calculate_interaction_zscores.R 65 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678
  1. suppressMessages({
  2. library("ggplot2")
  3. library("plotly")
  4. library("htmlwidgets")
  5. library("htmltools")
  6. library("dplyr")
  7. library("rlang")
  8. library("ggthemes")
  9. library("data.table")
  10. library("gridExtra")
  11. library("future")
  12. library("furrr")
  13. library("purrr")
  14. })
  15. # These parallelization libraries are very noisy
  16. suppressPackageStartupMessages({
  17. library("future")
  18. library("furrr")
  19. library("purrr")
  20. })
  21. # Turn all warnings into errors for development
  22. options(warn = 2)
  23. parse_arguments <- function() {
  24. args <- if (interactive()) {
  25. c(
  26. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/20240116_jhartman2_DoxoHLD",
  27. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/apps/r/SGD_features.tab",
  28. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/easy/20240116_jhartman2_DoxoHLD/results_std.txt",
  29. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/20240822_jhartman2_DoxoHLD/exp1",
  30. "Experiment 1: Doxo versus HLD",
  31. 3,
  32. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/20240822_jhartman2_DoxoHLD/exp2",
  33. "Experiment 2: HLD versus Doxo",
  34. 3
  35. )
  36. } else {
  37. commandArgs(trailingOnly = TRUE)
  38. }
  39. out_dir <- normalizePath(args[1], mustWork = FALSE)
  40. sgd_gene_list <- normalizePath(args[2], mustWork = FALSE)
  41. easy_results_file <- normalizePath(args[3], mustWork = FALSE)
  42. # The remaining arguments should be in groups of 3
  43. exp_args <- args[-(1:3)]
  44. if (length(exp_args) %% 3 != 0) {
  45. stop("Experiment arguments should be in groups of 3: path, name, sd.")
  46. }
  47. # Extract the experiments into a list
  48. experiments <- list()
  49. for (i in seq(1, length(exp_args), by = 3)) {
  50. exp_name <- exp_args[i + 1]
  51. experiments[[exp_name]] <- list(
  52. path = normalizePath(exp_args[i], mustWork = FALSE),
  53. sd = as.numeric(exp_args[i + 2])
  54. )
  55. }
  56. # Extract the trailing number from each path
  57. trailing_numbers <- sapply(experiments, function(x) {
  58. path <- x$path
  59. nums <- gsub("[^0-9]", "", basename(path))
  60. as.integer(nums)
  61. })
  62. # Sort the experiments based on the trailing numbers
  63. sorted_experiments <- experiments[order(trailing_numbers)]
  64. list(
  65. out_dir = out_dir,
  66. sgd_gene_list = sgd_gene_list,
  67. easy_results_file = easy_results_file,
  68. experiments = sorted_experiments
  69. )
  70. }
  71. args <- parse_arguments()
  72. # Should we keep output in exp dirs or combine in the study output dir?
  73. # dir.create(file.path(args$out_dir, "zscores"), showWarnings = FALSE)
  74. # dir.create(file.path(args$out_dir, "zscores", "qc"), showWarnings = FALSE)
  75. theme_publication <- function(base_size = 14, base_family = "sans", legend_position = NULL) {
  76. # Ensure that legend_position has a valid value or default to "none"
  77. legend_position <- if (is.null(legend_position) || length(legend_position) == 0) "none" else legend_position
  78. theme_foundation <- ggthemes::theme_foundation(base_size = base_size, base_family = base_family)
  79. theme_foundation %+replace%
  80. theme(
  81. plot.title = element_text(face = "bold", size = rel(1.6), hjust = 0.5),
  82. text = element_text(),
  83. panel.background = element_blank(),
  84. plot.background = element_blank(),
  85. panel.border = element_blank(),
  86. axis.title = element_text(face = "bold", size = rel(1.4)),
  87. axis.title.y = element_text(angle = 90, vjust = 2),
  88. axis.text = element_text(size = rel(1.2)),
  89. axis.line = element_line(colour = "black"),
  90. panel.grid.major = element_line(colour = "#f0f0f0"),
  91. panel.grid.minor = element_blank(),
  92. legend.key = element_rect(colour = NA),
  93. legend.position = legend_position,
  94. legend.direction =
  95. if (legend_position == "right") {
  96. "vertical"
  97. } else if (legend_position == "bottom") {
  98. "horizontal"
  99. } else {
  100. NULL # No legend direction if position is "none" or other values
  101. },
  102. legend.spacing = unit(0, "cm"),
  103. legend.title = element_text(face = "italic", size = rel(1.3)),
  104. legend.text = element_text(size = rel(1.2)),
  105. plot.margin = unit(c(10, 5, 5, 5), "mm")
  106. )
  107. }
  108. scale_fill_publication <- function(...) {
  109. discrete_scale("fill", "Publication", manual_pal(values = c(
  110. "#386cb0", "#fdb462", "#7fc97f", "#ef3b2c", "#662506",
  111. "#a6cee3", "#fb9a99", "#984ea3", "#ffff33"
  112. )), ...)
  113. }
  114. scale_colour_publication <- function(...) {
  115. discrete_scale("colour", "Publication", manual_pal(values = c(
  116. "#386cb0", "#fdb462", "#7fc97f", "#ef3b2c", "#662506",
  117. "#a6cee3", "#fb9a99", "#984ea3", "#ffff33"
  118. )), ...)
  119. }
  120. # Load the initial dataframe from the easy_results_file
  121. load_and_filter_data <- function(easy_results_file, sd = 3) {
  122. df <- read.delim(easy_results_file, skip = 2, as.is = TRUE, row.names = 1, strip.white = TRUE)
  123. df <- df %>%
  124. filter(!(.[[1]] %in% c("", "Scan"))) %>%
  125. filter(!is.na(ORF) & ORF != "" & !Gene %in% c("BLANK", "Blank", "blank") & Drug != "BMH21") %>%
  126. # Rename columns
  127. rename(L = l, num = Num., AUC = AUC96, scan = Scan, last_bg = LstBackgrd, first_bg = X1stBackgrd) %>%
  128. mutate(
  129. across(c(Col, Row, num, L, K, r, scan, AUC, last_bg, first_bg), as.numeric),
  130. delta_bg = last_bg - first_bg,
  131. delta_bg_tolerance = mean(delta_bg, na.rm = TRUE) + (sd * sd(delta_bg, na.rm = TRUE)),
  132. NG = if_else(L == 0 & !is.na(L), 1, 0),
  133. DB = if_else(delta_bg >= delta_bg_tolerance, 1, 0),
  134. SM = 0,
  135. OrfRep = if_else(ORF == "YDL227C", "YDL227C", OrfRep), # should these be hardcoded?
  136. conc_num = as.numeric(gsub("[^0-9\\.]", "", Conc)),
  137. conc_num_factor = as.numeric(as.factor(conc_num)) - 1, # for legacy purposes
  138. conc_num_factor_factor = as.factor(conc_num)
  139. )
  140. return(df)
  141. }
  142. update_gene_names <- function(df, sgd_gene_list) {
  143. genes <- read.delim(file = sgd_gene_list, quote = "", header = FALSE,
  144. colClasses = c(rep("NULL", 3), rep("character", 2), rep("NULL", 11)))
  145. gene_map <- setNames(genes$V5, genes$V4) # ORF to GeneName mapping
  146. df <- df %>%
  147. mutate(
  148. mapped_genes = gene_map[ORF],
  149. Gene = if_else(is.na(mapped_genes) | OrfRep == "YDL227C", Gene, mapped_genes),
  150. Gene = if_else(Gene == "" | Gene == "OCT1", OrfRep, Gene) # Handle invalid names
  151. )
  152. return(df)
  153. }
  154. calculate_summary_stats <- function(df, variables, group_vars) {
  155. summary_stats <- df %>%
  156. group_by(across(all_of(group_vars))) %>%
  157. summarise(
  158. N = n(),
  159. across(all_of(variables),
  160. list(
  161. mean = ~ mean(.x, na.rm = TRUE),
  162. median = ~ median(.x, na.rm = TRUE),
  163. max = ~ ifelse(all(is.na(.x)), NA, max(.x, na.rm = TRUE)),
  164. min = ~ ifelse(all(is.na(.x)), NA, min(.x, na.rm = TRUE)),
  165. sd = ~ sd(.x, na.rm = TRUE),
  166. se = ~ sd(.x, na.rm = TRUE) / sqrt(n() - 1)
  167. ),
  168. .names = "{.fn}_{.col}"
  169. ),
  170. .groups = "drop"
  171. )
  172. # Create a cleaned version of df that doesn't overlap with summary_stats
  173. df_cleaned <- df %>%
  174. select(-any_of(setdiff(intersect(names(df), names(summary_stats)), group_vars)))
  175. df_joined <- left_join(df_cleaned, summary_stats, by = group_vars)
  176. return(list(summary_stats = summary_stats, df_with_stats = df_joined))
  177. }
  178. calculate_interaction_scores <- function(df, df_bg, group_vars, overlap_threshold = 2) {
  179. max_conc <- max(as.numeric(df$conc_num_factor), na.rm = TRUE)
  180. total_conc_num <- length(unique(df$conc_num))
  181. # Calculate WT statistics from df_bg
  182. wt_stats <- df_bg %>%
  183. group_by(OrfRep, Gene, num, Drug, conc_num, conc_num_factor, conc_num_factor_factor) %>%
  184. summarise(
  185. WT_L = mean(mean_L, na.rm = TRUE),
  186. WT_sd_L = mean(sd_L, na.rm = TRUE),
  187. WT_K = mean(mean_K, na.rm = TRUE),
  188. WT_sd_K = mean(sd_K, na.rm = TRUE),
  189. WT_r = mean(mean_r, na.rm = TRUE),
  190. WT_sd_r = mean(sd_r, na.rm = TRUE),
  191. WT_AUC = mean(mean_AUC, na.rm = TRUE),
  192. WT_sd_AUC = mean(sd_AUC, na.rm = TRUE),
  193. .groups = "drop"
  194. )
