calculate_interaction_zscores.R 50 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307
  1. suppressMessages({
  2. library(ggplot2)
  3. library(plotly)
  4. library(htmlwidgets)
  5. library(dplyr)
  6. library(ggthemes)
  7. library(data.table)
  8. library(unix)
  9. })
  10. options(warn = 2)
  11. # Set the memory limit to 30GB (30 * 1024 * 1024 * 1024 bytes)
  12. soft_limit <- 30 * 1024 * 1024 * 1024
  13. hard_limit <- 30 * 1024 * 1024 * 1024
  14. rlimit_as(soft_limit, hard_limit)
  15. # Constants for configuration
  16. plot_width <- 14
  17. plot_height <- 9
  18. base_size <- 14
  19. parse_arguments <- function() {
  20. args <- if (interactive()) {
  21. c(
  22. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/20240116_jhartman2_DoxoHLD",
  23. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/apps/r/SGD_features.tab",
  24. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/easy/20240116_jhartman2_DoxoHLD/results_std.txt",
  25. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/20240822_jhartman2_DoxoHLD/exp1",
  26. "Experiment 1: Doxo versus HLD",
  27. 3,
  28. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/20240822_jhartman2_DoxoHLD/exp2",
  29. "Experiment 2: HLD versus Doxo",
  30. 3
  31. )
  32. } else {
  33. commandArgs(trailingOnly = TRUE)
  34. }
  35. # Extract paths, names, and standard deviations
  36. paths <- args[seq(4, length(args), by = 3)]
  37. names <- args[seq(5, length(args), by = 3)]
  38. sds <- as.numeric(args[seq(6, length(args), by = 3)])
  39. # Normalize paths
  40. normalized_paths <- normalizePath(paths, mustWork = FALSE)
  41. # Create named list of experiments
  42. experiments <- list()
  43. for (i in seq_along(paths)) {
  44. experiments[[names[i]]] <- list(
  45. path = normalized_paths[i],
  46. sd = sds[i]
  47. )
  48. }
  49. list(
  50. out_dir = normalizePath(args[1], mustWork = FALSE),
  51. sgd_gene_list = normalizePath(args[2], mustWork = FALSE),
  52. easy_results_file = normalizePath(args[3], mustWork = FALSE),
  53. experiments = experiments
  54. )
  55. }
  56. args <- parse_arguments()
  57. # Should we keep output in exp dirs or combine in the study output dir?
  58. # dir.create(file.path(args$out_dir, "zscores"), showWarnings = FALSE)
  59. # dir.create(file.path(args$out_dir, "zscores", "qc"), showWarnings = FALSE)
  60. # Define themes and scales
  61. theme_publication <- function(base_size = 14, base_family = "sans", legend_position = "bottom") {
  62. theme_foundation <- ggplot2::theme_grey(base_size = base_size, base_family = base_family)
  63. theme_foundation %+replace%
  64. theme(
  65. plot.title = element_text(face = "bold", size = rel(1.2), hjust = 0.5),
  66. text = element_text(),
  67. panel.background = element_rect(colour = NA),
  68. plot.background = element_rect(colour = NA),
  69. panel.border = element_rect(colour = NA),
  70. axis.title = element_text(face = "bold", size = rel(1)),
  71. axis.title.y = element_text(angle = 90, vjust = 2),
  72. axis.title.x = element_text(vjust = -0.2),
  73. axis.line = element_line(colour = "black"),
  74. panel.grid.major = element_line(colour = "#f0f0f0"),
  75. panel.grid.minor = element_blank(),
  76. legend.key = element_rect(colour = NA),
  77. legend.position = legend_position,
  78. legend.direction = ifelse(legend_position == "right", "vertical", "horizontal"),
  79. plot.margin = unit(c(10, 5, 5, 5), "mm"),
  80. strip.background = element_rect(colour = "#f0f0f0", fill = "#f0f0f0"),
  81. strip.text = element_text(face = "bold")
  82. )
  83. }
  84. scale_fill_publication <- function(...) {
  85. discrete_scale("fill", "Publication", manual_pal(values = c(
  86. "#386cb0", "#fdb462", "#7fc97f", "#ef3b2c", "#662506",
  87. "#a6cee3", "#fb9a99", "#984ea3", "#ffff33"
  88. )), ...)
  89. }
  90. scale_colour_publication <- function(...) {
  91. discrete_scale("colour", "Publication", manual_pal(values = c(
  92. "#386cb0", "#fdb462", "#7fc97f", "#ef3b2c", "#662506",
  93. "#a6cee3", "#fb9a99", "#984ea3", "#ffff33"
  94. )), ...)
  95. }
  96. # Load the initial dataframe from the easy_results_file
  97. load_and_process_data <- function(easy_results_file, sd = 3) {
  98. df <- read.delim(easy_results_file, skip = 2, as.is = TRUE, row.names = 1, strip.white = TRUE)
  99. df <- df %>%
  100. filter(!(.[[1]] %in% c("", "Scan"))) %>%
  101. filter(!is.na(ORF) & ORF != "" & !Gene %in% c("BLANK", "Blank", "blank") & Drug != "BMH21") %>%
  102. # Rename columns
  103. rename(L = l, num = Num., AUC = AUC96, scan = Scan, last_bg = LstBackgrd, first_bg = X1stBackgrd) %>%
  104. mutate(
  105. across(c(Col, Row, num, L, K, r, scan, AUC, last_bg, first_bg), as.numeric),
  106. delta_bg = last_bg - first_bg,
  107. delta_bg_tolerance = mean(delta_bg, na.rm = TRUE) + (sd * sd(delta_bg, na.rm = TRUE)),
