calculate_interaction_zscores.R 66 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751
  1. suppressMessages({
  2. library("ggplot2")
  3. library("plotly")
  4. library("htmlwidgets")
  5. library("htmltools")
  6. library("dplyr")
  7. library("rlang")
  8. library("ggthemes")
  9. library("data.table")
  10. library("grid")
  11. library("gridExtra")
  12. library("future")
  13. library("furrr")
  14. library("purrr")
  15. })
  16. # These parallelization libraries are very noisy
  17. suppressPackageStartupMessages({
  18. library("future")
  19. library("furrr")
  20. library("purrr")
  21. })
  22. # Turn all warnings into errors for development
  23. options(warn = 2)
  24. parse_arguments <- function() {
  25. args <- if (interactive()) {
  26. c(
  27. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/20240116_jhartman2_DoxoHLD",
  28. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/apps/r/SGD_features.tab",
  29. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/easy/20240116_jhartman2_DoxoHLD/results_std.txt",
  30. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/20240822_jhartman2_DoxoHLD/exp1",
  31. "Experiment 1: Doxo versus HLD",
  32. 3,
  33. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/20240822_jhartman2_DoxoHLD/exp2",
  34. "Experiment 2: HLD versus Doxo",
  35. 3
  36. )
  37. } else {
  38. commandArgs(trailingOnly = TRUE)
  39. }
  40. out_dir <- normalizePath(args[1], mustWork = FALSE)
  41. sgd_gene_list <- normalizePath(args[2], mustWork = FALSE)
  42. easy_results_file <- normalizePath(args[3], mustWork = FALSE)
  43. # The remaining arguments should be in groups of 3
  44. exp_args <- args[-(1:3)]
  45. if (length(exp_args) %% 3 != 0) {
  46. stop("Experiment arguments should be in groups of 3: path, name, sd.")
  47. }
  48. # Extract the experiments into a list
  49. experiments <- list()
  50. for (i in seq(1, length(exp_args), by = 3)) {
  51. exp_name <- exp_args[i + 1]
  52. experiments[[exp_name]] <- list(
  53. path = normalizePath(exp_args[i], mustWork = FALSE),
  54. sd = as.numeric(exp_args[i + 2])
  55. )
  56. }
  57. # Extract the trailing number from each path
  58. trailing_numbers <- sapply(experiments, function(x) {
  59. path <- x$path
  60. nums <- gsub("[^0-9]", "", basename(path))
  61. as.integer(nums)
  62. })
  63. # Sort the experiments based on the trailing numbers
  64. sorted_experiments <- experiments[order(trailing_numbers)]
  65. list(
  66. out_dir = out_dir,
  67. sgd_gene_list = sgd_gene_list,
  68. easy_results_file = easy_results_file,
  69. experiments = sorted_experiments
  70. )
  71. }
  72. args <- parse_arguments()
  73. # Should we keep output in exp dirs or combine in the study output dir?
  74. # dir.create(file.path(args$out_dir, "zscores"), showWarnings = FALSE)
  75. # dir.create(file.path(args$out_dir, "zscores", "qc"), showWarnings = FALSE)
  76. theme_publication <- function(base_size = 14, base_family = "sans", legend_position = NULL) {
  77. # Ensure that legend_position has a valid value or default to "none"
  78. legend_position <- if (is.null(legend_position) || length(legend_position) == 0) "none" else legend_position
  79. theme_foundation <- ggthemes::theme_foundation(base_size = base_size, base_family = base_family)
  80. theme_foundation %+replace%
  81. theme(
  82. plot.title = element_text(face = "bold", size = rel(1.6), hjust = 0.5),
  83. text = element_text(),
  84. panel.background = element_blank(),
  85. plot.background = element_blank(),
  86. panel.border = element_blank(),
  87. axis.title = element_text(face = "bold", size = rel(1.4)),
  88. axis.title.y = element_text(angle = 90, vjust = 2),
  89. axis.text = element_text(size = rel(1.2)),
  90. axis.line = element_line(colour = "black"),
  91. panel.grid.major = element_line(colour = "#f0f0f0"),
  92. panel.grid.minor = element_blank(),
  93. legend.key = element_rect(colour = NA),
  94. legend.position = legend_position,
  95. legend.direction =
  96. if (legend_position == "right") {
  97. "vertical"
  98. } else if (legend_position == "bottom") {
  99. "horizontal"
  100. } else {
  101. NULL # No legend direction if position is "none" or other values
  102. },
  103. legend.spacing = unit(0, "cm"),
  104. legend.title = element_text(face = "italic", size = rel(1.3)),
  105. legend.text = element_text(size = rel(1.2)),
  106. plot.margin = unit(c(10, 5, 5, 5), "mm")
  107. )
  108. }
  109. scale_fill_publication <- function(...) {
  110. discrete_scale("fill", "Publication", manual_pal(values = c(
  111. "#386cb0", "#fdb462", "#7fc97f", "#ef3b2c", "#662506",
  112. "#a6cee3", "#fb9a99", "#984ea3", "#ffff33"
  113. )), ...)