  195. # Compute mean values at zero concentration
  196. mean_zeroes <- df %>%
  197. filter(conc_num == 0) %>%
  198. group_by(across(all_of(group_vars))) %>%
  199. summarise(
  200. mean_L_zero = mean(mean_L, na.rm = TRUE),
  201. mean_K_zero = mean(mean_K, na.rm = TRUE),
  202. mean_r_zero = mean(mean_r, na.rm = TRUE),
  203. mean_AUC_zero = mean(mean_AUC, na.rm = TRUE),
  204. .groups = "drop"
  205. )
  206. # Join WT statistics to df
  207. df <- df %>%
  208. left_join(wt_stats, by = c(group_vars, "conc_num", "conc_num_factor", "conc_num_factor_factor")) %>%
  209. left_join(mean_zeroes, by = c(group_vars))
  210. # Calculate Raw Shifts and Z Shifts
  211. df <- df %>%
  212. mutate(
  213. Raw_Shift_L = mean_L_zero - WT_L,
  214. Raw_Shift_K = mean_K_zero - WT_K,
  215. Raw_Shift_r = mean_r_zero - WT_r,
  216. Raw_Shift_AUC = mean_AUC_zero - WT_AUC,
  217. Z_Shift_L = Raw_Shift_L / WT_sd_L,
  218. Z_Shift_K = Raw_Shift_K / WT_sd_K,
  219. Z_Shift_r = Raw_Shift_r / WT_sd_r,
  220. Z_Shift_AUC = Raw_Shift_AUC / WT_sd_AUC
  221. )
  222. calculations <- df %>%
  223. group_by(across(all_of(c(group_vars, "conc_num", "conc_num_factor", "conc_num_factor_factor")))) %>%
  224. mutate(
  225. NG_sum = sum(NG, na.rm = TRUE),
  226. DB_sum = sum(DB, na.rm = TRUE),
  227. SM_sum = sum(SM, na.rm = TRUE),
  228. num_non_removed_concs = total_conc_num - sum(DB, na.rm = TRUE) - 1,
  229. # Expected values
  230. Exp_L = WT_L + Raw_Shift_L,
  231. Exp_K = WT_K + Raw_Shift_K,
  232. Exp_r = WT_r + Raw_Shift_r,
  233. Exp_AUC = WT_AUC + Raw_Shift_AUC,
  234. # Deltas
  235. Delta_L = mean_L - Exp_L,
  236. Delta_K = mean_K - Exp_K,
  237. Delta_r = mean_r - Exp_r,
  238. Delta_AUC = mean_AUC - Exp_AUC,
  239. # Adjust deltas for NG and SM
  240. Delta_L = if_else(NG == 1, mean_L - WT_L, Delta_L),
  241. Delta_K = if_else(NG == 1, mean_K - WT_K, Delta_K),
  242. Delta_r = if_else(NG == 1, mean_r - WT_r, Delta_r),
  243. Delta_AUC = if_else(NG == 1, mean_AUC - WT_AUC, Delta_AUC),
  244. Delta_L = if_else(SM == 1, mean_L - WT_L, Delta_L),
  245. # Calculate Z-scores
  246. Zscore_L = Delta_L / WT_sd_L,
  247. Zscore_K = Delta_K / WT_sd_K,
  248. Zscore_r = Delta_r / WT_sd_r,
  249. Zscore_AUC = Delta_AUC / WT_sd_AUC
  250. ) %>%
  251. ungroup() %>% # Ungroup before group_modify
  252. group_by(across(all_of(group_vars))) %>%
  253. group_modify(~ {
  254. # Perform linear models only if there are enough unique conc_num_factor levels
  255. if (length(unique(.x$conc_num_factor)) > 1) {
  256. # Filter and calculate each lm() separately with individual checks for NAs
  257. lm_L <- if (!all(is.na(.x$Delta_L))) tryCatch(lm(Delta_L ~ conc_num_factor, data = .x), error = function(e) NULL) else NULL
  258. lm_K <- if (!all(is.na(.x$Delta_K))) tryCatch(lm(Delta_K ~ conc_num_factor, data = .x), error = function(e) NULL) else NULL
  259. lm_r <- if (!all(is.na(.x$Delta_r))) tryCatch(lm(Delta_r ~ conc_num_factor, data = .x), error = function(e) NULL) else NULL
  260. lm_AUC <- if (!all(is.na(.x$Delta_AUC))) tryCatch(lm(Delta_AUC ~ conc_num_factor, data = .x), error = function(e) NULL) else NULL
  261. # Mutate results for each lm if it was successfully calculated, suppress warnings for perfect fits
  262. .x %>%
  263. mutate(
  264. lm_intercept_L = if (!is.null(lm_L)) coef(lm_L)[1] else NA,
  265. lm_slope_L = if (!is.null(lm_L)) coef(lm_L)[2] else NA,
  266. R_Squared_L = if (!is.null(lm_L)) suppressWarnings(summary(lm_L)$r.squared) else NA,
  267. lm_Score_L = if (!is.null(lm_L)) max_conc * coef(lm_L)[2] + coef(lm_L)[1] else NA,
  268. lm_intercept_K = if (!is.null(lm_K)) coef(lm_K)[1] else NA,
  269. lm_slope_K = if (!is.null(lm_K)) coef(lm_K)[2] else NA,
  270. R_Squared_K = if (!is.null(lm_K)) suppressWarnings(summary(lm_K)$r.squared) else NA,
  271. lm_Score_K = if (!is.null(lm_K)) max_conc * coef(lm_K)[2] + coef(lm_K)[1] else NA,
  272. lm_intercept_r = if (!is.null(lm_r)) coef(lm_r)[1] else NA,
  273. lm_slope_r = if (!is.null(lm_r)) coef(lm_r)[2] else NA,
  274. R_Squared_r = if (!is.null(lm_r)) suppressWarnings(summary(lm_r)$r.squared) else NA,
  275. lm_Score_r = if (!is.null(lm_r)) max_conc * coef(lm_r)[2] + coef(lm_r)[1] else NA,
  276. lm_intercept_AUC = if (!is.null(lm_AUC)) coef(lm_AUC)[1] else NA,
  277. lm_slope_AUC = if (!is.null(lm_AUC)) coef(lm_AUC)[2] else NA,
  278. R_Squared_AUC = if (!is.null(lm_AUC)) suppressWarnings(summary(lm_AUC)$r.squared) else NA,
  279. lm_Score_AUC = if (!is.null(lm_AUC)) max_conc * coef(lm_AUC)[2] + coef(lm_AUC)[1] else NA
  280. )
  281. } else {
  282. # If not enough conc_num_factor levels, set lm-related values to NA
  283. .x %>%
  284. mutate(
  285. lm_intercept_L = NA, lm_slope_L = NA, R_Squared_L = NA, lm_Score_L = NA,
  286. lm_intercept_K = NA, lm_slope_K = NA, R_Squared_K = NA, lm_Score_K = NA,
  287. lm_intercept_r = NA, lm_slope_r = NA, R_Squared_r = NA, lm_Score_r = NA,
  288. lm_intercept_AUC = NA, lm_slope_AUC = NA, R_Squared_AUC = NA, lm_Score_AUC = NA
  289. )
  290. }
  291. }) %>%
  292. ungroup()
  293. # For interaction plot error bars
  294. delta_means_sds <- calculations %>%
  295. group_by(across(all_of(group_vars))) %>%
  296. summarise(
  297. mean_Delta_L = mean(Delta_L, na.rm = TRUE),
  298. mean_Delta_K = mean(Delta_K, na.rm = TRUE),
  299. mean_Delta_r = mean(Delta_r, na.rm = TRUE),
  300. mean_Delta_AUC = mean(Delta_AUC, na.rm = TRUE),
  301. sd_Delta_L = sd(Delta_L, na.rm = TRUE),
  302. sd_Delta_K = sd(Delta_K, na.rm = TRUE),
  303. sd_Delta_r = sd(Delta_r, na.rm = TRUE),
  304. sd_Delta_AUC = sd(Delta_AUC, na.rm = TRUE),
  305. .groups = "drop"
  306. )
  307. calculations <- calculations %>%
  308. left_join(delta_means_sds, by = group_vars)
  309. # Summary statistics for lm scores
  310. calculations <- calculations %>%
  311. mutate(
  312. lm_mean_L = mean(lm_Score_L, na.rm = TRUE),
  313. lm_sd_L = sd(lm_Score_L, na.rm = TRUE),
  314. lm_mean_K = mean(lm_Score_K, na.rm = TRUE),
  315. lm_sd_K = sd(lm_Score_K, na.rm = TRUE),
  316. lm_mean_r = mean(lm_Score_r, na.rm = TRUE),
  317. lm_sd_r = sd(lm_Score_r, na.rm = TRUE),
  318. lm_mean_AUC = mean(lm_Score_AUC, na.rm = TRUE),
  319. lm_sd_AUC = sd(lm_Score_AUC, na.rm = TRUE)
  320. ) %>%
  321. # Calculate Z-lm scores
  322. mutate(
  323. Z_lm_L = (lm_Score_L - lm_mean_L) / lm_sd_L,
  324. Z_lm_K = (lm_Score_K - lm_mean_K) / lm_sd_K,
  325. Z_lm_r = (lm_Score_r - lm_mean_r) / lm_sd_r,
  326. Z_lm_AUC = (lm_Score_AUC - lm_mean_AUC) / lm_sd_AUC
  327. )
  328. # Build summary stats (interactions)
  329. interactions <- calculations %>%
  330. group_by(across(all_of(group_vars))) %>%
  331. summarise(
  332. Avg_Zscore_L = sum(Zscore_L, na.rm = TRUE) / first(num_non_removed_concs),
  333. Avg_Zscore_K = sum(Zscore_K, na.rm = TRUE) / first(num_non_removed_concs),
  334. Avg_Zscore_r = sum(Zscore_r, na.rm = TRUE) / (total_conc_num - 1),
  335. Avg_Zscore_AUC = sum(Zscore_AUC, na.rm = TRUE) / (total_conc_num - 1),
  336. # Interaction Z-scores
  337. Z_lm_L = first(Z_lm_L),
  338. Z_lm_K = first(Z_lm_K),
  339. Z_lm_r = first(Z_lm_r),
  340. Z_lm_AUC = first(Z_lm_AUC),
  341. # Raw Shifts
  342. Raw_Shift_L = first(Raw_Shift_L),
  343. Raw_Shift_K = first(Raw_Shift_K),
  344. Raw_Shift_r = first(Raw_Shift_r),
  345. Raw_Shift_AUC = first(Raw_Shift_AUC),
  346. # Z Shifts
  347. Z_Shift_L = first(Z_Shift_L),
  348. Z_Shift_K = first(Z_Shift_K),
  349. Z_Shift_r = first(Z_Shift_r),
  350. Z_Shift_AUC = first(Z_Shift_AUC),
  351. # R Squared values
  352. R_Squared_L = first(R_Squared_L),
  353. R_Squared_K = first(R_Squared_K),
  354. R_Squared_r = first(R_Squared_r),
  355. R_Squared_AUC = first(R_Squared_AUC),
  356. # NG, DB, SM values
  357. NG = first(NG),
  358. DB = first(DB),
  359. SM = first(SM),
  360. .groups = "drop"
  361. )
  362. # Add overlap threshold categories based on Z-lm and Avg-Z scores
  363. interactions <- interactions %>%
  364. filter(!is.na(Z_lm_L) | !is.na(Avg_Zscore_L)) %>%
  365. mutate(
  366. Overlap = case_when(
  367. Z_lm_L >= overlap_threshold & Avg_Zscore_L >= overlap_threshold ~ "Deletion Enhancer Both",
  368. Z_lm_L <= -overlap_threshold & Avg_Zscore_L <= -overlap_threshold ~ "Deletion Suppressor Both",
  369. Z_lm_L >= overlap_threshold & Avg_Zscore_L <= overlap_threshold ~ "Deletion Enhancer lm only",
  370. Z_lm_L <= overlap_threshold & Avg_Zscore_L >= overlap_threshold ~ "Deletion Enhancer Avg Zscore only",
  371. Z_lm_L <= -overlap_threshold & Avg_Zscore_L >= -overlap_threshold ~ "Deletion Suppressor lm only",