  108. NG = if_else(L == 0 & !is.na(L), 1, 0),
  109. DB = if_else(delta_bg >= delta_bg_tolerance, 1, 0),
  110. SM = 0,
  111. OrfRep = if_else(ORF == "YDL227C", "YDL227C", OrfRep), # should these be hardcoded?
  112. conc_num = as.numeric(gsub("[^0-9\\.]", "", Conc)),
  113. conc_num_factor = as.factor(conc_num)
  114. # conc_num_factor = factor(conc_num, levels = sort(unique(conc_num)))
  115. # conc_num_numeric = as.numeric(conc_num_factor) - 1
  116. )
  117. return(df)
  118. }
  119. # Update Gene names using the SGD gene list
  120. update_gene_names <- function(df, sgd_gene_list) {
  121. # Load SGD gene list
  122. genes <- read.delim(file = sgd_gene_list,
  123. quote = "", header = FALSE,
  124. colClasses = c(rep("NULL", 3), rep("character", 2), rep("NULL", 11)))
  125. # Create a named vector for mapping ORF to GeneName
  126. gene_map <- setNames(genes$V5, genes$V4)
  127. # Vectorized match to find the GeneName from gene_map
  128. mapped_genes <- gene_map[df$ORF]
  129. # Replace NAs in mapped_genes with original Gene names (preserves existing Gene names if ORF is not found)
  130. updated_genes <- ifelse(is.na(mapped_genes) | df$OrfRep == "YDL227C", df$Gene, mapped_genes)
  131. # Ensure Gene is not left blank or incorrectly updated to "OCT1"
  132. df <- df %>%
  133. mutate(Gene = ifelse(updated_genes == "" | updated_genes == "OCT1", OrfRep, updated_genes))
  134. return(df)
  135. }
  136. # Calculate summary statistics for all variables
  137. calculate_summary_stats <- function(df, variables, group_vars = c("OrfRep", "conc_num", "conc_num_factor")) {
  138. # Summarize the variables within the grouped data
  139. summary_stats <- df %>%
  140. group_by(across(all_of(group_vars))) %>%
  141. summarise(
  142. N = sum(!is.na(L)),
  143. across(all_of(variables), list(
  144. mean = ~mean(., na.rm = TRUE),
  145. median = ~median(., na.rm = TRUE),
  146. max = ~ ifelse(all(is.na(.)), NA, max(., na.rm = TRUE)),
  147. min = ~ ifelse(all(is.na(.)), NA, min(., na.rm = TRUE)),
  148. sd = ~sd(., na.rm = TRUE),
  149. se = ~ ifelse(all(is.na(.)), NA, sd(., na.rm = TRUE) / sqrt(sum(!is.na(.)) - 1))
  150. ), .names = "{.fn}_{.col}")
  151. )
  152. # print(summary_stats)
  153. # Prevent .x and .y suffix issues by renaming columns
  154. df_cleaned <- df %>%
  155. select(-any_of(setdiff(names(summary_stats), group_vars))) # Avoid duplicate columns in the final join
  156. # Join the stats back to the original dataframe
  157. df_with_stats <- left_join(df_cleaned, summary_stats, by = group_vars)
  158. return(list(summary_stats = summary_stats, df_with_stats = df_with_stats))
  159. }
  160. calculate_interaction_scores <- function(df, max_conc, variables, group_vars = c("OrfRep", "Gene", "num")) {
  161. # Calculate total concentration variables
  162. total_conc_num <- length(unique(df$conc_num))
  163. # Pull the background means and standard deviations from zero concentration
  164. bg_means <- list(
  165. L = df %>% filter(conc_num_factor == 0) %>% pull(mean_L) %>% first(),
  166. K = df %>% filter(conc_num_factor == 0) %>% pull(mean_K) %>% first(),
  167. r = df %>% filter(conc_num_factor == 0) %>% pull(mean_r) %>% first(),
  168. AUC = df %>% filter(conc_num_factor == 0) %>% pull(mean_AUC) %>% first()
  169. )
  170. bg_sd <- list(
  171. L = df %>% filter(conc_num_factor == 0) %>% pull(sd_L) %>% first(),
  172. K = df %>% filter(conc_num_factor == 0) %>% pull(sd_K) %>% first(),
  173. r = df %>% filter(conc_num_factor == 0) %>% pull(sd_r) %>% first(),
  174. AUC = df %>% filter(conc_num_factor == 0) %>% pull(sd_AUC) %>% first()
  175. )
  176. stats <- df %>%
  177. group_by(OrfRep, Gene, num, conc_num, conc_num_factor) %>%
  178. summarise(
  179. N = sum(!is.na(L)),
  180. NG = sum(NG, na.rm = TRUE),
  181. DB = sum(DB, na.rm = TRUE),
  182. SM = sum(SM, na.rm = TRUE),
  183. across(all_of(variables), list(
  184. mean = ~mean(., na.rm = TRUE),
  185. median = ~median(., na.rm = TRUE),
  186. max = ~ifelse(all(is.na(.)), NA, max(., na.rm = TRUE)),
  187. min = ~ifelse(all(is.na(.)), NA, min(., na.rm = TRUE)),
  188. sd = ~sd(., na.rm = TRUE),
  189. se = ~ifelse(sum(!is.na(.)) > 1, sd(., na.rm = TRUE) / sqrt(sum(!is.na(.)) - 1), NA)
  190. ), .names = "{.fn}_{.col}")
  191. )
  192. stats <- df %>%
  193. group_by(OrfRep, Gene, num) %>%
  194. mutate(
  195. WT_L = mean_L,
  196. WT_K = mean_K,
  197. WT_r = mean_r,
  198. WT_AUC = mean_AUC,
  199. WT_sd_L = sd_L,
  200. WT_sd_K = sd_K,
  201. WT_sd_r = sd_r,
  202. WT_sd_AUC = sd_AUC
  203. )
  204. stats <- stats %>%
  205. mutate(
  206. Raw_Shift_L = first(mean_L) - bg_means$L,
  207. Raw_Shift_K = first(mean_K) - bg_means$K,
  208. Raw_Shift_r = first(mean_r) - bg_means$r,
  209. Raw_Shift_AUC = first(mean_AUC) - bg_means$AUC,
  210. Z_Shift_L = first(Raw_Shift_L) / bg_sd$L,
  211. Z_Shift_K = first(Raw_Shift_K) / bg_sd$K,
  212. Z_Shift_r = first(Raw_Shift_r) / bg_sd$r,
  213. Z_Shift_AUC = first(Raw_Shift_AUC) / bg_sd$AUC
  214. )
  215. stats <- stats %>%
  216. mutate(
  217. Exp_L = WT_L + Raw_Shift_L,
  218. Exp_K = WT_K + Raw_Shift_K,
  219. Exp_r = WT_r + Raw_Shift_r,
  220. Exp_AUC = WT_AUC + Raw_Shift_AUC,
  221. Delta_L = mean_L - Exp_L,
  222. Delta_K = mean_K - Exp_K,
  223. Delta_r = mean_r - Exp_r,
  224. Delta_AUC = mean_AUC - Exp_AUC
  225. )
  226. stats <- stats %>%
  227. mutate(
  228. Delta_L = if_else(NG == 1, mean_L - WT_L, Delta_L),
  229. Delta_K = if_else(NG == 1, mean_K - WT_K, Delta_K),
  230. Delta_r = if_else(NG == 1, mean_r - WT_r, Delta_r),
  231. Delta_AUC = if_else(NG == 1, mean_AUC - WT_AUC, Delta_AUC),
  232. Delta_L = if_else(SM == 1, mean_L - WT_L, Delta_L)
  233. )
  234. stats <- stats %>%
  235. mutate(
  236. Zscore_L = Delta_L / WT_sd_L,
  237. Zscore_K = Delta_K / WT_sd_K,
  238. Zscore_r = Delta_r / WT_sd_r,
  239. Zscore_AUC = Delta_AUC / WT_sd_AUC
  240. )
  241. # Calculate linear models
  242. lm_L <- lm(Delta_L ~ conc_num_factor, data = stats)
  243. lm_K <- lm(Delta_K ~ conc_num_factor, data = stats)
  244. lm_r <- lm(Delta_r ~ conc_num_factor, data = stats)
  245. lm_AUC <- lm(Delta_AUC ~ conc_num_factor, data = stats)
  246. interactions <- stats %>%
  247. group_by(OrfRep, Gene, num) %>%
  248. summarise(
  249. OrfRep = first(OrfRep),
  250. Gene = first(Gene),
  251. num = first(num),
  252. conc_num = first(conc_num),
  253. conc_num_factor = first(conc_num_factor),
  254. Raw_Shift_L = first(Raw_Shift_L),
  255. Raw_Shift_K = first(Raw_Shift_K),
  256. Raw_Shift_r = first(Raw_Shift_r),
  257. Raw_Shift_AUC = first(Raw_Shift_AUC),
  258. Z_Shift_L = first(Z_Shift_L),
  259. Z_Shift_K = first(Z_Shift_K),
  260. Z_Shift_r = first(Z_Shift_r),
  261. Z_Shift_AUC = first(Z_Shift_AUC),
  262. Sum_Zscore_L = sum(Zscore_L, na.rm = TRUE),
