calculate_interaction_zscores.R 54 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411
  1. suppressMessages({
  2. library("ggplot2")
  3. library("plotly")
  4. library("htmlwidgets")
  5. library("htmltools")
  6. library("dplyr")
  7. library("rlang")
  8. library("ggthemes")
  9. library("data.table")
  10. library("gridExtra")
  11. library("future")
  12. library("furrr")
  13. library("purrr")
  14. })
  15. # These parallelization libraries are very noisy
  16. suppressPackageStartupMessages({
  17. library("future")
  18. library("furrr")
  19. library("purrr")
  20. })
  21. options(warn = 2)
  22. # Constants for configuration
  23. plot_width <- 14
  24. plot_height <- 9
  25. base_size <- 14
  26. parse_arguments <- function() {
  27. args <- if (interactive()) {
  28. c(
  29. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/20240116_jhartman2_DoxoHLD",
  30. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/apps/r/SGD_features.tab",
  31. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/easy/20240116_jhartman2_DoxoHLD/results_std.txt",
  32. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/20240822_jhartman2_DoxoHLD/exp1",
  33. "Experiment 1: Doxo versus HLD",
  34. 3,
  35. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/20240822_jhartman2_DoxoHLD/exp2",
  36. "Experiment 2: HLD versus Doxo",
  37. 3
  38. )
  39. } else {
  40. commandArgs(trailingOnly = TRUE)
  41. }
  42. out_dir <- normalizePath(args[1], mustWork = FALSE)
  43. sgd_gene_list <- normalizePath(args[2], mustWork = FALSE)
  44. easy_results_file <- normalizePath(args[3], mustWork = FALSE)
  45. # The remaining arguments should be in groups of 3
  46. exp_args <- args[-(1:3)]
  47. if (length(exp_args) %% 3 != 0) {
  48. stop("Experiment arguments should be in groups of 3: path, name, sd.")
  49. }
  50. # Extract the experiments into a list
  51. experiments <- list()
  52. for (i in seq(1, length(exp_args), by = 3)) {
  53. exp_name <- exp_args[i + 1]
  54. experiments[[exp_name]] <- list(
  55. path = normalizePath(exp_args[i], mustWork = FALSE),
  56. sd = as.numeric(exp_args[i + 2])
  57. )
  58. }
  59. # Extract the trailing number from each path
  60. trailing_numbers <- sapply(experiments, function(x) {
  61. path <- x$path
  62. nums <- gsub("[^0-9]", "", basename(path))
  63. as.integer(nums)
  64. })
  65. # Sort the experiments based on the trailing numbers
  66. sorted_experiments <- experiments[order(trailing_numbers)]
  67. list(
  68. out_dir = out_dir,
  69. sgd_gene_list = sgd_gene_list,
  70. easy_results_file = easy_results_file,
  71. experiments = sorted_experiments
  72. )
  73. }
  74. args <- parse_arguments()
  75. # Should we keep output in exp dirs or combine in the study output dir?
  76. # dir.create(file.path(args$out_dir, "zscores"), showWarnings = FALSE)
  77. # dir.create(file.path(args$out_dir, "zscores", "qc"), showWarnings = FALSE)
  78. theme_publication <- function(base_size = 14, base_family = "sans", legend_position = NULL) {
  79. # Ensure that legend_position has a valid value or default to "none"
  80. legend_position <- if (is.null(legend_position) || length(legend_position) == 0) "none" else legend_position
  81. theme_foundation <- ggthemes::theme_foundation(base_size = base_size, base_family = base_family)
  82. theme_foundation %+replace%
  83. theme(
  84. plot.title = element_text(face = "bold", size = rel(1.6), hjust = 0.5),
  85. text = element_text(),
  86. panel.background = element_blank(),
  87. plot.background = element_blank(),
  88. panel.border = element_blank(),
  89. axis.title = element_text(face = "bold", size = rel(1.4)),
  90. axis.title.y = element_text(angle = 90, vjust = 2),
  91. axis.text = element_text(size = rel(1.2)),
  92. axis.line = element_line(colour = "black"),
  93. panel.grid.major = element_line(colour = "#f0f0f0"),
  94. panel.grid.minor = element_blank(),
  95. legend.key = element_rect(colour = NA),
  96. legend.position = legend_position,
  97. legend.direction =
  98. if (legend_position == "right") {
  99. "vertical"
  100. } else if (legend_position == "bottom") {
  101. "horizontal"
  102. } else {
  103. NULL # No legend direction if position is "none" or other values
  104. },
  105. legend.spacing = unit(0, "cm"),
  106. legend.title = element_text(face = "italic", size = rel(1.3)),
  107. legend.text = element_text(size = rel(1.2)),
  108. plot.margin = unit(c(10, 5, 5, 5), "mm")
  109. )
  110. }
  111. scale_fill_publication <- function(...) {
  112. discrete_scale("fill", "Publication", manual_pal(values = c(
  113. "#386cb0", "#fdb462", "#7fc97f", "#ef3b2c", "#662506",
  114. "#a6cee3", "#fb9a99", "#984ea3", "#ffff33"
  115. )), ...)
  116. }
  117. scale_colour_publication <- function(...) {
  118. discrete_scale("colour", "Publication", manual_pal(values = c(
  119. "#386cb0", "#fdb462", "#7fc97f", "#ef3b2c", "#662506",
  120. "#a6cee3", "#fb9a99", "#984ea3", "#ffff33"
  121. )), ...)
  122. }
  123. # Load the initial dataframe from the easy_results_file
  124. load_and_filter_data <- function(easy_results_file, sd = 3) {
  125. df <- read.delim(easy_results_file, skip = 2, as.is = TRUE, row.names = 1, strip.white = TRUE)
  126. df <- df %>%
  127. filter(!(.[[1]] %in% c("", "Scan"))) %>%
  128. filter(!is.na(ORF) & ORF != "" & !Gene %in% c("BLANK", "Blank", "blank") & Drug != "BMH21") %>%
  129. # Rename columns
  130. rename(L = l, num = Num., AUC = AUC96, scan = Scan, last_bg = LstBackgrd, first_bg = X1stBackgrd) %>%
  131. mutate(
  132. across(c(Col, Row, num, L, K, r, scan, AUC, last_bg, first_bg), as.numeric),
  133. delta_bg = last_bg - first_bg,
  134. delta_bg_tolerance = mean(delta_bg, na.rm = TRUE) + (sd * sd(delta_bg, na.rm = TRUE)),