  372. Z_lm_L >= -overlap_threshold & Avg_Zscore_L <= -overlap_threshold ~ "Deletion Suppressor Avg Zscore only",
  373. Z_lm_L >= overlap_threshold & Avg_Zscore_L <= -overlap_threshold ~ "Deletion Enhancer lm, Deletion Suppressor Avg Zscore",
  374. Z_lm_L <= -overlap_threshold & Avg_Zscore_L >= overlap_threshold ~ "Deletion Suppressor lm, Deletion Enhancer Avg Zscore",
  375. TRUE ~ "No Effect"
  376. ),
  377. # For correlations
  378. lm_R_squared_L = if (!all(is.na(Z_lm_L)) && !all(is.na(Avg_Zscore_L))) summary(lm(Z_lm_L ~ Avg_Zscore_L))$r.squared else NA,
  379. lm_R_squared_K = if (!all(is.na(Z_lm_K)) && !all(is.na(Avg_Zscore_K))) summary(lm(Z_lm_K ~ Avg_Zscore_K))$r.squared else NA,
  380. lm_R_squared_r = if (!all(is.na(Z_lm_r)) && !all(is.na(Avg_Zscore_r))) summary(lm(Z_lm_r ~ Avg_Zscore_r))$r.squared else NA,
  381. lm_R_squared_AUC = if (!all(is.na(Z_lm_AUC)) && !all(is.na(Avg_Zscore_AUC))) summary(lm(Z_lm_AUC ~ Avg_Zscore_AUC))$r.squared else NA
  382. )
  383. # Creating the final calculations and interactions dataframes with only required columns for csv output
  384. calculations_df <- calculations %>%
  385. select(
  386. all_of(group_vars),
  387. conc_num, conc_num_factor, conc_num_factor_factor, N,
  388. mean_L, median_L, sd_L, se_L,
  389. mean_K, median_K, sd_K, se_K,
  390. mean_r, median_r, sd_r, se_r,
  391. mean_AUC, median_AUC, sd_AUC, se_AUC,
  392. Raw_Shift_L, Raw_Shift_K, Raw_Shift_r, Raw_Shift_AUC,
  393. Z_Shift_L, Z_Shift_K, Z_Shift_r, Z_Shift_AUC,
  394. WT_L, WT_K, WT_r, WT_AUC,
  395. WT_sd_L, WT_sd_K, WT_sd_r, WT_sd_AUC,
  396. Exp_L, Exp_K, Exp_r, Exp_AUC,
  397. Delta_L, Delta_K, Delta_r, Delta_AUC,
  398. mean_Delta_L, mean_Delta_K, mean_Delta_r, mean_Delta_AUC,
  399. Zscore_L, Zscore_K, Zscore_r, Zscore_AUC
  400. )
  401. interactions_df <- interactions %>%
  402. select(
  403. all_of(group_vars),
  404. NG, DB, SM,
  405. Avg_Zscore_L, Avg_Zscore_K, Avg_Zscore_r, Avg_Zscore_AUC,
  406. Z_lm_L, Z_lm_K, Z_lm_r, Z_lm_AUC,
  407. Raw_Shift_L, Raw_Shift_K, Raw_Shift_r, Raw_Shift_AUC,
  408. Z_Shift_L, Z_Shift_K, Z_Shift_r, Z_Shift_AUC,
  409. lm_R_squared_L, lm_R_squared_K, lm_R_squared_r, lm_R_squared_AUC,
  410. Overlap
  411. )
  412. # Join calculations and interactions to avoid dimension mismatch
  413. calculations_no_overlap <- calculations %>%
  414. select(-any_of(c("DB", "NG", "SM",
  415. "Raw_Shift_L", "Raw_Shift_K", "Raw_Shift_r", "Raw_Shift_AUC",
  416. "Z_Shift_L", "Z_Shift_K", "Z_Shift_r", "Z_Shift_AUC",
  417. "Z_lm_L", "Z_lm_K", "Z_lm_r", "Z_lm_AUC")))
  418. full_data <- calculations_no_overlap %>%
  419. left_join(interactions_df, by = group_vars)
  420. # Return final dataframes
  421. return(list(
  422. calculations = calculations_df,
  423. interactions = interactions_df,
  424. full_data = full_data
  425. ))
  426. }
  427. generate_and_save_plots <- function(out_dir, filename, plot_configs, page_width = 12, page_height = 8) {
  428. message("Generating ", filename, ".pdf and ", filename, ".html")
  429. # Check if we're dealing with multiple plot groups
  430. plot_groups <- if ("plots" %in% names(plot_configs)) {
  431. list(plot_configs) # Single group
  432. } else {
  433. plot_configs # Multiple groups
  434. }
  435. # Open the PDF device once for all plots
  436. pdf(file.path(out_dir, paste0(filename, ".pdf")), width = page_width, height = page_height)
  437. # Loop through each plot group
  438. for (group in plot_groups) {
  439. static_plots <- list()
  440. plotly_plots <- list()
  441. # Retrieve grid layout if it exists, otherwise skip
  442. grid_layout <- group$grid_layout
  443. plots <- group$plots
  444. # Only handle grid layout if it exists
  445. if (!is.null(grid_layout)) {
  446. # Set grid_ncol to 1 if not specified
  447. if (is.null(grid_layout$ncol)) {
  448. grid_layout$ncol <- 1
  449. }
  450. # If ncol is set but nrow is not, calculate nrow dynamically based on num_plots
  451. if (!is.null(grid_layout$ncol) && is.null(grid_layout$nrow)) {
  452. num_plots <- length(plots)
  453. nrow <- ceiling(num_plots / grid_layout$ncol)
  454. # message("No nrow provided, automatically using nrow = ", nrow)
  455. grid_layout$nrow <- nrow
  456. }
  457. # Fill missing spots with nullGrob() if necessary
  458. total_spots <- grid_layout$nrow * grid_layout$ncol
  459. num_plots <- length(plots)
  460. if (num_plots < total_spots) {
  461. message("Filling ", total_spots - num_plots, " empty spots with nullGrob()")
  462. plots <- c(plots, replicate(total_spots - num_plots, nullGrob(), simplify = FALSE))
  463. }
  464. }
  465. for (i in seq_along(plots)) {
  466. config <- plots[[i]]
  467. df <- config$df
  468. # Filter points outside of y-limits if specified
  469. if (!is.null(config$ylim_vals)) {
  470. out_of_bounds_df <- df %>%
  471. filter(
  472. is.na(.data[[config$y_var]]) |
  473. .data[[config$y_var]] < config$ylim_vals[1] |
  474. .data[[config$y_var]] > config$ylim_vals[2]
  475. )
  476. # Print rows being filtered out
  477. if (nrow(out_of_bounds_df) > 0) {
  478. message("Filtered: ", config$title, "using y-limits: [", config$ylim_vals[1], ", ", config$ylim_vals[2], "]")
  479. message("# of filtered rows outside y-limits (for plotting): ", nrow(out_of_bounds_df))
  480. # print(out_of_bounds_df)
  481. }
  482. df <- df %>%
  483. filter(
  484. !is.na(.data[[config$y_var]]) &
  485. .data[[config$y_var]] >= config$ylim_vals[1] &
  486. .data[[config$y_var]] <= config$ylim_vals[2]
  487. )
  488. }
  489. # Set up aes mapping based on plot type
  490. aes_mapping <- if (config$plot_type == "bar") {
  491. if (!is.null(config$color_var)) {
  492. aes(x = .data[[config$x_var]], fill = .data[[config$color_var]], color = .data[[config$color_var]])
  493. } else {
  494. aes(x = .data[[config$x_var]])
  495. }
  496. } else if (config$plot_type == "density") {
  497. if (!is.null(config$color_var)) {
  498. aes(x = .data[[config$x_var]], color = .data[[config$color_var]])
  499. } else {
  500. aes(x = .data[[config$x_var]])
  501. }
  502. } else {
  503. if (!is.null(config$y_var) && !is.null(config$color_var)) {
  504. aes(x = .data[[config$x_var]], y = .data[[config$y_var]], color = .data[[config$color_var]])
  505. } else if (!is.null(config$y_var)) {
  506. aes(x = .data[[config$x_var]], y = .data[[config$y_var]])
  507. } else {
  508. aes(x = .data[[config$x_var]])
  509. }
  510. }
  511. # Create a null plot with a "No data" message if no rows remain
  512. # if (nrow(df) == 0) {
  513. # plot <- ggplot() +
  514. # geom_text(aes(0.5, 0.5), label = "No data available", size = 5) +
  515. # theme_void() + ggtitle(config$title)
  516. # } else {
  517. # plot <- ggplot(df, aes_mapping) + theme_publication(legend_position = config$legend_position)
  518. # }
  519. plot <- ggplot(df, aes_mapping) + theme_publication(legend_position = config$legend_position)
  520. # Add appropriate plot layer or helper function based on plot type
  521. plot <- switch(config$plot_type,
  522. "scatter" = generate_scatter_plot(plot, config),
  523. "box" = generate_boxplot(plot, config),
  524. "density" = plot + geom_density(),
  525. "bar" = plot + geom_bar(),
  526. plot # default (unused)
  527. )
  528. # Add labels and title
  529. if (!is.null(config$title)) {
  530. plot <- plot + ggtitle(config$title)
  531. if (!is.null(config$title_size)) {
  532. plot <- plot + theme(plot.title = element_text(size = config$title_size))
  533. }
  534. }
  535. if (!is.null(config$x_label)) plot <- plot + xlab(config$x_label)
  536. if (!is.null(config$y_label)) plot <- plot + ylab(config$y_label)
  537. if (!is.null(config$coord_cartesian)) plot <- plot + coord_cartesian(ylim = config$coord_cartesian)
  538. # Add annotations if specified
  539. if (!is.null(config$annotations)) {
  540. for (annotation in config$annotations) {
  541. plot <- plot +
  542. annotate(
  543. "text",
  544. x = ifelse(is.null(annotation$x), 0, annotation$x),
  545. y = ifelse(is.null(annotation$y), Inf, annotation$y),
  546. label = annotation$label,
  547. hjust = ifelse(is.null(annotation$hjust), 0.5, annotation$hjust),
  548. vjust = ifelse(is.null(annotation$vjust), 1, annotation$vjust),
  549. size = ifelse(is.null(annotation$size), 3, annotation$size),
  550. color = ifelse(is.null(annotation$color), "black", annotation$color)
  551. )
  552. }
  553. }
  554. # Add error bars if specified
  555. if (!is.null(config$error_bar) && config$error_bar) {