  263. Sum_Zscore_K = sum(Zscore_K, na.rm = TRUE),
  264. Sum_Zscore_r = sum(Zscore_r, na.rm = TRUE),
  265. Sum_Zscore_AUC = sum(Zscore_AUC, na.rm = TRUE),
  266. lm_Score_L = max_conc * coef(lm_L)[2] + coef(lm_L)[1],
  267. lm_Score_K = max_conc * coef(lm_K)[2] + coef(lm_K)[1],
  268. lm_Score_r = max_conc * coef(lm_r)[2] + coef(lm_r)[1],
  269. lm_Score_AUC = max_conc * coef(lm_AUC)[2] + coef(lm_AUC)[1],
  270. R_Squared_L = summary(lm_L)$r.squared,
  271. R_Squared_K = summary(lm_K)$r.squared,
  272. R_Squared_r = summary(lm_r)$r.squared,
  273. R_Squared_AUC = summary(lm_AUC)$r.squared,
  274. lm_intercept_L = coef(lm_L)[1],
  275. lm_slope_L = coef(lm_L)[2],
  276. lm_intercept_K = coef(lm_K)[1],
  277. lm_slope_K = coef(lm_K)[2],
  278. lm_intercept_r = coef(lm_r)[1],
  279. lm_slope_r = coef(lm_r)[2],
  280. lm_intercept_AUC = coef(lm_AUC)[1],
  281. lm_slope_AUC = coef(lm_AUC)[2],
  282. NG = sum(NG, na.rm = TRUE),
  283. DB = sum(DB, na.rm = TRUE),
  284. SM = sum(SM, na.rm = TRUE)
  285. )
  286. num_non_removed_concs <- total_conc_num - sum(stats$DB, na.rm = TRUE) - 1
  287. interactions <- interactions %>%
  288. mutate(
  289. Avg_Zscore_L = Sum_Zscore_L / num_non_removed_concs,
  290. Avg_Zscore_K = Sum_Zscore_K / num_non_removed_concs,
  291. Avg_Zscore_r = Sum_Zscore_r / (total_conc_num - 1),
  292. Avg_Zscore_AUC = Sum_Zscore_AUC / (total_conc_num - 1),
  293. Z_lm_L = (lm_Score_L - mean(lm_Score_L, na.rm = TRUE)) / sd(lm_Score_L, na.rm = TRUE),
  294. Z_lm_K = (lm_Score_K - mean(lm_Score_K, na.rm = TRUE)) / sd(lm_Score_K, na.rm = TRUE),
  295. Z_lm_r = (lm_Score_r - mean(lm_Score_r, na.rm = TRUE)) / sd(lm_Score_r, na.rm = TRUE),
  296. Z_lm_AUC = (lm_Score_AUC - mean(lm_Score_AUC, na.rm = TRUE)) / sd(lm_Score_AUC, na.rm = TRUE)
  297. ) %>%
  298. arrange(desc(Z_lm_L), desc(NG))
  299. # Declare column order for output
  300. calculations <- stats %>%
  301. select(
  302. "OrfRep", "Gene", "conc_num", "conc_num_factor", "N",
  303. "mean_L", "mean_K", "mean_r", "mean_AUC",
  304. "median_L", "median_K", "median_r", "median_AUC",
  305. "sd_L", "sd_K", "sd_r", "sd_AUC",
  306. "se_L", "se_K", "se_r", "se_AUC",
  307. "Raw_Shift_L", "Raw_Shift_K", "Raw_Shift_r", "Raw_Shift_AUC",
  308. "Z_Shift_L", "Z_Shift_K", "Z_Shift_r", "Z_Shift_AUC",
  309. "WT_L", "WT_K", "WT_r", "WT_AUC",
  310. "WT_sd_L", "WT_sd_K", "WT_sd_r", "WT_sd_AUC",
  311. "Exp_L", "Exp_K", "Exp_r", "Exp_AUC",
  312. "Delta_L", "Delta_K", "Delta_r", "Delta_AUC",
  313. "Zscore_L", "Zscore_K", "Zscore_r", "Zscore_AUC",
  314. "NG", "SM", "DB")
  315. calculations_joined <- df %>% select(-any_of(setdiff(names(calculations), c("OrfRep", "Gene", "num", "conc_num", "conc_num_factor"))))
  316. calculations_joined <- left_join(calculations_joined, calculations, by = c("OrfRep", "Gene", "num", "conc_num", "conc_num_factor"))
  317. interactions_joined <- df %>% select(-any_of(setdiff(names(interactions), c("OrfRep", "Gene", "num", "conc_num", "conc_num_factor"))))
  318. interactions_joined <- left_join(interactions_joined, interactions, by = c("OrfRep", "Gene", "num", "conc_num", "conc_num_factor"))
  319. return(list(calculations = calculations, interactions = interactions, interactions_joined = interactions_joined,
  320. calculations_joined = calculations_joined))
  321. }
  322. generate_and_save_plots <- function(output_dir, file_name, plot_configs, grid_layout = NULL) {
  323. message("Generating ", file_name, ".pdf and ", file_name, ".html")
  324. # Prepare lists to collect plots
  325. static_plots <- list()
  326. plotly_plots <- list()
  327. for (i in seq_along(plot_configs)) {
  328. config <- plot_configs[[i]]
  329. df <- config$df
  330. # Build the aes_mapping based on config
  331. aes_mapping <- if (is.null(config$color_var)) {
  332. if (is.null(config$y_var)) {
  333. aes(x = .data[[config$x_var]])
  334. } else {
  335. aes(x = .data[[config$x_var]], y = .data[[config$y_var]])
  336. }
  337. } else {
  338. if (is.null(config$y_var)) {
  339. aes(x = .data[[config$x_var]], color = as.factor(.data[[config$color_var]]))
  340. } else {
  341. aes(x = .data[[config$x_var]], y = .data[[config$y_var]], color = as.factor(.data[[config$color_var]]))
  342. }
  343. }
  344. # Start building the plot with aes_mapping
  345. plot_base <- ggplot(df, aes_mapping)
  346. # Use appropriate helper function based on plot type
  347. plot <- switch(config$plot_type,
  348. "scatter" = generate_scatter_plot(plot_base, config),
  349. "box" = generate_box_plot(plot_base, config),
  350. "density" = plot_base + geom_density(),
  351. "bar" = plot_base + geom_bar(),
  352. plot_base # default case if no type matches
  353. )
  354. # Apply additional settings if provided
  355. if (!is.null(config$legend_position)) {
  356. plot <- plot + theme(legend.position = config$legend_position)
  357. }
  358. # Add title and labels if provided
  359. if (!is.null(config$title)) {
  360. plot <- plot + ggtitle(config$title)
  361. }
  362. if (!is.null(config$x_label)) {
  363. plot <- plot + xlab(config$x_label)
  364. }
  365. if (!is.null(config$y_label)) {
  366. plot <- plot + ylab(config$y_label)
  367. }
  368. # Add interactive tooltips for plotly plots
  369. tooltip_vars <- c("x", "y") # default tooltip variables
  370. if (!is.null(config$tooltip_vars)) {
  371. tooltip_vars <- config$tooltip_vars
  372. } else {
  373. # Include default variables based on config
  374. if (!is.null(config$delta_bg_point) && config$delta_bg_point) {
  375. tooltip_vars <- c(tooltip_vars, "OrfRep", "Gene", "delta_bg")
  376. } else if (!is.null(config$gene_point) && config$gene_point) {
  377. tooltip_vars <- c(tooltip_vars, "OrfRep", "Gene")
  378. } else {
  379. # Include x and y variables by default
  380. tooltip_vars <- c("x", "y")
  381. }
  382. }
  383. # Convert to plotly object
  384. plotly_plot <- ggplotly(plot, tooltip = tooltip_vars)
  385. if (!is.null(config$legend_position) && config$legend_position == "bottom") {
  386. plotly_plot <- plotly_plot %>% layout(legend = list(orientation = "h"))
  387. }
  388. # Add plots to lists
  389. static_plots[[i]] <- plot
  390. plotly_plots[[i]] <- plotly_plot
  391. }
  392. # Save static PDF plots
  393. pdf(file.path(output_dir, paste0(file_name, ".pdf")), width = 14, height = 9)
  394. lapply(static_plots, print)
  395. dev.off()
  396. # Combine and save interactive HTML plots
  397. combined_plot <- subplot(plotly_plots, nrows = grid_layout$nrow %||% length(plotly_plots), margin = 0.05)
  398. saveWidget(combined_plot, file = file.path(output_dir, paste0(file_name, ".html")), selfcontained = TRUE)
  399. }
  400. generate_scatter_plot <- function(plot, config) {
  401. if (!is.null(config$delta_bg_point) && config$delta_bg_point) {