  135. NG = if_else(L == 0 & !is.na(L), 1, 0),
  136. DB = if_else(delta_bg >= delta_bg_tolerance, 1, 0),
  137. SM = 0,
  138. OrfRep = if_else(ORF == "YDL227C", "YDL227C", OrfRep), # should these be hardcoded?
  139. conc_num = as.numeric(gsub("[^0-9\\.]", "", Conc)),
  140. conc_num_factor = as.numeric(as.factor(conc_num)) - 1, # for legacy purposes
  141. conc_num_factor_factor = as.factor(conc_num)
  142. )
  143. return(df)
  144. }
  145. # Update Gene names using the SGD gene list
  146. update_gene_names <- function(df, sgd_gene_list) {
  147. # Load SGD gene list
  148. genes <- read.delim(file = sgd_gene_list,
  149. quote = "", header = FALSE,
  150. colClasses = c(rep("NULL", 3), rep("character", 2), rep("NULL", 11)))
  151. # Create a named vector for mapping ORF to GeneName
  152. gene_map <- setNames(genes$V5, genes$V4)
  153. # Vectorized match to find the GeneName from gene_map
  154. mapped_genes <- gene_map[df$ORF]
  155. # Replace NAs in mapped_genes with original Gene names (preserves existing Gene names if ORF is not found)
  156. updated_genes <- ifelse(is.na(mapped_genes) | df$OrfRep == "YDL227C", df$Gene, mapped_genes)
  157. # Ensure Gene is not left blank or incorrectly updated to "OCT1"
  158. df <- df %>%
  159. mutate(Gene = ifelse(updated_genes == "" | updated_genes == "OCT1", OrfRep, updated_genes))
  160. return(df)
  161. }
  162. calculate_summary_stats <- function(df, variables, group_vars) {
  163. summary_stats <- df %>%
  164. group_by(across(all_of(group_vars))) %>%
  165. summarise(
  166. N = n(),
  167. across(all_of(variables),
  168. list(
  169. mean = ~ mean(.x, na.rm = TRUE),
  170. median = ~ median(.x, na.rm = TRUE),
  171. max = ~ ifelse(all(is.na(.x)), NA, max(.x, na.rm = TRUE)),
  172. min = ~ ifelse(all(is.na(.x)), NA, min(.x, na.rm = TRUE)),
  173. sd = ~ sd(.x, na.rm = TRUE),
  174. se = ~ sd(.x, na.rm = TRUE) / sqrt(n() - 1)
  175. ),
  176. .names = "{.fn}_{.col}"
  177. ),
  178. .groups = "drop"
  179. )
  180. # Create a cleaned version of df that doesn't overlap with summary_stats
  181. cleaned_df <- df %>%
  182. select(-any_of(setdiff(intersect(names(df), names(summary_stats)), group_vars)))
  183. df_joined <- left_join(cleaned_df, summary_stats, by = group_vars)
  184. return(list(summary_stats = summary_stats, df_with_stats = df_joined))
  185. }
  186. calculate_interaction_scores <- function(df, max_conc, bg_stats,
  187. group_vars = c("OrfRep", "Gene", "num")) {
  188. # Calculate total concentration variables
  189. total_conc_num <- length(unique(df$conc_num))
  190. calculations <- df %>%
  191. group_by(across(all_of(group_vars))) %>%
  192. mutate(
  193. NG = sum(NG, na.rm = TRUE),
  194. DB = sum(DB, na.rm = TRUE),
  195. SM = sum(SM, na.rm = TRUE),
  196. num_non_removed_concs = total_conc_num - sum(DB, na.rm = TRUE) - 1,
  197. # Calculate raw data
  198. Raw_Shift_L = first(mean_L) - bg_stats$mean_L,
  199. Raw_Shift_K = first(mean_K) - bg_stats$mean_K,
  200. Raw_Shift_r = first(mean_r) - bg_stats$mean_r,
  201. Raw_Shift_AUC = first(mean_AUC) - bg_stats$mean_AUC,
  202. Z_Shift_L = first(Raw_Shift_L) / bg_stats$sd_L,
  203. Z_Shift_K = first(Raw_Shift_K) / bg_stats$sd_K,
  204. Z_Shift_r = first(Raw_Shift_r) / bg_stats$sd_r,
  205. Z_Shift_AUC = first(Raw_Shift_AUC) / bg_stats$sd_AUC,
  206. Exp_L = WT_L + Raw_Shift_L,
  207. Exp_K = WT_K + Raw_Shift_K,
  208. Exp_r = WT_r + Raw_Shift_r,
  209. Exp_AUC = WT_AUC + Raw_Shift_AUC,
  210. Delta_L = mean_L - Exp_L,
  211. Delta_K = mean_K - Exp_K,
  212. Delta_r = mean_r - Exp_r,
  213. Delta_AUC = mean_AUC - Exp_AUC,
  214. Delta_L = if_else(NG == 1, mean_L - WT_L, Delta_L),
  215. Delta_K = if_else(NG == 1, mean_K - WT_K, Delta_K),
  216. Delta_r = if_else(NG == 1, mean_r - WT_r, Delta_r),
  217. Delta_AUC = if_else(NG == 1, mean_AUC - WT_AUC, Delta_AUC),
  218. Delta_L = if_else(SM == 1, mean_L - WT_L, Delta_L),
  219. # Calculate Z-scores
  220. Zscore_L = Delta_L / WT_sd_L,
  221. Zscore_K = Delta_K / WT_sd_K,
  222. Zscore_r = Delta_r / WT_sd_r,
  223. Zscore_AUC = Delta_AUC / WT_sd_AUC,
  224. # Fit linear models and store in list-columns
  225. gene_lm_L = list(lm(Delta_L ~ conc_num_factor, data = pick(everything()))),
  226. gene_lm_K = list(lm(Delta_K ~ conc_num_factor, data = pick(everything()))),
  227. gene_lm_r = list(lm(Delta_r ~ conc_num_factor, data = pick(everything()))),
  228. gene_lm_AUC = list(lm(Delta_AUC ~ conc_num_factor, data = pick(everything()))),
  229. # Extract coefficients using purrr::map_dbl
  230. lm_intercept_L = map_dbl(gene_lm_L, ~ coef(.x)[1]),
  231. lm_slope_L = map_dbl(gene_lm_L, ~ coef(.x)[2]),
  232. lm_intercept_K = map_dbl(gene_lm_K, ~ coef(.x)[1]),
  233. lm_slope_K = map_dbl(gene_lm_K, ~ coef(.x)[2]),
  234. lm_intercept_r = map_dbl(gene_lm_r, ~ coef(.x)[1]),
  235. lm_slope_r = map_dbl(gene_lm_r, ~ coef(.x)[2]),
  236. lm_intercept_AUC = map_dbl(gene_lm_AUC, ~ coef(.x)[1]),
  237. lm_slope_AUC = map_dbl(gene_lm_AUC, ~ coef(.x)[2]),
  238. # Calculate lm_Score_* based on coefficients
  239. lm_Score_L = max_conc * lm_slope_L + lm_intercept_L,
  240. lm_Score_K = max_conc * lm_slope_K + lm_intercept_K,
  241. lm_Score_r = max_conc * lm_slope_r + lm_intercept_r,
  242. lm_Score_AUC = max_conc * lm_slope_AUC + lm_intercept_AUC,
  243. # Calculate R-squared values
  244. R_Squared_L = map_dbl(gene_lm_L, ~ summary(.x)$r.squared),
  245. R_Squared_K = map_dbl(gene_lm_K, ~ summary(.x)$r.squared),
  246. R_Squared_r = map_dbl(gene_lm_r, ~ summary(.x)$r.squared),
  247. R_Squared_AUC = map_dbl(gene_lm_AUC, ~ summary(.x)$r.squared)
  248. ) %>%
  249. ungroup()
  250. # Calculate overall mean and SD for lm_Score_* variables
  251. lm_means_sds <- calculations %>%
  252. summarise(
  253. lm_mean_L = mean(lm_Score_L, na.rm = TRUE),
  254. lm_sd_L = sd(lm_Score_L, na.rm = TRUE),
  255. lm_mean_K = mean(lm_Score_K, na.rm = TRUE),
  256. lm_sd_K = sd(lm_Score_K, na.rm = TRUE),
  257. lm_mean_r = mean(lm_Score_r, na.rm = TRUE),
  258. lm_sd_r = sd(lm_Score_r, na.rm = TRUE),
  259. lm_mean_AUC = mean(lm_Score_AUC, na.rm = TRUE),
  260. lm_sd_AUC = sd(lm_Score_AUC, na.rm = TRUE)
  261. )
  262. calculations <- calculations %>%
  263. mutate(
  264. Z_lm_L = (lm_Score_L - lm_means_sds$lm_mean_L) / lm_means_sds$lm_sd_L,
  265. Z_lm_K = (lm_Score_K - lm_means_sds$lm_mean_K) / lm_means_sds$lm_sd_K,
  266. Z_lm_r = (lm_Score_r - lm_means_sds$lm_mean_r) / lm_means_sds$lm_sd_r,
  267. Z_lm_AUC = (lm_Score_AUC - lm_means_sds$lm_mean_AUC) / lm_means_sds$lm_sd_AUC
  268. )
  269. # Summarize some of the stats
  270. interactions <- calculations %>%
  271. group_by(across(all_of(group_vars))) %>%
  272. mutate(
  273. # Calculate raw shifts
  274. Raw_Shift_L = first(Raw_Shift_L),
  275. Raw_Shift_K = first(Raw_Shift_K),
  276. Raw_Shift_r = first(Raw_Shift_r),
  277. Raw_Shift_AUC = first(Raw_Shift_AUC),
  278. # Calculate Z-shifts
  279. Z_Shift_L = first(Z_Shift_L),
  280. Z_Shift_K = first(Z_Shift_K),
  281. Z_Shift_r = first(Z_Shift_r),
  282. Z_Shift_AUC = first(Z_Shift_AUC),
  283. # Sum Z-scores
  284. Sum_Z_Score_L = sum(Zscore_L),
  285. Sum_Z_Score_K = sum(Zscore_K),
  286. Sum_Z_Score_r = sum(Zscore_r),
  287. Sum_Z_Score_AUC = sum(Zscore_AUC),
  288. # Calculate Average Z-scores
  289. Avg_Zscore_L = Sum_Z_Score_L / num_non_removed_concs,
  290. Avg_Zscore_K = Sum_Z_Score_K / num_non_removed_concs,
  291. Avg_Zscore_r = Sum_Z_Score_r / (total_conc_num - 1),
  292. Avg_Zscore_AUC = Sum_Z_Score_AUC / (total_conc_num - 1)
  293. ) %>%
  294. arrange(desc(Z_lm_L), desc(NG)) %>%
  295. ungroup()
  296. # Declare column order for output
  297. calculations <- calculations %>%
  298. select(
  299. "OrfRep", "Gene", "num", "N",
  300. "conc_num", "conc_num_factor", "conc_num_factor_factor",
  301. "mean_L", "mean_K", "mean_r", "mean_AUC",
  302. "median_L", "median_K", "median_r", "median_AUC",
  303. "sd_L", "sd_K", "sd_r", "sd_AUC",
  304. "se_L", "se_K", "se_r", "se_AUC",
  305. "Raw_Shift_L", "Raw_Shift_K", "Raw_Shift_r", "Raw_Shift_AUC",
  306. "Z_Shift_L", "Z_Shift_K", "Z_Shift_r", "Z_Shift_AUC",
  307. "WT_L", "WT_K", "WT_r", "WT_AUC",
  308. "WT_sd_L", "WT_sd_K", "WT_sd_r", "WT_sd_AUC",
  309. "Exp_L", "Exp_K", "Exp_r", "Exp_AUC",
  310. "Delta_L", "Delta_K", "Delta_r", "Delta_AUC",
  311. "Zscore_L", "Zscore_K", "Zscore_r", "Zscore_AUC",
  312. "NG", "SM", "DB"
  313. )
  314. interactions <- interactions %>%
  315. select(
  316. "OrfRep", "Gene", "num", "NG", "DB", "SM",
  317. "conc_num", "conc_num_factor", "conc_num_factor_factor",
  318. "Raw_Shift_L", "Raw_Shift_K", "Raw_Shift_r", "Raw_Shift_AUC",
  319. "Z_Shift_L", "Z_Shift_K", "Z_Shift_r", "Z_Shift_AUC",
  320. "Sum_Z_Score_L", "Sum_Z_Score_K", "Sum_Z_Score_r", "Sum_Z_Score_AUC",
  321. "Avg_Zscore_L", "Avg_Zscore_K", "Avg_Zscore_r", "Avg_Zscore_AUC",
  322. "lm_Score_L", "lm_Score_K", "lm_Score_r", "lm_Score_AUC",
  323. "R_Squared_L", "R_Squared_K", "R_Squared_r", "R_Squared_AUC",
  324. "Z_lm_L", "Z_lm_K", "Z_lm_r", "Z_lm_AUC"
  325. )
  326. # Clean the original dataframe by removing overlapping columns
  327. cleaned_df <- df %>%
  328. select(-any_of(
  329. setdiff(intersect(names(df), names(calculations)),
  330. c("OrfRep", "Gene", "num", "conc_num", "conc_num_factor", "conc_num_factor_factor"))))
  331. # Join the original dataframe with calculations
  332. df_with_calculations <- left_join(cleaned_df, calculations,
  333. by = c("OrfRep", "Gene", "num", "conc_num", "conc_num_factor", "conc_num_factor_factor"))
  334. # Remove overlapping columns between df_with_calculations and interactions
  335. df_with_calculations_clean <- df_with_calculations %>%
  336. select(-any_of(
  337. setdiff(intersect(names(df_with_calculations), names(interactions)),
  338. c("OrfRep", "Gene", "num", "conc_num", "conc_num_factor", "conc_num_factor_factor"))))
  339. # Join with interactions to create the full dataset
  340. full_data <- left_join(df_with_calculations_clean, interactions,
  341. by = c("OrfRep", "Gene", "num", "conc_num", "conc_num_factor", "conc_num_factor_factor"))
  342. return(list(
  343. calculations = calculations,
  344. interactions = interactions,
  345. full_data = full_data
  346. ))
  347. }
  348. generate_and_save_plots <- function(out_dir, filename, plot_configs) {
  349. message("Generating ", filename, ".pdf and ", filename, ".html")
  350. static_plots <- list()
  351. plotly_plots <- list()
  352. for (i in seq_along(plot_configs$plots)) {
  353. config <- plot_configs$plots[[i]]
  354. df <- config$df
  355. # Define aes_mapping, ensuring y_var is only used when it's not NULL
  356. aes_mapping <- switch(config$plot_type,
  357. "bar" = if (!is.null(config$color_var)) {
  358. aes(x = .data[[config$x_var]], fill = .data[[config$color_var]], color = .data[[config$color_var]])
  359. } else {
  360. aes(x = .data[[config$x_var]])
  361. },
  362. "density" = if (!is.null(config$color_var)) {
  363. aes(x = .data[[config$x_var]], color = .data[[config$color_var]])
  364. } else {
  365. aes(x = .data[[config$x_var]])
  366. },
  367. # For other plot types, only include y_var if it's not NULL
  368. if (!is.null(config$y_var) && !is.null(config$color_var)) {
  369. aes(x = .data[[config$x_var]], y = .data[[config$y_var]], color = .data[[config$color_var]])
  370. } else if (!is.null(config$y_var)) {
  371. aes(x = .data[[config$x_var]], y = .data[[config$y_var]])
  372. } else {
  373. aes(x = .data[[config$x_var]]) # no y_var needed for density and bar plots
  374. }
  375. )
  376. plot <- ggplot(df, aes_mapping) + theme_publication(legend_position = config$legend_position)
  377. # Apply appropriate plot function
  378. plot <- switch(config$plot_type,
  379. "scatter" = generate_scatter_plot(plot, config),
  380. "box" = generate_box_plot(plot, config),
  381. "density" = plot + geom_density(),
  382. "bar" = plot + geom_bar(),
  383. plot # default (unused)
  384. )
  385. # Add titles and labels
  386. if (!is.null(config$title)) plot <- plot + ggtitle(config$title)
  387. if (!is.null(config$x_label)) plot <- plot + xlab(config$x_label)
  388. if (!is.null(config$y_label)) plot <- plot + ylab(config$y_label)
  389. if (!is.null(config$coord_cartesian)) plot <- plot + coord_cartesian(ylim = config$coord_cartesian)
  390. # Convert ggplot to plotly, skipping subplot
  391. if (!is.null(config$tooltip_vars)) {
  392. plotly_plot <- suppressWarnings(plotly::ggplotly(plot, tooltip = config$tooltip_vars))
  393. } else {
  394. plotly_plot <- suppressWarnings(plotly::ggplotly(plot))
  395. }
  396. if (!is.null(plotly_plot[["frames"]])) {
  397. plotly_plot[["frames"]] <- NULL
  398. }
  399. # Adjust legend position in plotly
  400. if (!is.null(config$legend_position) && config$legend_position == "bottom") {
  401. plotly_plot <- plotly_plot %>% layout(legend = list(orientation = "h"))
  402. }
  403. static_plots[[i]] <- plot
  404. plotly_plots[[i]] <- plotly_plot
  405. }
  406. # Save static PDF plots
  407. pdf(file.path(out_dir, paste0(filename, ".pdf")), width = 16, height = 9)
  408. if (is.null(plot_configs$grid_layout)) {
  409. # Print each plot on a new page if grid_layout is not set
  410. for (plot in static_plots) {
  411. print(plot)
  412. }
  413. } else {
  414. # Use grid.arrange if grid_layout is set
  415. grid_nrow <- ifelse(is.null(plot_configs$grid_layout$nrow), length(plot_configs$plots), plot_configs$grid_layout$nrow)
  416. grid_ncol <- ifelse(is.null(plot_configs$grid_layout$ncol), 1, plot_configs$grid_layout$ncol)
  417. grid.arrange(grobs = static_plots, ncol = grid_ncol, nrow = grid_nrow)
  418. }
  419. dev.off()
  420. # Save combined HTML plot
  421. out_html_file <- file.path(out_dir, paste0(filename, ".html"))
  422. message("Saving combined HTML file: ", out_html_file)
  423. htmltools::save_html(
  424. htmltools::tagList(plotly_plots),
  425. file = out_html_file
  426. )
  427. }
  428. generate_scatter_plot <- function(plot, config) {
  429. # Define the points
  430. shape <- if (!is.null(config$shape)) config$shape else 3
  431. size <- if (!is.null(config$size)) config$size else 1.5
  432. position <-
  433. if (!is.null(config$position) && config$position == "jitter") {
  434. position_jitter(width = 0.1, height = 0)
  435. } else {
  436. "identity"
  437. }
  438. plot <- plot + geom_point(
  439. shape = shape,
  440. size = size,
  441. position = position
  442. )
  443. if (!is.null(config$cyan_points) && config$cyan_points) {
  444. plot <- plot + geom_point(
  445. aes(x = .data[[config$x_var]], y = .data[[config$y_var]]),
  446. color = "cyan",