  556. # Check if custom columns are provided for y_mean and y_sd, or use the defaults
  557. y_mean_col <- if (!is.null(config$error_bar_params$y_mean_col)) {
  558. config$error_bar_params$y_mean_col
  559. } else {
  560. paste0("mean_", config$y_var)
  561. }
  562. y_sd_col <- if (!is.null(config$error_bar_params$y_sd_col)) {
  563. config$error_bar_params$y_sd_col
  564. } else {
  565. paste0("sd_", config$y_var)
  566. }
  567. # Use rlang to handle custom error bar calculations
  568. if (!is.null(config$error_bar_params$custom_error_bar)) {
  569. custom_ymin_expr <- rlang::parse_expr(config$error_bar_params$custom_error_bar$ymin)
  570. custom_ymax_expr <- rlang::parse_expr(config$error_bar_params$custom_error_bar$ymax)
  571. plot <- plot + geom_errorbar(
  572. aes(
  573. x = .data[[config$x_var]],
  574. ymin = !!custom_ymin_expr,
  575. ymax = !!custom_ymax_expr
  576. ),
  577. color = config$error_bar_params$color,
  578. linewidth = ifelse(is.null(config$error_bar_params$linewidth), 0.1, config$error_bar_params$linewidth)
  579. )
  580. } else {
  581. # If no custom error bar formula, use the default or dynamic ones
  582. if (!is.null(config$color_var) && is.null(config$error_bar_params$color)) {
  583. plot <- plot + geom_errorbar(
  584. aes(
  585. x = .data[[config$x_var]],
  586. ymin = .data[[y_mean_col]] - .data[[y_sd_col]],
  587. ymax = .data[[y_mean_col]] + .data[[y_sd_col]],
  588. color = .data[[config$color_var]]
  589. ),
  590. linewidth = 0.1
  591. )
  592. } else {
  593. plot <- plot + geom_errorbar(
  594. aes(
  595. x = .data[[config$x_var]],
  596. ymin = .data[[y_mean_col]] - .data[[y_sd_col]],
  597. ymax = .data[[y_mean_col]] + .data[[y_sd_col]]
  598. ),
  599. color = config$error_bar_params$color,
  600. linewidth = ifelse(is.null(config$error_bar_params$linewidth), 0.1, config$error_bar_params$linewidth)
  601. )
  602. }
  603. }
  604. # Add the center point if the option is provided
  605. if (!is.null(config$error_bar_params$mean_point) && config$error_bar_params$mean_point) {
  606. if (!is.null(config$color_var) && is.null(config$error_bar_params$color)) {
  607. plot <- plot + geom_point(
  608. aes(
  609. x = .data[[config$x_var]],
  610. y = .data[[y_mean_col]],
  611. color = .data[[config$color_var]]
  612. ),
  613. shape = 16
  614. )
  615. } else {
  616. plot <- plot + geom_point(
  617. aes(
  618. x = .data[[config$x_var]],
  619. y = .data[[y_mean_col]]
  620. ),
  621. color = config$error_bar_params$color,
  622. shape = 16
  623. )
  624. }
  625. }
  626. }
  627. # Convert ggplot to plotly for interactive version
  628. plotly_plot <- suppressWarnings(plotly::ggplotly(plot))
  629. # Store both static and interactive versions
  630. static_plots[[i]] <- plot
  631. plotly_plots[[i]] <- plotly_plot
  632. }
  633. # Print the plots in the current group to the PDF
  634. if (is.null(grid_layout)) {
  635. # Print each plot individually on separate pages if no grid layout is specified
  636. for (plot in static_plots) {
  637. print(plot)
  638. }
  639. } else {
  640. # Arrange plots in grid layout on a single page
  641. grid.arrange(
  642. grobs = static_plots,
  643. ncol = grid_layout$ncol,
  644. nrow = grid_layout$nrow
  645. )
  646. }
  647. }
  648. # Close the PDF device after all plots are done
  649. dev.off()
  650. # Save HTML file with interactive plots if needed
  651. out_html_file <- file.path(out_dir, paste0(filename, ".html"))
  652. message("Saving combined HTML file: ", out_html_file)
  653. htmltools::save_html(
  654. htmltools::tagList(plotly_plots),
  655. file = out_html_file
  656. )
  657. }
  658. generate_scatter_plot <- function(plot, config) {
  659. # Define the points
  660. shape <- if (!is.null(config$shape)) config$shape else 3
  661. size <- if (!is.null(config$size)) config$size else 1.5
  662. position <-
  663. if (!is.null(config$position) && config$position == "jitter") {
  664. position_jitter(width = 0.4, height = 0.1)
  665. } else {
  666. "identity"
  667. }
  668. plot <- plot + geom_point(
  669. shape = shape,
  670. size = size,
  671. position = position
  672. )
  673. if (!is.null(config$cyan_points) && config$cyan_points) {
  674. plot <- plot + geom_point(
  675. aes(x = .data[[config$x_var]], y = .data[[config$y_var]]),
  676. color = "cyan",
  677. shape = 3,
  678. size = 0.5
  679. )
  680. }
  681. if (!is.null(config$gray_points) && config$gray_points) {
  682. plot <- plot + geom_point(shape = 3, color = "gray70", size = 1)
  683. }
  684. # Add linear regression line if specified
  685. if (!is.null(config$lm_line)) {
  686. plot <- plot +
  687. geom_abline(
  688. intercept = config$lm_line$intercept,
  689. slope = config$lm_line$slope,
  690. color = ifelse(!is.null(config$lm_line$color), config$lm_line$color, "blue"),
  691. linewidth = ifelse(!is.null(config$lm_line$linewidth), config$lm_line$linewidth, 1)
  692. )
  693. }
  694. # Add SD Bands if specified
  695. if (!is.null(config$sd_band)) {
  696. plot <- plot +
  697. annotate(
  698. "rect",
  699. xmin = -Inf, xmax = Inf,
  700. ymin = config$sd_band, ymax = Inf,
  701. fill = ifelse(!is.null(config$fill_positive), config$fill_positive, "#542788"),
  702. alpha = ifelse(!is.null(config$alpha_positive), config$alpha_positive, 0.3)
  703. ) +
  704. annotate(
  705. "rect",
  706. xmin = -Inf, xmax = Inf,
  707. ymin = -config$sd_band, ymax = -Inf,
  708. fill = ifelse(!is.null(config$fill_negative), config$fill_negative, "orange"),
  709. alpha = ifelse(!is.null(config$alpha_negative), config$alpha_negative, 0.3)
  710. ) +
  711. geom_hline(
  712. yintercept = c(-config$sd_band, config$sd_band),
  713. color = ifelse(!is.null(config$hl_color), config$hl_color, "gray")
  714. )
  715. }
  716. # Add Rectangles if specified
  717. if (!is.null(config$rectangles)) {
  718. for (rect in config$rectangles) {
  719. plot <- plot + annotate(
  720. "rect",
  721. xmin = rect$xmin,
  722. xmax = rect$xmax,
  723. ymin = rect$ymin,
  724. ymax = rect$ymax,
  725. fill = ifelse(is.null(rect$fill), NA, rect$fill),
  726. color = ifelse(is.null(rect$color), "black", rect$color),
  727. alpha = ifelse(is.null(rect$alpha), 0.1, rect$alpha)
  728. )
  729. }
  730. }
  731. # Customize X-axis if specified
  732. if (!is.null(config$x_breaks) && !is.null(config$x_labels) && !is.null(config$x_label)) {
  733. # Check if x_var is factor or character (for discrete x-axis)
  734. if (is.factor(plot$data[[config$x_var]]) || is.character(plot$data[[config$x_var]])) {
  735. plot <- plot +
  736. scale_x_discrete(
  737. name = config$x_label,
  738. breaks = config$x_breaks,
  739. labels = config$x_labels
  740. )
  741. } else {
  742. plot <- plot +
  743. scale_x_continuous(
  744. name = config$x_label,
  745. breaks = config$x_breaks,
  746. labels = config$x_labels
  747. )
  748. }
  749. }
  750. # Set Y-axis limits if specified
  751. if (!is.null(config$ylim_vals)) {
  752. plot <- plot + scale_y_continuous(limits = config$ylim_vals)
  753. }
  754. return(plot)
  755. }
  756. generate_boxplot <- function(plot, config) {
  757. # Convert x_var to a factor within aes mapping
  758. plot <- plot + geom_boxplot(aes(x = factor(.data[[config$x_var]])))
  759. # Customize X-axis if specified
  760. if (!is.null(config$x_breaks) && !is.null(config$x_labels) && !is.null(config$x_label)) {
  761. # Check if x_var is factor or character (for discrete x-axis)
  762. if (is.factor(plot$data[[config$x_var]]) || is.character(plot$data[[config$x_var]])) {
  763. plot <- plot +
  764. scale_x_discrete(
  765. name = config$x_label,
  766. breaks = config$x_breaks,
  767. labels = config$x_labels
  768. )
  769. } else {
  770. plot <- plot +
  771. scale_x_continuous(
  772. name = config$x_label,
  773. breaks = config$x_breaks,
  774. labels = config$x_labels
  775. )
  776. }
  777. }
  778. return(plot)
  779. }
  780. generate_plate_analysis_plot_configs <- function(variables, df_before = NULL, df_after = NULL,
  781. plot_type = "scatter", stages = c("before", "after")) {
  782. plot_configs <- list()
  783. for (var in variables) {
  784. for (stage in stages) {
  785. df_plot <- if (stage == "before") df_before else df_after
  786. # Check for non-finite values in the y-variable
  787. df_plot_filtered <- df_plot %>% filter(is.finite(!!sym(var)))
  788. # Adjust settings based on plot_type
  789. plot_config <- list(
  790. df = df_plot_filtered,