  114. }
  115. scale_colour_publication <- function(...) {
  116. discrete_scale("colour", "Publication", manual_pal(values = c(
  117. "#386cb0", "#fdb462", "#7fc97f", "#ef3b2c", "#662506",
  118. "#a6cee3", "#fb9a99", "#984ea3", "#ffff33"
  119. )), ...)
  120. }
  121. # Load the initial dataframe from the easy_results_file
  122. load_and_filter_data <- function(easy_results_file, sd = 3) {
  123. df <- read.delim(easy_results_file, skip = 2, as.is = TRUE, row.names = 1, strip.white = TRUE)
  124. df <- df %>%
  125. filter(!(.[[1]] %in% c("", "Scan"))) %>%
  126. filter(!is.na(ORF) & ORF != "" & !Gene %in% c("BLANK", "Blank", "blank") & Drug != "BMH21") %>%
  127. # Rename columns
  128. rename(L = l, num = Num., AUC = AUC96, scan = Scan, last_bg = LstBackgrd, first_bg = X1stBackgrd) %>%
  129. mutate(
  130. across(c(Col, Row, num, L, K, r, scan, AUC, last_bg, first_bg), as.numeric),
  131. delta_bg = last_bg - first_bg,
  132. delta_bg_tolerance = mean(delta_bg, na.rm = TRUE) + (sd * sd(delta_bg, na.rm = TRUE)),
  133. NG = if_else(L == 0 & !is.na(L), 1, 0),
  134. DB = if_else(delta_bg >= delta_bg_tolerance, 1, 0),
  135. SM = 0,
  136. OrfRep = if_else(ORF == "YDL227C", "YDL227C", OrfRep), # should these be hardcoded?
  137. conc_num = as.numeric(gsub("[^0-9\\.]", "", Conc)),
  138. conc_num_factor = as.numeric(as.factor(conc_num)) - 1, # for legacy purposes
  139. conc_num_factor_factor = as.factor(conc_num)
  140. )
  141. return(df)
  142. }
  143. update_gene_names <- function(df, sgd_gene_list) {
  144. genes <- read.delim(file = sgd_gene_list, quote = "", header = FALSE,
  145. colClasses = c(rep("NULL", 3), rep("character", 2), rep("NULL", 11)))
  146. gene_map <- setNames(genes$V5, genes$V4) # ORF to GeneName mapping
  147. df <- df %>%
  148. mutate(
  149. mapped_genes = gene_map[ORF],
  150. Gene = if_else(is.na(mapped_genes) | OrfRep == "YDL227C", Gene, mapped_genes),
  151. Gene = if_else(Gene == "" | Gene == "OCT1", OrfRep, Gene) # Handle invalid names
  152. )
  153. return(df)
  154. }
  155. calculate_summary_stats <- function(df, variables, group_vars) {
  156. summary_stats <- df %>%
  157. group_by(across(all_of(group_vars))) %>%
  158. summarise(
  159. N = n(),
  160. across(all_of(variables),
  161. list(
  162. mean = ~ mean(.x, na.rm = TRUE),
  163. median = ~ median(.x, na.rm = TRUE),
  164. max = ~ ifelse(all(is.na(.x)), NA, max(.x, na.rm = TRUE)),
  165. min = ~ ifelse(all(is.na(.x)), NA, min(.x, na.rm = TRUE)),
  166. sd = ~ sd(.x, na.rm = TRUE),
  167. se = ~ sd(.x, na.rm = TRUE) / sqrt(n() - 1)
  168. ),
  169. .names = "{.fn}_{.col}"
  170. ),
  171. .groups = "drop"
  172. )
  173. # Create a cleaned version of df that doesn't overlap with summary_stats
  174. df_cleaned <- df %>%
  175. select(-any_of(setdiff(intersect(names(df), names(summary_stats)), group_vars)))
  176. df_joined <- left_join(df_cleaned, summary_stats, by = group_vars)
  177. return(list(summary_stats = summary_stats, df_with_stats = df_joined))
  178. }
  179. calculate_interaction_scores <- function(df, df_bg, type, overlap_threshold = 2) {
  180. max_conc <- max(as.numeric(df$conc_num_factor), na.rm = TRUE)
  181. total_conc_num <- length(unique(df$conc_num))
  182. if (type == "reference") {
  183. bg_group_vars <- c("OrfRep", "Gene", "num", "Drug", "conc_num", "conc_num_factor", "conc_num_factor_factor")
  184. group_vars <- c("OrfRep", "Gene", "num", "Drug")
  185. } else if (type == "deletion") {
  186. bg_group_vars <- c("Drug", "conc_num", "conc_num_factor", "conc_num_factor_factor")
  187. group_vars <- c("OrfRep", "Gene", "Drug")
  188. }
  189. # This is a helper function to perform a linear regression and extract coefficients