  447. shape = 3,
  448. size = 0.5
  449. )
  450. }
  451. # Add Smooth Line if specified
  452. if (!is.null(config$smooth) && config$smooth) {
  453. smooth_color <- if (!is.null(config$smooth_color)) config$smooth_color else "blue"
  454. if (!is.null(config$lm_line)) {
  455. plot <- plot +
  456. geom_abline(
  457. intercept = config$lm_line$intercept,
  458. slope = config$lm_line$slope,
  459. color = smooth_color
  460. )
  461. } else {
  462. plot <- plot +
  463. geom_smooth(
  464. method = "lm",
  465. se = FALSE,
  466. color = smooth_color
  467. )
  468. }
  469. }
  470. # Add SD Bands if specified
  471. if (!is.null(config$sd_band)) {
  472. plot <- plot +
  473. annotate(
  474. "rect",
  475. xmin = -Inf, xmax = Inf,
  476. ymin = config$sd_band, ymax = Inf,
  477. fill = ifelse(!is.null(config$fill_positive), config$fill_positive, "#542788"),
  478. alpha = ifelse(!is.null(config$alpha_positive), config$alpha_positive, 0.3)
  479. ) +
  480. annotate(
  481. "rect",
  482. xmin = -Inf, xmax = Inf,
  483. ymin = -config$sd_band, ymax = -Inf,
  484. fill = ifelse(!is.null(config$fill_negative), config$fill_negative, "orange"),
  485. alpha = ifelse(!is.null(config$alpha_negative), config$alpha_negative, 0.3)
  486. ) +
  487. geom_hline(
  488. yintercept = c(-config$sd_band, config$sd_band),
  489. color = ifelse(!is.null(config$hl_color), config$hl_color, "gray")
  490. )
  491. }
  492. # Add Rectangles if specified
  493. if (!is.null(config$rectangles)) {
  494. for (rect in config$rectangles) {
  495. plot <- plot + annotate(
  496. "rect",
  497. xmin = rect$xmin,
  498. xmax = rect$xmax,
  499. ymin = rect$ymin,
  500. ymax = rect$ymax,
  501. fill = ifelse(is.null(rect$fill), NA, rect$fill),
  502. color = ifelse(is.null(rect$color), "black", rect$color),
  503. alpha = ifelse(is.null(rect$alpha), 0.1, rect$alpha)
  504. )
  505. }
  506. }
  507. # Add error bars if specified
  508. if (!is.null(config$error_bar) && config$error_bar && !is.null(config$y_var)) {
  509. if (!is.null(config$error_bar_params)) {
  510. plot <- plot +
  511. geom_errorbar(
  512. aes(
  513. ymin = config$error_bar_params$ymin,
  514. ymax = config$error_bar_params$ymax
  515. ),
  516. alpha = 0.3,
  517. linewidth = 0.5
  518. )
  519. } else {
  520. y_mean_col <- paste0("mean_", config$y_var)
  521. y_sd_col <- paste0("sd_", config$y_var)
  522. plot <- plot +
  523. geom_errorbar(
  524. aes(
  525. ymin = !!sym(y_mean_col) - !!sym(y_sd_col),
  526. ymax = !!sym(y_mean_col) + !!sym(y_sd_col)
  527. ),
  528. alpha = 0.3,
  529. linewidth = 0.5
  530. )
  531. }
  532. }
  533. # Customize X-axis if specified
  534. if (!is.null(config$x_breaks) && !is.null(config$x_labels) && !is.null(config$x_label)) {
  535. plot <- plot +
  536. scale_x_discrete(
  537. name = config$x_label,
  538. breaks = config$x_breaks,
  539. labels = config$x_labels
  540. )
  541. }
  542. # Set Y-axis limits if specified
  543. if (!is.null(config$ylim_vals)) {
  544. plot <- plot + scale_y_continuous(limits = config$ylim_vals)
  545. }
  546. # Add annotations if specified
  547. if (!is.null(config$annotations)) {
  548. for (annotation in config$annotations) {
  549. plot <- plot +
  550. annotate(
  551. "text",
  552. x = annotation$x,
  553. y = annotation$y,
  554. label = annotation$label,
  555. hjust = ifelse(is.null(annotation$hjust), 0.5, annotation$hjust),
  556. vjust = ifelse(is.null(annotation$vjust), 0.5, annotation$vjust),
  557. size = ifelse(is.null(annotation$size), 6, annotation$size),
  558. color = ifelse(is.null(annotation$color), "black", annotation$color)
  559. )
  560. }
  561. }
  562. return(plot)
  563. }
  564. generate_box_plot <- function(plot, config) {
  565. # Convert x_var to a factor within aes mapping
  566. plot <- plot + geom_boxplot(aes(x = factor(.data[[config$x_var]])))
  567. # Apply scale_x_discrete for breaks, labels, and axis label if provided
  568. if (!is.null(config$x_breaks) && !is.null(config$x_labels) && !is.null(config$x_label)) {
  569. plot <- plot + scale_x_discrete(
  570. name = config$x_label,
  571. breaks = config$x_breaks,
  572. labels = config$x_labels
  573. )
  574. }
  575. return(plot)
  576. }
  577. generate_plate_analysis_plot_configs <- function(variables, df_before = NULL, df_after = NULL,
  578. plot_type = "scatter", stages = c("before", "after")) {
  579. plots <- list()
  580. for (var in variables) {
  581. for (stage in stages) {
  582. df_plot <- if (stage == "before") df_before else df_after
  583. # Check for non-finite values in the y-variable
  584. df_plot_filtered <- df_plot %>% filter(is.finite(!!sym(var)))
  585. # Adjust settings based on plot_type
  586. config <- list(
  587. df = df_plot_filtered,
  588. x_var = "scan",
  589. y_var = var,
  590. plot_type = plot_type,
  591. title = paste("Plate analysis by Drug Conc for", var, stage, "quality control"),
  592. color_var = "conc_num_factor_factor",
  593. position = if (plot_type == "scatter") "jitter" else NULL,
  594. size = 0.2,
  595. error_bar = (plot_type == "scatter")
  596. )
  597. # Add config to plots list
  598. plots <- append(plots, list(config))
  599. }
  600. }
  601. return(list(grid_layout = list(ncol = 1, nrow = length(plots)), plots = plots))
  602. }
  603. generate_interaction_plot_configs <- function(df, limits_map = NULL, plot_type = "reference") {
  604. if (is.null(limits_map)) {
  605. limits_map <- list(
  606. L = c(0, 130),
  607. K = c(-20, 160),
  608. r = c(0, 1),
  609. AUC = c(0, 12500),
  610. Delta_L = c(-60, 60),
  611. Delta_K = c(-60, 60),
  612. Delta_r = c(-0.6, 0.6),
  613. Delta_AUC = c(-6000, 6000)
  614. )
  615. }
  616. group_vars <- if (plot_type == "reference") c("OrfRep", "Gene", "num") else c("OrfRep", "Gene")
  617. df_filtered <- df %>%
  618. mutate(OrfRepCombined = if (plot_type == "reference") paste(OrfRep, Gene, num, sep = "_") else paste(OrfRep, Gene, sep = "_"))
  619. # Separate the plots into two groups: overall variables and delta comparisons
  620. overall_plots <- list()
  621. delta_plots <- list()
  622. for (var in c("L", "K", "r", "AUC")) {
  623. y_limits <- limits_map[[var]]
  624. config <- list(
  625. df = df_filtered,
  626. plot_type = "scatter",
  627. x_var = "conc_num_factor_factor",
  628. y_var = var,
  629. x_label = unique(df_filtered$Drug)[1],
  630. title = sprintf("Scatter RF for %s with SD", var),
  631. coord_cartesian = y_limits,
  632. error_bar = TRUE,
  633. x_breaks = unique(df_filtered$conc_num_factor_factor),
  634. x_labels = as.character(unique(df_filtered$conc_num)),
  635. position = "jitter",
  636. smooth = TRUE
  637. )
  638. overall_plots <- append(overall_plots, list(config))
  639. }
  640. unique_groups <- df_filtered %>% select(all_of(group_vars)) %>% distinct()
  641. for (i in seq_len(nrow(unique_groups))) {
  642. group <- unique_groups[i, ]
  643. group_data <- df_filtered %>% semi_join(group, by = group_vars)
  644. OrfRep <- as.character(group$OrfRep)
  645. Gene <- if ("Gene" %in% names(group)) as.character(group$Gene) else ""
  646. num <- if ("num" %in% names(group)) as.character(group$num) else ""
  647. for (var in c("Delta_L", "Delta_K", "Delta_r", "Delta_AUC")) {
  648. y_limits <- limits_map[[var]]
  649. y_span <- y_limits[2] - y_limits[1]
  650. # Error bars
  651. WT_sd_var <- paste0("WT_sd_", sub("Delta_", "", var))
  652. WT_sd_value <- group_data[[WT_sd_var]][1]
  653. error_bar_ymin <- 0 - (2 * WT_sd_value)
  654. error_bar_ymax <- 0 + (2 * WT_sd_value)
  655. # Annotations
  656. Z_Shift_value <- round(group_data[[paste0("Z_Shift_", sub("Delta_", "", var))]][1], 2)
  657. Z_lm_value <- round(group_data[[paste0("Z_lm_", sub("Delta_", "", var))]][1], 2)
  658. NG_value <- group_data$NG[1]
  659. DB_value <- group_data$DB[1]
  660. SM_value <- group_data$SM[1]
  661. annotations <- list(
  662. list(x = 1, y = y_limits[2] - 0.2 * y_span, label = paste("ZShift =", Z_Shift_value)),
  663. list(x = 1, y = y_limits[2] - 0.3 * y_span, label = paste("lm ZScore =", Z_lm_value)),
  664. list(x = 1, y = y_limits[1] + 0.2 * y_span, label = paste("NG =", NG_value)),
  665. list(x = 1, y = y_limits[1] + 0.1 * y_span, label = paste("DB =", DB_value)),
  666. list(x = 1, y = y_limits[1], label = paste("SM =", SM_value))
  667. )
  668. config <- list(
  669. df = group_data,
  670. plot_type = "scatter",
  671. x_var = "conc_num_factor_factor",
  672. y_var = var,
  673. x_label = unique(group_data$Drug)[1],
  674. title = paste(OrfRep, Gene, sep = " "),
  675. coord_cartesian = y_limits,
  676. annotations = annotations,
  677. error_bar = TRUE,
  678. error_bar_params = list(
  679. ymin = error_bar_ymin,
  680. ymax = error_bar_ymax
  681. ),
  682. smooth = TRUE,
  683. x_breaks = unique(group_data$conc_num_factor_factor),
  684. x_labels = as.character(unique(group_data$conc_num)),
  685. ylim_vals = y_limits
  686. )
  687. delta_plots <- append(delta_plots, list(config))
  688. }
  689. }
  690. return(list(
  691. overall_plots = list(grid_layout = list(ncol = 2, nrow = 2), plots = overall_plots),
  692. delta_plots = list(grid_layout = list(ncol = 4, nrow = 3), plots = delta_plots)
  693. ))
  694. }
  695. generate_rank_plot_configs <- function(df, variables, is_lm = FALSE, adjust = FALSE, overlap_color = FALSE) {
  696. sd_bands <- c(1, 2, 3)
  697. configs <- list()
  698. # Adjust (if necessary) and rank columns
  699. for (variable in variables) {
  700. if (adjust) {
  701. df[[paste0("Avg_Zscore_", variable)]] <- ifelse(is.na(df[[paste0("Avg_Zscore_", variable)]]), 0.001, df[[paste0("Avg_Zscore_", variable)]])
  702. df[[paste0("Z_lm_", variable)]] <- ifelse(is.na(df[[paste0("Z_lm_", variable)]]), 0.001, df[[paste0("Z_lm_", variable)]])
  703. }
  704. df[[paste0("Rank_", variable)]] <- rank(df[[paste0("Avg_Zscore_", variable)]], na.last = "keep")
  705. df[[paste0("Rank_lm_", variable)]] <- rank(df[[paste0("Z_lm_", variable)]], na.last = "keep")
  706. }
  707. # Helper function to create a plot configuration
  708. create_plot_config <- function(variable, rank_var, zscore_var, y_label, sd_band, with_annotations = TRUE) {
  709. num_enhancers <- sum(df[[zscore_var]] >= sd_band, na.rm = TRUE)
  710. num_suppressors <- sum(df[[zscore_var]] <= -sd_band, na.rm = TRUE)
  711. # Default plot config
  712. plot_config <- list(
  713. df = df,
  714. x_var = rank_var,
  715. y_var = zscore_var,
  716. plot_type = "scatter",
  717. title = paste(y_label, "vs. Rank for", variable, "above", sd_band),
  718. sd_band = sd_band,
  719. fill_positive = "#542788",
  720. fill_negative = "orange",
  721. alpha_positive = 0.3,
  722. alpha_negative = 0.3,
  723. annotations = NULL,
  724. shape = 3,
  725. size = 0.1,
  726. y_label = y_label,
  727. x_label = "Rank",
  728. legend_position = "none"
  729. )
  730. if (with_annotations) {
  731. # Add specific annotations for plots with annotations
  732. plot_config$annotations <- list(
  733. list(
  734. x = median(df[[rank_var]], na.rm = TRUE),
  735. y = max(df[[zscore_var]], na.rm = TRUE) * 0.9,
  736. label = paste("Deletion Enhancers =", num_enhancers)
  737. ),
  738. list(
  739. x = median(df[[rank_var]], na.rm = TRUE),
  740. y = min(df[[zscore_var]], na.rm = TRUE) * 0.9,
  741. label = paste("Deletion Suppressors =", num_suppressors)
  742. )
  743. )
  744. }
  745. return(plot_config)
  746. }
  747. # Generate plots for each variable
  748. for (variable in variables) {
  749. rank_var <- if (is_lm) paste0("Rank_lm_", variable) else paste0("Rank_", variable)
  750. zscore_var <- if (is_lm) paste0("Z_lm_", variable) else paste0("Avg_Zscore_", variable)
  751. y_label <- if (is_lm) paste("Int Z score", variable) else paste("Avg Z score", variable)
  752. # Loop through SD bands
  753. for (sd_band in sd_bands) {
  754. # Create plot with annotations
  755. configs[[length(configs) + 1]] <- create_plot_config(variable, rank_var, zscore_var, y_label, sd_band, with_annotations = TRUE)
  756. # Create plot without annotations
  757. configs[[length(configs) + 1]] <- create_plot_config(variable, rank_var, zscore_var, y_label, sd_band, with_annotations = FALSE)
  758. }
  759. }
  760. # Calculate dynamic grid layout based on the number of plots
  761. num_plots <- length(configs)
  762. grid_ncol <- 3
  763. grid_nrow <- ceiling(num_plots / grid_ncol) # Automatically calculate the number of rows
  764. return(list(grid_layout = list(ncol = grid_ncol, nrow = grid_nrow), plots = configs))
  765. }
  766. generate_correlation_plot_configs <- function(df, highlight_cyan = FALSE) {
  767. relationships <- list(
  768. list(x = "Z_lm_L", y = "Z_lm_K", label = "Interaction L vs. Interaction K"),
  769. list(x = "Z_lm_L", y = "Z_lm_r", label = "Interaction L vs. Interaction r"),
  770. list(x = "Z_lm_L", y = "Z_lm_AUC", label = "Interaction L vs. Interaction AUC"),
  771. list(x = "Z_lm_K", y = "Z_lm_r", label = "Interaction K vs. Interaction r"),
  772. list(x = "Z_lm_K", y = "Z_lm_AUC", label = "Interaction K vs. Interaction AUC"),
  773. list(x = "Z_lm_r", y = "Z_lm_AUC", label = "Interaction r vs. Interaction AUC")
  774. )
  775. plots <- list()
  776. for (rel in relationships) {
  777. lm_model <- lm(as.formula(paste(rel$y, "~", rel$x)), data = df)
  778. r_squared <- summary(lm_model)$r.squared
  779. config <- list(
  780. df = df,
  781. x_var = rel$x,
  782. y_var = rel$y,
  783. plot_type = "scatter",
  784. title = rel$label,
  785. annotations = list(
  786. list(x = mean(df[[rel$x]], na.rm = TRUE),
  787. y = mean(df[[rel$y]], na.rm = TRUE),
  788. label = paste("R-squared =", round(r_squared, 3)))
  789. ),
  790. smooth = TRUE,
  791. smooth_color = "tomato3",
  792. lm_line = list(intercept = coef(lm_model)[1], slope = coef(lm_model)[2]),
  793. shape = 3,
  794. size = 0.5,
  795. color_var = "Overlap",
  796. cyan_points = highlight_cyan
  797. )
  798. plots <- append(plots, list(config))
  799. }
  800. return(list(grid_layout = list(ncol = 3, nrow = 2), plots = plots))
  801. }
  802. main <- function() {
  803. lapply(names(args$experiments), function(exp_name) {
  804. exp <- args$experiments[[exp_name]]
  805. exp_path <- exp$path
  806. exp_sd <- exp$sd
  807. out_dir <- file.path(exp_path, "zscores")
  808. out_dir_qc <- file.path(exp_path, "zscores", "qc")
  809. dir.create(out_dir, recursive = TRUE, showWarnings = FALSE)
  810. dir.create(out_dir_qc, recursive = TRUE, showWarnings = FALSE)
  811. summary_vars <- c("L", "K", "r", "AUC", "delta_bg") # fields to filter and calculate summary stats across
  812. interaction_vars <- c("L", "K", "r", "AUC") # fields to calculate interaction z-scores
  813. message("Loading and filtering data for experiment: ", exp_name)
  814. df <- load_and_filter_data(args$easy_results_file, sd = exp_sd) %>%
  815. update_gene_names(args$sgd_gene_list) %>%
  816. as_tibble()
  817. # Filter rows above delta background tolerance
  818. df_above_tolerance <- df %>% filter(DB == 1)
  819. df_na <- df %>% mutate(across(all_of(summary_vars), ~ ifelse(DB == 1, NA, .))) # formerly X
  820. df_no_zeros <- df_na %>% filter(L > 0) # formerly X_noZero
  821. # Save some constants
  822. max_conc <- max(df$conc_num_factor)
  823. message("Calculating summary statistics before quality control")
  824. df_stats <- calculate_summary_stats(
  825. df = df,
  826. variables = summary_vars,
  827. group_vars = c("conc_num", "conc_num_factor", "conc_num_factor_factor"))$df_with_stats
  828. message("Calculating summary statistics after quality control")
  829. ss <- calculate_summary_stats(
  830. df = df_na,
  831. variables = summary_vars,
  832. group_vars = c("conc_num", "conc_num_factor", "conc_num_factor_factor"))
  833. df_na_ss <- ss$summary_stats
  834. df_na_stats <- ss$df_with_stats
  835. write.csv(df_na_ss, file = file.path(out_dir, "summary_stats_all_strains.csv"), row.names = FALSE)
  836. # For plotting (ggplot warns on NAs)
  837. df_na_stats_filtered <- df_na_stats %>% filter(if_all(all_of(summary_vars), is.finite))
  838. df_na_stats <- df_na_stats %>%
  839. mutate(
  840. WT_L = mean_L,
  841. WT_K = mean_K,
  842. WT_r = mean_r,
  843. WT_AUC = mean_AUC,
  844. WT_sd_L = sd_L,
  845. WT_sd_K = sd_K,
  846. WT_sd_r = sd_r,
  847. WT_sd_AUC = sd_AUC
  848. )
  849. # Pull the background means and standard deviations from zero concentration for interactions
  850. bg_stats <- df_na_stats %>%
  851. filter(conc_num == 0) %>%
  852. summarise(
  853. mean_L = first(mean_L),
  854. mean_K = first(mean_K),
  855. mean_r = first(mean_r),
  856. mean_AUC = first(mean_AUC),
  857. sd_L = first(sd_L),
  858. sd_K = first(sd_K),
  859. sd_r = first(sd_r),
  860. sd_AUC = first(sd_AUC)
  861. )
  862. message("Calculating summary statistics after quality control excluding zero values")
  863. df_no_zeros_stats <- calculate_summary_stats(
  864. df = df_no_zeros,
  865. variables = summary_vars,
  866. group_vars = c("conc_num", "conc_num_factor", "conc_num_factor_factor")
  867. )$df_with_stats
  868. message("Filtering by 2SD of K")
  869. df_na_within_2sd_k <- df_na_stats %>%
  870. filter(K >= (mean_K - 2 * sd_K) & K <= (mean_K + 2 * sd_K))
  871. df_na_outside_2sd_k <- df_na_stats %>%
  872. filter(K < (mean_K - 2 * sd_K) | K > (mean_K + 2 * sd_K))
  873. message("Calculating summary statistics for L within 2SD of K")
  874. # TODO We're omitting the original z_max calculation, not sure if needed?
  875. ss <- calculate_summary_stats(df_na_within_2sd_k, "L", group_vars = c("conc_num", "conc_num_factor", "conc_num_factor_factor"))$summary_stats
  876. write.csv(ss,
  877. file = file.path(out_dir_qc, "max_observed_L_vals_for_spots_within_2sd_K.csv"),
  878. row.names = FALSE)
  879. message("Calculating summary statistics for L outside 2SD of K")
  880. ss <- calculate_summary_stats(df_na_outside_2sd_k, "L", group_vars = c("conc_num", "conc_num_factor", "conc_num_factor_factor"))
  881. df_na_l_outside_2sd_k_stats <- ss$df_with_stats
  882. write.csv(ss$summary_stats,
  883. file = file.path(out_dir, "max_observed_L_vals_for_spots_outside_2sd_K.csv"),
  884. row.names = FALSE)
  885. # Each plots list corresponds to a file
  886. l_vs_k_plot_configs <- list(
  887. plots = list(
  888. list(
  889. df = df,
  890. x_var = "L",
  891. y_var = "K",
  892. plot_type = "scatter",
  893. tooltip_vars = c("OrfRep", "Gene", "delta_bg"),
  894. title = "Raw L vs K before quality control",
  895. color_var = "conc_num_factor_factor",
  896. error_bar = FALSE,
  897. legend_position = "right"
  898. )
  899. )
  900. )
  901. frequency_delta_bg_plot_configs <- list(
  902. plots = list(
  903. list(
  904. df = df_stats,
  905. x_var = "delta_bg",
  906. y_var = NULL,
  907. plot_type = "density",
  908. title = "Density plot for Delta Background by [Drug] (All Data)",
  909. color_var = "conc_num_factor_factor",
  910. x_label = "Delta Background",
  911. y_label = "Density",
  912. error_bar = FALSE,
  913. legend_position = "right"
  914. ),
  915. list(
  916. df = df_stats,
  917. x_var = "delta_bg",
  918. y_var = NULL,
  919. plot_type = "bar",
  920. title = "Bar plot for Delta Background by [Drug] (All Data)",
  921. color_var = "conc_num_factor_factor",
  922. x_label = "Delta Background",
  923. y_label = "Count",
  924. error_bar = FALSE,
  925. legend_position = "right"
  926. )
  927. )
  928. )
  929. above_threshold_plot_configs <- list(
  930. plots = list(
  931. list(
  932. df = df_above_tolerance,
  933. x_var = "L",
  934. y_var = "K",
  935. plot_type = "scatter",
  936. tooltip_vars = c("OrfRep", "Gene", "delta_bg"),
  937. title = paste("Raw L vs K for strains above Delta Background threshold of",
  938. round(df_above_tolerance$delta_bg_tolerance[[1]], 3), "or above"),
  939. color_var = "conc_num_factor_factor",
  940. position = "jitter",
  941. annotations = list(
  942. list(
  943. x = median(df_above_tolerance$L, na.rm = TRUE) / 2,
  944. y = median(df_above_tolerance$K, na.rm = TRUE) / 2,
  945. label = paste("# strains above Delta Background tolerance =", nrow(df_above_tolerance))
  946. )
  947. ),
  948. error_bar = FALSE,
  949. legend_position = "right"
  950. )
  951. )
  952. )
  953. plate_analysis_plot_configs <- generate_plate_analysis_plot_configs(
  954. variables = summary_vars,
  955. df_before = df_stats,
  956. df_after = df_na_stats_filtered
  957. )
  958. plate_analysis_boxplot_configs <- generate_plate_analysis_plot_configs(
  959. variables = summary_vars,
  960. df_before = df_stats,
  961. df_after = df_na_stats_filtered,
  962. plot_type = "box"
  963. )
  964. plate_analysis_no_zeros_plot_configs <- generate_plate_analysis_plot_configs(
  965. variables = summary_vars,
  966. stages = c("after"), # Only after QC
  967. df_after = df_no_zeros_stats
  968. )
  969. plate_analysis_no_zeros_boxplot_configs <- generate_plate_analysis_plot_configs(
  970. variables = summary_vars,
  971. stages = c("after"), # Only after QC
  972. df_after = df_no_zeros_stats,
  973. plot_type = "box"
  974. )
  975. l_outside_2sd_k_plot_configs <- list(
  976. plots = list(
  977. list(
  978. df = df_na_l_outside_2sd_k_stats,
  979. x_var = "L",
  980. y_var = "K",
  981. plot_type = "scatter",
  982. title = "Raw L vs K for strains falling outside 2SD of the K mean at each Conc",
  983. color_var = "conc_num_factor_factor",
  984. position = "jitter", # Apply jitter for better visibility
  985. tooltip_vars = c("OrfRep", "Gene", "delta_bg"),
  986. annotations = list(
  987. list(
  988. x = median(df_na_l_outside_2sd_k_stats$L, na.rm = TRUE) / 2,
  989. y = median(df_na_l_outside_2sd_k_stats$K, na.rm = TRUE) / 2,
  990. label = paste("Total strains:", nrow(df_na_l_outside_2sd_k_stats))
  991. )
  992. ),
  993. error_bar = FALSE,
  994. legend_position = "right"
  995. )
  996. )
  997. )
  998. delta_bg_outside_2sd_k_plot_configs <- list(
  999. plots = list(
  1000. list(
  1001. df = df_na_l_outside_2sd_k_stats,
  1002. x_var = "delta_bg",
  1003. y_var = "K",
  1004. plot_type = "scatter",
  1005. title = "Delta Background vs K for strains falling outside 2SD of the K mean at each Conc",
  1006. color_var = "conc_num_factor_factor",
  1007. position = "jitter", # Apply jitter for better visibility
  1008. tooltip_vars = c("OrfRep", "Gene", "delta_bg"),
  1009. annotations = list(
  1010. list(
  1011. x = median(df_na_l_outside_2sd_k_stats$delta_bg, na.rm = TRUE) / 2,
  1012. y = median(df_na_l_outside_2sd_k_stats$K, na.rm = TRUE) / 2,
  1013. label = paste("Total strains:", nrow(df_na_l_outside_2sd_k_stats))
  1014. )
  1015. ),
  1016. error_bar = FALSE,
  1017. legend_position = "right"
  1018. )
  1019. )
  1020. )
  1021. message("Generating quality control plots in parallel")
  1022. # # future::plan(future::multicore, workers = parallel::detectCores())
  1023. future::plan(future::multisession, workers = 3) # generate 3 plots in parallel
  1024. plot_configs <- list(
  1025. list(out_dir = out_dir_qc, filename = "L_vs_K_before_quality_control",
  1026. plot_configs = l_vs_k_plot_configs),
  1027. list(out_dir = out_dir_qc, filename = "frequency_delta_background",
  1028. plot_configs = frequency_delta_bg_plot_configs),
  1029. list(out_dir = out_dir_qc, filename = "L_vs_K_above_threshold",
  1030. plot_configs = above_threshold_plot_configs),
  1031. list(out_dir = out_dir_qc, filename = "plate_analysis",
  1032. plot_configs = plate_analysis_plot_configs),
  1033. list(out_dir = out_dir_qc, filename = "plate_analysis_boxplots",
  1034. plot_configs = plate_analysis_boxplot_configs),
  1035. list(out_dir = out_dir_qc, filename = "plate_analysis_no_zeros",
  1036. plot_configs = plate_analysis_no_zeros_plot_configs),
  1037. list(out_dir = out_dir_qc, filename = "plate_analysis_no_zeros_boxplots",
  1038. plot_configs = plate_analysis_no_zeros_boxplot_configs),
  1039. list(out_dir = out_dir_qc, filename = "L_vs_K_for_strains_2SD_outside_mean_K",
  1040. plot_configs = l_outside_2sd_k_plot_configs),
  1041. list(out_dir = out_dir_qc, filename = "delta_background_vs_K_for_strains_2sd_outside_mean_K",
  1042. plot_configs = delta_bg_outside_2sd_k_plot_configs)
  1043. )
  1044. # Generating quality control plots in parallel
  1045. furrr::future_map(plot_configs, function(config) {
  1046. generate_and_save_plots(config$out_dir, config$filename, config$plot_configs)
  1047. }, .options = furrr_options(seed = TRUE))
  1048. # Process background strains
  1049. bg_strains <- c("YDL227C")
  1050. lapply(bg_strains, function(strain) {
  1051. message("Processing background strain: ", strain)
  1052. # Handle missing data by setting zero values to NA
  1053. # and then removing any rows with NA in L col
  1054. df_bg <- df_na %>%
  1055. filter(OrfRep == strain) %>%
  1056. mutate(
  1057. L = if_else(L == 0, NA, L),
  1058. K = if_else(K == 0, NA, K),
  1059. r = if_else(r == 0, NA, r),
  1060. AUC = if_else(AUC == 0, NA, AUC)
  1061. ) %>%
  1062. filter(!is.na(L))
  1063. # Recalculate summary statistics for the background strain
  1064. message("Calculating summary statistics for background strain")
  1065. ss_bg <- calculate_summary_stats(df_bg, summary_vars, group_vars = c("OrfRep", "conc_num", "conc_num_factor", "conc_num_factor_factor"))
  1066. summary_stats_bg <- ss_bg$summary_stats
  1067. write.csv(summary_stats_bg,
  1068. file = file.path(out_dir, paste0("summary_stats_background_strain_", strain, ".csv")),
  1069. row.names = FALSE)
  1070. # Set the missing values to the highest theoretical value at each drug conc for L
  1071. # Leave other values as 0 for the max/min
  1072. df_reference <- df_na_stats %>% # formerly X2_RF
  1073. filter(OrfRep == strain) %>%
  1074. filter(!is.na(L)) %>%
  1075. group_by(conc_num, conc_num_factor, conc_num_factor_factor) %>%
  1076. mutate(
  1077. max_l_theoretical = max(max_L, na.rm = TRUE),
  1078. L = ifelse(L == 0 & !is.na(L) & conc_num > 0, max_l_theoretical, L),
  1079. SM = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, 1, 0),
  1080. L = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, max_l_theoretical, L)) %>%
  1081. ungroup()
  1082. # Ditto for deletion strains
  1083. df_deletion <- df_na_stats %>% # formerly X2
  1084. filter(OrfRep != strain) %>%
  1085. filter(!is.na(L)) %>%
  1086. mutate(SM = 0) %>%
  1087. group_by(conc_num, conc_num_factor, conc_num_factor_factor) %>%
  1088. mutate(
  1089. max_l_theoretical = max(max_L, na.rm = TRUE),
  1090. L = ifelse(L == 0 & !is.na(L) & conc_num > 0, max_l_theoretical, L),
  1091. SM = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, 1, SM),
  1092. L = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, max_l_theoretical, L)) %>%
  1093. ungroup()
  1094. message("Calculating reference strain interaction scores")
  1095. df_reference_stats <- calculate_summary_stats(
  1096. df = df_reference,
  1097. variables = interaction_vars,
  1098. group_vars = c("OrfRep", "Gene", "num", "conc_num", "conc_num_factor", "conc_num_factor_factor")
  1099. )$df_with_stats
  1100. reference_results <- calculate_interaction_scores(df_reference_stats, max_conc, bg_stats, group_vars = c("OrfRep", "Gene", "num"))
  1101. zscore_calculations_reference <- reference_results$calculations
  1102. zscore_interactions_reference <- reference_results$interactions
  1103. zscore_interactions_reference_joined <- reference_results$full_data
  1104. message("Calculating deletion strain(s) interactions scores")
  1105. df_deletion_stats <- calculate_summary_stats(
  1106. df = df_deletion,
  1107. variables = interaction_vars,
  1108. group_vars = c("OrfRep", "Gene", "conc_num", "conc_num_factor", "conc_num_factor_factor")
  1109. )$df_with_stats
  1110. deletion_results <- calculate_interaction_scores(df_deletion_stats, max_conc, bg_stats, group_vars = c("OrfRep", "Gene"))
  1111. zscore_calculations <- deletion_results$calculations
  1112. zscore_interactions <- deletion_results$interactions
  1113. zscore_interactions_joined <- deletion_results$full_data
  1114. # Writing Z-Scores to file
  1115. write.csv(zscore_calculations_reference, file = file.path(out_dir, "zscore_calculations_reference.csv"), row.names = FALSE)
  1116. write.csv(zscore_calculations, file = file.path(out_dir, "zscore_calculations.csv"), row.names = FALSE)
  1117. write.csv(zscore_interactions_reference, file = file.path(out_dir, "zscore_interactions_reference.csv"), row.names = FALSE)
  1118. write.csv(zscore_interactions, file = file.path(out_dir, "zscore_interactions.csv"), row.names = FALSE)
  1119. # Create interaction plots
  1120. message("Generating reference interaction plots")
  1121. reference_plot_configs <- generate_interaction_plot_configs(zscore_interactions_reference_joined, plot_type = "reference")
  1122. generate_and_save_plots(out_dir, "interaction_plots_reference", reference_plot_configs)
  1123. message("Generating deletion interaction plots")
  1124. deletion_plot_configs <- generate_interaction_plot_configs(zscore_interactions_joined, plot_type = "deletion")
  1125. generate_and_save_plots(out_dir, "interaction_plots", deletion_plot_configs)
  1126. # Define conditions for enhancers and suppressors
  1127. # TODO Add to study config?
  1128. threshold <- 2
  1129. enhancer_condition_L <- zscore_interactions$Avg_Zscore_L >= threshold
  1130. suppressor_condition_L <- zscore_interactions$Avg_Zscore_L <= -threshold
  1131. enhancer_condition_K <- zscore_interactions$Avg_Zscore_K >= threshold
  1132. suppressor_condition_K <- zscore_interactions$Avg_Zscore_K <= -threshold
  1133. # Subset data
  1134. enhancers_L <- zscore_interactions[enhancer_condition_L, ]
  1135. suppressors_L <- zscore_interactions[suppressor_condition_L, ]
  1136. enhancers_K <- zscore_interactions[enhancer_condition_K, ]
  1137. suppressors_K <- zscore_interactions[suppressor_condition_K, ]
  1138. # Save enhancers and suppressors
  1139. message("Writing enhancer/suppressor csv files")
  1140. write.csv(enhancers_L, file = file.path(out_dir, "zscore_interactions_deletion_enhancers_L.csv"), row.names = FALSE)
  1141. write.csv(suppressors_L, file = file.path(out_dir, "zscore_interactions_deletion_suppressors_L.csv"), row.names = FALSE)
  1142. write.csv(enhancers_K, file = file.path(out_dir, "zscore_interactions_deletion_enhancers_K.csv"), row.names = FALSE)
  1143. write.csv(suppressors_K, file = file.path(out_dir, "zscore_interactions_deletion_suppressors_K.csv"), row.names = FALSE)
  1144. # Combine conditions for enhancers and suppressors
  1145. enhancers_and_suppressors_L <- zscore_interactions[enhancer_condition_L | suppressor_condition_L, ]
  1146. enhancers_and_suppressors_K <- zscore_interactions[enhancer_condition_K | suppressor_condition_K, ]
  1147. # Save combined enhancers and suppressors
  1148. write.csv(enhancers_and_suppressors_L,
  1149. file = file.path(out_dir, "zscore_interactions_deletion_enhancers_and_suppressors_L.csv"), row.names = FALSE)
  1150. write.csv(enhancers_and_suppressors_K,
  1151. file = file.path(out_dir, "zscore_interaction_deletion_enhancers_and_suppressors_K.csv"), row.names = FALSE)
  1152. # Handle linear model based enhancers and suppressors
  1153. lm_threshold <- 2 # TODO add to study config?
  1154. enhancers_lm_L <- zscore_interactions[zscore_interactions$Z_lm_L >= lm_threshold, ]
  1155. suppressors_lm_L <- zscore_interactions[zscore_interactions$Z_lm_L <= -lm_threshold, ]
  1156. enhancers_lm_K <- zscore_interactions[zscore_interactions$Z_lm_K >= lm_threshold, ]
  1157. suppressors_lm_K <- zscore_interactions[zscore_interactions$Z_lm_K <= -lm_threshold, ]
  1158. # Save linear model based enhancers and suppressors
  1159. message("Writing linear model enhancer/suppressor csv files")
  1160. write.csv(enhancers_lm_L,
  1161. file = file.path(out_dir, "zscore_interactions_deletion_enhancers_lm_L.csv"), row.names = FALSE)
  1162. write.csv(suppressors_lm_L,
  1163. file = file.path(out_dir, "zscore_interactions_deletion_suppressors_lm_L.csv"), row.names = FALSE)
  1164. write.csv(enhancers_lm_K,
  1165. file = file.path(out_dir, "zscore_interactions_deletion_enhancers_lm_K.csv"), row.names = FALSE)
  1166. write.csv(suppressors_lm_K,
  1167. file = file.path(out_dir, "zscore_interactions_deletion_suppressors_lm_K.csv"), row.names = FALSE)
  1168. message("Generating rank plots")
  1169. rank_plot_configs <- generate_rank_plot_configs(
  1170. df = zscore_interactions_joined,
  1171. variables = interaction_vars,
  1172. is_lm = FALSE,
  1173. adjust = TRUE
  1174. )
  1175. generate_and_save_plots(out_dir = out_dir, filename = "rank_plots",
  1176. plot_configs = rank_plot_configs)
  1177. message("Generating ranked linear model plots")
  1178. rank_lm_plot_configs <- generate_rank_plot_configs(
  1179. df = zscore_interactions_joined,
  1180. variables = interaction_vars,
  1181. is_lm = TRUE,
  1182. adjust = TRUE
  1183. )
  1184. generate_and_save_plots(out_dir = out_dir, filename = "rank_plots_lm",
  1185. plot_configs = rank_lm_plot_configs)
  1186. message("Filtering and reranking plots")
  1187. interaction_threshold <- 2 # TODO add to study config?
  1188. # Formerly X_NArm
  1189. zscore_interactions_filtered <- zscore_interactions_joined %>%
  1190. filter(!is.na(Z_lm_L) & !is.na(Avg_Zscore_L)) %>%
  1191. mutate(
  1192. Overlap = case_when(
  1193. Z_lm_L >= interaction_threshold & Avg_Zscore_L >= interaction_threshold ~ "Deletion Enhancer Both",
  1194. Z_lm_L <= -interaction_threshold & Avg_Zscore_L <= -interaction_threshold ~ "Deletion Suppressor Both",
  1195. Z_lm_L >= interaction_threshold & Avg_Zscore_L <= interaction_threshold ~ "Deletion Enhancer lm only",
  1196. Z_lm_L <= interaction_threshold & Avg_Zscore_L >= interaction_threshold ~ "Deletion Enhancer Avg Zscore only",
  1197. Z_lm_L <= -interaction_threshold & Avg_Zscore_L >= -interaction_threshold ~ "Deletion Suppressor lm only",
  1198. Z_lm_L >= -interaction_threshold & Avg_Zscore_L <= -interaction_threshold ~ "Deletion Suppressor Avg Zscore only",
  1199. Z_lm_L >= interaction_threshold & Avg_Zscore_L <= -interaction_threshold ~ "Deletion Enhancer lm, Deletion Suppressor Avg Z score",
  1200. Z_lm_L <= -interaction_threshold & Avg_Zscore_L >= interaction_threshold ~ "Deletion Suppressor lm, Deletion Enhancer Avg Z score",
  1201. TRUE ~ "No Effect"
  1202. ),
  1203. lm_R_squared_L = summary(lm(Z_lm_L ~ Avg_Zscore_L))$r.squared,
  1204. lm_R_squared_K = summary(lm(Z_lm_K ~ Avg_Zscore_K))$r.squared,
  1205. lm_R_squared_r = summary(lm(Z_lm_r ~ Avg_Zscore_r))$r.squared,
  1206. lm_R_squared_AUC = summary(lm(Z_lm_AUC ~ Avg_Zscore_AUC))$r.squared
  1207. )
  1208. message("Generating filtered ranked plots")
  1209. rank_plot_filtered_configs <- generate_rank_plot_configs(
  1210. df = zscore_interactions_filtered,
  1211. variables = interaction_vars,
  1212. is_lm = FALSE,
  1213. adjust = FALSE,
  1214. overlap_color = TRUE
  1215. )
  1216. generate_and_save_plots(
  1217. out_dir = out_dir,
  1218. filename = "RankPlots_na_rm",
  1219. plot_configs = rank_plot_filtered_configs)
  1220. message("Generating filtered ranked linear model plots")
  1221. rank_plot_lm_filtered_configs <- generate_rank_plot_configs(
  1222. df = zscore_interactions_filtered,
  1223. variables = interaction_vars,
  1224. is_lm = TRUE,
  1225. adjust = FALSE,
  1226. overlap_color = TRUE
  1227. )
  1228. generate_and_save_plots(
  1229. out_dir = out_dir,
  1230. filename = "rank_plots_lm_na_rm",
  1231. plot_configs = rank_plot_lm_filtered_configs)
  1232. message("Generating correlation curve parameter pair plots")
  1233. correlation_plot_configs <- generate_correlation_plot_configs(zscore_interactions_filtered)
  1234. generate_and_save_plots(
  1235. out_dir = out_dir,
  1236. filename = "correlation_cpps",
  1237. plot_configs = correlation_plot_configs,
  1238. )
  1239. })
  1240. })
  1241. }
  1242. main()