  791. x_var = "scan",
  792. y_var = var,
  793. plot_type = plot_type,
  794. title = paste("Plate analysis by Drug Conc for", var, stage, "quality control"),
  795. color_var = "conc_num_factor_factor",
  796. size = 0.2,
  797. error_bar = (plot_type == "scatter"),
  798. legend_position = "bottom"
  799. )
  800. # Add config to plots list
  801. plot_configs <- append(plot_configs, list(plot_config))
  802. }
  803. }
  804. return(list(plots = plot_configs))
  805. }
  806. generate_interaction_plot_configs <- function(df_summary, df_interaction, type) {
  807. # Define the y-limits for the plots
  808. limits_map <- list(
  809. L = c(0, 130),
  810. K = c(-20, 160),
  811. r = c(0, 1),
  812. AUC = c(0, 12500)
  813. )
  814. stats_plot_configs <- list()
  815. stats_boxplot_configs <- list()
  816. delta_plot_configs <- list()
  817. # Overall statistics plots
  818. OrfRep <- first(df_summary$OrfRep) # this should correspond to the reference strain
  819. for (plot_type in c("scatter", "box")) {
  820. for (var in names(limits_map)) {
  821. y_limits <- limits_map[[var]]
  822. y_span <- y_limits[2] - y_limits[1]
  823. # Common plot configuration
  824. plot_config <- list(
  825. df = df_summary,
  826. plot_type = plot_type,
  827. x_var = "conc_num_factor_factor",
  828. y_var = var,
  829. shape = 16,
  830. x_label = paste0("[", unique(df_summary$Drug)[1], "]"),
  831. coord_cartesian = y_limits,
  832. x_breaks = unique(df_summary$conc_num_factor_factor),
  833. x_labels = as.character(unique(df_summary$conc_num))
  834. )
  835. # Add specific configurations for scatter and box plots
  836. if (plot_type == "scatter") {
  837. plot_config$title <- sprintf("%s Scatter RF for %s with SD", OrfRep, var)
  838. plot_config$error_bar <- TRUE
  839. plot_config$error_bar_params <- list(
  840. color = "red",
  841. mean_point = TRUE,
  842. y_mean_col = paste0("mean_mean_", var),
  843. y_sd_col = paste0("mean_sd_", var)
  844. )
  845. plot_config$position <- "jitter"
  846. # Cannot figure out how to place these properly for discrete x-axis so let's be hacky
  847. annotations <- list(
  848. list(x = 0.25, y = y_limits[1] + 0.08 * y_span, label = " NG =", size = 4),
  849. list(x = 0.25, y = y_limits[1] + 0.04 * y_span, label = " DB =", size = 4),
  850. list(x = 0.25, y = y_limits[1], label = " SM =", size = 4)
  851. )
  852. for (x_val in unique(df_summary$conc_num_factor_factor)) {
  853. current_df <- df_summary %>% filter(.data[[plot_config$x_var]] == x_val)
  854. annotations <- append(annotations, list(
  855. list(x = x_val, y = y_limits[1] + 0.08 * y_span, label = first(current_df$NG, default = 0), size = 4),
  856. list(x = x_val, y = y_limits[1] + 0.04 * y_span, label = first(current_df$DB, default = 0), size = 4),
  857. list(x = x_val, y = y_limits[1], label = first(current_df$SM, default = 0), size = 4)
  858. ))
  859. }
  860. plot_config$annotations <- annotations
  861. stats_plot_configs <- append(stats_plot_configs, list(plot_config))
  862. } else if (plot_type == "box") {
  863. plot_config$title <- sprintf("%s Box RF for %s with SD", OrfRep, var)
  864. plot_config$position <- "dodge"
  865. stats_boxplot_configs <- append(stats_boxplot_configs, list(plot_config))
  866. }
  867. }
  868. }
  869. # Delta interaction plots
  870. if (type == "reference") {
  871. group_vars <- c("OrfRep", "Gene", "num")
  872. } else if (type == "deletion") {
  873. group_vars <- c("OrfRep", "Gene")
  874. }
  875. delta_limits_map <- list(
  876. L = c(-60, 60),
  877. K = c(-60, 60),
  878. r = c(-0.6, 0.6),
  879. AUC = c(-6000, 6000)
  880. )
  881. grouped_data <- df_interaction %>%
  882. group_by(across(all_of(group_vars))) %>%
  883. group_split()
  884. for (group_data in grouped_data) {
  885. OrfRep <- first(group_data$OrfRep)
  886. Gene <- first(group_data$Gene)
  887. num <- if ("num" %in% names(group_data)) first(group_data$num) else ""
  888. if (type == "reference") {
  889. OrfRepTitle <- paste(OrfRep, Gene, num, sep = "_")
  890. } else if (type == "deletion") {
  891. OrfRepTitle <- OrfRep
  892. }
  893. for (var in names(delta_limits_map)) {
  894. y_limits <- delta_limits_map[[var]]
  895. y_span <- y_limits[2] - y_limits[1]
  896. WT_sd_value <- first(group_data[[paste0("WT_sd_", var)]], default = 0)
  897. Z_Shift_value <- round(first(group_data[[paste0("Z_Shift_", var)]], default = 0), 2)
  898. Z_lm_value <- round(first(group_data[[paste0("Z_lm_", var)]], default = 0), 2)
  899. R_squared_value <- round(first(group_data[[paste0("R_Squared_", var)]], default = 0), 2)
  900. NG_value <- first(group_data$NG, default = 0)
  901. DB_value <- first(group_data$DB, default = 0)
  902. SM_value <- first(group_data$SM, default = 0)
  903. lm_intercept_col <- paste0("lm_intercept_", var)
  904. lm_slope_col <- paste0("lm_slope_", var)
  905. lm_intercept_value <- first(group_data[[lm_intercept_col]], default = 0)
  906. lm_slope_value <- first(group_data[[lm_slope_col]], default = 0)
  907. plot_config <- list(
  908. df = group_data,
  909. plot_type = "scatter",
  910. x_var = "conc_num_factor_factor",
  911. y_var = paste0("Delta_", var),
  912. x_label = paste0("[", unique(df_summary$Drug)[1], "]"),
  913. shape = 16,
  914. title = paste(OrfRepTitle, Gene, sep = " "),
  915. title_size = rel(1.3),
  916. coord_cartesian = y_limits,
  917. annotations = list(
  918. list(x = 1, y = y_limits[2] - 0.1 * y_span, label = paste(" ZShift =", round(Z_Shift_value, 2))),
  919. list(x = 1, y = y_limits[2] - 0.2 * y_span, label = paste(" lm ZScore =", round(Z_lm_value, 2))),
  920. # list(x = 1, y = y_limits[2] - 0.3 * y_span, label = paste(" R-squared =", round(R_squared_value, 2))),
  921. list(x = 1, y = y_limits[1] + 0.1 * y_span, label = paste("NG =", NG_value)),
  922. list(x = 1, y = y_limits[1] + 0.05 * y_span, label = paste("DB =", DB_value)),
  923. list(x = 1, y = y_limits[1], label = paste("SM =", SM_value))
  924. ),
  925. error_bar = TRUE,
  926. error_bar_params = list(
  927. custom_error_bar = list(
  928. ymin = paste0("0 - 2 * WT_sd_", var),
  929. ymax = paste0("0 + 2 * WT_sd_", var)
  930. ),
  931. color = "gray70",
  932. linewidth = 0.5
  933. ),
  934. x_breaks = unique(group_data$conc_num_factor_factor),
  935. x_labels = as.character(unique(group_data$conc_num)),
  936. ylim_vals = y_limits,
  937. y_filter = FALSE,
  938. lm_line = list(
  939. intercept = lm_intercept_value,
  940. slope = lm_slope_value,
  941. color = "blue",
  942. linewidth = 1
  943. )
  944. )
  945. delta_plot_configs <- append(delta_plot_configs, list(plot_config))
  946. }
  947. }
  948. # Group delta plots in chunks of 12
  949. chunk_size <- 12
  950. delta_plot_chunks <- split(delta_plot_configs, ceiling(seq_along(delta_plot_configs) / chunk_size))
  951. return(c(
  952. list(list(grid_layout = list(ncol = 2), plots = stats_plot_configs)),
  953. list(list(grid_layout = list(ncol = 2), plots = stats_boxplot_configs)),
  954. lapply(delta_plot_chunks, function(chunk) list(grid_layout = list(ncol = 4), plots = chunk))
  955. ))
  956. }
  957. generate_rank_plot_configs <- function(df, is_lm = FALSE, adjust = FALSE, overlap_color = FALSE) {
  958. sd_bands <- c(1, 2, 3)
  959. plot_configs <- list()
  960. variables <- c("L", "K")
  961. # Adjust (if necessary) and rank columns
  962. for (variable in variables) {
  963. if (adjust) {
  964. df[[paste0("Avg_Zscore_", variable)]] <- ifelse(is.na(df[[paste0("Avg_Zscore_", variable)]]), 0.001, df[[paste0("Avg_Zscore_", variable)]])
  965. df[[paste0("Z_lm_", variable)]] <- ifelse(is.na(df[[paste0("Z_lm_", variable)]]), 0.001, df[[paste0("Z_lm_", variable)]])
  966. }
  967. df[[paste0("Rank_", variable)]] <- rank(df[[paste0("Avg_Zscore_", variable)]], na.last = "keep")
  968. df[[paste0("Rank_lm_", variable)]] <- rank(df[[paste0("Z_lm_", variable)]], na.last = "keep")
  969. }
  970. # Helper function to create a plot configuration
  971. create_plot_config <- function(variable, rank_var, zscore_var, y_label, sd_band, with_annotations = TRUE) {
  972. num_enhancers <- sum(df[[zscore_var]] >= sd_band, na.rm = TRUE)
  973. num_suppressors <- sum(df[[zscore_var]] <= -sd_band, na.rm = TRUE)
  974. # Default plot config
  975. plot_config <- list(
  976. df = df,
  977. x_var = rank_var,
  978. y_var = zscore_var,
  979. x_label = "Rank",
  980. plot_type = "scatter",
  981. title = paste(y_label, "vs. Rank for", variable, "above", sd_band),
