
  655. position = "jitter"
  656. ))
  657. # Box plot config
  658. configs[[length(configs) + 1]] <- modifyList(plot_settings, list(
  659. plot_type = "box",
  660. title = sprintf("%s %s (box plot)", df_filtered$OrfRep[1], df_filtered$Gene[1]),
  661. error_bar = FALSE
  662. ))
  663. }
  664. return(configs)
  665. }
  666. generate_rank_plot_configs <- function(df, variables, is_lm = FALSE, adjust = FALSE, overlap_color = FALSE) {
  667. sd_bands <- c(1, 2, 3)
  668. avg_zscore_cols <- paste0("Avg_Zscore_", variables)
  669. z_lm_cols <- paste0("Z_lm_", variables)
  670. rank_avg_zscore_cols <- paste0("Rank_", variables)
  671. rank_z_lm_cols <- paste0("Rank_lm_", variables)
  672. configs <- list()
  673. if (adjust) {
  674. message("Replacing NA with 0.001 for Avg_Zscore_ and Z_lm_ columns for ranks")
  675. df <- df %>%
  676. mutate(
  677. across(all_of(avg_zscore_cols), ~ifelse(is.na(.), 0.001, .)),
  678. across(all_of(z_lm_cols), ~ifelse(is.na(.), 0.001, .))
  679. )
  680. }
  681. message("Calculating ranks for Avg_Zscore and Z_lm columns")
  682. rank_col_mapping <- setNames(rank_avg_zscore_cols, avg_zscore_cols)
  683. df_ranked <- df %>%
  684. mutate(across(all_of(avg_zscore_cols), ~rank(., na.last = "keep"), .names = "{rank_col_mapping[.col]}"))
  685. rank_lm_col_mapping <- setNames(rank_z_lm_cols, z_lm_cols)
  686. df_ranked <- df_ranked %>%
  687. mutate(across(all_of(z_lm_cols), ~rank(., na.last = "keep"), .names = "{rank_lm_col_mapping[.col]}"))
  688. # SD-based plots for L and K
  689. for (variable in c("L", "K")) {
  690. if (is_lm) {
  691. rank_var <- paste0("Rank_lm_", variable)
  692. zscore_var <- paste0("Z_lm_", variable)
  693. y_label <- paste("Int Z score", variable)
  694. } else {
  695. rank_var <- paste0("Rank_", variable)
  696. zscore_var <- paste0("Avg_Zscore_", variable)
  697. y_label <- paste("Avg Z score", variable)
  698. }
  699. for (sd_band in sd_bands) {
  700. num_enhancers <- sum(df_ranked[[zscore_var]] >= sd_band, na.rm = TRUE)
  701. num_suppressors <- sum(df_ranked[[zscore_var]] <= -sd_band, na.rm = TRUE)
  702. # Annotated plot configuration
  703. configs[[length(configs) + 1]] <- list(
  704. df = df_ranked,
  705. x_var = rank_var,
  706. y_var = zscore_var,
  707. plot_type = "scatter",
  708. title = paste(y_label, "vs. Rank for", variable, "above", sd_band, "SD"),
  709. sd_band = sd_band,
  710. fill_positive = "#542788",
  711. fill_negative = "orange",
  712. alpha_positive = 0.3,
  713. alpha_negative = 0.3,
  714. annotations = list(
  715. list(
  716. x = median(df_ranked[[rank_var]], na.rm = TRUE),
  717. y = 10,
  718. label = paste("Deletion Enhancers =", num_enhancers),
  719. hjust = 0.5,
  720. vjust = 1
  721. ),
  722. list(
  723. x = median(df_ranked[[rank_var]], na.rm = TRUE),
  724. y = -10,
  725. label = paste("Deletion Suppressors =", num_suppressors),
  726. hjust = 0.5,
  727. vjust = 0
  728. )
  729. ),
  730. shape = 3,
  731. size = 0.1,
  732. y_label = y_label,
  733. x_label = "Rank",
  734. legend_position = "none"
  735. )
  736. # Non-Annotated Plot Configuration
  737. configs[[length(configs) + 1]] <- list(
  738. df = df_ranked,
  739. x_var = rank_var,
  740. y_var = zscore_var,
  741. plot_type = "scatter",
  742. title = paste(y_label, "vs. Rank for", variable, "above", sd_band, "SD No Annotations"),
  743. sd_band = sd_band,
  744. fill_positive = "#542788",
  745. fill_negative = "orange",
  746. alpha_positive = 0.3,
  747. alpha_negative = 0.3,
  748. annotations = NULL,
  749. shape = 3,
  750. size = 0.1,
  751. y_label = y_label,
  752. x_label = "Rank",
  753. legend_position = "none"
  754. )
  755. }
  756. }