  190. perform_lm <- function(data, response, predictor, max_conc) {
  191. valid_data <- data %>% filter(!is.na(.data[[response]]))
  192. if (nrow(valid_data) > 1) {
  193. model <- lm(.data[[response]] ~ .data[[predictor]], data = valid_data)
  194. list(
  195. intercept = coef(model)[1],
  196. slope = coef(model)[2],
  197. r_squared = summary(model)$r.squared,
  198. score = max_conc * coef(model)[2] + coef(model)[1]
  199. )
  200. } else {
  201. list(intercept = NA, slope = NA, r_squared = NA, score = NA)
  202. }
  203. }
  204. # Calculate WT statistics from df_bg
  205. wt_stats <- df_bg %>%
  206. group_by(across(all_of(bg_group_vars))) %>%
  207. summarise(
  208. WT_L = mean(mean_L, na.rm = TRUE),
  209. WT_sd_L = mean(sd_L, na.rm = TRUE),
  210. WT_K = mean(mean_K, na.rm = TRUE),
  211. WT_sd_K = mean(sd_K, na.rm = TRUE),
  212. WT_r = mean(mean_r, na.rm = TRUE),
  213. WT_sd_r = mean(sd_r, na.rm = TRUE),
  214. WT_AUC = mean(mean_AUC, na.rm = TRUE),
  215. WT_sd_AUC = mean(sd_AUC, na.rm = TRUE),
  216. .groups = "drop"
  217. )
  218. # Join WT statistics to df
  219. df <- df %>%
  220. left_join(wt_stats, by = bg_group_vars)
  221. # Compute mean values at zero concentration
  222. mean_zeroes <- df %>%
  223. filter(conc_num == 0) %>%
  224. group_by(across(all_of(group_vars))) %>%
  225. summarise(
  226. mean_L_zero = mean(mean_L, na.rm = TRUE),
  227. mean_K_zero = mean(mean_K, na.rm = TRUE),
  228. mean_r_zero = mean(mean_r, na.rm = TRUE),
  229. mean_AUC_zero = mean(mean_AUC, na.rm = TRUE),
  230. .groups = "drop"
  231. )
  232. df <- df %>%
  233. left_join(mean_zeroes, by = c(group_vars))
  234. # Calculate Raw Shifts and Z Shifts
  235. df <- df %>%
  236. mutate(
  237. Raw_Shift_L = mean_L_zero - WT_L,
  238. Raw_Shift_K = mean_K_zero - WT_K,
  239. Raw_Shift_r = mean_r_zero - WT_r,
  240. Raw_Shift_AUC = mean_AUC_zero - WT_AUC,
  241. Z_Shift_L = Raw_Shift_L / WT_sd_L,
  242. Z_Shift_K = Raw_Shift_K / WT_sd_K,
  243. Z_Shift_r = Raw_Shift_r / WT_sd_r,
  244. Z_Shift_AUC = Raw_Shift_AUC / WT_sd_AUC
  245. )
  246. calculations <- df %>%
  247. group_by(across(all_of(c(group_vars, "conc_num", "conc_num_factor", "conc_num_factor_factor")))) %>%
  248. mutate(
  249. NG_sum = sum(NG, na.rm = TRUE),
  250. DB_sum = sum(DB, na.rm = TRUE),
  251. SM_sum = sum(SM, na.rm = TRUE),
  252. num_non_removed_concs = total_conc_num - sum(DB, na.rm = TRUE) - 1,
  253. # Expected values
  254. Exp_L = WT_L + Raw_Shift_L,
  255. Exp_K = WT_K + Raw_Shift_K,
  256. Exp_r = WT_r + Raw_Shift_r,
  257. Exp_AUC = WT_AUC + Raw_Shift_AUC,
  258. # Deltas
  259. Delta_L = mean_L - Exp_L,
  260. Delta_K = mean_K - Exp_K,
  261. Delta_r = mean_r - Exp_r,
  262. Delta_AUC = mean_AUC - Exp_AUC,
  263. # Adjust deltas for NG and SM
  264. Delta_L = if_else(NG == 1, mean_L - WT_L, Delta_L),
  265. Delta_K = if_else(NG == 1, mean_K - WT_K, Delta_K),
  266. Delta_r = if_else(NG == 1, mean_r - WT_r, Delta_r),
  267. Delta_AUC = if_else(NG == 1, mean_AUC - WT_AUC, Delta_AUC),
  268. Delta_L = if_else(SM == 1, mean_L - WT_L, Delta_L),
  269. # Calculate Z-scores
  270. Zscore_L = Delta_L / WT_sd_L,
  271. Zscore_K = Delta_K / WT_sd_K,
  272. Zscore_r = Delta_r / WT_sd_r,
  273. Zscore_AUC = Delta_AUC / WT_sd_AUC
  274. ) %>%
  275. ungroup() %>% # Ungroup before group_modify
  276. group_by(across(all_of(group_vars))) %>%
  277. group_modify(~ {
  278. lm_L <- perform_lm(.x, "Delta_L", "conc_num_factor", max_conc)
  279. lm_K <- perform_lm(.x, "Delta_K", "conc_num_factor", max_conc)
  280. lm_r <- perform_lm(.x, "Delta_r", "conc_num_factor", max_conc)
  281. lm_AUC <- perform_lm(.x, "Delta_AUC", "conc_num_factor", max_conc)
  282. .x %>%
  283. mutate(
  284. lm_intercept_L = lm_L$intercept,