  982. sd_band = sd_band,
  983. fill_positive = "#542788",
  984. fill_negative = "orange",
  985. alpha_positive = 0.3,
  986. alpha_negative = 0.3,
  987. shape = 3,
  988. size = 0.1,
  989. y_label = y_label,
  990. x_label = "Rank",
  991. legend_position = "none"
  992. )
  993. if (with_annotations) {
  994. # Add specific annotations for plots with annotations
  995. plot_config$annotations <- list(
  996. list(
  997. x = nrow(df) / 2,
  998. y = 10,
  999. label = paste("Deletion Enhancers =", num_enhancers)
  1000. ),
  1001. list(
  1002. x = nrow(df) / 2,
  1003. y = -10,
  1004. label = paste("Deletion Suppressors =", num_suppressors)
  1005. )
  1006. )
  1007. }
  1008. return(plot_config)
  1009. }
  1010. # Generate plots for each variable
  1011. for (variable in variables) {
  1012. rank_var <- if (is_lm) paste0("Rank_lm_", variable) else paste0("Rank_", variable)
  1013. zscore_var <- if (is_lm) paste0("Z_lm_", variable) else paste0("Avg_Zscore_", variable)
  1014. y_label <- if (is_lm) paste("Int Z score", variable) else paste("Avg Z score", variable)
  1015. # Loop through SD bands
  1016. for (sd_band in sd_bands) {
  1017. # Create plot with annotations
  1018. plot_configs[[length(plot_configs) + 1]] <- create_plot_config(variable, rank_var, zscore_var, y_label, sd_band, with_annotations = TRUE)
  1019. # Create plot without annotations
  1020. plot_configs[[length(plot_configs) + 1]] <- create_plot_config(variable, rank_var, zscore_var, y_label, sd_band, with_annotations = FALSE)
  1021. }
  1022. }
  1023. return(list(grid_layout = list(ncol = 3), plots = plot_configs))
  1024. }
  1025. generate_correlation_plot_configs <- function(df) {
  1026. # Define relationships for different-variable correlations
  1027. relationships <- list(
  1028. list(x = "L", y = "K"),
  1029. list(x = "L", y = "r"),
  1030. list(x = "L", y = "AUC"),
  1031. list(x = "K", y = "r"),
  1032. list(x = "K", y = "AUC"),
  1033. list(x = "r", y = "AUC")
  1034. )
  1035. plot_configs <- list()
  1036. # Iterate over the option to highlight cyan points (TRUE/FALSE)
  1037. highlight_cyan_options <- c(FALSE, TRUE)
  1038. for (highlight_cyan in highlight_cyan_options) {
  1039. for (rel in relationships) {
  1040. # Extract relevant variable names for Z_lm values
  1041. x_var <- paste0("Z_lm_", rel$x)
  1042. y_var <- paste0("Z_lm_", rel$y)
  1043. # Access the correlation statistics from the correlation_stats list
  1044. relationship_name <- paste0(rel$x, "_vs_", rel$y) # Example: L_vs_K
  1045. stats <- correlation_stats[[relationship_name]]
  1046. intercept <- stats$intercept
  1047. slope <- stats$slope
  1048. r_squared <- stats$r_squared
  1049. # Generate the label for the plot
  1050. plot_label <- paste("Interaction", rel$x, "vs.", rel$y)
  1051. # Construct plot config
  1052. plot_config <- list(
  1053. df = df,
  1054. x_var = x_var,
  1055. y_var = y_var,
  1056. plot_type = "scatter",
  1057. title = plot_label,
  1058. annotations = list(
  1059. list(
  1060. x = mean(df[[x_var]], na.rm = TRUE),
  1061. y = mean(df[[y_var]], na.rm = TRUE),
  1062. label = paste("R-squared =", round(r_squared, 3))
  1063. )
  1064. ),
  1065. lm_line = list(
  1066. intercept = intercept,
  1067. slope = slope,
  1068. color = "tomato3"
  1069. ),
  1070. shape = 3,
  1071. size = 0.5,
  1072. color_var = "Overlap",
  1073. cyan_points = highlight_cyan, # include cyan points or not based on the loop
  1074. gray_points = TRUE
  1075. )
  1076. plot_configs <- append(plot_configs, list(plot_config))
  1077. }
  1078. }
  1079. return(list(plots = plot_configs))
  1080. }
  1081. main <- function() {
  1082. lapply(names(args$experiments), function(exp_name) {
  1083. exp <- args$experiments[[exp_name]]
  1084. exp_path <- exp$path
  1085. exp_sd <- exp$sd
  1086. out_dir <- file.path(exp_path, "zscores")
  1087. out_dir_qc <- file.path(exp_path, "zscores", "qc")
  1088. dir.create(out_dir, recursive = TRUE, showWarnings = FALSE)
  1089. dir.create(out_dir_qc, recursive = TRUE, showWarnings = FALSE)
  1090. # Each list of plots corresponds to a separate file
  1091. message("Loading and filtering data for experiment: ", exp_name)
  1092. df <- load_and_filter_data(args$easy_results_file, sd = exp_sd) %>%
  1093. update_gene_names(args$sgd_gene_list) %>%
  1094. as_tibble()
  1095. l_vs_k_plot_configs <- list(
  1096. plots = list(
  1097. list(
  1098. df = df,
  1099. x_var = "L",
  1100. y_var = "K",
  1101. plot_type = "scatter",
  1102. tooltip_vars = c("OrfRep", "Gene", "delta_bg"),
  1103. title = "Raw L vs K before quality control",
  1104. color_var = "conc_num_factor_factor",
  1105. error_bar = FALSE,
  1106. legend_position = "right"
  1107. )
  1108. )
  1109. )
  1110. message("Calculating summary statistics before quality control")
  1111. df_stats <- calculate_summary_stats( # formerly X_stats_ALL
  1112. df = df,
  1113. variables = c("L", "K", "r", "AUC", "delta_bg"),
  1114. group_vars = c("conc_num", "conc_num_factor_factor"))$df_with_stats
  1115. frequency_delta_bg_plot_configs <- list(
  1116. plots = list(
  1117. list(
  1118. df = df_stats,
  1119. x_var = "delta_bg",
  1120. y_var = NULL,
  1121. plot_type = "density",
  1122. title = "Density plot for Delta Background by [Drug] (All Data)",
  1123. color_var = "conc_num_factor_factor",
  1124. x_label = "Delta Background",
  1125. y_label = "Density",
  1126. error_bar = FALSE,
  1127. legend_position = "right"
  1128. ),
  1129. list(
  1130. df = df_stats,
  1131. x_var = "delta_bg",
  1132. y_var = NULL,
  1133. plot_type = "bar",
  1134. title = "Bar plot for Delta Background by [Drug] (All Data)",
  1135. color_var = "conc_num_factor_factor",
  1136. x_label = "Delta Background",
  1137. y_label = "Count",
  1138. error_bar = FALSE,
  1139. legend_position = "right"
  1140. )
  1141. )
  1142. )
  1143. message("Filtering rows above delta background tolerance for plotting")
  1144. df_above_tolerance <- df %>% filter(DB == 1)
  1145. above_threshold_plot_configs <- list(
  1146. plots = list(
  1147. list(
  1148. df = df_above_tolerance,
  1149. x_var = "L",
  1150. y_var = "K",
  1151. plot_type = "scatter",
  1152. tooltip_vars = c("OrfRep", "Gene", "delta_bg"),
  1153. title = paste("Raw L vs K for strains above Delta Background threshold of",
  1154. round(df_above_tolerance$delta_bg_tolerance[[1]], 3), "or above"),
  1155. color_var = "conc_num_factor_factor",
  1156. position = "jitter",
  1157. annotations = list(
  1158. list(
  1159. x = median(df_above_tolerance$L, na.rm = TRUE) / 2,
  1160. y = median(df_above_tolerance$K, na.rm = TRUE) / 2,
  1161. label = paste("# strains above Delta Background tolerance =", nrow(df_above_tolerance))
  1162. )
  1163. ),
  1164. error_bar = FALSE,
  1165. legend_position = "right"
  1166. )
  1167. )
  1168. )
  1169. message("Setting rows above delta background tolerance to NA")
  1170. df_na <- df %>% mutate(across(all_of(c("L", "K", "r", "AUC", "delta_bg")), ~ ifelse(DB == 1, NA, .))) # formerly X
  1171. message("Calculating summary statistics across all strains")
  1172. ss <- calculate_summary_stats(
  1173. df = df_na,
  1174. variables = c("L", "K", "r", "AUC", "delta_bg"),
  1175. group_vars = c("conc_num", "conc_num_factor_factor"))
  1176. df_na_ss <- ss$summary_stats
  1177. df_na_stats <- ss$df_with_stats # formerly X_stats_ALL
  1178. write.csv(df_na_ss, file = file.path(out_dir, "summary_stats_all_strains.csv"), row.names = FALSE)
  1179. # This can help bypass missing values ggplot warnings during testing
  1180. df_na_stats_filtered <- df_na_stats %>% filter(if_all(all_of(c("L", "K", "r", "AUC", "delta_bg")), is.finite))
  1181. message("Calculating summary statistics excluding zero values")
  1182. df_no_zeros <- df_na %>% filter(L > 0) # formerly X_noZero
  1183. df_no_zeros_stats <- calculate_summary_stats(
  1184. df = df_no_zeros,
  1185. variables = c("L", "K", "r", "AUC", "delta_bg"),
  1186. group_vars = c("conc_num", "conc_num_factor_factor")
  1187. )$df_with_stats
  1188. message("Filtering by 2SD of K")
  1189. df_na_within_2sd_k <- df_na_stats %>%
  1190. filter(K >= (mean_K - 2 * sd_K) & K <= (mean_K + 2 * sd_K))
  1191. df_na_outside_2sd_k <- df_na_stats %>%
  1192. filter(K < (mean_K - 2 * sd_K) | K > (mean_K + 2 * sd_K))
  1193. message("Calculating summary statistics for L within 2SD of K")
  1194. # TODO We're omitting the original z_max calculation, not sure if needed?