  757. # Avg ZScore and Rank Avg ZScore Plots for r, L, K, and AUC
  758. for (variable in variables) {
  759. for (plot_type in c("Avg Zscore vs lm", "Rank Avg Zscore vs lm")) {
  760. title <- paste(plot_type, variable)
  761. # Define specific variables based on plot type
  762. if (plot_type == "Avg Zscore vs lm") {
  763. x_var <- paste0("Avg_Zscore_", variable)
  764. y_var <- paste0("Z_lm_", variable)
  765. rectangles <- list(
  766. list(xmin = -2, xmax = 2, ymin = -2, ymax = 2,
  767. fill = NA, color = "grey20", alpha = 0.1
  768. )
  769. )
  770. } else if (plot_type == "Rank Avg Zscore vs lm") {
  771. x_var <- paste0("Rank_", variable)
  772. y_var <- paste0("Rank_lm_", variable)
  773. rectangles <- NULL
  774. }
  775. # Fit the linear model
  776. lm_model <- lm(as.formula(paste(y_var, "~", x_var)), data = df_ranked)
  777. # Extract intercept and slope from the model coefficients
  778. intercept <- coef(lm_model)[1]
  779. slope <- coef(lm_model)[2]
  780. configs[[length(configs) + 1]] <- list(
  781. df = df_ranked,
  782. x_var = x_var,
  783. y_var = y_var,
  784. plot_type = "scatter",
  785. title = title,
  786. annotations = list(
  787. list(
  788. x = median(df_ranked[[rank_var]], na.rm = TRUE),
  789. y = 10,
  790. label = paste("Deletion Enhancers =", num_enhancers),
  791. hjust = 0.5,
  792. vjust = 1
  793. ),
  794. list(
  795. x = median(df_ranked[[rank_var]], na.rm = TRUE),
  796. y = -10,
  797. label = paste("Deletion Suppressors =", num_suppressors),
  798. hjust = 0.5,
  799. vjust = 0
  800. )
  801. ),
  802. shape = 3,
  803. size = 0.1,
  804. smooth = TRUE,
  805. smooth_color = "black",
  806. lm_line = list(intercept = intercept, slope = slope),
  807. legend_position = "right",
  808. color_var = if (overlap_color) "Overlap" else NULL,
  809. x_label = x_var,
  810. y_label = y_var,
  811. rectangles = rectangles
  812. )
  813. }
  814. }
  815. return(configs)
  816. }
  817. generate_correlation_plot_configs <- function(df) {
  818. # Define relationships for plotting
  819. relationships <- list(
  820. list(x = "Z_lm_L", y = "Z_lm_K", label = "Interaction L vs. Interaction K"),
  821. list(x = "Z_lm_L", y = "Z_lm_r", label = "Interaction L vs. Interaction r"),
  822. list(x = "Z_lm_L", y = "Z_lm_AUC", label = "Interaction L vs. Interaction AUC"),
  823. list(x = "Z_lm_K", y = "Z_lm_r", label = "Interaction K vs. Interaction r"),
  824. list(x = "Z_lm_K", y = "Z_lm_AUC", label = "Interaction K vs. Interaction AUC"),
  825. list(x = "Z_lm_r", y = "Z_lm_AUC", label = "Interaction r vs. Interaction AUC")
  826. )
  827. configs <- list()
  828. for (rel in relationships) {
  829. # Fit linear model
  830. lm_model <- lm(as.formula(paste(rel$y, "~", rel$x)), data = df)
  831. lm_summary <- summary(lm_model)
  832. # Construct plot configuration
  833. config <- list(
  834. df = df,
  835. x_var = rel$x,
  836. y_var = rel$y,
  837. plot_type = "scatter",
  838. title = rel$label,
  839. x_label = paste("z-score", gsub("Z_lm_", "", rel$x)),
  840. y_label = paste("z-score", gsub("Z_lm_", "", rel$y)),
  841. annotations = list(
  842. list(
  843. x = Inf,
  844. y = Inf,
  845. label = paste("R-squared =", round(lm_summary$r.squared, 3)),
  846. hjust = 1.1,
  847. vjust = 2,
  848. size = 4,
  849. color = "black"
  850. )
  851. ),
  852. smooth = TRUE,
  853. smooth_color = "tomato3",
  854. lm_line = list(intercept = coef(lm_model)[1], slope = coef(lm_model)[2]),
  855. legend_position = "right",
  856. shape = 3,
  857. size = 0.5,
  858. color_var = "Overlap",
  859. rectangles = list(
  860. list(
  861. xmin = -2, xmax = 2, ymin = -2, ymax = 2,
  862. fill = NA, color = "grey20", alpha = 0.1
  863. )
  864. ),