  285. lm_slope_L = lm_L$slope,
  286. R_Squared_L = lm_L$r_squared,
  287. lm_Score_L = lm_L$score,
  288. lm_intercept_K = lm_K$intercept,
  289. lm_slope_K = lm_K$slope,
  290. R_Squared_K = lm_K$r_squared,
  291. lm_Score_K = lm_K$score,
  292. lm_intercept_r = lm_r$intercept,
  293. lm_slope_r = lm_r$slope,
  294. R_Squared_r = lm_r$r_squared,
  295. lm_Score_r = lm_r$score,
  296. lm_intercept_AUC = lm_AUC$intercept,
  297. lm_slope_AUC = lm_AUC$slope,
  298. R_Squared_AUC = lm_AUC$r_squared,
  299. lm_Score_AUC = lm_AUC$score
  300. )
  301. }) %>%
  302. ungroup()
  303. # For interaction plot error bars
  304. delta_means_sds <- calculations %>%
  305. group_by(across(all_of(group_vars))) %>%
  306. summarise(
  307. mean_Delta_L = mean(Delta_L, na.rm = TRUE),
  308. mean_Delta_K = mean(Delta_K, na.rm = TRUE),
  309. mean_Delta_r = mean(Delta_r, na.rm = TRUE),
  310. mean_Delta_AUC = mean(Delta_AUC, na.rm = TRUE),
  311. sd_Delta_L = sd(Delta_L, na.rm = TRUE),
  312. sd_Delta_K = sd(Delta_K, na.rm = TRUE),
  313. sd_Delta_r = sd(Delta_r, na.rm = TRUE),
  314. sd_Delta_AUC = sd(Delta_AUC, na.rm = TRUE),
  315. .groups = "drop"
  316. )
  317. calculations <- calculations %>%
  318. left_join(delta_means_sds, by = group_vars)
  319. # Summary statistics for lm scores
  320. calculations <- calculations %>%
  321. mutate(
  322. lm_mean_L = mean(lm_Score_L, na.rm = TRUE),
  323. lm_sd_L = sd(lm_Score_L, na.rm = TRUE),
  324. lm_mean_K = mean(lm_Score_K, na.rm = TRUE),
  325. lm_sd_K = sd(lm_Score_K, na.rm = TRUE),
  326. lm_mean_r = mean(lm_Score_r, na.rm = TRUE),
  327. lm_sd_r = sd(lm_Score_r, na.rm = TRUE),
  328. lm_mean_AUC = mean(lm_Score_AUC, na.rm = TRUE),
  329. lm_sd_AUC = sd(lm_Score_AUC, na.rm = TRUE)
  330. ) %>%
  331. # Calculate Z-lm scores
  332. mutate(
  333. Z_lm_L = (lm_Score_L - lm_mean_L) / lm_sd_L,
  334. Z_lm_K = (lm_Score_K - lm_mean_K) / lm_sd_K,
  335. Z_lm_r = (lm_Score_r - lm_mean_r) / lm_sd_r,
  336. Z_lm_AUC = (lm_Score_AUC - lm_mean_AUC) / lm_sd_AUC
  337. )
  338. # Build summary stats (interactions)
  339. interactions <- calculations %>%
  340. group_by(across(all_of(group_vars))) %>%
  341. summarise(
  342. Avg_Zscore_L = sum(Zscore_L, na.rm = TRUE) / first(num_non_removed_concs),
  343. Avg_Zscore_K = sum(Zscore_K, na.rm = TRUE) / first(num_non_removed_concs),
  344. Avg_Zscore_r = sum(Zscore_r, na.rm = TRUE) / (total_conc_num - 1),
  345. Avg_Zscore_AUC = sum(Zscore_AUC, na.rm = TRUE) / (total_conc_num - 1),
  346. # Interaction Z-scores
  347. Z_lm_L = first(Z_lm_L),
  348. Z_lm_K = first(Z_lm_K),
  349. Z_lm_r = first(Z_lm_r),
  350. Z_lm_AUC = first(Z_lm_AUC),
  351. # Raw Shifts
  352. Raw_Shift_L = first(Raw_Shift_L),
  353. Raw_Shift_K = first(Raw_Shift_K),
  354. Raw_Shift_r = first(Raw_Shift_r),
  355. Raw_Shift_AUC = first(Raw_Shift_AUC),
  356. # Z Shifts
  357. Z_Shift_L = first(Z_Shift_L),
  358. Z_Shift_K = first(Z_Shift_K),
  359. Z_Shift_r = first(Z_Shift_r),
  360. Z_Shift_AUC = first(Z_Shift_AUC),
  361. # NG, DB, SM values
  362. NG = first(NG),
  363. DB = first(DB),
  364. SM = first(SM),
  365. .groups = "drop"
  366. ) %>%
  367. arrange(desc(Z_lm_L), desc(NG))
  368. # Deletion data ranking and linear modeling
  369. if (type == "deletion") {
  370. interactions <- interactions %>%
  371. mutate(
  372. Avg_Zscore_L_adjusted = ifelse(is.na(Avg_Zscore_L), 0.001, Avg_Zscore_L),
  373. Avg_Zscore_K_adjusted = ifelse(is.na(Avg_Zscore_K), 0.001, Avg_Zscore_K),
  374. Avg_Zscore_r_adjusted = ifelse(is.na(Avg_Zscore_r), 0.001, Avg_Zscore_r),
  375. Avg_Zscore_AUC_adjusted = ifelse(is.na(Avg_Zscore_AUC), 0.001, Avg_Zscore_AUC),
  376. Z_lm_L_adjusted = ifelse(is.na(Z_lm_L), 0.001, Z_lm_L),
  377. Z_lm_K_adjusted = ifelse(is.na(Z_lm_K), 0.001, Z_lm_K),
  378. Z_lm_r_adjusted = ifelse(is.na(Z_lm_r), 0.001, Z_lm_r),
  379. Z_lm_AUC_adjusted = ifelse(is.na(Z_lm_AUC), 0.001, Z_lm_AUC)
  380. ) %>%
  381. mutate(
  382. Rank_L = rank(Avg_Zscore_L_adjusted),
  383. Rank_K = rank(Avg_Zscore_K_adjusted),
  384. Rank_r = rank(Avg_Zscore_r_adjusted),
  385. Rank_AUC = rank(Avg_Zscore_AUC_adjusted),
  386. Rank_lm_L = rank(Z_lm_L_adjusted),
  387. Rank_lm_K = rank(Z_lm_K_adjusted),
  388. Rank_lm_r = rank(Z_lm_r_adjusted),
  389. Rank_lm_AUC = rank(Z_lm_AUC_adjusted)
  390. ) %>%
  391. mutate(
  392. lm_R_squared_rank_L = summary(lm(Rank_lm_L ~ Rank_L, data = .))$r.squared,
  393. lm_R_squared_rank_K = summary(lm(Rank_lm_K ~ Rank_K, data = .))$r.squared,
  394. lm_R_squared_rank_r = summary(lm(Rank_lm_r ~ Rank_r, data = .))$r.squared,
  395. lm_R_squared_rank_AUC = summary(lm(Rank_lm_AUC ~ Rank_AUC, data = .))$r.squared
  396. )
  397. # Add overlap threshold categories based on Z-lm and Avg-Z scores
  398. interactions <- interactions %>%
  399. filter(!is.na(Z_lm_L) | !is.na(Avg_Zscore_L)) %>%
  400. mutate(
  401. Overlap = case_when(
  402. Z_lm_L >= overlap_threshold & Avg_Zscore_L >= overlap_threshold ~ "Deletion Enhancer Both",
  403. Z_lm_L <= -overlap_threshold & Avg_Zscore_L <= -overlap_threshold ~ "Deletion Suppressor Both",
  404. Z_lm_L >= overlap_threshold & Avg_Zscore_L <= overlap_threshold ~ "Deletion Enhancer lm only",
  405. Z_lm_L <= overlap_threshold & Avg_Zscore_L >= overlap_threshold ~ "Deletion Enhancer Avg Zscore only",
  406. Z_lm_L <= -overlap_threshold & Avg_Zscore_L >= -overlap_threshold ~ "Deletion Suppressor lm only",
  407. Z_lm_L >= -overlap_threshold & Avg_Zscore_L <= -overlap_threshold ~ "Deletion Suppressor Avg Zscore only",
  408. Z_lm_L >= overlap_threshold & Avg_Zscore_L <= -overlap_threshold ~ "Deletion Enhancer lm, Deletion Suppressor Avg Zscore",
  409. Z_lm_L <= -overlap_threshold & Avg_Zscore_L >= overlap_threshold ~ "Deletion Suppressor lm, Deletion Enhancer Avg Zscore",
  410. TRUE ~ "No Effect"
  411. )) %>%
  412. group_modify(~ {
  413. # For rank plots
  414. lm_L <- perform_lm(.x, "Z_lm_L", "Avg_Zscore_L", max_conc)
  415. lm_K <- perform_lm(.x, "Z_lm_K", "Avg_Zscore_K", max_conc)
  416. lm_r <- perform_lm(.x, "Z_lm_r", "Avg_Zscore_r", max_conc)
  417. lm_AUC <- perform_lm(.x, "Z_lm_AUC", "Avg_Zscore_AUC", max_conc)
  418. # For correlation plots
  419. Z_lm_K_L <- perform_lm(.x, "Z_lm_K", "Z_lm_L", max_conc)
  420. Z_lm_r_L <- perform_lm(.x, "Z_lm_r", "Z_lm_L", max_conc)
  421. Z_lm_R_AUC_L <- perform_lm(.x, "Z_lm_R_AUC", "Z_lm_L", max_conc)
  422. Z_lm_R_r_K <- perform_lm(.x, "Z_lm_R_r", "Z_lm_K", max_conc)
  423. Z_lm_R_AUC_K <- perform_lm(.x, "Z_lm_R_AUC", "Z_lm_K", max_conc)
  424. Z_lm_R_AUC_r <- perform_lm(.x, "Z_lm_R_AUC", "Z_lm_r", max_conc)
  425. .x %>%
  426. mutate(
  427. # For rank plots
  428. lm_R_squared_L = lm_L$r.squared,
  429. lm_R_squared_K = lm_K$r.squared,
  430. lm_R_squared_r = lm_r$r.squared,
  431. lm_R_squared_AUC = lm_AUC$r.squared,
  432. # For correlation plots
  433. Z_lm_R_squared_K_L = Z_lm_K_L$r.squared,
  434. Z_lm_R_squared_r_L = Z_lm_r_L$r.squared,
  435. Z_lm_R_squared_AUC_L = Z_lm_R_AUC_L$r.squared,
  436. Z_lm_R_squared_r_K = Z_lm_R_r_K$r.squared,
  437. Z_lm_R_squared_AUC_K = Z_lm_R_AUC_K$r.squared,
  438. Z_lm_R_squared_AUC_r = Z_lm_R_AUC_r$r.squared,
  439. Z_lm_intercept_K_L = Z_lm_K_L$intercept,
  440. Z_lm_intercept_r_L = Z_lm_r_L$intercept,
  441. Z_lm_intercept_AUC_L = Z_lm_R_AUC_L$intercept,
  442. Z_lm_intercept_r_K = Z_lm_R_r_K$intercept,
  443. Z_lm_intercept_AUC_K = Z_lm_R_AUC_K$intercept,
  444. Z_lm_intercept_AUC_r = Z_lm_R_AUC_r$intercept,
  445. Z_lm_slope_K_L = Z_lm_K_L$slope,
  446. Z_lm_slope_r_L = Z_lm_r_L$slope,
  447. Z_lm_slope_AUC_L = Z_lm_R_AUC_L$slope,
  448. Z_lm_slope_r_K = Z_lm_R_r_K$slope,
  449. Z_lm_slope_AUC_K = Z_lm_R_AUC_K$slope,
  450. Z_lm_slope_AUC_r = Z_lm_R_AUC_r$slope,
  451. Z_lm_Score_K_L = Z_lm_K_L$score,
  452. Z_lm_Score_r_L = Z_lm_r_L$score,
  453. Z_lm_Score_AUC_L = Z_lm_R_AUC_L$score,
  454. Z_lm_Score_r_K = Z_lm_R_r_K$score,
  455. Z_lm_Score_AUC_K = Z_lm_R_AUC_K$score,
  456. Z_lm_Score_AUC_r = Z_lm_R_AUC_r$score
  457. )
  458. })
  459. } # end deletion-specific block
  460. # Create the final calculations and interactions dataframes with only required columns for csv output
  461. df_calculations <- calculations %>%
  462. select(
  463. all_of(group_vars),
  464. conc_num, conc_num_factor, conc_num_factor_factor, N,
  465. mean_L, median_L, sd_L, se_L,
  466. mean_K, median_K, sd_K, se_K,
  467. mean_r, median_r, sd_r, se_r,
  468. mean_AUC, median_AUC, sd_AUC, se_AUC,
  469. Raw_Shift_L, Raw_Shift_K, Raw_Shift_r, Raw_Shift_AUC,
  470. Z_Shift_L, Z_Shift_K, Z_Shift_r, Z_Shift_AUC,
  471. WT_L, WT_K, WT_r, WT_AUC,
  472. WT_sd_L, WT_sd_K, WT_sd_r, WT_sd_AUC,
  473. Exp_L, Exp_K, Exp_r, Exp_AUC,
  474. Delta_L, Delta_K, Delta_r, Delta_AUC,
  475. mean_Delta_L, mean_Delta_K, mean_Delta_r, mean_Delta_AUC,
  476. Zscore_L, Zscore_K, Zscore_r, Zscore_AUC
  477. )
  478. df_interactions <- interactions %>%
  479. select(
  480. all_of(group_vars),
  481. NG, DB, SM,
  482. Avg_Zscore_L, Avg_Zscore_K, Avg_Zscore_r, Avg_Zscore_AUC,
  483. Z_lm_L, Z_lm_K, Z_lm_r, Z_lm_AUC,
  484. Raw_Shift_L, Raw_Shift_K, Raw_Shift_r, Raw_Shift_AUC,
  485. Z_Shift_L, Z_Shift_K, Z_Shift_r, Z_Shift_AUC,
  486. lm_R_squared_L, lm_R_squared_K, lm_R_squared_r, lm_R_squared_AUC,
  487. lm_intercept_L, lm_intercept_K, lm_intercept_r, lm_intercept_AUC,
  488. lm_slope_L, lm_slope_K, lm_slope_r, lm_slope_AUC, Overlap
  489. )
  490. # Avoid column collision on left join for overlapping variables
  491. calculations_no_overlap <- calculations %>%
  492. select(-any_of(c("DB", "NG", "SM",
  493. "Raw_Shift_L", "Raw_Shift_K", "Raw_Shift_r", "Raw_Shift_AUC",
  494. "Z_Shift_L", "Z_Shift_K", "Z_Shift_r", "Z_Shift_AUC",
  495. "Z_lm_L", "Z_lm_K", "Z_lm_r", "Z_lm_AUC",
  496. "lm_R_squared_L", "lm_R_squared_K", "lm_R_squared_r", "lm_R_squared_AUC",
  497. "lm_intercept_L", "lm_intercept_K", "lm_intercept_r", "lm_intercept_AUC",
  498. "lm_slope_L", "lm_slope_K", "lm_slope_r", "lm_slope_AUC"
  499. )))
  500. full_data <- calculations_no_overlap %>%
  501. left_join(df_interactions, by = group_vars)
  502. # Return final dataframes
  503. return(list(
  504. calculations = df_calculations,
  505. interactions = df_interactions,
  506. full_data = full_data
  507. ))
  508. }
  509. generate_and_save_plots <- function(out_dir, filename, plot_configs, page_width = 12, page_height = 8) {
  510. message("Generating ", filename, ".pdf and ", filename, ".html")
  511. plot_groups <- if ("plots" %in% names(plot_configs)) {
  512. list(plot_configs) # Single group
  513. } else {
  514. plot_configs # Multiple groups
  515. }
  516. pdf(file.path(out_dir, paste0(filename, ".pdf")), width = page_width, height = page_height)
  517. for (group in plot_groups) {
  518. static_plots <- list()
  519. plotly_plots <- list()
  520. for (i in seq_along(group$plots)) {
  521. config <- group$plots[[i]]
  522. df <- config$df
  523. # Filter NAs
  524. if (!is.null(config$filter_na) && config$filter_na) {
  525. df <- df %>%
  526. filter(!is.na(!!sym(config$y_var)))
  527. }
  528. # TODO for now skip all NA plots NA data
  529. # Eventually add to own or filter_na block so we can handle selectively
  530. if (nrow(df) == 0) {
  531. message("Insufficient data for plot:", config$title)
  532. next # skip plot if insufficient data is available
  533. }
  534. # Create initial aes mappings for all plot types
  535. aes_mapping <- aes(x = !!sym(config$x_var)) # required
  536. if (!is.null(config$y_var)) {
  537. aes_mapping <- modifyList(aes_mapping, aes(y = !!sym(config$y_var))) # optional for density/bar plots
  538. }
  539. if (!is.null(config$color_var)) {
  540. aes_mapping <- modifyList(aes_mapping, aes(color = !!sym(config$color_var))) # dynamic color_var
  541. } else if (!is.null(config$color)) {
  542. aes_mapping <- modifyList(aes_mapping, aes(color = config$color)) # static color
  543. }
  544. if (config$plot_type == "bar" && !is.null(config$color_var)) {
  545. aes_mapping <- modifyList(aes_mapping, aes(fill = !!sym(config$color_var))) # only fill bar plots
  546. }
  547. # Begin plot generation
  548. plot <- ggplot(df, aes_mapping) + theme_publication(legend_position = config$legend_position)
  549. plot <- switch(config$plot_type,
  550. "scatter" = generate_scatter_plot(plot, config),
  551. "box" = generate_boxplot(plot, config),
  552. "density" = plot + geom_density(),
  553. "bar" = plot + geom_bar(),
  554. plot # default
  555. )
  556. if (!is.null(config$title)) {
  557. plot <- plot + ggtitle(config$title)
  558. if (!is.null(config$title_size)) {
  559. plot <- plot + theme(plot.title = element_text(size = config$title_size))
  560. }
  561. }
  562. if (!is.null(config$x_label)) plot <- plot + xlab(config$x_label)
  563. if (!is.null(config$y_label)) plot <- plot + ylab(config$y_label)
  564. if (!is.null(config$coord_cartesian)) plot <- plot + coord_cartesian(ylim = config$coord_cartesian)
  565. #plotly_plot <- suppressWarnings(plotly::ggplotly(plot))
  566. static_plots[[i]] <- plot
  567. #plotly_plots[[i]] <- plotly_plot
  568. }
  569. grid_layout <- group$grid_layout
  570. if (!is.null(grid_layout)) {
  571. if (is.null(grid_layout$ncol)) {
  572. grid_layout$ncol <- 1
  573. }
  574. if (!is.null(grid_layout$ncol) && is.null(grid_layout$nrow)) {
  575. num_plots <- length(static_plots)
  576. grid_layout$nrow <- ceiling(num_plots / grid_layout$ncol)
  577. }
  578. # total_spots <- grid_layout$nrow * grid_layout$ncol
  579. # num_plots <- length(static_plots)
  580. # if (num_plots < total_spots) {
  581. # message("Filling ", total_spots - num_plots, " empty spots with nullGrob()")
  582. # static_plots <- c(static_plots, replicate(total_spots - num_plots, nullGrob(), simplify = FALSE))
  583. # }
  584. grid.arrange(
  585. grobs = static_plots,
  586. ncol = grid_layout$ncol,
  587. nrow = grid_layout$nrow
  588. )
  589. } else {
  590. for (plot in static_plots) {
  591. print(plot)
  592. }
  593. }
  594. }
  595. dev.off()
  596. # out_html_file <- file.path(out_dir, paste0(filename, ".html"))
  597. # message("Saving combined HTML file: ", out_html_file)
  598. # htmltools::save_html(
  599. # htmltools::tagList(plotly_plots),
  600. # file = out_html_file
  601. # )
  602. }
  603. generate_scatter_plot <- function(plot, config) {
  604. # Define the points
  605. shape <- if (!is.null(config$shape)) config$shape else 3
  606. size <- if (!is.null(config$size)) config$size else 1.5
  607. position <-
  608. if (!is.null(config$position) && config$position == "jitter") {
  609. position_jitter(width = 0.4, height = 0.1)
  610. } else {
  611. "identity"
  612. }
  613. plot <- plot + geom_point(
  614. shape = shape,
  615. size = size,
  616. position = position
  617. )
  618. # Add a cyan point for the reference data for correlation plots
  619. if (!is.null(config$cyan_points) && config$cyan_points) {
  620. plot <- plot + geom_point(
  621. aes(x = !!sym(config$x_var), y = !!sym(config$y_var)),
  622. data = config$df_reference,
  623. color = "cyan",
  624. shape = 3,
  625. size = 0.5
  626. )
  627. }
  628. # Add error bars if specified
  629. if (!is.null(config$error_bar) && config$error_bar) {
  630. # Check if custom columns are provided for y_mean and y_sd, or use the defaults
  631. y_mean_col <- if (!is.null(config$error_bar_params$y_mean_col)) {
  632. config$error_bar_params$y_mean_col
  633. } else {
  634. paste0("mean_", config$y_var)
  635. }
  636. y_sd_col <- if (!is.null(config$error_bar_params$y_sd_col)) {
  637. config$error_bar_params$y_sd_col
  638. } else {
  639. paste0("sd_", config$y_var)
  640. }
  641. # Use rlang to handle custom error bar calculations
  642. if (!is.null(config$error_bar_params$custom_error_bar)) {
  643. custom_ymin_expr <- rlang::parse_expr(config$error_bar_params$custom_error_bar$ymin)
  644. custom_ymax_expr <- rlang::parse_expr(config$error_bar_params$custom_error_bar$ymax)
  645. plot <- plot + geom_errorbar(
  646. aes(
  647. ymin = !!custom_ymin_expr,
  648. ymax = !!custom_ymax_expr
  649. ),
  650. color = config$error_bar_params$color,
  651. linewidth = ifelse(is.null(config$error_bar_params$linewidth), 0.1, config$error_bar_params$linewidth)
  652. )
  653. } else {
  654. # If no custom error bar formula, use the default or dynamic ones
  655. if (!is.null(config$color_var) && config$color_var %in% colnames(config$df)) {
  656. # Only use color_var if it's present in the dataframe
  657. plot <- plot + geom_errorbar(
  658. aes(
  659. ymin = !!sym(y_mean_col) - !!sym(y_sd_col),
  660. ymax = !!sym(y_mean_col) + !!sym(y_sd_col),
  661. color = !!sym(config$color_var)
  662. ),
  663. linewidth = 0.1
  664. )
  665. } else {
  666. # If color_var is missing, fall back to a default color or none
  667. plot <- plot + geom_errorbar(
  668. aes(
  669. ymin = !!sym(y_mean_col) - !!sym(y_sd_col),
  670. ymax = !!sym(y_mean_col) + !!sym(y_sd_col)
  671. ),
  672. color = config$error_bar_params$color, # use the provided color or default
  673. linewidth = ifelse(is.null(config$error_bar_params$linewidth), 0.1, config$error_bar_params$linewidth)
  674. )
  675. }
  676. }
  677. # Add the center point if the option is provided
  678. if (!is.null(config$error_bar_params$mean_point) && config$error_bar_params$mean_point) {
  679. if (!is.null(config$error_bar_params$color)) {
  680. plot <- plot + geom_point(
  681. aes(x = !!sym(config$x_var), y = !!sym(y_mean_col)),
  682. color = config$error_bar_params$color,
  683. shape = 16
  684. )
  685. } else {
  686. plot <- plot + geom_point(
  687. aes(x = !!sym(config$x_var), y = !!sym(y_mean_col)),
  688. shape = 16
  689. )
  690. }
  691. }
  692. }
  693. # Add linear regression line if specified
  694. if (!is.null(config$lm_line)) {
  695. # Extract necessary values
  696. intercept <- config$lm_line$intercept # required
  697. slope <- config$lm_line$slope # required
  698. xmin <- ifelse(!is.null(config$lm_line$xmin), config$lm_line$xmin, min(as.numeric(config$df[[config$x_var]])))
  699. xmax <- ifelse(!is.null(config$lm_line$xmax), config$lm_line$xmax, max(as.numeric(config$df[[config$x_var]])))
  700. color <- ifelse(!is.null(config$lm_line$color), config$lm_line$color, "blue")
  701. linewidth <- ifelse(!is.null(config$lm_line$linewidth), config$lm_line$linewidth, 1)
  702. ymin <- intercept + slope * xmin
  703. ymax <- intercept + slope * xmax
  704. # Ensure y-values are within y-limits (if any)
  705. if (!is.null(config$ylim_vals)) {
  706. ymin_within_limits <- ymin >= config$ylim_vals[1] && ymin <= config$ylim_vals[2]
  707. ymax_within_limits <- ymax >= config$ylim_vals[1] && ymax <= config$ylim_vals[2]
  708. # