calculate_interaction_zscores.R 54 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508
  1. suppressMessages({
  2. library("ggplot2")
  3. library("plotly")
  4. library("htmlwidgets")
  5. library("dplyr")
  6. library("rlang")
  7. library("ggthemes")
  8. library("data.table")
  9. library("future")
  10. library("furrr")
  11. library("purrr")
  12. })
  13. # These parallelization libraries are very noisy
  14. suppressPackageStartupMessages({
  15. library("future")
  16. library("furrr")
  17. library("purrr")
  18. })
  19. options(warn = 2)
  20. # Constants for configuration
  21. plot_width <- 14
  22. plot_height <- 9
  23. base_size <- 14
  24. parse_arguments <- function() {
  25. args <- if (interactive()) {
  26. c(
  27. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/20240116_jhartman2_DoxoHLD",
  28. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/apps/r/SGD_features.tab",
  29. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/easy/20240116_jhartman2_DoxoHLD/results_std.txt",
  30. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/20240822_jhartman2_DoxoHLD/exp1",
  31. "Experiment 1: Doxo versus HLD",
  32. 3,
  33. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/20240822_jhartman2_DoxoHLD/exp2",
  34. "Experiment 2: HLD versus Doxo",
  35. 3
  36. )
  37. } else {
  38. commandArgs(trailingOnly = TRUE)
  39. }
  40. out_dir <- normalizePath(args[1], mustWork = FALSE)
  41. sgd_gene_list <- normalizePath(args[2], mustWork = FALSE)
  42. easy_results_file <- normalizePath(args[3], mustWork = FALSE)
  43. # The remaining arguments should be in groups of 3
  44. exp_args <- args[-(1:3)]
  45. if (length(exp_args) %% 3 != 0) {
  46. stop("Experiment arguments should be in groups of 3: path, name, sd.")
  47. }
  48. experiments <- list()
  49. for (i in seq(1, length(exp_args), by = 3)) {
  50. exp_name <- exp_args[i + 1]
  51. experiments[[exp_name]] <- list(
  52. path = normalizePath(exp_args[i], mustWork = FALSE),
  53. sd = as.numeric(exp_args[i + 2])
  54. )
  55. }
  56. list(
  57. out_dir = out_dir,
  58. sgd_gene_list = sgd_gene_list,
  59. easy_results_file = easy_results_file,
  60. experiments = experiments
  61. )
  62. }
  63. args <- parse_arguments()
  64. # Should we keep output in exp dirs or combine in the study output dir?
  65. # dir.create(file.path(args$out_dir, "zscores"), showWarnings = FALSE)
  66. # dir.create(file.path(args$out_dir, "zscores", "qc"), showWarnings = FALSE)
  67. # Define themes and scales
  68. theme_publication <- function(base_size = 14, base_family = "sans", legend_position = "bottom") {
  69. theme_foundation <- ggplot2::theme_grey(base_size = base_size, base_family = base_family)
  70. theme_foundation %+replace%
  71. theme(
  72. plot.title = element_text(face = "bold", size = rel(1.2), hjust = 0.5),
  73. text = element_text(),
  74. panel.background = element_rect(colour = NA),
  75. plot.background = element_rect(colour = NA),
  76. panel.border = element_rect(colour = NA),
  77. axis.title = element_text(face = "bold", size = rel(1)),
  78. axis.title.y = element_text(angle = 90, vjust = 2, size = 18),
  79. axis.title.x = element_text(vjust = -0.2, size = 18),
  80. axis.line = element_line(colour = "black"),
  81. axis.text.x = element_text(size = 16),
  82. axis.text.y = element_text(size = 16),
  83. panel.grid.major = element_line(colour = "#f0f0f0"),
  84. panel.grid.minor = element_blank(),
  85. legend.key = element_rect(colour = NA),
  86. legend.position = legend_position,
  87. legend.direction = ifelse(legend_position == "right", "vertical", "horizontal"),
  88. plot.margin = unit(c(10, 5, 5, 5), "mm"),
  89. strip.background = element_rect(colour = "#f0f0f0", fill = "#f0f0f0"),
  90. strip.text = element_text(face = "bold")
  91. )
  92. }
  93. scale_fill_publication <- function(...) {
  94. discrete_scale("fill", "Publication", manual_pal(values = c(
  95. "#386cb0", "#fdb462", "#7fc97f", "#ef3b2c", "#662506",
  96. "#a6cee3", "#fb9a99", "#984ea3", "#ffff33"
  97. )), ...)
  98. }
  99. scale_colour_publication <- function(...) {
  100. discrete_scale("colour", "Publication", manual_pal(values = c(
  101. "#386cb0", "#fdb462", "#7fc97f", "#ef3b2c", "#662506",
  102. "#a6cee3", "#fb9a99", "#984ea3", "#ffff33"
  103. )), ...)
  104. }
  105. # Load the initial dataframe from the easy_results_file
  106. load_and_process_data <- function(easy_results_file, sd = 3) {
  107. df <- read.delim(easy_results_file, skip = 2, as.is = TRUE, row.names = 1, strip.white = TRUE)
  108. df <- df %>%
  109. filter(!(.[[1]] %in% c("", "Scan"))) %>%
  110. filter(!is.na(ORF) & ORF != "" & !Gene %in% c("BLANK", "Blank", "blank") & Drug != "BMH21") %>%
  111. # Rename columns
  112. rename(L = l, num = Num., AUC = AUC96, scan = Scan, last_bg = LstBackgrd, first_bg = X1stBackgrd) %>%
  113. mutate(
  114. across(c(Col, Row, num, L, K, r, scan, AUC, last_bg, first_bg), as.numeric),
  115. delta_bg = last_bg - first_bg,
  116. delta_bg_tolerance = mean(delta_bg, na.rm = TRUE) + (sd * sd(delta_bg, na.rm = TRUE)),
  117. NG = if_else(L == 0 & !is.na(L), 1, 0),
  118. DB = if_else(delta_bg >= delta_bg_tolerance, 1, 0),
  119. SM = 0,
  120. OrfRep = if_else(ORF == "YDL227C", "YDL227C", OrfRep), # should these be hardcoded?
  121. conc_num = as.numeric(gsub("[^0-9\\.]", "", Conc))
  122. ) %>%
  123. mutate(
  124. conc_num_factor = as.factor(match(conc_num, sort(unique(conc_num))) - 1)
  125. )
  126. return(df)
  127. }
  128. # Update Gene names using the SGD gene list
  129. update_gene_names <- function(df, sgd_gene_list) {
  130. # Load SGD gene list
  131. genes <- read.delim(file = sgd_gene_list,
  132. quote = "", header = FALSE,
  133. colClasses = c(rep("NULL", 3), rep("character", 2), rep("NULL", 11)))
  134. # Create a named vector for mapping ORF to GeneName
  135. gene_map <- setNames(genes$V5, genes$V4)
  136. # Vectorized match to find the GeneName from gene_map
  137. mapped_genes <- gene_map[df$ORF]
  138. # Replace NAs in mapped_genes with original Gene names (preserves existing Gene names if ORF is not found)
  139. updated_genes <- ifelse(is.na(mapped_genes) | df$OrfRep == "YDL227C", df$Gene, mapped_genes)
  140. # Ensure Gene is not left blank or incorrectly updated to "OCT1"
  141. df <- df %>%
  142. mutate(Gene = ifelse(updated_genes == "" | updated_genes == "OCT1", OrfRep, updated_genes))
  143. return(df)
  144. }
  145. calculate_summary_stats <- function(df, variables, group_vars) {
  146. summary_stats <- df %>%
  147. group_by(across(all_of(group_vars))) %>%
  148. summarise(
  149. N = n(),
  150. across(all_of(variables), list(
  151. mean = ~mean(., na.rm = TRUE),
  152. median = ~median(., na.rm = TRUE),
  153. max = ~ ifelse(all(is.na(.)), NA, max(., na.rm = TRUE)),
  154. min = ~ ifelse(all(is.na(.)), NA, min(., na.rm = TRUE)),
  155. sd = ~sd(., na.rm = TRUE),
  156. se = ~sd(., na.rm = TRUE) / sqrt(N) - 1 # TODO needs comment for explanation
  157. ), .names = "{.fn}_{.col}"),
  158. .groups = "drop"
  159. )