  402. plot <- plot + geom_point(
  403. shape = config$shape %||% 3,
  404. size = config$size %||% 0.2
  405. )
  406. } else if (!is.null(config$gene_point) && config$gene_point) {
  407. plot <- plot + geom_point(
  408. shape = config$shape %||% 3,
  409. size = config$size %||% 0.2,
  410. position = "jitter"
  411. )
  412. } else {
  413. plot <- plot + geom_point(
  414. shape = config$shape %||% 3,
  415. position = if (!is.null(config$position) && config$position == "jitter") "jitter" else "identity"
  416. )
  417. }
  418. # Add smooth line if specified
  419. if (!is.null(config$add_smooth) && config$add_smooth) {
  420. plot <- if (!is.null(config$lm_line)) {
  421. plot + geom_abline(intercept = config$lm_line$intercept, slope = config$lm_line$slope)
  422. } else {
  423. plot + geom_smooth(method = "lm", se = FALSE)
  424. }
  425. }
  426. # Add SD bands (iterate over sd_band only here)
  427. if (!is.null(config$sd_band)) {
  428. for (i in config$sd_band) {
  429. plot <- plot +
  430. annotate("rect", xmin = -Inf, xmax = Inf, ymin = i, ymax = Inf, fill = "#542788", alpha = 0.3) +
  431. annotate("rect", xmin = -Inf, xmax = Inf, ymin = -i, ymax = -Inf, fill = "orange", alpha = 0.3) +
  432. geom_hline(yintercept = c(-i, i), color = "gray")
  433. }
  434. }
  435. # Add error bars if specified
  436. if (!is.null(config$error_bar) && config$error_bar) {
  437. y_mean_col <- paste0("mean_", config$y_var)
  438. y_sd_col <- paste0("sd_", config$y_var)
  439. plot <- plot + geom_errorbar(
  440. aes(
  441. ymin = !!sym(y_mean_col) - !!sym(y_sd_col),
  442. ymax = !!sym(y_mean_col) + !!sym(y_sd_col)
  443. ),
  444. alpha = 0.3
  445. )
  446. }
  447. # Add x-axis customization if specified
  448. if (!is.null(config$x_breaks) && !is.null(config$x_labels) && !is.null(config$x_label)) {
  449. plot <- plot + scale_x_discrete(
  450. name = config$x_label,
  451. breaks = config$x_breaks,
  452. labels = config$x_labels
  453. )
  454. }
  455. # Use coord_cartesian for zooming in without removing data outside the range
  456. if (!is.null(config$coord_cartesian)) {
  457. plot <- plot + coord_cartesian(ylim = config$coord_cartesian)
  458. }
  459. # Use scale_y_continuous for setting the y-axis limits
  460. if (!is.null(config$ylim_vals)) {
  461. plot <- plot + scale_y_continuous(limits = config$ylim_vals)
  462. }
  463. # Add annotations if specified
  464. if (!is.null(config$annotations)) {
  465. for (annotation in config$annotations) {
  466. plot <- plot + annotate("text",
  467. x = annotation$x,
  468. y = annotation$y,
  469. label = annotation$label,
  470. na.rm = TRUE)
  471. }
  472. }
  473. # Add titles and themes if specified
  474. if (!is.null(config$title)) {
  475. plot <- plot + ggtitle(config$title)
  476. }
  477. if (!is.null(config$legend_position)) {
  478. plot <- plot + theme(legend.position = config$legend_position)
  479. }
  480. return(plot)
  481. }
  482. generate_box_plot <- function(plot, config) {
  483. plot <- plot + geom_boxplot()
  484. if (!is.null(config$x_breaks) && !is.null(config$x_labels) && !is.null(config$x_label)) {
  485. plot <- plot + scale_x_discrete(
  486. name = config$x_label,
  487. breaks = config$x_breaks,
  488. labels = config$x_labels
  489. )
  490. }
  491. if (!is.null(config$coord_cartesian)) {
  492. plot <- plot + coord_cartesian(ylim = config$coord_cartesian)
  493. }
  494. return(plot)
  495. }
  496. generate_interaction_plot_configs <- function(df, variables) {
  497. configs <- list()
  498. # Data frames to collect filtered data and out-of-range data
  499. filtered_data_list <- list()
  500. out_of_range_data_list <- list()
  501. # Define common y-limits for each variable
  502. limits_map <- list(
  503. L = c(-65, 65),
  504. K = c(-65, 65),
  505. r = c(-0.65, 0.65),
  506. AUC = c(-6500, 6500)
  507. )
  508. # Define functions to generate annotation labels
  509. annotation_labels <- list(
  510. ZShift = function(df, var) {
  511. val <- df[[paste0("Z_Shift_", var)]]
  512. paste("ZShift =", round(val, 2))
  513. },
  514. lm_ZScore = function(df, var) {
  515. val <- df[[paste0("Z_lm_", var)]]
  516. paste("lm ZScore =", round(val, 2))
  517. },
  518. NG = function(df, var) paste("NG =", df$NG),
  519. DB = function(df, var) paste("DB =", df$DB),
  520. SM = function(df, var) paste("SM =", df$SM)
  521. )
  522. for (variable in variables) {
  523. # Get y-limits for the variable
  524. ylim_vals <- limits_map[[variable]]
  525. # Extract precomputed linear model coefficients
  526. lm_line <- list(
  527. intercept = df[[paste0("lm_intercept_", variable)]],
  528. slope = df[[paste0("lm_slope_", variable)]]
  529. )
  530. # Filter the data based on y-limits and missing values
  531. y_var_sym <- sym(variable)
  532. x_var_sym <- sym("conc_num_factor")
  533. # Identify missing data and out-of-range data
  534. missing_data <- df %>% filter(is.na(!!x_var_sym) | is.na(!!y_var_sym))
  535. out_of_range_data <- df %>% filter(
  536. !is.na(!!y_var_sym) &
  537. (!!y_var_sym < min(ylim_vals, na.rm = TRUE) | !!y_var_sym > max(ylim_vals, na.rm = TRUE))
  538. )
  539. # Combine missing data and out-of-range data
  540. data_to_filter_out <- bind_rows(missing_data, out_of_range_data) %>% distinct()
  541. # Filtered data for plotting
  542. filtered_data <- df %>% anti_join(data_to_filter_out, by = names(df))
  543. # Collect the filtered data and out-of-range data
  544. filtered_data_list[[variable]] <- filtered_data
  545. out_of_range_data_list[[variable]] <- data_to_filter_out
  546. # Calculate x and y positions for annotations based on filtered data
  547. x_levels <- levels(filtered_data$conc_num_factor)
  548. x_pos <- mean(seq_along(x_levels)) # Midpoint of x-axis
  549. y_min <- min(ylim_vals)
  550. y_max <- max(ylim_vals)
  551. y_span <- y_max - y_min
  552. # Adjust y positions as fractions of y-span
  553. annotation_positions <- list(
  554. ZShift = y_max - 0.1 * y_span,
  555. lm_ZScore = y_max - 0.2 * y_span,
  556. NG = y_min + 0.2 * y_span,
  557. DB = y_min + 0.1 * y_span,
  558. SM = y_min + 0.05 * y_span
  559. )
  560. # Generate annotations
  561. annotations <- lapply(names(annotation_positions), function(annotation_name) {
  562. y_pos <- annotation_positions[[annotation_name]]
  563. label_func <- annotation_labels[[annotation_name]]
  564. if (!is.null(label_func)) {
  565. label <- label_func(df, variable)
  566. list(x = x_pos, y = y_pos, label = label)
  567. } else {
  568. message(paste("Warning: No annotation function found for", annotation_name))
  569. NULL
  570. }
  571. })
  572. # Remove NULL annotations
  573. annotations <- Filter(Negate(is.null), annotations)
  574. # Create scatter plot config
  575. configs[[length(configs) + 1]] <- list(
  576. df = filtered_data,
  577. x_var = "conc_num_factor",
  578. y_var = variable,
  579. plot_type = "scatter",
  580. title = sprintf("%s %s", df$OrfRep[1], df$Gene[1]),
  581. ylim_vals = ylim_vals,
  582. annotations = annotations,
  583. lm_line = lm_line,
  584. error_bar = TRUE,
  585. x_breaks = levels(filtered_data$conc_num_factor),
  586. x_labels = levels(filtered_data$conc_num_factor),
  587. x_label = unique(df$Drug[1]),
  588. position = "jitter",
  589. coord_cartesian = ylim_vals # Use the actual y-limits
  590. )
  591. # Create box plot config
  592. configs[[length(configs) + 1]] <- list(
  593. df = filtered_data,
  594. x_var = "conc_num_factor",
  595. y_var = variable,
  596. plot_type = "box",
  597. title = sprintf("%s %s (Boxplot)", df$OrfRep[1], df$Gene[1]),
  598. ylim_vals = ylim_vals,
  599. annotations = annotations,
  600. error_bar = FALSE,
  601. x_breaks = unique(filtered_data$conc_num_factor),
  602. x_labels = unique(as.character(filtered_data$conc_num)),
  603. x_label = unique(df$Drug[1]),
  604. coord_cartesian = ylim_vals
  605. )
  606. }
  607. # Combine the filtered data and out-of-range data into data frames
  608. filtered_data_df <- bind_rows(filtered_data_list, .id = "variable")
  609. out_of_range_data_df <- bind_rows(out_of_range_data_list, .id = "variable")
  610. return(list(
  611. configs = configs,
  612. filtered_data = filtered_data_df,
  613. out_of_range_data = out_of_range_data_df
  614. ))
  615. }
  616. generate_rank_plot_configs <- function(df, interaction_vars, rank_vars = c("L", "K"), is_lm = FALSE, adjust = FALSE) {
  617. # Adjust missing values and compute ranks for each interaction variable
  618. if (adjust) {
  619. for (var in interaction_vars) {
  620. avg_zscore_col <- paste0("Avg_Zscore_", var)
  621. z_lm_col <- paste0("Z_lm_", var)
  622. rank_col <- paste0("Rank_", var)
  623. rank_lm_col <- paste0("Rank_lm_", var)
  624. # Replace NA with 0.001 for interaction variables
  625. df[[avg_zscore_col]] <- if_else(is.na(df[[avg_zscore_col]]), 0.001, df[[avg_zscore_col]])
  626. df[[z_lm_col]] <- if_else(is.na(df[[z_lm_col]]), 0.001, df[[z_lm_col]])
  627. # Compute ranks for interaction variables
  628. df[[rank_col]] <- rank(df[[avg_zscore_col]], na.last = "keep")
  629. df[[rank_lm_col]] <- rank(df[[z_lm_col]], na.last = "keep")
  630. }
  631. }
  632. # Initialize list to store plot configurations
  633. configs <- list()
  634. # Generate plot configurations for rank variables (L and K) with sd bands
  635. for (var in rank_vars) {
  636. if (is_lm) {
  637. rank_var <- paste0("Rank_lm_", var)
  638. zscore_var <- paste0("Z_lm_", var)
  639. plot_title_prefix <- "Interaction Z score vs. Rank for"
  640. } else {
  641. rank_var <- paste0("Rank_", var)
  642. zscore_var <- paste0("Avg_Zscore_", var)
  643. plot_title_prefix <- "Average Z score vs. Rank for"
  644. }
  645. # Create plot configurations for each SD band
  646. for (sd_band in c(1, 2, 3)) {
  647. # Annotated version
  648. configs[[length(configs) + 1]] <- list(
  649. df = df,
  650. x_var = rank_var,
  651. y_var = zscore_var,
  652. plot_type = "scatter",
  653. title = paste(plot_title_prefix, var, "above", sd_band, "SD"),
  654. sd_band = sd_band,
  655. enhancer_label = list(
  656. x = nrow(df) / 2,
  657. y = 10,
  658. label = paste("Deletion Enhancers =", nrow(df[df[[zscore_var]] >= sd_band, ]))
  659. ),
  660. suppressor_label = list(
  661. x = nrow(df) / 2,
  662. y = -10,
  663. label = paste("Deletion Suppressors =", nrow(df[df[[zscore_var]] <= -sd_band, ]))
  664. ),
  665. shape = 3,
  666. size = 0.1
  667. )
  668. # Non-annotated version (_notext)
  669. configs[[length(configs) + 1]] <- list(
  670. df = df,
  671. x_var = rank_var,
  672. y_var = zscore_var,
  673. plot_type = "scatter",
  674. title = paste(plot_title_prefix, var, "above", sd_band, "SD No Annotations"),
  675. sd_band = sd_band,
  676. enhancer_label = NULL,
  677. suppressor_label = NULL,
  678. shape = 3,
  679. size = 0.1
  680. )
  681. }
  682. }
  683. return(list(
  684. adjusted_df = df,
  685. plot_configs = configs
  686. ))
  687. }
  688. generate_correlation_plot_configs <- function(df, variables) {
  689. configs <- list()
  690. for (variable in variables) {
  691. z_lm_var <- paste0("Z_lm_", variable)
  692. avg_zscore_var <- paste0("Avg_Zscore_", variable)
  693. lm_r_squared_col <- paste0("lm_R_squared_", variable)
  694. configs[[length(configs) + 1]] <- list(
  695. df = df,
  696. x_var = avg_zscore_var,
  697. y_var = z_lm_var,
  698. plot_type = "scatter",
  699. title = paste("Avg Zscore vs lm", variable),
  700. color_var = "Overlap",
  701. correlation_text = paste("R-squared =", round(df[[lm_r_squared_col]][1], 2)),
  702. shape = 3,
  703. geom_smooth = TRUE,
  704. rect = list(xmin = -2, xmax = 2, ymin = -2, ymax = 2), # To add the geom_rect layer
  705. annotate_position = list(x = 0, y = 0), # Position for the R-squared text
  706. legend_position = "right"
  707. )
  708. }
  709. return(configs)
  710. }
  711. filter_and_print_non_finite <- function(df, vars_to_check, print_vars) {
  712. non_finite_rows <- df %>% filter(if_any(all_of(vars_to_check), ~ !is.finite(.)))
  713. if (nrow(non_finite_rows) > 0) {
  714. message("Removing the following non-finite rows:")
  715. print(non_finite_rows %>% select(all_of(print_vars)), n = 200)
  716. }
  717. df %>% filter(if_all(all_of(vars_to_check), is.finite))
  718. }
  719. main <- function() {
  720. lapply(names(args$experiments), function(exp_name) {
  721. exp <- args$experiments[[exp_name]]
  722. exp_path <- exp$path
  723. exp_sd <- exp$sd
  724. out_dir <- file.path(exp_path, "zscores")
  725. out_dir_qc <- file.path(exp_path, "zscores", "qc")
  726. dir.create(out_dir, recursive = TRUE, showWarnings = FALSE)
  727. dir.create(out_dir_qc, recursive = TRUE, showWarnings = FALSE)
  728. summary_vars <- c("L", "K", "r", "AUC", "delta_bg") # fields to filter and calculate summary stats across
  729. group_vars <- c("OrfRep", "conc_num", "conc_num_factor") # default fields to group by
  730. orf_group_vars <- c("OrfRep", "Gene", "num")
  731. print_vars <- c("OrfRep", "Plate", "scan", "Col", "Row", "num", "OrfRep", "conc_num", "conc_num_factor",
  732. "delta_bg_tolerance", "delta_bg", "Gene", "L", "K", "r", "AUC", "NG", "DB")
  733. message("Loading and filtering data for experiment: ", exp_name)
  734. df <- load_and_process_data(args$easy_results_file, sd = exp_sd) %>%
  735. update_gene_names(args$sgd_gene_list) %>%
  736. as_tibble()
  737. # Quality Control: Filter rows above tolerance
  738. df_above_tolerance <- df %>% filter(DB == 1)
  739. df_na <- df %>% mutate(across(all_of(summary_vars), ~ ifelse(DB == 1, NA, .)))
  740. df_no_zeros <- df_na %>% filter(L > 0)
  741. # Save some constants
  742. max_conc <- max(df$conc_num)
  743. l_half_median <- (median(df_above_tolerance$L, na.rm = TRUE)) / 2
  744. k_half_median <- (median(df_above_tolerance$K, na.rm = TRUE)) / 2
  745. message("Calculating summary statistics before quality control")
  746. ss <- calculate_summary_stats(df, summary_vars, group_vars = group_vars)
  747. df_stats <- ss$df_with_stats
  748. df_filtered_stats <- filter_and_print_non_finite(df_stats, "L", print_vars)
  749. message("Calculating summary statistics after quality control")
  750. ss <- calculate_summary_stats(df_na, summary_vars, group_vars = group_vars)
  751. df_na_ss <- ss$summary_stats
  752. df_na_stats <- ss$df_with_stats
  753. write.csv(df_na_ss, file = file.path(out_dir, "summary_stats_all_strains.csv"), row.names = FALSE)
  754. # Filter out non-finite rows for plotting
  755. df_na_filtered_stats <- filter_and_print_non_finite(df_na_stats, "L", print_vars)
  756. message("Calculating summary statistics after quality control excluding zero values")
  757. ss <- calculate_summary_stats(df_no_zeros, summary_vars, group_vars = group_vars)
  758. df_no_zeros_stats <- ss$df_with_stats
  759. df_no_zeros_filtered_stats <- filter_and_print_non_finite(df_no_zeros_stats, "L", print_vars)
  760. message("Filtering by 2SD of K")
  761. df_na_within_2sd_k <- df_na_stats %>%
  762. filter(K >= (mean_K - 2 * sd_K) & K <= (mean_K + 2 * sd_K))
  763. df_na_outside_2sd_k <- df_na_stats %>%
  764. filter(K < (mean_K - 2 * sd_K) | K > (mean_K + 2 * sd_K))
  765. message("Calculating summary statistics for L within 2SD of K")
  766. # TODO We're omitting the original z_max calculation, not sure if needed?
  767. ss <- calculate_summary_stats(df_na_within_2sd_k, "L", group_vars = c("conc_num", "conc_num_factor"))
  768. # df_na_l_within_2sd_k_stats <- ss$df_with_stats
  769. write.csv(ss$summary_stats, file = file.path(out_dir_qc, "max_observed_L_vals_for_spots_within_2sd_K.csv"), row.names = FALSE)
  770. message("Calculating summary statistics for L outside 2SD of K")
  771. ss <- calculate_summary_stats(df_na_outside_2sd_k, "L", group_vars = c("conc_num", "conc_num_factor"))
  772. df_na_l_outside_2sd_k_stats <- ss$df_with_stats
  773. write.csv(ss$summary_stats, file = file.path(out_dir, "max_observed_L_vals_for_spots_outside_2sd_K.csv"), row.names = FALSE)
  774. # Each plots list corresponds to a file
  775. l_vs_k_plots <- list(
  776. list(
  777. df = df,
  778. x_var = "L",
  779. y_var = "K",
  780. plot_type = "scatter",
  781. delta_bg_point = TRUE,
  782. title = "Raw L vs K before quality control",
  783. color_var = "conc_num_factor",
  784. error_bar = FALSE,
  785. legend_position = "right"
  786. )
  787. )
  788. frequency_delta_bg_plots <- list(
  789. list(
  790. df = df_filtered_stats,
  791. x_var = "delta_bg",
  792. y_var = NULL,
  793. plot_type = "density",
  794. title = "Plate analysis by Drug Conc for Delta Background before quality control",
  795. color_var = "conc_num_factor",
  796. x_label = "Delta Background",
  797. y_label = "Density",
  798. error_bar = FALSE,
  799. legend_position = "right"),
  800. list(
  801. df = df_filtered_stats,
  802. x_var = "delta_bg",
  803. y_var = NULL,
  804. plot_type = "bar",
  805. title = "Plate analysis by Drug Conc for Delta Background before quality control",
  806. color_var = "conc_num_factor",
  807. x_label = "Delta Background",
  808. y_label = "Count",
  809. error_bar = FALSE,
  810. legend_position = "right")
  811. )
  812. above_threshold_plots <- list(
  813. list(
  814. df = df_above_tolerance,
  815. x_var = "L",
  816. y_var = "K",
  817. plot_type = "scatter",
  818. delta_bg_point = TRUE,
  819. title = paste("Raw L vs K for strains above Delta Background threshold of",
  820. df_above_tolerance$delta_bg_tolerance[[1]], "or above"),
  821. color_var = "conc_num_factor",
  822. position = "jitter",
  823. annotations = list(
  824. list(
  825. x = l_half_median,
  826. y = k_half_median,
  827. label = paste("# strains above Delta Background tolerance =", nrow(df_above_tolerance))
  828. )
  829. ),
  830. error_bar = FALSE,
  831. legend_position = "right"
  832. )
  833. )
  834. plate_analysis_plots <- list()
  835. for (var in summary_vars) {
  836. for (stage in c("before", "after")) {
  837. if (stage == "before") {
  838. df_plot <- df_filtered_stats
  839. } else {
  840. df_plot <- df_na_filtered_stats
  841. }
  842. config <- list(
  843. df = df_plot,
  844. x_var = "scan",
  845. y_var = var,
  846. plot_type = "scatter",
  847. title = paste("Plate analysis by Drug Conc for", var, stage, "quality control"),
  848. error_bar = TRUE,
  849. color_var = "conc_num_factor",
  850. position = "jitter")
  851. plate_analysis_plots <- append(plate_analysis_plots, list(config))
  852. }
  853. }
  854. plate_analysis_boxplots <- list()
  855. for (var in summary_vars) {
  856. for (stage in c("before", "after")) {
  857. if (stage == "before") {
  858. df_plot <- df_filtered_stats
  859. } else {
  860. df_plot <- df_na_filtered_stats
  861. }
  862. config <- list(
  863. df = df_plot,
  864. x_var = "scan",
  865. y_var = var,
  866. plot_type = "box",
  867. title = paste("Plate analysis by Drug Conc for", var, stage, "quality control"),
  868. error_bar = FALSE,
  869. color_var = "conc_num_factor")
  870. plate_analysis_boxplots <- append(plate_analysis_boxplots, list(config))
  871. }
  872. }
  873. plate_analysis_no_zeros_plots <- list()
  874. for (var in summary_vars) {
  875. config <- list(
  876. df = df_no_zeros_filtered_stats,
  877. x_var = "scan",
  878. y_var = var,
  879. plot_type = "scatter",
  880. title = paste("Plate analysis by Drug Conc for", var, "after quality control"),
  881. error_bar = TRUE,
  882. color_var = "conc_num_factor",
  883. position = "jitter")
  884. plate_analysis_no_zeros_plots <- append(plate_analysis_no_zeros_plots, list(config))
  885. }
  886. plate_analysis_no_zeros_boxplots <- list()
  887. for (var in summary_vars) {
  888. config <- list(
  889. df = df_no_zeros_filtered_stats,
  890. x_var = "scan",
  891. y_var = var,
  892. plot_type = "box",
  893. title = paste("Plate analysis by Drug Conc for", var, "after quality control"),
  894. error_bar = FALSE,
  895. color_var = "conc_num_factor"
  896. )
  897. plate_analysis_no_zeros_boxplots <- append(plate_analysis_no_zeros_boxplots, list(config))
  898. }
  899. l_outside_2sd_k_plots <- list(
  900. list(
  901. df = df_na_l_outside_2sd_k_stats,
  902. x_var = "L",
  903. y_var = "K",
  904. plot_type = "scatter",
  905. delta_bg_point = TRUE,
  906. title = "Raw L vs K for strains falling outside 2SD of the K mean at each Conc",
  907. color_var = "conc_num_factor",
  908. position = "jitter",
  909. legend_position = "right"
  910. )
  911. )
  912. delta_bg_outside_2sd_k_plots <- list(
  913. list(
  914. df = df_na_l_outside_2sd_k_stats,
  915. x_var = "delta_bg",
  916. y_var = "K",
  917. plot_type = "scatter",
  918. gene_point = TRUE,
  919. title = "Delta Background vs K for strains falling outside 2SD of the K mean at each Conc",
  920. color_var = "conc_num_factor",
  921. position = "jitter",
  922. legend_position = "right"
  923. )
  924. )
  925. message("Generating quality control plots")
  926. # generate_and_save_plots(out_dir_qc, "L_vs_K_before_quality_control", l_vs_k_plots)
  927. # generate_and_save_plots(out_dir_qc, "frequency_delta_background", frequency_delta_bg_plots)
  928. # generate_and_save_plots(out_dir_qc, "L_vs_K_above_threshold", above_threshold_plots)
  929. # generate_and_save_plots(out_dir_qc, "plate_analysis", plate_analysis_plots)
  930. # generate_and_save_plots(out_dir_qc, "plate_analysis_boxplots", plate_analysis_boxplots)
  931. # generate_and_save_plots(out_dir_qc, "plate_analysis_no_zeros", plate_analysis_no_zeros_plots)
  932. # generate_and_save_plots(out_dir_qc, "plate_analysis_no_zeros_boxplots", plate_analysis_no_zeros_boxplots)
  933. # generate_and_save_plots(out_dir_qc, "L_vs_K_for_strains_2SD_outside_mean_K", l_outside_2sd_k_plots)
  934. # generate_and_save_plots(out_dir_qc, "delta_background_vs_K_for_strains_2sd_outside_mean_K", delta_bg_outside_2sd_k_plots)
  935. # TODO: Originally this filtered L NA's
  936. # Let's try to avoid for now since stats have already been calculated
  937. # Process background strains
  938. bg_strains <- c("YDL227C")
  939. lapply(bg_strains, function(strain) {
  940. message("Processing background strain: ", strain)
  941. # Handle missing data by setting zero values to NA
  942. # and then removing any rows with NA in L col
  943. df_bg <- df_na %>%
  944. filter(OrfRep == strain) %>%
  945. mutate(
  946. L = if_else(L == 0, NA, L),
  947. K = if_else(K == 0, NA, K),
  948. r = if_else(r == 0, NA, r),
  949. AUC = if_else(AUC == 0, NA, AUC)
  950. ) %>%
  951. filter(!is.na(L))
  952. # Recalculate summary statistics for the background strain
  953. message("Calculating summary statistics for background strain")
  954. ss_bg <- calculate_summary_stats(df_bg, summary_vars, group_vars = group_vars)
  955. summary_stats_bg <- ss_bg$summary_stats
  956. # df_bg_stats <- ss_bg$df_with_stats
  957. write.csv(summary_stats_bg,
  958. file = file.path(out_dir, paste0("SummaryStats_BackgroundStrains_", strain, ".csv")),
  959. row.names = FALSE)
  960. # Filter reference and deletion strains
  961. # Formerly X2_RF (reference strains)
  962. df_reference <- df_na_stats %>%
  963. filter(OrfRep == strain) %>%
  964. mutate(SM = 0)
  965. # Formerly X2 (deletion strains)
  966. df_deletion <- df_na_stats %>%
  967. filter(OrfRep != strain) %>%
  968. mutate(SM = 0)
  969. # Set the missing values to the highest theoretical value at each drug conc for L
  970. # Leave other values as 0 for the max/min
  971. reference_strain <- df_reference %>%
  972. group_by(conc_num) %>%
  973. mutate(
  974. max_l_theoretical = max(max_L, na.rm = TRUE),
  975. L = ifelse(L == 0 & !is.na(L) & conc_num > 0, max_l_theoretical, L),
  976. SM = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, 1, SM),
  977. L = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, max_l_theoretical, L)) %>%
  978. ungroup()
  979. # Ditto for deletion strains
  980. deletion_strains <- df_deletion %>%
  981. group_by(conc_num) %>%
  982. mutate(
  983. max_l_theoretical = max(max_L, na.rm = TRUE),
  984. L = ifelse(L == 0 & !is.na(L) & conc_num > 0, max_l_theoretical, L),
  985. SM = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, 1, SM),
  986. L = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, max_l_theoretical, L)) %>%
  987. ungroup()
  988. message("Calculating interaction scores")
  989. interaction_vars <- c("L", "K", "r", "AUC")
  990. message("Calculating reference strain(s)")
  991. reference_results <- calculate_interaction_scores(reference_strain, max_conc, interaction_vars, group_vars = orf_group_vars)
  992. zscores_calculations_reference <- reference_results$calculations
  993. zscores_interactions_reference <- reference_results$interactions
  994. zscores_calculations_reference_joined <- reference_results$calculations_joined
  995. zscores_interactions_reference_joined <- reference_results$interactions_joined
  996. message("Calculating deletion strain(s)")
  997. deletion_results <- calculate_interaction_scores(deletion_strains, max_conc, interaction_vars, group_vars = orf_group_vars)
  998. zscores_calculations <- deletion_results$calculations
  999. zscores_interactions <- deletion_results$interactions
  1000. zscores_calculations_joined <- deletion_results$calculations_joined
  1001. zscores_interactions_joined <- deletion_results$interactions_joined
  1002. # Writing Z-Scores to file
  1003. write.csv(zscores_calculations_reference, file = file.path(out_dir, "RF_ZScores_Calculations.csv"), row.names = FALSE)
  1004. write.csv(zscores_calculations, file = file.path(out_dir, "ZScores_Calculations.csv"), row.names = FALSE)
  1005. write.csv(zscores_interactions_reference, file = file.path(out_dir, "RF_ZScores_Interaction.csv"), row.names = FALSE)
  1006. write.csv(zscores_interactions, file = file.path(out_dir, "ZScores_Interaction.csv"), row.names = FALSE)
  1007. # Create interaction plots
  1008. message("Generating reference interaction plots")
  1009. results <- generate_interaction_plot_configs(zscores_interactions_reference_joined, interaction_vars)
  1010. if (nrow(results$out_of_range_data) > 0) {
  1011. message("Out-of-range data:")
  1012. print(results$out_of_range_data %>% select("OrfRep", "Gene", "num",
  1013. "conc_num", "conc_num_factor", config$x_var, config$y_var))
  1014. }
  1015. reference_plot_configs <- results$configs
  1016. generate_and_save_plots(out_dir, "RF_interactionPlots", reference_plot_configs, grid_layout = list(ncol = 4, nrow = 3))
  1017. message("Generating deletion interaction plots")
  1018. results <- generate_interaction_plot_configs(zscores_interactions_joined, interaction_vars)
  1019. if (nrow(results$out_of_range_data) > 0) {
  1020. message("Out-of-range data:")
  1021. print(results$out_of_range_data)
  1022. }
  1023. deletion_plot_configs <- results$configs
  1024. generate_and_save_plots(out_dir, "InteractionPlots", deletion_plot_configs, grid_layout = list(ncol = 4, nrow = 3))
  1025. # Define conditions for enhancers and suppressors
  1026. # TODO Add to study config file?
  1027. threshold <- 2
  1028. enhancer_condition_L <- zscores_interactions$Avg_Zscore_L >= threshold
  1029. suppressor_condition_L <- zscores_interactions$Avg_Zscore_L <= -threshold
  1030. enhancer_condition_K <- zscores_interactions$Avg_Zscore_K >= threshold
  1031. suppressor_condition_K <- zscores_interactions$Avg_Zscore_K <= -threshold
  1032. # Subset data
  1033. enhancers_L <- zscores_interactions[enhancer_condition_L, ]
  1034. suppressors_L <- zscores_interactions[suppressor_condition_L, ]
  1035. enhancers_K <- zscores_interactions[enhancer_condition_K, ]
  1036. suppressors_K <- zscores_interactions[suppressor_condition_K, ]
  1037. # Save enhancers and suppressors
  1038. message("Writing enhancer/suppressor csv files")
  1039. write.csv(enhancers_L, file = file.path(out_dir, "ZScores_Interaction_Deletion_Enhancers_L.csv"), row.names = FALSE)
  1040. write.csv(suppressors_L, file = file.path(out_dir, "ZScores_Interaction_Deletion_Suppressors_L.csv"), row.names = FALSE)
  1041. write.csv(enhancers_K, file = file.path(out_dir, "ZScores_Interaction_Deletion_Enhancers_K.csv"), row.names = FALSE)
  1042. write.csv(suppressors_K, file = file.path(out_dir, "ZScores_Interaction_Deletion_Suppressors_K.csv"), row.names = FALSE)
  1043. # Combine conditions for enhancers and suppressors
  1044. enhancers_and_suppressors_L <- zscores_interactions[enhancer_condition_L | suppressor_condition_L, ]
  1045. enhancers_and_suppressors_K <- zscores_interactions[enhancer_condition_K | suppressor_condition_K, ]
  1046. # Save combined enhancers and suppressors
  1047. write.csv(enhancers_and_suppressors_L,
  1048. file = file.path(out_dir, "ZScores_Interaction_Deletion_Enhancers_and_Suppressors_L.csv"), row.names = FALSE)
  1049. write.csv(enhancers_and_suppressors_K,
  1050. file = file.path(out_dir, "ZScores_Interaction_Deletion_Enhancers_and_Suppressors_K.csv"), row.names = FALSE)
  1051. # Handle linear model based enhancers and suppressors
  1052. lm_threshold <- 2
  1053. enhancers_lm_L <- zscores_interactions[zscores_interactions$Z_lm_L >= lm_threshold, ]
  1054. suppressors_lm_L <- zscores_interactions[zscores_interactions$Z_lm_L <= -lm_threshold, ]
  1055. enhancers_lm_K <- zscores_interactions[zscores_interactions$Z_lm_K >= lm_threshold, ]
  1056. suppressors_lm_K <- zscores_interactions[zscores_interactions$Z_lm_K <= -lm_threshold, ]
  1057. # Save linear model based enhancers and suppressors
  1058. message("Writing linear model enhancer/suppressor csv files")
  1059. write.csv(enhancers_lm_L,
  1060. file = file.path(out_dir, "ZScores_Interaction_Deletion_Enhancers_L_lm.csv"), row.names = FALSE)
  1061. write.csv(suppressors_lm_L,
  1062. file = file.path(out_dir, "ZScores_Interaction_Deletion_Suppressors_L_lm.csv"), row.names = FALSE)
  1063. write.csv(enhancers_lm_K,
  1064. file = file.path(out_dir, "ZScores_Interaction_Deletion_Enhancers_K_lm.csv"), row.names = FALSE)
  1065. write.csv(suppressors_lm_K,
  1066. file = file.path(out_dir, "ZScores_Interaction_Deletion_Suppressors_K_lm.csv"), row.names = FALSE)
  1067. message("Generating rank plots")
  1068. # Generate rank plots for L and K using standard ranks
  1069. rank_plot_configs <- generate_rank_plot_configs(
  1070. df = zscores_interactions,
  1071. interaction_vars = interaction_vars,
  1072. is_lm = FALSE,
  1073. adjust = TRUE
  1074. )$plot_configs
  1075. # Save the generated rank plots for L and K
  1076. generate_and_save_plots(output_dir = out_dir, file_name = "RankPlots",
  1077. plot_configs = rank_plot_configs, grid_layout = list(ncol = 3, nrow = 2))
  1078. # Generate rank plots for L and K using linear model (`lm`) ranks
  1079. rank_lm_plot_configs <- generate_rank_plot_configs(
  1080. df = zscores_interactions,
  1081. interaction_vars = interaction_vars,
  1082. is_lm = TRUE,
  1083. adjust = TRUE
  1084. )$plot_configs
  1085. # Save the linear model based rank plots for L and K
  1086. generate_and_save_plots(output_dir = out_dir, file_name = "RankPlots_lm",
  1087. plot_configs = rank_lm_plot_configs, grid_layout = list(ncol = 3, nrow = 2))
  1088. message("Filtering and regenerating rank plots")
  1089. # Filter rows where either Z_lm_L or Avg_Zscore_L is not NA
  1090. zscores_interactions_filtered <- zscores_interactions %>%
  1091. group_by(across(all_of(orf_group_vars))) %>%
  1092. filter(!is.na(Z_lm_L) | !is.na(Avg_Zscore_L)) %>%
  1093. ungroup()
  1094. # Final filtered correlation calculations and Overlap column
  1095. zscores_interactions_filtered <- zscores_interactions_filtered %>%
  1096. rowwise() %>%
  1097. mutate(
  1098. lm_R_squared_L = if (n() > 1) summary(lm(Z_lm_L ~ Avg_Zscore_L))$r.squared else NA,
  1099. lm_R_squared_K = if (n() > 1) summary(lm(Z_lm_K ~ Avg_Zscore_K))$r.squared else NA,
  1100. lm_R_squared_r = if (n() > 1) summary(lm(Z_lm_r ~ Avg_Zscore_r))$r.squared else NA,
  1101. lm_R_squared_AUC = if (n() > 1) summary(lm(Z_lm_AUC ~ Avg_Zscore_AUC))$r.squared else NA,
  1102. Overlap = case_when(
  1103. Z_lm_L >= 2 & Avg_Zscore_L >= 2 ~ "Deletion Enhancer Both",
  1104. Z_lm_L <= -2 & Avg_Zscore_L <= -2 ~ "Deletion Suppressor Both",
  1105. Z_lm_L >= 2 & Avg_Zscore_L <= 2 ~ "Deletion Enhancer lm only",
  1106. Z_lm_L <= -2 & Avg_Zscore_L >= -2 ~ "Deletion Suppressor lm only",
  1107. Z_lm_L >= 2 & Avg_Zscore_L <= -2 ~ "Deletion Enhancer lm, Deletion Suppressor Avg Z score",
  1108. Z_lm_L <= -2 & Avg_Zscore_L >= 2 ~ "Deletion Suppressor lm, Deletion Enhancer Avg Z score",
  1109. TRUE ~ "No Effect"
  1110. )
  1111. ) %>%
  1112. ungroup()
  1113. message("Generating filtered rank plots")
  1114. rank_plot_filtered_configs <- generate_rank_plot_configs(
  1115. df = zscores_interactions_filtered,
  1116. interaction_vars = interaction_vars,
  1117. is_lm = FALSE,
  1118. adjust = FALSE
  1119. )$plot_configs
  1120. generate_and_save_plots(output_dir = out_dir, file_name = "RankPlots_na_rm",
  1121. plot_configs = rank_plot_filtered_configs,
  1122. grid_layout = list(ncol = 3, nrow = 2))
  1123. rank_plot_lm_filtered_configs <- generate_rank_plot_configs(
  1124. df = zscores_interactions_filtered,
  1125. interaction_vars = interaction_vars,
  1126. is_lm = TRUE,
  1127. adjust = FALSE
  1128. )$plot_configs
  1129. generate_and_save_plots(output_dir = out_dir, file_name = "RankPlots_lm_na_rm",
  1130. plot_configs = rank_plot_lm_filtered_configs,
  1131. grid_layout = list(ncol = 3, nrow = 2))
  1132. message("Generating correlation plots")
  1133. correlation_plot_configs <- generate_correlation_plot_configs(zscores_interactions_filtered, interaction_vars)
  1134. generate_and_save_plots(output_dir = out_dir, file_name = "Avg_Zscore_vs_lm_NA_rm",
  1135. plot_configs = correlation_plot_configs,
  1136. grid_layout = list(ncol = 2, nrow = 2))
  1137. })
  1138. })
  1139. }
  1140. main()