  865. cyan_points = TRUE
  866. )
  867. configs[[length(configs) + 1]] <- config
  868. }
  869. return(configs)
  870. }
  871. main <- function() {
  872. lapply(names(args$experiments), function(exp_name) {
  873. exp <- args$experiments[[exp_name]]
  874. exp_path <- exp$path
  875. exp_sd <- exp$sd
  876. out_dir <- file.path(exp_path, "zscores")
  877. out_dir_qc <- file.path(exp_path, "zscores", "qc")
  878. dir.create(out_dir, recursive = TRUE, showWarnings = FALSE)
  879. dir.create(out_dir_qc, recursive = TRUE, showWarnings = FALSE)
  880. summary_vars <- c("L", "K", "r", "AUC", "delta_bg") # fields to filter and calculate summary stats across
  881. interaction_vars <- c("L", "K", "r", "AUC") # fields to calculate interaction z-scores
  882. print_vars <- c("OrfRep", "Plate", "scan", "Col", "Row", "num", "OrfRep", "conc_num", "conc_num_factor",
  883. "delta_bg_tolerance", "delta_bg", "Gene", "L", "K", "r", "AUC", "NG", "DB")
  884. message("Loading and filtering data for experiment: ", exp_name)
  885. df <- load_and_filter_data(args$easy_results_file, sd = exp_sd) %>%
  886. update_gene_names(args$sgd_gene_list) %>%
  887. as_tibble()
  888. # Filter rows above delta background tolerance
  889. df_above_tolerance <- df %>% filter(DB == 1)
  890. df_na <- df %>% mutate(across(all_of(summary_vars), ~ ifelse(DB == 1, NA, .))) # formerly X
  891. df_no_zeros <- df_na %>% filter(L > 0) # formerly X_noZero
  892. # Save some constants
  893. max_conc <- max(df$conc_num_factor_num)
  894. l_half_median <- (median(df_above_tolerance$L, na.rm = TRUE)) / 2
  895. k_half_median <- (median(df_above_tolerance$K, na.rm = TRUE)) / 2
  896. message("Calculating summary statistics before quality control")
  897. df_stats <- calculate_summary_stats(
  898. df = df,
  899. variables = summary_vars,
  900. group_vars = c("conc_num", "conc_num_factor"))$df_with_stats
  901. message("Filtering non-finite data")
  902. message("Calculating summary statistics after quality control")
  903. ss <- calculate_summary_stats(
  904. df = df_na,
  905. variables = summary_vars,
  906. group_vars = c("conc_num", "conc_num_factor"))
  907. df_na_ss <- ss$summary_stats
  908. df_na_stats <- ss$df_with_stats
  909. write.csv(df_na_ss, file = file.path(out_dir, "summary_stats_all_strains.csv"), row.names = FALSE)
  910. df_na_stats <- df_na_stats %>%
  911. mutate(
  912. WT_L = mean_L,
  913. WT_K = mean_K,
  914. WT_r = mean_r,
  915. WT_AUC = mean_AUC,
  916. WT_sd_L = sd_L,
  917. WT_sd_K = sd_K,
  918. WT_sd_r = sd_r,
  919. WT_sd_AUC = sd_AUC
  920. )
  921. # Pull the background means and standard deviations from zero concentration for interactions
  922. bg_stats <- df_na_stats %>%
  923. filter(conc_num == 0) %>%
  924. summarise(
  925. mean_L = first(mean_L),
  926. mean_K = first(mean_K),
  927. mean_r = first(mean_r),
  928. mean_AUC = first(mean_AUC),
  929. sd_L = first(sd_L),
  930. sd_K = first(sd_K),
  931. sd_r = first(sd_r),
  932. sd_AUC = first(sd_AUC)
  933. )
  934. message("Calculating summary statistics after quality control excluding zero values")
  935. df_no_zeros_stats <- calculate_summary_stats(
  936. df = df_no_zeros,
  937. variables = summary_vars,
  938. group_vars = c("conc_num", "conc_num_factor")
  939. )$df_with_stats
  940. message("Filtering by 2SD of K")
  941. df_na_within_2sd_k <- df_na_stats %>%
  942. filter(K >= (mean_K - 2 * sd_K) & K <= (mean_K + 2 * sd_K))
  943. df_na_outside_2sd_k <- df_na_stats %>%
  944. filter(K < (mean_K - 2 * sd_K) | K > (mean_K + 2 * sd_K))
  945. message("Calculating summary statistics for L within 2SD of K")
  946. # TODO We're omitting the original z_max calculation, not sure if needed?
  947. ss <- calculate_summary_stats(df_na_within_2sd_k, "L", group_vars = c("conc_num", "conc_num_factor"))$summary_stats
  948. write.csv(ss,
  949. file = file.path(out_dir_qc, "max_observed_L_vals_for_spots_within_2sd_K.csv"),
  950. row.names = FALSE)
  951. message("Calculating summary statistics for L outside 2SD of K")
  952. ss <- calculate_summary_stats(df_na_outside_2sd_k, "L", group_vars = c("conc_num", "conc_num_factor"))
  953. df_na_l_outside_2sd_k_stats <- ss$df_with_stats
  954. write.csv(ss$summary_stats,
  955. file = file.path(out_dir, "max_observed_L_vals_for_spots_outside_2sd_K.csv"),
  956. row.names = FALSE)
  957. # Each plots list corresponds to a file
  958. l_vs_k_plot_configs <- list(
  959. list(
  960. df = df,
  961. x_var = "L",
  962. y_var = "K",
  963. plot_type = "scatter",
  964. delta_bg_point = TRUE,
  965. title = "Raw L vs K before quality control",
  966. color_var = "conc_num_factor",
  967. error_bar = FALSE,
  968. legend_position = "right"
  969. )
  970. )
  971. frequency_delta_bg_plot_configs <- list(
  972. list(
  973. df = df_stats,
  974. x_var = "delta_bg",
  975. y_var = NULL,
  976. plot_type = "density",
  977. title = "Plate analysis by Drug Conc for Delta Background before quality control",
  978. color_var = "conc_num_factor",
  979. x_label = "Delta Background",
  980. y_label = "Density",
  981. error_bar = FALSE,
  982. legend_position = "right"),
  983. list(
  984. df = df_stats,
  985. x_var = "delta_bg",
  986. y_var = NULL,
  987. plot_type = "bar",
  988. title = "Plate analysis by Drug Conc for Delta Background before quality control",
  989. color_var = "conc_num_factor",
  990. x_label = "Delta Background",
  991. y_label = "Count",
  992. error_bar = FALSE,
  993. legend_position = "right")
  994. )
  995. above_threshold_plot_configs <- list(
  996. list(
  997. df = df_above_tolerance,
  998. x_var = "L",
  999. y_var = "K",
  1000. plot_type = "scatter",
  1001. delta_bg_point = TRUE,
  1002. title = paste("Raw L vs K for strains above Delta Background threshold of",
  1003. df_above_tolerance$delta_bg_tolerance[[1]], "or above"),
  1004. color_var = "conc_num_factor",
  1005. position = "jitter",
  1006. annotations = list(
  1007. list(
  1008. x = l_half_median,
  1009. y = k_half_median,
  1010. label = paste("# strains above Delta Background tolerance =", nrow(df_above_tolerance))
  1011. )
  1012. ),
  1013. error_bar = FALSE,
  1014. legend_position = "right"
  1015. )
  1016. )
  1017. plate_analysis_plot_configs <- generate_plate_analysis_plot_configs(
  1018. variables = summary_vars,
  1019. df_before = df_stats,
  1020. df_after = df_na_stats,
  1021. )
  1022. plate_analysis_boxplot_configs <- generate_plate_analysis_plot_configs(
  1023. variables = summary_vars,
  1024. df_before = df_stats,
  1025. df_after = df_na_stats,
  1026. plot_type = "box"
  1027. )
  1028. plate_analysis_no_zeros_plot_configs <- generate_plate_analysis_plot_configs(
  1029. variables = summary_vars,
  1030. stages = c("after"), # Only after QC
  1031. df_after = df_no_zeros_stats,
  1032. )
  1033. plate_analysis_no_zeros_boxplot_configs <- generate_plate_analysis_plot_configs(
  1034. variables = summary_vars,
  1035. stages = c("after"), # Only after QC
  1036. df_after = df_no_zeros_stats,
  1037. plot_type = "box"
  1038. )
  1039. l_outside_2sd_k_plot_configs <- list(
  1040. list(
  1041. df = df_na_l_outside_2sd_k_stats,
  1042. x_var = "L",
  1043. y_var = "K",
  1044. plot_type = "scatter",
  1045. delta_bg_point = TRUE,
  1046. title = "Raw L vs K for strains falling outside 2SD of the K mean at each Conc",
  1047. color_var = "conc_num_factor",
  1048. position = "jitter",
  1049. legend_position = "right"
  1050. )
  1051. )
  1052. delta_bg_outside_2sd_k_plot_configs <- list(
  1053. list(
  1054. df = df_na_l_outside_2sd_k_stats,
  1055. x_var = "delta_bg",
  1056. y_var = "K",
  1057. plot_type = "scatter",
  1058. gene_point = TRUE,
  1059. title = "Delta Background vs K for strains falling outside 2SD of the K mean at each Conc",
  1060. color_var = "conc_num_factor",
  1061. position = "jitter",
  1062. legend_position = "right"
  1063. )
  1064. )
  1065. message("Generating quality control plots")
  1066. # TODO trying out some parallelization
  1067. # future::plan(future::multicore, workers = parallel::detectCores())
  1068. future::plan(future::multisession, workers = 3)
  1069. plot_configs <- list(
  1070. list(out_dir = out_dir_qc, filename = "L_vs_K_before_quality_control",
  1071. plot_configs = l_vs_k_plot_configs),
  1072. list(out_dir = out_dir_qc, filename = "frequency_delta_background",
  1073. plot_configs = frequency_delta_bg_plot_configs),
  1074. list(out_dir = out_dir_qc, filename = "L_vs_K_above_threshold",
  1075. plot_configs = above_threshold_plot_configs),
  1076. list(out_dir = out_dir_qc, filename = "plate_analysis",
  1077. plot_configs = plate_analysis_plot_configs),
  1078. list(out_dir = out_dir_qc, filename = "plate_analysis_boxplots",
  1079. plot_configs = plate_analysis_boxplot_configs),
  1080. list(out_dir = out_dir_qc, filename = "plate_analysis_no_zeros",
  1081. plot_configs = plate_analysis_no_zeros_plot_configs),
  1082. list(out_dir = out_dir_qc, filename = "plate_analysis_no_zeros_boxplots",
  1083. plot_configs = plate_analysis_no_zeros_boxplot_configs),
  1084. list(out_dir = out_dir_qc, name = "L_vs_K_for_strains_2SD_outside_mean_K",
  1085. plot_configs = l_outside_2sd_k_plot_configs),
  1086. list(out_dir = out_dir_qc, name = "delta_background_vs_K_for_strains_2sd_outside_mean_K",
  1087. plot_configs = delta_bg_outside_2sd_k_plot_configs)
  1088. )
  1089. # Generating quality control plots in parallel
  1090. furrr::future_map(plot_configs, function(config) {
  1091. generate_and_save_plots(config$out_dir, config$filename, config$plot_configs)
  1092. }, .options = furrr_options(seed = TRUE))
  1093. # Process background strains
  1094. bg_strains <- c("YDL227C")
  1095. lapply(bg_strains, function(strain) {
  1096. message("Processing background strain: ", strain)
  1097. # Handle missing data by setting zero values to NA
  1098. # and then removing any rows with NA in L col
  1099. df_bg <- df_na %>%
  1100. filter(OrfRep == strain) %>%
  1101. mutate(
  1102. L = if_else(L == 0, NA, L),
  1103. K = if_else(K == 0, NA, K),
  1104. r = if_else(r == 0, NA, r),
  1105. AUC = if_else(AUC == 0, NA, AUC)
  1106. ) %>%
  1107. filter(!is.na(L))
  1108. # Recalculate summary statistics for the background strain
  1109. message("Calculating summary statistics for background strain")
  1110. ss_bg <- calculate_summary_stats(df_bg, summary_vars, group_vars = c("OrfRep", "conc_num", "conc_num_factor"))
  1111. summary_stats_bg <- ss_bg$summary_stats
  1112. write.csv(summary_stats_bg,
  1113. file = file.path(out_dir, paste0("summary_stats_background_strain_", strain, ".csv")),
  1114. row.names = FALSE)
  1115. # Set the missing values to the highest theoretical value at each drug conc for L
  1116. # Leave other values as 0 for the max/min
  1117. df_reference <- df_na_stats %>% # formerly X2_RF
  1118. filter(OrfRep == strain) %>%
  1119. filter(!is.na(L)) %>%
  1120. group_by(conc_num, conc_num_factor) %>%
  1121. mutate(
  1122. max_l_theoretical = max(max_L, na.rm = TRUE),
  1123. L = ifelse(L == 0 & !is.na(L) & conc_num > 0, max_l_theoretical, L),
  1124. SM = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, 1, 0),
  1125. L = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, max_l_theoretical, L)) %>%
  1126. ungroup()
  1127. # Ditto for deletion strains
  1128. df_deletion <- df_na_stats %>% # formerly X2
  1129. filter(OrfRep != strain) %>%
  1130. filter(!is.na(L)) %>%
  1131. mutate(SM = 0) %>%
  1132. group_by(conc_num, conc_num_factor) %>%
  1133. mutate(
  1134. max_l_theoretical = max(max_L, na.rm = TRUE),
  1135. L = ifelse(L == 0 & !is.na(L) & conc_num > 0, max_l_theoretical, L),
  1136. SM = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, 1, SM),
  1137. L = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, max_l_theoretical, L)) %>%
  1138. ungroup()
  1139. message("Calculating reference strain interaction scores")
  1140. df_reference_stats <- calculate_summary_stats(
  1141. df = df_reference,
  1142. variables = interaction_vars,
  1143. group_vars = c("OrfRep", "Gene", "num", "conc_num", "conc_num_factor")
  1144. )$df_with_stats
  1145. reference_results <- calculate_interaction_scores(df_reference_stats, max_conc, bg_stats, group_vars = c("OrfRep", "Gene", "num"))
  1146. zscore_calculations_reference <- reference_results$calculations
  1147. zscore_interactions_reference <- reference_results$interactions
  1148. zscore_interactions_reference_joined <- reference_results$interactions_joined
  1149. message("Calculating deletion strain(s) interactions scores")
  1150. df_deletion_stats <- calculate_summary_stats(
  1151. df = df_deletion,
  1152. variables = interaction_vars,
  1153. group_vars = c("OrfRep", "Gene", "conc_num", "conc_num_factor")
  1154. )$df_with_stats
  1155. deletion_results <- calculate_interaction_scores(df_deletion_stats, max_conc, bg_stats, group_vars = c("OrfRep"))
  1156. zscore_calculations <- deletion_results$calculations
  1157. zscore_interactions <- deletion_results$interactions
  1158. zscore_interactions_joined <- deletion_results$interactions_joined
  1159. # Writing Z-Scores to file
  1160. write.csv(zscore_calculations_reference, file = file.path(out_dir, "zscore_calculations_reference.csv"), row.names = FALSE)
  1161. write.csv(zscore_calculations, file = file.path(out_dir, "zscore_calculations.csv"), row.names = FALSE)
  1162. write.csv(zscore_interactions_reference, file = file.path(out_dir, "zscore_interactions_reference.csv"), row.names = FALSE)
  1163. write.csv(zscore_interactions, file = file.path(out_dir, "zscore_interactions.csv"), row.names = FALSE)
  1164. # Create interaction plots
  1165. message("Generating reference interaction plots")
  1166. reference_plot_configs <- generate_interaction_plot_configs(zscore_interactions_reference_joined, interaction_vars)
  1167. generate_and_save_plots(out_dir, "interaction_plots_reference", reference_plot_configs, grid_layout = list(ncol = 4, nrow = 3))
  1168. message("Generating deletion interaction plots")
  1169. deletion_plot_configs <- generate_interaction_plot_configs(zscore_interactions_joined, interaction_vars)
  1170. generate_and_save_plots(out_dir, "interaction_plots", deletion_plot_configs, grid_layout = list(ncol = 4, nrow = 3))
  1171. # Define conditions for enhancers and suppressors
  1172. # TODO Add to study config?
  1173. threshold <- 2
  1174. enhancer_condition_L <- zscore_interactions$Avg_Zscore_L >= threshold
  1175. suppressor_condition_L <- zscore_interactions$Avg_Zscore_L <= -threshold
  1176. enhancer_condition_K <- zscore_interactions$Avg_Zscore_K >= threshold
  1177. suppressor_condition_K <- zscore_interactions$Avg_Zscore_K <= -threshold
  1178. # Subset data
  1179. enhancers_L <- zscore_interactions[enhancer_condition_L, ]
  1180. suppressors_L <- zscore_interactions[suppressor_condition_L, ]
  1181. enhancers_K <- zscore_interactions[enhancer_condition_K, ]
  1182. suppressors_K <- zscore_interactions[suppressor_condition_K, ]
  1183. # Save enhancers and suppressors
  1184. message("Writing enhancer/suppressor csv files")
  1185. write.csv(enhancers_L, file = file.path(out_dir, "zscore_interactions_deletion_enhancers_L.csv"), row.names = FALSE)
  1186. write.csv(suppressors_L, file = file.path(out_dir, "zscore_interactions_deletion_suppressors_L.csv"), row.names = FALSE)
  1187. write.csv(enhancers_K, file = file.path(out_dir, "zscore_interactions_deletion_enhancers_K.csv"), row.names = FALSE)
  1188. write.csv(suppressors_K, file = file.path(out_dir, "zscore_interactions_deletion_suppressors_K.csv"), row.names = FALSE)
  1189. # Combine conditions for enhancers and suppressors
  1190. enhancers_and_suppressors_L <- zscore_interactions[enhancer_condition_L | suppressor_condition_L, ]
  1191. enhancers_and_suppressors_K <- zscore_interactions[enhancer_condition_K | suppressor_condition_K, ]
  1192. # Save combined enhancers and suppressors
  1193. write.csv(enhancers_and_suppressors_L,
  1194. file = file.path(out_dir, "zscore_interactions_deletion_enhancers_and_suppressors_L.csv"), row.names = FALSE)
  1195. write.csv(enhancers_and_suppressors_K,
  1196. file = file.path(out_dir, "zscore_interaction_deletion_enhancers_and_suppressors_K.csv"), row.names = FALSE)
  1197. # Handle linear model based enhancers and suppressors
  1198. lm_threshold <- 2
  1199. enhancers_lm_L <- zscore_interactions[zscore_interactions$Z_lm_L >= lm_threshold, ]
  1200. suppressors_lm_L <- zscore_interactions[zscore_interactions$Z_lm_L <= -lm_threshold, ]
  1201. enhancers_lm_K <- zscore_interactions[zscore_interactions$Z_lm_K >= lm_threshold, ]
  1202. suppressors_lm_K <- zscore_interactions[zscore_interactions$Z_lm_K <= -lm_threshold, ]
  1203. # Save linear model based enhancers and suppressors
  1204. message("Writing linear model enhancer/suppressor csv files")
  1205. write.csv(enhancers_lm_L,
  1206. file = file.path(out_dir, "zscore_interactions_deletion_enhancers_lm_L.csv"), row.names = FALSE)
  1207. write.csv(suppressors_lm_L,
  1208. file = file.path(out_dir, "zscore_interactions_deletion_suppressors_lm_L.csv"), row.names = FALSE)
  1209. write.csv(enhancers_lm_K,
  1210. file = file.path(out_dir, "zscore_interactions_deletion_enhancers_lm_K.csv"), row.names = FALSE)
  1211. write.csv(suppressors_lm_K,
  1212. file = file.path(out_dir, "zscore_interactions_deletion_suppressors_lm_K.csv"), row.names = FALSE)
  1213. message("Generating rank plots")
  1214. rank_plot_configs <- generate_rank_plot_configs(
  1215. df = zscore_interactions_joined,
  1216. variables = interaction_vars,
  1217. is_lm = FALSE,
  1218. adjust = TRUE
  1219. )
  1220. generate_and_save_plots(out_dir = out_dir, filename = "rank_plots",
  1221. plot_configs = rank_plot_configs, grid_layout = list(ncol = 3, nrow = 2))
  1222. message("Generating ranked linear model plots")
  1223. rank_lm_plot_configs <- generate_rank_plot_configs(
  1224. df = zscore_interactions_joined,
  1225. variables = interaction_vars,
  1226. is_lm = TRUE,
  1227. adjust = TRUE
  1228. )
  1229. generate_and_save_plots(out_dir = out_dir, filename = "rank_plots_lm",
  1230. plot_configs = rank_lm_plot_configs, grid_layout = list(ncol = 3, nrow = 2))
  1231. message("Filtering and reranking plots")
  1232. # Formerly X_NArm
  1233. zscore_interactions_filtered <- zscore_interactions_joined %>%
  1234. filter(!is.na(Z_lm_L) & !is.na(Avg_Zscore_L)) %>%
  1235. mutate(
  1236. Overlap = case_when(
  1237. Z_lm_L >= 2 & Avg_Zscore_L >= 2 ~ "Deletion Enhancer Both",
  1238. Z_lm_L <= -2 & Avg_Zscore_L <= -2 ~ "Deletion Suppressor Both",
  1239. Z_lm_L >= 2 & Avg_Zscore_L <= 2 ~ "Deletion Enhancer lm only",
  1240. Z_lm_L <= 2 & Avg_Zscore_L >= 2 ~ "Deletion Enhancer Avg Zscore only",
  1241. Z_lm_L <= -2 & Avg_Zscore_L >= -2 ~ "Deletion Suppressor lm only",
  1242. Z_lm_L >= -2 & Avg_Zscore_L <= -2 ~ "Deletion Suppressor Avg Zscore only",
  1243. Z_lm_L >= 2 & Avg_Zscore_L <= -2 ~ "Deletion Enhancer lm, Deletion Suppressor Avg Z score",
  1244. Z_lm_L <= -2 & Avg_Zscore_L >= 2 ~ "Deletion Suppressor lm, Deletion Enhancer Avg Z score",
  1245. TRUE ~ "No Effect"
  1246. ),
  1247. lm_R_squared_L = summary(lm(Z_lm_L ~ Avg_Zscore_L))$r.squared,
  1248. lm_R_squared_K = summary(lm(Z_lm_K ~ Avg_Zscore_K))$r.squared,
  1249. lm_R_squared_r = summary(lm(Z_lm_r ~ Avg_Zscore_r))$r.squared,
  1250. lm_R_squared_AUC = summary(lm(Z_lm_AUC ~ Avg_Zscore_AUC))$r.squared
  1251. )
  1252. message("Generating filtered ranked plots")
  1253. rank_plot_filtered_configs <- generate_rank_plot_configs(
  1254. df = zscore_interactions_filtered,
  1255. variables = interaction_vars,
  1256. is_lm = FALSE,
  1257. adjust = FALSE,
  1258. overlap_color = TRUE
  1259. )
  1260. generate_and_save_plots(
  1261. out_dir = out_dir,
  1262. filename = "RankPlots_na_rm",
  1263. plot_configs = rank_plot_filtered_configs,
  1264. grid_layout = list(ncol = 3, nrow = 2))
  1265. message("Generating filtered ranked linear model plots")
  1266. rank_plot_lm_filtered_configs <- generate_rank_plot_configs(
  1267. df = zscore_interactions_filtered,
  1268. variables = interaction_vars,
  1269. is_lm = TRUE,
  1270. adjust = FALSE,
  1271. overlap_color = TRUE
  1272. )
  1273. generate_and_save_plots(
  1274. out_dir = out_dir,
  1275. filename = "rank_plots_lm_na_rm",
  1276. plot_configs = rank_plot_lm_filtered_configs,
  1277. grid_layout = list(ncol = 3, nrow = 2))
  1278. message("Generating correlation curve parameter pair plots")
  1279. correlation_plot_configs <- generate_correlation_plot_configs(zscore_interactions_filtered)
  1280. generate_and_save_plots(
  1281. out_dir = out_dir,
  1282. filename = "correlation_cpps",
  1283. plot_configs = correlation_plot_configs,
  1284. grid_layout = list(ncol = 2, nrow = 2))
  1285. })
  1286. })
  1287. }
  1288. main()