  1195. ss <- calculate_summary_stats(df_na_within_2sd_k, "L", # formerly X_stats_BY_L_within_2SD_K
  1196. group_vars = c("conc_num", "conc_num_factor_factor"))$summary_stats
  1197. write.csv(ss,
  1198. file = file.path(out_dir_qc, "max_observed_L_vals_for_spots_within_2SD_K.csv"),
  1199. row.names = FALSE)
  1200. message("Calculating summary statistics for L outside 2SD of K")
  1201. ss <- calculate_summary_stats(df_na_outside_2sd_k, "L", # formerly X_stats_BY_L_outside_2SD_K
  1202. group_vars = c("conc_num", "conc_num_factor_factor"))
  1203. df_na_l_outside_2sd_k_stats <- ss$df_with_stats
  1204. write.csv(ss$summary_stats,
  1205. file = file.path(out_dir, "max_observed_L_vals_for_spots_outside_2SD_K.csv"),
  1206. row.names = FALSE)
  1207. plate_analysis_plot_configs <- generate_plate_analysis_plot_configs(
  1208. variables = c("L", "K", "r", "AUC", "delta_bg"),
  1209. df_before = df_stats,
  1210. df_after = df_na_stats_filtered
  1211. )
  1212. plate_analysis_boxplot_configs <- generate_plate_analysis_plot_configs(
  1213. variables = c("L", "K", "r", "AUC", "delta_bg"),
  1214. df_before = df_stats,
  1215. df_after = df_na_stats_filtered,
  1216. plot_type = "box"
  1217. )
  1218. plate_analysis_no_zeros_plot_configs <- generate_plate_analysis_plot_configs(
  1219. variables = c("L", "K", "r", "AUC", "delta_bg"),
  1220. stages = c("after"), # Only after QC
  1221. df_after = df_no_zeros_stats
  1222. )
  1223. plate_analysis_no_zeros_boxplot_configs <- generate_plate_analysis_plot_configs(
  1224. variables = c("L", "K", "r", "AUC", "delta_bg"),
  1225. stages = c("after"), # Only after QC
  1226. df_after = df_no_zeros_stats,
  1227. plot_type = "box"
  1228. )
  1229. l_outside_2sd_k_plot_configs <- list(
  1230. plots = list(
  1231. list(
  1232. df = df_na_l_outside_2sd_k_stats,
  1233. x_var = "L",
  1234. y_var = "K",
  1235. plot_type = "scatter",
  1236. title = "Raw L vs K for strains falling outside 2SD of the K mean at each Conc",
  1237. color_var = "conc_num_factor_factor",
  1238. position = "jitter",
  1239. tooltip_vars = c("OrfRep", "Gene", "delta_bg"),
  1240. annotations = list(
  1241. list(
  1242. x = median(df_na_l_outside_2sd_k_stats$L, na.rm = TRUE) / 2,
  1243. y = median(df_na_l_outside_2sd_k_stats$K, na.rm = TRUE) / 2,
  1244. label = paste("Total strains:", nrow(df_na_l_outside_2sd_k_stats))
  1245. )
  1246. ),
  1247. error_bar = FALSE,
  1248. legend_position = "right"
  1249. )
  1250. )
  1251. )
  1252. delta_bg_outside_2sd_k_plot_configs <- list(
  1253. plots = list(
  1254. list(
  1255. df = df_na_l_outside_2sd_k_stats,
  1256. x_var = "delta_bg",
  1257. x_label = "Delta Background",
  1258. y_var = "K",
  1259. plot_type = "scatter",
  1260. title = "Delta Background vs K for strains falling outside 2SD of the K mean at each Conc",
  1261. color_var = "conc_num_factor_factor",
  1262. position = "jitter",
  1263. tooltip_vars = c("OrfRep", "Gene", "delta_bg"),
  1264. annotations = list(
  1265. list(
  1266. x = 0.05,
  1267. y = 0.95,
  1268. hjust = 0,
  1269. vjust = 1,
  1270. label = paste("Total strains:", nrow(df_na_l_outside_2sd_k_stats)),
  1271. size = 5
  1272. )
  1273. ),
  1274. error_bar = FALSE,
  1275. legend_position = "right"
  1276. )
  1277. )
  1278. )
  1279. message("Generating quality control plots in parallel")
  1280. # future::plan(future::multicore, workers = parallel::detectCores())
  1281. future::plan(future::multisession, workers = 3) # generate 3 plots in parallel
  1282. plot_configs <- list(
  1283. list(out_dir = out_dir_qc, filename = "L_vs_K_before_quality_control",
  1284. plot_configs = l_vs_k_plot_configs, page_width = 12, page_height = 8),
  1285. list(out_dir = out_dir_qc, filename = "frequency_delta_background",
  1286. plot_configs = frequency_delta_bg_plot_configs, page_width = 12, page_height = 8),
  1287. list(out_dir = out_dir_qc, filename = "L_vs_K_above_threshold",
  1288. plot_configs = above_threshold_plot_configs, page_width = 12, page_height = 8),
  1289. list(out_dir = out_dir_qc, filename = "plate_analysis",
  1290. plot_configs = plate_analysis_plot_configs, page_width = 14, page_height = 9),
  1291. list(out_dir = out_dir_qc, filename = "plate_analysis_boxplots",
  1292. plot_configs = plate_analysis_boxplot_configs, page_width = 18, page_height = 9),
  1293. list(out_dir = out_dir_qc, filename = "plate_analysis_no_zeros",
  1294. plot_configs = plate_analysis_no_zeros_plot_configs, page_width = 14, page_height = 9),
  1295. list(out_dir = out_dir_qc, filename = "plate_analysis_no_zeros_boxplots",
  1296. plot_configs = plate_analysis_no_zeros_boxplot_configs, page_width = 18, page_height = 9),
  1297. list(out_dir = out_dir_qc, filename = "L_vs_K_for_strains_2SD_outside_mean_K",
  1298. plot_configs = l_outside_2sd_k_plot_configs, page_width = 10, page_height = 8),
  1299. list(out_dir = out_dir_qc, filename = "delta_background_vs_K_for_strains_2SD_outside_mean_K",
  1300. plot_configs = delta_bg_outside_2sd_k_plot_configs, page_width = 10, page_height = 8)
  1301. )
  1302. # Parallelize background and quality control plot generation
  1303. # furrr::future_map(plot_configs, function(config) {
  1304. # generate_and_save_plots(config$out_dir, config$filename, config$plot_configs,
  1305. # page_width = config$page_width, page_height = config$page_height)
  1306. # }, .options = furrr_options(seed = TRUE))
  1307. # Loop over background strains
  1308. # TODO currently only tested against one strain, if we want to do multiple strains we'll
  1309. # have to rename or group the output files by dir or something so they don't get clobbered
  1310. bg_strains <- c("YDL227C")
  1311. lapply(bg_strains, function(strain) {
  1312. message("Processing background strain: ", strain)
  1313. # Handle missing data by setting zero values to NA
  1314. # and then removing any rows with NA in L col
  1315. df_bg <- df_na %>%
  1316. filter(OrfRep == strain) %>%
  1317. mutate(
  1318. L = if_else(L == 0, NA, L),
  1319. K = if_else(K == 0, NA, K),
  1320. r = if_else(r == 0, NA, r),
  1321. AUC = if_else(AUC == 0, NA, AUC)
  1322. ) %>%
  1323. filter(!is.na(L))
  1324. message("Calculating background strain summary statistics")
  1325. ss_bg <- calculate_summary_stats(df_bg, c("L", "K", "r", "AUC", "delta_bg"), # formerly X_stats_BY
  1326. group_vars = c("OrfRep", "Drug", "conc_num", "conc_num_factor_factor"))
  1327. summary_stats_bg <- ss_bg$summary_stats
  1328. df_bg_stats <- ss_bg$df_with_stats
  1329. write.csv(
  1330. summary_stats_bg,
  1331. file = file.path(out_dir, paste0("summary_stats_background_strain_", strain, ".csv")),
  1332. row.names = FALSE)
  1333. message("Setting missing reference values to the highest theoretical value at each drug conc for L")
  1334. df_reference <- df_na_stats %>% # formerly X2_RF
  1335. filter(OrfRep == strain) %>%
  1336. filter(!is.na(L)) %>%
  1337. group_by(OrfRep, Drug, conc_num, conc_num_factor_factor) %>%
  1338. mutate(
  1339. max_l_theoretical = max(max_L, na.rm = TRUE),
  1340. L = ifelse(L == 0 & !is.na(L) & conc_num > 0, max_l_theoretical, L),
  1341. SM = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, 1, 0),
  1342. L = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, max_l_theoretical, L)) %>%
  1343. ungroup()
  1344. message("Calculating reference strain summary statistics")
  1345. df_reference_summary_stats <- calculate_summary_stats( # formerly X_stats_X2_RF
  1346. df = df_reference,
  1347. variables = c("L", "K", "r", "AUC"),
  1348. group_vars = c("OrfRep", "Drug", "conc_num", "conc_num_factor_factor")
  1349. )$df_with_stats
  1350. # Summarise statistics for error bars
  1351. df_reference_summary_stats <- df_reference_summary_stats %>%
  1352. group_by(OrfRep, Drug, conc_num, conc_num_factor_factor) %>%
  1353. mutate(
  1354. mean_mean_L = first(mean_L),
  1355. mean_sd_L = first(sd_L),
  1356. mean_mean_K = first(mean_K),
  1357. mean_sd_K = first(sd_K),
  1358. mean_mean_r = first(mean_r),
  1359. mean_sd_r = first(sd_r),
  1360. mean_mean_AUC = first(mean_AUC),
  1361. mean_sd_AUC = first(sd_AUC),
  1362. .groups = "drop"
  1363. )
  1364. message("Calculating reference strain interaction summary statistics") # formerly X_stats_interaction
  1365. df_reference_interaction_stats <- calculate_summary_stats(
  1366. df = df_reference,
  1367. variables = c("L", "K", "r", "AUC"),
  1368. group_vars = c("OrfRep", "Gene", "num", "Drug", "conc_num", "conc_num_factor_factor")
  1369. )$df_with_stats
  1370. message("Calculating reference strain interaction scores")
  1371. reference_results <- calculate_interaction_scores(df_reference_interaction_stats,
  1372. df_bg_stats, group_vars = c("OrfRep", "Gene", "num", "Drug"))
  1373. df_reference_calculations <- reference_results$calculations
  1374. df_reference_interactions <- reference_results$interactions
  1375. df_reference_interactions_joined <- reference_results$full_data
  1376. write.csv(df_reference_calculations, file = file.path(out_dir, "zscore_calculations_reference.csv"), row.names = FALSE)
  1377. write.csv(df_reference_interactions, file = file.path(out_dir, "zscore_interactions_reference.csv"), row.names = FALSE)
  1378. message("Generating reference interaction plots")
  1379. reference_plot_configs <- generate_interaction_plot_configs(df_reference_summary_stats, df_reference_interactions_joined, "reference")
  1380. generate_and_save_plots(out_dir, "interaction_plots_reference", reference_plot_configs, page_width = 16, page_height = 16)
  1381. message("Setting missing deletion values to the highest theoretical value at each drug conc for L")
  1382. df_deletion <- df_na_stats %>% # formerly X2
  1383. filter(OrfRep != strain) %>%
  1384. filter(!is.na(L)) %>%
  1385. group_by(OrfRep, Gene, conc_num) %>%
  1386. mutate(
  1387. max_l_theoretical = max(max_L, na.rm = TRUE),
  1388. L = ifelse(L == 0 & !is.na(L) & conc_num > 0, max_l_theoretical, L),
  1389. SM = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, 1, SM),
  1390. L = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, max_l_theoretical, L)) %>%
  1391. ungroup()
  1392. message("Calculating deletion strain(s) interaction summary statistics")
  1393. df_deletion_stats <- calculate_summary_stats(
  1394. df = df_deletion,
  1395. variables = c("L", "K", "r", "AUC"),
  1396. group_vars = c("OrfRep", "Gene", "Drug", "conc_num", "conc_num_factor_factor")
  1397. )$df_with_stats
  1398. message("Calculating deletion strain(s) interactions scores")
  1399. deletion_results <- calculate_interaction_scores(df_deletion_stats, df_bg_stats, group_vars = c("OrfRep", "Gene", "Drug"))
  1400. df_calculations <- deletion_results$calculations
  1401. df_interactions <- deletion_results$interactions
  1402. df_interactions_joined <- deletion_results$full_data
  1403. write.csv(df_calculations, file = file.path(out_dir, "zscore_calculations.csv"), row.names = FALSE)
  1404. write.csv(df_interactions, file = file.path(out_dir, "zscore_interactions.csv"), row.names = FALSE)
  1405. message("Generating deletion interaction plots")
  1406. deletion_plot_configs <- generate_interaction_plot_configs(df_reference_summary_stats, df_interactions_joined, "deletion")
  1407. generate_and_save_plots(out_dir, "interaction_plots", deletion_plot_configs, page_width = 16, page_height = 16)
  1408. message("Writing enhancer/suppressor csv files")
  1409. interaction_threshold <- 2 # TODO add to study config?
  1410. enhancer_condition_L <- df_interactions$Avg_Zscore_L >= interaction_threshold
  1411. suppressor_condition_L <- df_interactions$Avg_Zscore_L <= -interaction_threshold
  1412. enhancer_condition_K <- df_interactions$Avg_Zscore_K >= interaction_threshold
  1413. suppressor_condition_K <- df_interactions$Avg_Zscore_K <= -interaction_threshold
  1414. enhancers_L <- df_interactions[enhancer_condition_L, ]
  1415. suppressors_L <- df_interactions[suppressor_condition_L, ]
  1416. enhancers_K <- df_interactions[enhancer_condition_K, ]
  1417. suppressors_K <- df_interactions[suppressor_condition_K, ]
  1418. enhancers_and_suppressors_L <- df_interactions[enhancer_condition_L | suppressor_condition_L, ]
  1419. enhancers_and_suppressors_K <- df_interactions[enhancer_condition_K | suppressor_condition_K, ]
  1420. write.csv(enhancers_L, file = file.path(out_dir, "zscore_interactions_deletion_enhancers_L.csv"), row.names = FALSE)
  1421. write.csv(suppressors_L, file = file.path(out_dir, "zscore_interactions_deletion_suppressors_L.csv"), row.names = FALSE)
  1422. write.csv(enhancers_K, file = file.path(out_dir, "zscore_interactions_deletion_enhancers_K.csv"), row.names = FALSE)
  1423. write.csv(suppressors_K, file = file.path(out_dir, "zscore_interactions_deletion_suppressors_K.csv"), row.names = FALSE)
  1424. write.csv(enhancers_and_suppressors_L,
  1425. file = file.path(out_dir, "zscore_interactions_deletion_enhancers_and_suppressors_L.csv"), row.names = FALSE)
  1426. write.csv(enhancers_and_suppressors_K,
  1427. file = file.path(out_dir, "zscore_interaction_deletion_enhancers_and_suppressors_K.csv"), row.names = FALSE)
  1428. message("Writing linear model enhancer/suppressor csv files")
  1429. lm_interaction_threshold <- 2 # TODO add to study config?
  1430. enhancers_lm_L <- df_interactions[df_interactions$Z_lm_L >= lm_interaction_threshold, ]
  1431. suppressors_lm_L <- df_interactions[df_interactions$Z_lm_L <= -lm_interaction_threshold, ]
  1432. enhancers_lm_K <- df_interactions[df_interactions$Z_lm_K >= lm_interaction_threshold, ]
  1433. suppressors_lm_K <- df_interactions[df_interactions$Z_lm_K <= -lm_interaction_threshold, ]
  1434. write.csv(enhancers_lm_L, file = file.path(out_dir, "zscore_interactions_deletion_enhancers_lm_L.csv"), row.names = FALSE)
  1435. write.csv(suppressors_lm_L, file = file.path(out_dir, "zscore_interactions_deletion_suppressors_lm_L.csv"), row.names = FALSE)
  1436. write.csv(enhancers_lm_K, file = file.path(out_dir, "zscore_interactions_deletion_enhancers_lm_K.csv"), row.names = FALSE)
  1437. write.csv(suppressors_lm_K, file = file.path(out_dir, "zscore_interactions_deletion_suppressors_lm_K.csv"), row.names = FALSE)
  1438. message("Generating rank plots")
  1439. rank_plot_configs <- generate_rank_plot_configs(
  1440. df_interactions_joined,
  1441. is_lm = FALSE,
  1442. adjust = TRUE
  1443. )
  1444. generate_and_save_plots(out_dir, "rank_plots", rank_plot_configs,
  1445. page_width = 18, page_height = 12)
  1446. message("Generating ranked linear model plots")
  1447. rank_lm_plot_configs <- generate_rank_plot_configs(
  1448. df_interactions_joined,
  1449. is_lm = TRUE,
  1450. adjust = TRUE
  1451. )
  1452. generate_and_save_plots(out_dir, "rank_plots_lm", rank_lm_plot_configs,
  1453. page_width = 18, page_height = 12)
  1454. message("Generating filtered ranked plots")
  1455. rank_plot_filtered_configs <- generate_rank_plot_configs(
  1456. df_interactions_joined,
  1457. is_lm = FALSE,
  1458. adjust = FALSE,
  1459. overlap_color = TRUE
  1460. )
  1461. generate_and_save_plots(out_dir, "RankPlots_na_rm", rank_plot_filtered_configs,
  1462. page_width = 18, page_height = 12)
  1463. message("Generating filtered ranked linear model plots")
  1464. rank_plot_lm_filtered_configs <- generate_rank_plot_configs(
  1465. df_interactions_joined,
  1466. is_lm = TRUE,
  1467. adjust = FALSE,
  1468. overlap_color = TRUE
  1469. )
  1470. generate_and_save_plots(out_dir, "rank_plots_lm_na_rm", rank_plot_lm_filtered_configs,
  1471. page_width = 18, page_height = 12)
  1472. message("Generating correlation curve parameter pair plots")
  1473. correlation_plot_configs <- generate_correlation_plot_configs(
  1474. df_interactions_joined
  1475. )
  1476. generate_and_save_plots(out_dir, "correlation_cpps", correlation_plot_configs,
  1477. page_width = 10, page_height = 7)
  1478. })
  1479. })
  1480. }
  1481. main()