  160. # Create a cleaned version of df that doesn't overlap with summary_stats
  161. cols_to_keep <- setdiff(names(df), names(summary_stats)[-which(names(summary_stats) %in% group_vars)])
  162. df_cleaned <- df %>%
  163. select(all_of(cols_to_keep))
  164. df_with_stats <- left_join(df_cleaned, summary_stats, by = group_vars)
  165. return(list(summary_stats = summary_stats, df_with_stats = df_with_stats))
  166. }
  167. calculate_interaction_scores <- function(df, max_conc) {
  168. variables <- c("L", "K", "r", "AUC")
  169. group_vars <- c("OrfRep", "Gene", "num")
  170. # Calculate total concentration variables
  171. total_conc_num <- length(unique(df$conc_num))
  172. # Pull the background means and standard deviations from zero concentration
  173. bg_means <- list(
  174. L = df %>% filter(conc_num == 0) %>% pull(mean_L) %>% first(),
  175. K = df %>% filter(conc_num == 0) %>% pull(mean_K) %>% first(),
  176. r = df %>% filter(conc_num == 0) %>% pull(mean_r) %>% first(),
  177. AUC = df %>% filter(conc_num == 0) %>% pull(mean_AUC) %>% first()
  178. )
  179. bg_sd <- list(
  180. L = df %>% filter(conc_num == 0) %>% pull(sd_L) %>% first(),
  181. K = df %>% filter(conc_num == 0) %>% pull(sd_K) %>% first(),
  182. r = df %>% filter(conc_num == 0) %>% pull(sd_r) %>% first(),
  183. AUC = df %>% filter(conc_num == 0) %>% pull(sd_AUC) %>% first()
  184. )
  185. # Calculate per spot
  186. stats <- calculate_summary_stats(df,
  187. variables = variables,
  188. group_vars = c("OrfRep", "Gene", "num", "conc_num", "conc_num_factor")
  189. )$summary_stats
  190. stats <- df %>%
  191. group_by(across(all_of(group_vars))) %>%
  192. mutate(
  193. WT_L = mean_L,
  194. WT_K = mean_K,
  195. WT_r = mean_r,
  196. WT_AUC = mean_AUC,
  197. WT_sd_L = sd_L,
  198. WT_sd_K = sd_K,
  199. WT_sd_r = sd_r,
  200. WT_sd_AUC = sd_AUC
  201. )
  202. stats <- stats %>%
  203. mutate(
  204. Raw_Shift_L = first(mean_L) - bg_means$L,
  205. Raw_Shift_K = first(mean_K) - bg_means$K,
  206. Raw_Shift_r = first(mean_r) - bg_means$r,
  207. Raw_Shift_AUC = first(mean_AUC) - bg_means$AUC,
  208. Z_Shift_L = first(Raw_Shift_L) / bg_sd$L,
  209. Z_Shift_K = first(Raw_Shift_K) / bg_sd$K,
  210. Z_Shift_r = first(Raw_Shift_r) / bg_sd$r,
  211. Z_Shift_AUC = first(Raw_Shift_AUC) / bg_sd$AUC
  212. )
  213. stats <- stats %>%
  214. mutate(
  215. Exp_L = WT_L + Raw_Shift_L,
  216. Exp_K = WT_K + Raw_Shift_K,
  217. Exp_r = WT_r + Raw_Shift_r,
  218. Exp_AUC = WT_AUC + Raw_Shift_AUC,
  219. Delta_L = mean_L - Exp_L,
  220. Delta_K = mean_K - Exp_K,
  221. Delta_r = mean_r - Exp_r,
  222. Delta_AUC = mean_AUC - Exp_AUC
  223. )
  224. stats <- stats %>%
  225. mutate(
  226. Delta_L = if_else(NG == 1, mean_L - WT_L, Delta_L),
  227. Delta_K = if_else(NG == 1, mean_K - WT_K, Delta_K),
  228. Delta_r = if_else(NG == 1, mean_r - WT_r, Delta_r),
  229. Delta_AUC = if_else(NG == 1, mean_AUC - WT_AUC, Delta_AUC),
  230. Delta_L = if_else(SM == 1, mean_L - WT_L, Delta_L)
  231. )
  232. stats <- stats %>%
  233. mutate(
  234. Zscore_L = Delta_L / WT_sd_L,
  235. Zscore_K = Delta_K / WT_sd_K,
  236. Zscore_r = Delta_r / WT_sd_r,
  237. Zscore_AUC = Delta_AUC / WT_sd_AUC
  238. )
  239. # Calculate linear models
  240. lm_L <- lm(Delta_L ~ conc_num, data = stats)
  241. lm_K <- lm(Delta_K ~ conc_num, data = stats)
  242. lm_r <- lm(Delta_r ~ conc_num, data = stats)
  243. lm_AUC <- lm(Delta_AUC ~ conc_num, data = stats)
  244. interactions <- stats %>%
  245. group_by(across(all_of(group_vars))) %>%
  246. mutate(
  247. OrfRep = first(OrfRep),
  248. Gene = first(Gene),
  249. num = first(num),
  250. conc_num = first(conc_num),
  251. conc_num_factor = first(conc_num_factor),
  252. Raw_Shift_L = first(Raw_Shift_L),
  253. Raw_Shift_K = first(Raw_Shift_K),
  254. Raw_Shift_r = first(Raw_Shift_r),
  255. Raw_Shift_AUC = first(Raw_Shift_AUC),
  256. Z_Shift_L = first(Z_Shift_L),
  257. Z_Shift_K = first(Z_Shift_K),
  258. Z_Shift_r = first(Z_Shift_r),
  259. Z_Shift_AUC = first(Z_Shift_AUC)
  260. )
  261. # Summarise the data to calculate summary statistics
  262. summary_stats <- interactions %>%
  263. summarise(
  264. Sum_Zscore_L = sum(Zscore_L, na.rm = TRUE),
  265. Sum_Zscore_K = sum(Zscore_K, na.rm = TRUE),
  266. Sum_Zscore_r = sum(Zscore_r, na.rm = TRUE),
  267. Sum_Zscore_AUC = sum(Zscore_AUC, na.rm = TRUE),
  268. lm_Score_L = max(conc_num) * coef(lm(Zscore_L ~ conc_num))[2] + coef(lm(Zscore_L ~ conc_num))[1],
  269. lm_Score_K = max(conc_num) * coef(lm(Zscore_K ~ conc_num))[2] + coef(lm(Zscore_K ~ conc_num))[1],
  270. lm_Score_r = max(conc_num) * coef(lm(Zscore_r ~ conc_num))[2] + coef(lm(Zscore_r ~ conc_num))[1],
  271. lm_Score_AUC = max(conc_num) * coef(lm(Zscore_AUC ~ conc_num))[2] + coef(lm(Zscore_AUC ~ conc_num))[1],
  272. R_Squared_L = summary(lm(Zscore_L ~ conc_num))$r.squared,
  273. R_Squared_K = summary(lm(Zscore_K ~ conc_num))$r.squared,
  274. R_Squared_r = summary(lm(Zscore_r ~ conc_num))$r.squared,
  275. R_Squared_AUC = summary(lm(Zscore_AUC ~ conc_num))$r.squared,
  276. lm_intercept_L = coef(lm(Zscore_L ~ conc_num))[1],
  277. lm_slope_L = coef(lm(Zscore_L ~ conc_num))[2],
  278. lm_intercept_K = coef(lm(Zscore_K ~ conc_num))[1],
  279. lm_slope_K = coef(lm(Zscore_K ~ conc_num))[2],
  280. lm_intercept_r = coef(lm(Zscore_r ~ conc_num))[1],
  281. lm_slope_r = coef(lm(Zscore_r ~ conc_num))[2],
  282. lm_intercept_AUC = coef(lm(Zscore_AUC ~ conc_num))[1],
  283. lm_slope_AUC = coef(lm(Zscore_AUC ~ conc_num))[2],
  284. NG = sum(NG, na.rm = TRUE),
  285. DB = sum(DB, na.rm = TRUE),
  286. SM = sum(SM, na.rm = TRUE),
  287. .groups = "keep"
  288. )
  289. # Join the summary data back to the original data
  290. cleaned_interactions <- interactions %>%
  291. select(-any_of(intersect(names(interactions), names(summary_stats))))
  292. interactions_joined <- left_join(cleaned_interactions, summary_stats, by = group_vars)
  293. interactions_joined <- interactions_joined %>% distinct()
  294. # Remove duplicate rows if necessary
  295. interactions <- interactions %>% distinct()
  296. num_non_removed_concs <- total_conc_num - sum(stats$DB, na.rm = TRUE) - 1
  297. interactions <- interactions %>%
  298. mutate(
  299. Avg_Zscore_L = Sum_Zscore_L / num_non_removed_concs,
  300. Avg_Zscore_K = Sum_Zscore_K / num_non_removed_concs,
  301. Avg_Zscore_r = Sum_Zscore_r / (total_conc_num - 1),
  302. Avg_Zscore_AUC = Sum_Zscore_AUC / (total_conc_num - 1),
  303. Z_lm_L = (lm_Score_L - mean(lm_Score_L, na.rm = TRUE)) / sd(lm_Score_L, na.rm = TRUE),
  304. Z_lm_K = (lm_Score_K - mean(lm_Score_K, na.rm = TRUE)) / sd(lm_Score_K, na.rm = TRUE),
  305. Z_lm_r = (lm_Score_r - mean(lm_Score_r, na.rm = TRUE)) / sd(lm_Score_r, na.rm = TRUE),
  306. Z_lm_AUC = (lm_Score_AUC - mean(lm_Score_AUC, na.rm = TRUE)) / sd(lm_Score_AUC, na.rm = TRUE)
  307. ) %>%
  308. arrange(desc(Z_lm_L), desc(NG))
  309. # Declare column order for output
  310. calculations <- stats %>%
  311. select(
  312. "OrfRep", "Gene", "num", "conc_num", "conc_num_factor", "N",
  313. "mean_L", "mean_K", "mean_r", "mean_AUC",
  314. "median_L", "median_K", "median_r", "median_AUC",
  315. "sd_L", "sd_K", "sd_r", "sd_AUC",
  316. "se_L", "se_K", "se_r", "se_AUC",
  317. "Raw_Shift_L", "Raw_Shift_K", "Raw_Shift_r", "Raw_Shift_AUC",
  318. "Z_Shift_L", "Z_Shift_K", "Z_Shift_r", "Z_Shift_AUC",
  319. "WT_L", "WT_K", "WT_r", "WT_AUC",
  320. "WT_sd_L", "WT_sd_K", "WT_sd_r", "WT_sd_AUC",
  321. "Exp_L", "Exp_K", "Exp_r", "Exp_AUC",
  322. "Delta_L", "Delta_K", "Delta_r", "Delta_AUC",
  323. "Zscore_L", "Zscore_K", "Zscore_r", "Zscore_AUC",
  324. "NG", "SM", "DB")
  325. calculations_joined <- df %>%
  326. select(-any_of(intersect(names(df), names(calculations))))
  327. calculations_joined <- left_join(calculations_joined, calculations, by = c("OrfRep", "Gene", "num", "conc_num", "conc_num_factor"))
  328. interactions_joined <- df %>%
  329. select(-any_of(intersect(names(df), names(interactions))))
  330. interactions_joined <- left_join(interactions_joined, interactions, by = c("OrfRep", "Gene", "num", "conc_num", "conc_num_factor"))
  331. return(list(calculations = calculations, interactions = interactions, interactions_joined = interactions_joined,
  332. calculations_joined = calculations_joined))
  333. }
  334. generate_and_save_plots <- function(out_dir, filename, plot_configs, grid_layout = NULL) {
  335. message("Generating ", filename, ".pdf and ", filename, ".html")
  336. # Prepare lists to collect plots
  337. static_plots <- list()
  338. plotly_plots <- list()
  339. for (i in seq_along(plot_configs)) {
  340. config <- plot_configs[[i]]
  341. df <- config$df
  342. aes_mapping <- if (is.null(config$color_var)) {
  343. if (is.null(config$y_var)) {
  344. aes(x = .data[[config$x_var]])
  345. } else {
  346. aes(x = .data[[config$x_var]], y = .data[[config$y_var]])
  347. }
  348. } else {
  349. if (is.null(config$y_var)) {
  350. aes(x = .data[[config$x_var]], color = as.factor(.data[[config$color_var]]))
  351. } else {
  352. aes(x = .data[[config$x_var]], y = .data[[config$y_var]], color = as.factor(.data[[config$color_var]]))
  353. }
  354. }
  355. # Start building the plot with aes_mapping
  356. plot_base <- ggplot(df, aes_mapping)
  357. # Use appropriate helper function based on plot type
  358. plot <- switch(config$plot_type,
  359. "scatter" = generate_scatter_plot(plot_base, config),
  360. "box" = generate_box_plot(plot_base, config),
  361. "density" = plot_base + geom_density(),
  362. "bar" = plot_base + geom_bar(),
  363. plot_base # default case if no type matches
  364. )
  365. # Apply additional settings
  366. if (!is.null(config$legend_position)) {
  367. plot <- plot + theme(legend.position = config$legend_position)
  368. }
  369. # Add title and labels
  370. if (!is.null(config$title)) {
  371. plot <- plot + ggtitle(config$title)
  372. }
  373. if (!is.null(config$x_label)) {
  374. plot <- plot + xlab(config$x_label)
  375. }
  376. if (!is.null(config$y_label)) {
  377. plot <- plot + ylab(config$y_label)
  378. }
  379. # Apply scale_color_discrete(guide = FALSE) when color_var is NULL
  380. if (is.null(config$color_var)) {
  381. plot <- plot + scale_color_discrete(guide = "none")
  382. }
  383. # Add interactive tooltips for plotly
  384. tooltip_vars <- c()
  385. if (config$plot_type == "scatter") {
  386. if (!is.null(config$delta_bg_point) && config$delta_bg_point) {
  387. tooltip_vars <- c(tooltip_vars, "OrfRep", "Gene", "delta_bg")
  388. } else if (!is.null(config$gene_point) && config$gene_point) {
  389. tooltip_vars <- c(tooltip_vars, "OrfRep", "Gene")
  390. } else if (!is.null(config$y_var) && !is.null(config$x_var)) {
  391. tooltip_vars <- c(config$x_var, config$y_var)
  392. }
  393. }
  394. # Convert to plotly object
  395. if (length(tooltip_vars) > 0) {
  396. plotly_plot <- ggplotly(plot, tooltip = tooltip_vars)
  397. } else {
  398. plotly_plot <- ggplotly(plot, tooltip = "none")
  399. }
  400. # Adjust legend position if specified
  401. if (!is.null(config$legend_position) && config$legend_position == "bottom") {
  402. plotly_plot <- plotly_plot %>% layout(legend = list(orientation = "h"))
  403. }
  404. # Add plots to lists
  405. static_plots[[i]] <- plot
  406. plotly_plots[[i]] <- plotly_plot
  407. }
  408. # Save static PDF plots
  409. pdf(file.path(out_dir, paste0(filename, ".pdf")), width = 14, height = 9)
  410. lapply(static_plots, print)
  411. dev.off()
  412. # Combine and save interactive HTML plots
  413. combined_plot <- subplot(
  414. plotly_plots,
  415. nrows = if (!is.null(grid_layout) && !is.null(grid_layout$nrow)) {
  416. grid_layout$nrow
  417. } else {
  418. # Calculate nrow based on the length of plotly_plots (default 1 row if only one plot)
  419. ceiling(length(plotly_plots) / ifelse(!is.null(grid_layout) && !is.null(grid_layout$ncol), grid_layout$ncol, 1))
  420. },
  421. margin = 0.05
  422. )
  423. saveWidget(combined_plot, file = file.path(out_dir, paste0(filename, ".html")), selfcontained = TRUE)
  424. }
  425. generate_scatter_plot <- function(plot, config) {
  426. shape <- if (!is.null(config$shape)) config$shape else 3
  427. size <- if (!is.null(config$size)) config$size else 0.1
  428. position <-
  429. if (!is.null(config$position) && config$position == "jitter") {
  430. position_jitter(width = 0.1, height = 0)
  431. } else {
  432. "identity"
  433. }
  434. plot <- plot + geom_point(
  435. shape = shape,
  436. size = size,
  437. position = position
  438. )
  439. if (!is.null(config$cyan_points) && config$cyan_points) {
  440. plot <- plot + geom_point(
  441. aes(x = .data[[config$x_var]], y = .data[[config$y_var]]),
  442. color = "cyan",
  443. shape = 3,
  444. size = 0.5
  445. )
  446. }
  447. # Add Smooth Line if specified
  448. if (!is.null(config$smooth) && config$smooth) {
  449. smooth_color <- if (!is.null(config$smooth_color)) config$smooth_color else "blue"
  450. if (!is.null(config$lm_line)) {
  451. plot <- plot +
  452. geom_abline(
  453. intercept = config$lm_line$intercept,
  454. slope = config$lm_line$slope,
  455. color = smooth_color
  456. )
  457. } else {
  458. plot <- plot +
  459. geom_smooth(
  460. method = "lm",
  461. se = FALSE,
  462. color = smooth_color
  463. )
  464. }
  465. }
  466. # Add SD Bands if specified
  467. if (!is.null(config$sd_band)) {
  468. plot <- plot +
  469. annotate(
  470. "rect",
  471. xmin = -Inf, xmax = Inf,
  472. ymin = config$sd_band, ymax = Inf,
  473. fill = ifelse(!is.null(config$fill_positive), config$fill_positive, "#542788"),
  474. alpha = ifelse(!is.null(config$alpha_positive), config$alpha_positive, 0.3)
  475. ) +
  476. annotate(
  477. "rect",
  478. xmin = -Inf, xmax = Inf,
  479. ymin = -config$sd_band, ymax = -Inf,
  480. fill = ifelse(!is.null(config$fill_negative), config$fill_negative, "orange"),
  481. alpha = ifelse(!is.null(config$alpha_negative), config$alpha_negative, 0.3)
  482. ) +
  483. geom_hline(
  484. yintercept = c(-config$sd_band, config$sd_band),
  485. color = ifelse(!is.null(config$hl_color), config$hl_color, "gray")
  486. )
  487. }
  488. # Add Rectangles if specified
  489. if (!is.null(config$rectangles)) {
  490. for (rect in config$rectangles) {
  491. plot <- plot + annotate(
  492. "rect",
  493. xmin = rect$xmin,
  494. xmax = rect$xmax,
  495. ymin = rect$ymin,
  496. ymax = rect$ymax,
  497. fill = ifelse(is.null(rect$fill), NA, rect$fill),
  498. color = ifelse(is.null(rect$color), "black", rect$color),
  499. alpha = ifelse(is.null(rect$alpha), 0.1, rect$alpha)
  500. )
  501. }
  502. }
  503. # Add Error Bars if specified
  504. if (!is.null(config$error_bar) && config$error_bar && !is.null(config$y_var)) {
  505. y_mean_col <- paste0("mean_", config$y_var)
  506. y_sd_col <- paste0("sd_", config$y_var)
  507. plot <- plot +
  508. geom_errorbar(
  509. aes(
  510. ymin = !!sym(y_mean_col) - !!sym(y_sd_col),
  511. ymax = !!sym(y_mean_col) + !!sym(y_sd_col)
  512. ),
  513. alpha = 0.3
  514. )
  515. }
  516. # Customize X-axis if specified
  517. if (!is.null(config$x_breaks) && !is.null(config$x_labels) && !is.null(config$x_label)) {
  518. plot <- plot +
  519. scale_x_discrete(
  520. name = config$x_label,
  521. breaks = config$x_breaks,
  522. labels = config$x_labels
  523. )
  524. }
  525. # Apply coord_cartesian if specified
  526. if (!is.null(config$coord_cartesian)) {
  527. plot <- plot + coord_cartesian(ylim = config$coord_cartesian)
  528. }
  529. # Set Y-axis limits if specified
  530. if (!is.null(config$ylim_vals)) {
  531. plot <- plot + scale_y_continuous(limits = config$ylim_vals)
  532. }
  533. # Add Annotations if specified
  534. if (!is.null(config$annotations)) {
  535. for (annotation in config$annotations) {
  536. plot <- plot +
  537. annotate(
  538. "text",
  539. x = annotation$x,
  540. y = annotation$y,
  541. label = annotation$label,
  542. hjust = ifelse(is.null(annotation$hjust), 0.5, annotation$hjust),
  543. vjust = ifelse(is.null(annotation$vjust), 0.5, annotation$vjust),
  544. size = ifelse(is.null(annotation$size), 4, annotation$size),
  545. color = ifelse(is.null(annotation$color), "black", annotation$color)
  546. )
  547. }
  548. }
  549. # Add Title if specified
  550. if (!is.null(config$title)) {
  551. plot <- plot + ggtitle(config$title)
  552. }
  553. # Adjust Legend Position if specified
  554. if (!is.null(config$legend_position)) {
  555. plot <- plot + theme(legend.position = config$legend_position)
  556. }
  557. return(plot)
  558. }
  559. generate_box_plot <- function(plot, config) {
  560. plot <- plot + geom_boxplot()
  561. if (!is.null(config$x_breaks) && !is.null(config$x_labels) && !is.null(config$x_label)) {
  562. plot <- plot + scale_x_discrete(
  563. name = config$x_label,
  564. breaks = config$x_breaks,
  565. labels = config$x_labels
  566. )
  567. }
  568. if (!is.null(config$coord_cartesian)) {
  569. plot <- plot + coord_cartesian(ylim = config$coord_cartesian)
  570. }
  571. return(plot)
  572. }
  573. generate_plate_analysis_plot_configs <- function(variables, stages = c("before", "after"),
  574. df_before = NULL, df_after = NULL, plot_type = "scatter") {
  575. plots <- list()
  576. for (var in variables) {
  577. for (stage in stages) {
  578. df_plot <- if (stage == "before") df_before else df_after
  579. # Adjust settings based on plot_type
  580. if (plot_type == "scatter") {
  581. error_bar <- TRUE
  582. position <- "jitter"
  583. } else if (plot_type == "box") {
  584. error_bar <- FALSE
  585. position <- NULL
  586. }
  587. config <- list(
  588. df = df_plot,
  589. x_var = "scan",
  590. y_var = var,
  591. plot_type = plot_type,
  592. title = paste("Plate analysis by Drug Conc for", var, stage, "quality control"),
  593. error_bar = error_bar,
  594. color_var = "conc_num_factor",
  595. position = position
  596. )
  597. plots <- append(plots, list(config))
  598. }
  599. }
  600. return(plots)
  601. }
  602. generate_interaction_plot_configs <- function(df, variables) {
  603. configs <- list()
  604. limits_map <- list(
  605. L = c(-65, 65),
  606. K = c(-65, 65),
  607. r = c(-0.65, 0.65),
  608. AUC = c(-6500, 6500)
  609. )
  610. df_filtered <- process_data(df, variables, filter_na = TRUE, limits_map = limits_map)
  611. # Define annotation label functions
  612. generate_annotation_labels <- function(df, var, annotation_name) {
  613. switch(annotation_name,
  614. ZShift = paste("ZShift =", round(df[[paste0("Z_Shift_", var)]], 2)),
  615. lm_ZScore = paste("lm ZScore =", round(df[[paste0("Z_lm_", var)]], 2)),
  616. NG = paste("NG =", df$NG),
  617. DB = paste("DB =", df$DB),
  618. SM = paste("SM =", df$SM),
  619. NULL # Default case for unrecognized annotation names
  620. )
  621. }
  622. # Define annotation positions relative to the y-axis range
  623. calculate_annotation_positions <- function(y_range) {
  624. y_min <- min(y_range)
  625. y_max <- max(y_range)
  626. y_span <- y_max - y_min
  627. list(
  628. ZShift = y_max - 0.1 * y_span,
  629. lm_ZScore = y_max - 0.2 * y_span,
  630. NG = y_min + 0.2 * y_span,
  631. DB = y_min + 0.1 * y_span,
  632. SM = y_min + 0.05 * y_span
  633. )
  634. }
  635. # Create configurations for each variable
  636. for (variable in variables) {
  637. y_range <- limits_map[[variable]]
  638. annotation_positions <- calculate_annotation_positions(y_range)
  639. lm_line <- list(
  640. intercept = df_filtered[[paste0("lm_intercept_", variable)]],
  641. slope = df_filtered[[paste0("lm_slope_", variable)]]
  642. )
  643. # Determine x-axis midpoint
  644. num_levels <- length(levels(df_filtered$conc_num_factor))
  645. x_pos <- (1 + num_levels) / 2 # Midpoint of x-axis
  646. # Generate annotations
  647. annotations <- lapply(names(annotation_positions), function(annotation_name) {
  648. label <- generate_annotation_labels(df_filtered, variable, annotation_name)
  649. y_pos <- annotation_positions[[annotation_name]]
  650. if (!is.null(label)) {
  651. list(x = x_pos, y = y_pos, label = label)
  652. } else {
  653. message(paste("Warning: No annotation found for", annotation_name))
  654. NULL
  655. }
  656. })
  657. # Remove NULL annotations
  658. annotations <- Filter(Negate(is.null), annotations)
  659. # Shared plot settings
  660. plot_settings <- list(
  661. df = df_filtered,
  662. x_var = "conc_num_factor",
  663. y_var = variable,
  664. ylim_vals = y_range,
  665. annotations = annotations,
  666. lm_line = lm_line,
  667. x_breaks = levels(df_filtered$conc_num_factor),
  668. x_labels = levels(df_filtered$conc_num_factor),
  669. x_label = unique(df_filtered$Drug[1]),
  670. coord_cartesian = y_range # Use the actual y-limits
  671. )
  672. # Scatter plot config
  673. configs[[length(configs) + 1]] <- modifyList(plot_settings, list(
  674. plot_type = "scatter",
  675. title = sprintf("%s %s", df_filtered$OrfRep[1], df_filtered$Gene[1]),
  676. error_bar = TRUE,
  677. position = "jitter"
  678. ))
  679. # Box plot config
  680. configs[[length(configs) + 1]] <- modifyList(plot_settings, list(
  681. plot_type = "box",
  682. title = sprintf("%s %s (box plot)", df_filtered$OrfRep[1], df_filtered$Gene[1]),
  683. error_bar = FALSE
  684. ))
  685. }
  686. return(configs)
  687. }
  688. generate_rank_plot_configs <- function(df_filtered, variables, is_lm = FALSE, overlap_color = FALSE) {
  689. sd_bands <- c(1, 2, 3)
  690. configs <- list()
  691. # SD-based plots for L and K
  692. for (variable in c("L", "K")) {
  693. if (is_lm) {
  694. rank_var <- paste0("Rank_lm_", variable)
  695. zscore_var <- paste0("Z_lm_", variable)
  696. y_label <- paste("Int Z score", variable)
  697. } else {
  698. rank_var <- paste0("Rank_", variable)
  699. zscore_var <- paste0("Avg_Zscore_", variable)
  700. y_label <- paste("Avg Z score", variable)
  701. }
  702. for (sd_band in sd_bands) {
  703. num_enhancers <- sum(df_filtered[[zscore_var]] >= sd_band, na.rm = TRUE)
  704. num_suppressors <- sum(df_filtered[[zscore_var]] <= -sd_band, na.rm = TRUE)
  705. # Annotated plot configuration
  706. configs[[length(configs) + 1]] <- list(
  707. df = df_filtered,
  708. x_var = rank_var,
  709. y_var = zscore_var,
  710. plot_type = "scatter",
  711. title = paste(y_label, "vs. Rank for", variable, "above", sd_band, "SD"),
  712. sd_band = sd_band,
  713. fill_positive = "#542788",
  714. fill_negative = "orange",
  715. alpha_positive = 0.3,
  716. alpha_negative = 0.3,
  717. annotations = list(
  718. list(
  719. x = median(df_filtered[[rank_var]], na.rm = TRUE),
  720. y = 10,
  721. label = paste("Deletion Enhancers =", num_enhancers),
  722. hjust = 0.5,
  723. vjust = 1
  724. ),
  725. list(
  726. x = median(df_filtered[[rank_var]], na.rm = TRUE),
  727. y = -10,
  728. label = paste("Deletion Suppressors =", num_suppressors),
  729. hjust = 0.5,
  730. vjust = 0
  731. )
  732. ),
  733. shape = 3,
  734. size = 0.1,
  735. y_label = y_label,
  736. x_label = "Rank",
  737. legend_position = "none"
  738. )
  739. # Non-Annotated Plot Configuration
  740. configs[[length(configs) + 1]] <- list(
  741. df = df_filtered,
  742. x_var = rank_var,
  743. y_var = zscore_var,
  744. plot_type = "scatter",
  745. title = paste(y_label, "vs. Rank for", variable, "above", sd_band, "SD No Annotations"),
  746. sd_band = sd_band,
  747. fill_positive = "#542788",
  748. fill_negative = "orange",
  749. alpha_positive = 0.3,
  750. alpha_negative = 0.3,
  751. annotations = NULL,
  752. shape = 3,
  753. size = 0.1,
  754. y_label = y_label,
  755. x_label = "Rank",
  756. legend_position = "none"
  757. )
  758. }
  759. }
  760. # Avg ZScore and Rank Avg ZScore Plots for r, L, K, and AUC
  761. for (variable in variables) {
  762. for (plot_type in c("Avg Zscore vs lm", "Rank Avg Zscore vs lm")) {
  763. title <- paste(plot_type, variable)
  764. # Define specific variables based on plot type
  765. if (plot_type == "Avg Zscore vs lm") {
  766. x_var <- paste0("Avg_Zscore_", variable)
  767. y_var <- paste0("Z_lm_", variable)
  768. rectangles <- list(
  769. list(xmin = -2, xmax = 2, ymin = -2, ymax = 2,
  770. fill = NA, color = "grey20", alpha = 0.1
  771. )
  772. )
  773. } else if (plot_type == "Rank Avg Zscore vs lm") {
  774. x_var <- paste0("Rank_", variable)
  775. y_var <- paste0("Rank_lm_", variable)
  776. rectangles <- NULL
  777. }
  778. # Fit linear model
  779. lm_model <- lm(as.formula(paste(y_var, "~", x_var)), data = df_filtered)
  780. lm_summary <- summary(lm_model)
  781. # Extract intercept and slope from the model coefficients
  782. intercept <- coef(lm_model)[1]
  783. slope <- coef(lm_model)[2]
  784. configs[[length(configs) + 1]] <- list(
  785. df = df_filtered,
  786. x_var = x_var,
  787. y_var = y_var,
  788. plot_type = "scatter",
  789. title = title,
  790. annotations = list(
  791. list(
  792. x = median(df_filtered[[rank_var]], na.rm = TRUE),
  793. y = 10,
  794. label = paste("Deletion Enhancers =", num_enhancers),
  795. hjust = 0.5,
  796. vjust = 1
  797. ),
  798. list(
  799. x = median(df_filtered[[rank_var]], na.rm = TRUE),
  800. y = -10,
  801. label = paste("Deletion Suppressors =", num_suppressors),
  802. hjust = 0.5,
  803. vjust = 0
  804. )
  805. ),
  806. shape = 3,
  807. size = 0.1,
  808. smooth = TRUE,
  809. smooth_color = "black",
  810. lm_line = list(intercept = intercept, slope = slope),
  811. legend_position = "right",
  812. color_var = if (overlap_color) "Overlap" else NULL,
  813. x_label = x_var,
  814. y_label = y_var,
  815. rectangles = rectangles
  816. )
  817. }
  818. }
  819. return(configs)
  820. }
  821. generate_correlation_plot_configs <- function(df) {
  822. # Define relationships for plotting
  823. relationships <- list(
  824. list(x = "Z_lm_L", y = "Z_lm_K", label = "Interaction L vs. Interaction K"),
  825. list(x = "Z_lm_L", y = "Z_lm_r", label = "Interaction L vs. Interaction r"),
  826. list(x = "Z_lm_L", y = "Z_lm_AUC", label = "Interaction L vs. Interaction AUC"),
  827. list(x = "Z_lm_K", y = "Z_lm_r", label = "Interaction K vs. Interaction r"),
  828. list(x = "Z_lm_K", y = "Z_lm_AUC", label = "Interaction K vs. Interaction AUC"),
  829. list(x = "Z_lm_r", y = "Z_lm_AUC", label = "Interaction r vs. Interaction AUC")
  830. )
  831. configs <- list()
  832. for (rel in relationships) {
  833. # Fit linear model
  834. lm_model <- lm(as.formula(paste(rel$y, "~", rel$x)), data = df)
  835. lm_summary <- summary(lm_model)
  836. # Construct plot configuration
  837. config <- list(
  838. df = df,
  839. x_var = rel$x,
  840. y_var = rel$y,
  841. plot_type = "scatter",
  842. title = rel$label,
  843. x_label = paste("z-score", gsub("Z_lm_", "", rel$x)),
  844. y_label = paste("z-score", gsub("Z_lm_", "", rel$y)),
  845. annotations = list(
  846. list(
  847. x = Inf,
  848. y = Inf,
  849. label = paste("R-squared =", round(lm_summary$r.squared, 3)),
  850. hjust = 1.1,
  851. vjust = 2,
  852. size = 4,
  853. color = "black"
  854. )
  855. ),
  856. smooth = TRUE,
  857. smooth_color = "tomato3",
  858. lm_line = list(intercept = coef(lm_model)[1], slope = coef(lm_model)[2]),
  859. legend_position = "right",
  860. shape = 3,
  861. size = 0.5,
  862. color_var = "Overlap",
  863. rectangles = list(
  864. list(
  865. xmin = -2, xmax = 2, ymin = -2, ymax = 2,
  866. fill = NA, color = "grey20", alpha = 0.1
  867. )
  868. ),
  869. cyan_points = TRUE
  870. )
  871. configs[[length(configs) + 1]] <- config
  872. }
  873. return(configs)
  874. }
  875. process_data <- function(df, variables, filter_nf = FALSE, filter_na = FALSE, adjust = FALSE,
  876. rank = FALSE, limits_map = NULL) {
  877. avg_zscore_cols <- paste0("Avg_Zscore_", variables)
  878. z_lm_cols <- paste0("Z_lm_", variables)
  879. rank_avg_zscore_cols <- paste0("Rank_", variables)
  880. rank_z_lm_cols <- paste0("Rank_lm_", variables)
  881. if (filter_nf) {
  882. message("Filtering non-finite values")
  883. df <- df %>%
  884. filter(if_all(all_of(variables), ~ is.finite(.)))
  885. }
  886. if (filter_na) {
  887. message("Filtering NA values")
  888. df <- df %>%
  889. filter(if_all(all_of(variables), ~ !is.na(.)))
  890. }
  891. if (!is.null(limits_map)) {
  892. message("Filtering data outside y-limits (for plotting)")
  893. for (variable in names(limits_map)) {
  894. if (variable %in% variables) {
  895. ylim_vals <- limits_map[[variable]]
  896. df <- df %>%
  897. filter(.data[[variable]] >= ylim_vals[1] & .data[[variable]] <= ylim_vals[2])
  898. }
  899. }
  900. }
  901. if (adjust) {
  902. message("Replacing NA with 0.001 for Avg_Zscore_ and Z_lm_ columns for ranks")
  903. df <- df %>%
  904. mutate(
  905. across(all_of(avg_zscore_cols), ~ifelse(is.na(.), 0.001, .)),
  906. across(all_of(z_lm_cols), ~ifelse(is.na(.), 0.001, .))
  907. )
  908. }
  909. # Calculate and add rank columns
  910. # TODO probably should be moved to separate function
  911. if (rank) {
  912. message("Calculating ranks for Avg_Zscore and Z_lm columns")
  913. rank_col_mapping <- setNames(rank_avg_zscore_cols, avg_zscore_cols)
  914. df <- df %>%
  915. mutate(across(all_of(avg_zscore_cols), ~rank(., na.last = "keep"), .names = "{rank_col_mapping[.col]}"))
  916. rank_lm_col_mapping <- setNames(rank_z_lm_cols, z_lm_cols)
  917. df <- df %>%
  918. mutate(across(all_of(z_lm_cols), ~rank(., na.last = "keep"), .names = "{rank_lm_col_mapping[.col]}"))
  919. }
  920. return(df)
  921. }
  922. main <- function() {
  923. lapply(names(args$experiments), function(exp_name) {
  924. exp <- args$experiments[[exp_name]]
  925. exp_path <- exp$path
  926. exp_sd <- exp$sd
  927. out_dir <- file.path(exp_path, "zscores")
  928. out_dir_qc <- file.path(exp_path, "zscores", "qc")
  929. dir.create(out_dir, recursive = TRUE, showWarnings = FALSE)
  930. dir.create(out_dir_qc, recursive = TRUE, showWarnings = FALSE)
  931. summary_vars <- c("L", "K", "r", "AUC", "delta_bg") # fields to filter and calculate summary stats across
  932. interaction_vars <- c("L", "K", "r", "AUC") # fields to calculate interaction z-scores
  933. print_vars <- c("OrfRep", "Plate", "scan", "Col", "Row", "num", "OrfRep", "conc_num", "conc_num_factor",
  934. "delta_bg_tolerance", "delta_bg", "Gene", "L", "K", "r", "AUC", "NG", "DB")
  935. message("Loading and filtering data for experiment: ", exp_name)
  936. df <- load_and_process_data(args$easy_results_file, sd = exp_sd) %>%
  937. update_gene_names(args$sgd_gene_list) %>%
  938. as_tibble()
  939. # Filter rows above delta background tolerance
  940. df_above_tolerance <- df %>% filter(DB == 1)
  941. df_na <- df %>% mutate(across(all_of(summary_vars), ~ ifelse(DB == 1, NA, .)))
  942. df_no_zeros <- df_na %>% filter(L > 0)
  943. # Save some constants
  944. max_conc <- max(df$conc_num)
  945. l_half_median <- (median(df_above_tolerance$L, na.rm = TRUE)) / 2
  946. k_half_median <- (median(df_above_tolerance$K, na.rm = TRUE)) / 2
  947. message("Calculating summary statistics before quality control")
  948. ss <- calculate_summary_stats(
  949. df = df,
  950. variables = summary_vars,
  951. group_vars = c("conc_num", "conc_num_factor"))
  952. df_stats <- ss$df_with_stats
  953. message("Filtering non-finite data")
  954. df_filtered_stats <- process_data(df_stats, c("L"), filter_nf = TRUE)
  955. message("Calculating summary statistics after quality control")
  956. ss <- calculate_summary_stats(
  957. df = df_na,
  958. variables = summary_vars,
  959. group_vars = c("conc_num", "conc_num_factor"))
  960. df_na_ss <- ss$summary_stats
  961. df_na_stats <- ss$df_with_stats
  962. write.csv(df_na_ss, file = file.path(out_dir, "summary_stats_all_strains.csv"), row.names = FALSE)
  963. df_na_filtered_stats <- process_data(df_na_stats, c("L"), filter_nf = TRUE)
  964. message("Calculating summary statistics after quality control excluding zero values")
  965. ss <- calculate_summary_stats(
  966. df = df_no_zeros,
  967. variables = summary_vars,
  968. group_vars = c("conc_num", "conc_num_factor"))
  969. df_no_zeros_stats <- ss$df_with_stats
  970. df_no_zeros_filtered_stats <- process_data(df_no_zeros_stats, c("L"), filter_nf = TRUE)
  971. message("Filtering by 2SD of K")
  972. df_na_within_2sd_k <- df_na_stats %>%
  973. filter(K >= (mean_K - 2 * sd_K) & K <= (mean_K + 2 * sd_K))
  974. df_na_outside_2sd_k <- df_na_stats %>%
  975. filter(K < (mean_K - 2 * sd_K) | K > (mean_K + 2 * sd_K))
  976. message("Calculating summary statistics for L within 2SD of K")
  977. # TODO We're omitting the original z_max calculation, not sure if needed?
  978. ss <- calculate_summary_stats(df_na_within_2sd_k, "L", group_vars = c("conc_num", "conc_num_factor"))
  979. # df_na_l_within_2sd_k_stats <- ss$df_with_stats
  980. write.csv(ss$summary_stats,
  981. file = file.path(out_dir_qc, "max_observed_L_vals_for_spots_within_2sd_K.csv"),
  982. row.names = FALSE)
  983. message("Calculating summary statistics for L outside 2SD of K")
  984. ss <- calculate_summary_stats(df_na_outside_2sd_k, "L", group_vars = c("conc_num", "conc_num_factor"))
  985. df_na_l_outside_2sd_k_stats <- ss$df_with_stats
  986. write.csv(ss$summary_stats,
  987. file = file.path(out_dir, "max_observed_L_vals_for_spots_outside_2sd_K.csv"),
  988. row.names = FALSE)
  989. # Each plots list corresponds to a file
  990. l_vs_k_plot_configs <- list(
  991. list(
  992. df = df,
  993. x_var = "L",
  994. y_var = "K",
  995. plot_type = "scatter",
  996. delta_bg_point = TRUE,
  997. title = "Raw L vs K before quality control",
  998. color_var = "conc_num_factor",
  999. error_bar = FALSE,
  1000. legend_position = "right"
  1001. )
  1002. )
  1003. frequency_delta_bg_plot_configs <- list(
  1004. list(
  1005. df = df_filtered_stats,
  1006. x_var = "delta_bg",
  1007. y_var = NULL,
  1008. plot_type = "density",
  1009. title = "Plate analysis by Drug Conc for Delta Background before quality control",
  1010. color_var = "conc_num_factor",
  1011. x_label = "Delta Background",
  1012. y_label = "Density",
  1013. error_bar = FALSE,
  1014. legend_position = "right"),
  1015. list(
  1016. df = df_filtered_stats,
  1017. x_var = "delta_bg",
  1018. y_var = NULL,
  1019. plot_type = "bar",
  1020. title = "Plate analysis by Drug Conc for Delta Background before quality control",
  1021. color_var = "conc_num_factor",
  1022. x_label = "Delta Background",
  1023. y_label = "Count",
  1024. error_bar = FALSE,
  1025. legend_position = "right")
  1026. )
  1027. above_threshold_plot_configs <- list(
  1028. list(
  1029. df = df_above_tolerance,
  1030. x_var = "L",
  1031. y_var = "K",
  1032. plot_type = "scatter",
  1033. delta_bg_point = TRUE,
  1034. title = paste("Raw L vs K for strains above Delta Background threshold of",
  1035. df_above_tolerance$delta_bg_tolerance[[1]], "or above"),
  1036. color_var = "conc_num_factor",
  1037. position = "jitter",
  1038. annotations = list(
  1039. list(
  1040. x = l_half_median,
  1041. y = k_half_median,
  1042. label = paste("# strains above Delta Background tolerance =", nrow(df_above_tolerance))
  1043. )
  1044. ),
  1045. error_bar = FALSE,
  1046. legend_position = "right"
  1047. )
  1048. )
  1049. plate_analysis_plot_configs <- generate_plate_analysis_plot_configs(
  1050. variables = summary_vars,
  1051. df_before = df_filtered_stats,
  1052. df_after = df_na_filtered_stats,
  1053. )
  1054. plate_analysis_boxplot_configs <- generate_plate_analysis_plot_configs(
  1055. variables = summary_vars,
  1056. df_before = df_filtered_stats,
  1057. df_after = df_na_filtered_stats,
  1058. plot_type = "box"
  1059. )
  1060. plate_analysis_no_zeros_plot_configs <- generate_plate_analysis_plot_configs(
  1061. variables = summary_vars,
  1062. stages = c("after"), # Only after QC
  1063. df_after = df_no_zeros_filtered_stats,
  1064. )
  1065. plate_analysis_no_zeros_boxplot_configs <- generate_plate_analysis_plot_configs(
  1066. variables = summary_vars,
  1067. stages = c("after"), # Only after QC
  1068. df_after = df_no_zeros_filtered_stats,
  1069. plot_type = "box"
  1070. )
  1071. l_outside_2sd_k_plot_configs <- list(
  1072. list(
  1073. df = df_na_l_outside_2sd_k_stats,
  1074. x_var = "L",
  1075. y_var = "K",
  1076. plot_type = "scatter",
  1077. delta_bg_point = TRUE,
  1078. title = "Raw L vs K for strains falling outside 2SD of the K mean at each Conc",
  1079. color_var = "conc_num_factor",
  1080. position = "jitter",
  1081. legend_position = "right"
  1082. )
  1083. )
  1084. delta_bg_outside_2sd_k_plot_configs <- list(
  1085. list(
  1086. df = df_na_l_outside_2sd_k_stats,
  1087. x_var = "delta_bg",
  1088. y_var = "K",
  1089. plot_type = "scatter",
  1090. gene_point = TRUE,
  1091. title = "Delta Background vs K for strains falling outside 2SD of the K mean at each Conc",
  1092. color_var = "conc_num_factor",
  1093. position = "jitter",
  1094. legend_position = "right"
  1095. )
  1096. )
  1097. message("Generating quality control plots")
  1098. # TODO trying out some parallelization
  1099. # future::plan(future::multicore, workers = parallel::detectCores())
  1100. future::plan(future::multisession, workers = 3)
  1101. plot_configs <- list(
  1102. list(out_dir = out_dir_qc, filename = "L_vs_K_before_quality_control",
  1103. plot_configs = l_vs_k_plot_configs),
  1104. list(out_dir = out_dir_qc, filename = "frequency_delta_background",
  1105. plot_configs = frequency_delta_bg_plot_configs),
  1106. list(out_dir = out_dir_qc, filename = "L_vs_K_above_threshold",
  1107. plot_configs = above_threshold_plot_configs),
  1108. list(out_dir = out_dir_qc, filename = "plate_analysis",
  1109. plot_configs = plate_analysis_plot_configs),
  1110. list(out_dir = out_dir_qc, filename = "plate_analysis_boxplots",
  1111. plot_configs = plate_analysis_boxplot_configs),
  1112. list(out_dir = out_dir_qc, filename = "plate_analysis_no_zeros",
  1113. plot_configs = plate_analysis_no_zeros_plot_configs),
  1114. list(out_dir = out_dir_qc, filename = "plate_analysis_no_zeros_boxplots",
  1115. plot_configs = plate_analysis_no_zeros_boxplot_configs),
  1116. list(out_dir = out_dir_qc, name = "L_vs_K_for_strains_2SD_outside_mean_K",
  1117. plot_configs = l_outside_2sd_k_plot_configs),
  1118. list(out_dir = out_dir_qc, name = "delta_background_vs_K_for_strains_2sd_outside_mean_K",
  1119. plot_configs = delta_bg_outside_2sd_k_plot_configs)
  1120. )
  1121. # Generating quality control plots in parallel
  1122. # furrr::future_map(plot_configs, function(config) {
  1123. # generate_and_save_plots(config$out_dir, config$filename, config$plot_configs)
  1124. # }, .options = furrr_options(seed = TRUE))
  1125. # Process background strains
  1126. bg_strains <- c("YDL227C")
  1127. lapply(bg_strains, function(strain) {
  1128. message("Processing background strain: ", strain)
  1129. # Handle missing data by setting zero values to NA
  1130. # and then removing any rows with NA in L col
  1131. df_bg <- df_na %>%
  1132. filter(OrfRep == strain) %>%
  1133. mutate(
  1134. L = if_else(L == 0, NA, L),
  1135. K = if_else(K == 0, NA, K),
  1136. r = if_else(r == 0, NA, r),
  1137. AUC = if_else(AUC == 0, NA, AUC)
  1138. ) %>%
  1139. filter(!is.na(L))
  1140. # Recalculate summary statistics for the background strain
  1141. message("Calculating summary statistics for background strain")
  1142. ss_bg <- calculate_summary_stats(df_bg, summary_vars, group_vars = c("OrfRep", "conc_num", "conc_num_factor"))
  1143. summary_stats_bg <- ss_bg$summary_stats
  1144. # df_bg_stats <- ss_bg$df_with_stats
  1145. write.csv(summary_stats_bg,
  1146. file = file.path(out_dir, paste0("SummaryStats_BackgroundStrains_", strain, ".csv")),
  1147. row.names = FALSE)
  1148. # Filter reference and deletion strains
  1149. # Formerly X2_RF (reference strains)
  1150. df_reference <- df_na_stats %>%
  1151. filter(OrfRep == strain) %>%
  1152. mutate(SM = 0)
  1153. # Formerly X2 (deletion strains)
  1154. df_deletion <- df_na_stats %>%
  1155. filter(OrfRep != strain) %>%
  1156. mutate(SM = 0)
  1157. # Set the missing values to the highest theoretical value at each drug conc for L
  1158. # Leave other values as 0 for the max/min
  1159. reference_strain <- df_reference %>%
  1160. group_by(conc_num, conc_num_factor) %>%
  1161. mutate(
  1162. max_l_theoretical = max(max_L, na.rm = TRUE),
  1163. L = ifelse(L == 0 & !is.na(L) & conc_num > 0, max_l_theoretical, L),
  1164. SM = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, 1, SM),
  1165. L = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, max_l_theoretical, L)) %>%
  1166. ungroup()
  1167. # Ditto for deletion strains
  1168. deletion_strains <- df_deletion %>%
  1169. group_by(conc_num, conc_num_factor) %>%
  1170. mutate(
  1171. max_l_theoretical = max(max_L, na.rm = TRUE),
  1172. L = ifelse(L == 0 & !is.na(L) & conc_num > 0, max_l_theoretical, L),
  1173. SM = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, 1, SM),
  1174. L = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, max_l_theoretical, L)) %>%
  1175. ungroup()
  1176. message("Calculating reference strain interaction scores")
  1177. reference_results <- calculate_interaction_scores(reference_strain, max_conc)
  1178. zscores_calculations_reference <- reference_results$calculations
  1179. zscores_interactions_reference <- reference_results$interactions
  1180. zscores_calculations_reference_joined <- reference_results$calculations_joined
  1181. zscores_interactions_reference_joined <- reference_results$interactions_joined
  1182. message("Calculating deletion strain(s) interactions scores")
  1183. deletion_results <- calculate_interaction_scores(deletion_strains, max_conc)
  1184. zscores_calculations <- deletion_results$calculations
  1185. zscores_interactions <- deletion_results$interactions
  1186. zscores_calculations_joined <- deletion_results$calculations_joined
  1187. zscores_interactions_joined <- deletion_results$interactions_joined
  1188. # Writing Z-Scores to file
  1189. write.csv(zscores_calculations_reference, file = file.path(out_dir, "RF_ZScores_Calculations.csv"), row.names = FALSE)
  1190. write.csv(zscores_calculations, file = file.path(out_dir, "ZScores_Calculations.csv"), row.names = FALSE)
  1191. write.csv(zscores_interactions_reference, file = file.path(out_dir, "RF_ZScores_Interaction.csv"), row.names = FALSE)
  1192. write.csv(zscores_interactions, file = file.path(out_dir, "ZScores_Interaction.csv"), row.names = FALSE)
  1193. # Create interaction plots
  1194. message("Generating reference interaction plots")
  1195. reference_plot_configs <- generate_interaction_plot_configs(zscores_interactions_reference_joined, interaction_vars)
  1196. generate_and_save_plots(out_dir, "RF_interactionPlots", reference_plot_configs, grid_layout = list(ncol = 4, nrow = 3))
  1197. message("Generating deletion interaction plots")
  1198. deletion_plot_configs <- generate_interaction_plot_configs(zscores_interactions_joined, interaction_vars)
  1199. generate_and_save_plots(out_dir, "InteractionPlots", deletion_plot_configs, grid_layout = list(ncol = 4, nrow = 3))
  1200. # Define conditions for enhancers and suppressors
  1201. # TODO Add to study config file?
  1202. threshold <- 2
  1203. enhancer_condition_L <- zscores_interactions$Avg_Zscore_L >= threshold
  1204. suppressor_condition_L <- zscores_interactions$Avg_Zscore_L <= -threshold
  1205. enhancer_condition_K <- zscores_interactions$Avg_Zscore_K >= threshold
  1206. suppressor_condition_K <- zscores_interactions$Avg_Zscore_K <= -threshold
  1207. # Subset data
  1208. enhancers_L <- zscores_interactions[enhancer_condition_L, ]
  1209. suppressors_L <- zscores_interactions[suppressor_condition_L, ]
  1210. enhancers_K <- zscores_interactions[enhancer_condition_K, ]
  1211. suppressors_K <- zscores_interactions[suppressor_condition_K, ]
  1212. # Save enhancers and suppressors
  1213. message("Writing enhancer/suppressor csv files")
  1214. write.csv(enhancers_L, file = file.path(out_dir, "ZScores_Interaction_Deletion_Enhancers_L.csv"), row.names = FALSE)
  1215. write.csv(suppressors_L, file = file.path(out_dir, "ZScores_Interaction_Deletion_Suppressors_L.csv"), row.names = FALSE)
  1216. write.csv(enhancers_K, file = file.path(out_dir, "ZScores_Interaction_Deletion_Enhancers_K.csv"), row.names = FALSE)
  1217. write.csv(suppressors_K, file = file.path(out_dir, "ZScores_Interaction_Deletion_Suppressors_K.csv"), row.names = FALSE)
  1218. # Combine conditions for enhancers and suppressors
  1219. enhancers_and_suppressors_L <- zscores_interactions[enhancer_condition_L | suppressor_condition_L, ]
  1220. enhancers_and_suppressors_K <- zscores_interactions[enhancer_condition_K | suppressor_condition_K, ]
  1221. # Save combined enhancers and suppressors
  1222. write.csv(enhancers_and_suppressors_L,
  1223. file = file.path(out_dir, "ZScores_Interaction_Deletion_Enhancers_and_Suppressors_L.csv"), row.names = FALSE)
  1224. write.csv(enhancers_and_suppressors_K,
  1225. file = file.path(out_dir, "ZScores_Interaction_Deletion_Enhancers_and_Suppressors_K.csv"), row.names = FALSE)
  1226. # Handle linear model based enhancers and suppressors
  1227. lm_threshold <- 2
  1228. enhancers_lm_L <- zscores_interactions[zscores_interactions$Z_lm_L >= lm_threshold, ]
  1229. suppressors_lm_L <- zscores_interactions[zscores_interactions$Z_lm_L <= -lm_threshold, ]
  1230. enhancers_lm_K <- zscores_interactions[zscores_interactions$Z_lm_K >= lm_threshold, ]
  1231. suppressors_lm_K <- zscores_interactions[zscores_interactions$Z_lm_K <= -lm_threshold, ]
  1232. # Save linear model based enhancers and suppressors
  1233. message("Writing linear model enhancer/suppressor csv files")
  1234. write.csv(enhancers_lm_L,
  1235. file = file.path(out_dir, "ZScores_Interaction_Deletion_Enhancers_L_lm.csv"), row.names = FALSE)
  1236. write.csv(suppressors_lm_L,
  1237. file = file.path(out_dir, "ZScores_Interaction_Deletion_Suppressors_L_lm.csv"), row.names = FALSE)
  1238. write.csv(enhancers_lm_K,
  1239. file = file.path(out_dir, "ZScores_Interaction_Deletion_Enhancers_K_lm.csv"), row.names = FALSE)
  1240. write.csv(suppressors_lm_K,
  1241. file = file.path(out_dir, "ZScores_Interaction_Deletion_Suppressors_K_lm.csv"), row.names = FALSE)
  1242. message("Generating rank plots")
  1243. # Formerly InteractionScores_AdjustMissing
  1244. zscores_interactions_joined_ranked <- process_data(
  1245. df = zscores_interactions_joined,
  1246. variables = interaction_vars,
  1247. adjust = TRUE,
  1248. rank = TRUE)
  1249. rank_plot_configs <- generate_rank_plot_configs(
  1250. df = zscores_interactions_joined_ranked,
  1251. variables = interaction_vars,
  1252. is_lm = FALSE
  1253. )
  1254. generate_and_save_plots(out_dir = out_dir, filename = "RankPlots",
  1255. plot_configs = rank_plot_configs, grid_layout = list(ncol = 3, nrow = 2))
  1256. message("Generating ranked linear model plots")
  1257. rank_lm_plot_configs <- generate_rank_plot_configs(
  1258. df = zscores_interactions_joined_ranked,
  1259. variables = interaction_vars,
  1260. is_lm = TRUE
  1261. )
  1262. generate_and_save_plots(out_dir = out_dir, filename = "RankPlots_lm",
  1263. plot_configs = rank_lm_plot_configs, grid_layout = list(ncol = 3, nrow = 2))
  1264. message("Filtering and reranking plots")
  1265. # Formerly X_NArm
  1266. zscores_interactions_filtered <- zscores_interactions_joined %>%
  1267. filter(!is.na(Z_lm_L) & !is.na(Avg_Zscore_L)) %>%
  1268. mutate(
  1269. Overlap = case_when(
  1270. Z_lm_L >= 2 & Avg_Zscore_L >= 2 ~ "Deletion Enhancer Both",
  1271. Z_lm_L <= -2 & Avg_Zscore_L <= -2 ~ "Deletion Suppressor Both",
  1272. Z_lm_L >= 2 & Avg_Zscore_L <= 2 ~ "Deletion Enhancer lm only",
  1273. Z_lm_L <= 2 & Avg_Zscore_L >= 2 ~ "Deletion Enhancer Avg Zscore only",
  1274. Z_lm_L <= -2 & Avg_Zscore_L >= -2 ~ "Deletion Suppressor lm only",
  1275. Z_lm_L >= -2 & Avg_Zscore_L <= -2 ~ "Deletion Suppressor Avg Zscore only",
  1276. Z_lm_L >= 2 & Avg_Zscore_L <= -2 ~ "Deletion Enhancer lm, Deletion Suppressor Avg Z score",
  1277. Z_lm_L <= -2 & Avg_Zscore_L >= 2 ~ "Deletion Suppressor lm, Deletion Enhancer Avg Z score",
  1278. TRUE ~ "No Effect"
  1279. ),
  1280. lm_R_squared_L = summary(lm(Z_lm_L ~ Avg_Zscore_L))$r.squared,
  1281. lm_R_squared_K = summary(lm(Z_lm_K ~ Avg_Zscore_K))$r.squared,
  1282. lm_R_squared_r = summary(lm(Z_lm_r ~ Avg_Zscore_r))$r.squared,
  1283. lm_R_squared_AUC = summary(lm(Z_lm_AUC ~ Avg_Zscore_AUC))$r.squared
  1284. )
  1285. # Re-rank
  1286. zscores_interactions_filtered_ranked <- process_data(
  1287. df = zscores_interactions_filtered,
  1288. variables = interaction_vars,
  1289. rank = TRUE
  1290. )
  1291. rank_plot_filtered_configs <- generate_rank_plot_configs(
  1292. df = zscores_interactions_filtered_ranked,
  1293. variables = interaction_vars,
  1294. is_lm = FALSE,
  1295. overlap_color = TRUE
  1296. )
  1297. message("Generating filtered ranked plots")
  1298. generate_and_save_plots(
  1299. out_dir = out_dir,
  1300. filename = "RankPlots_na_rm",
  1301. plot_configs = rank_plot_filtered_configs,
  1302. grid_layout = list(ncol = 3, nrow = 2))
  1303. message("Generating filtered ranked linear model plots")
  1304. rank_plot_lm_filtered_configs <- generate_rank_plot_configs(
  1305. df = zscores_interactions_filtered_ranked,
  1306. variables = interaction_vars,
  1307. is_lm = TRUE,
  1308. overlap_color = TRUE
  1309. )
  1310. generate_and_save_plots(
  1311. out_dir = out_dir,
  1312. filename = "RankPlots_lm_na_rm",
  1313. plot_configs = rank_plot_lm_filtered_configs,
  1314. grid_layout = list(ncol = 3, nrow = 2))
  1315. message("Generating correlation plots")
  1316. correlation_plot_configs <- generate_correlation_plot_configs(zscores_interactions_filtered)
  1317. generate_and_save_plots(
  1318. out_dir = out_dir,
  1319. filename = "Avg_Zscore_vs_lm_NA_rm",
  1320. plot_configs = correlation_plot_configs,
  1321. grid_layout = list(ncol = 2, nrow = 2))
  1322. })
  1323. })
  1324. }
  1325. main()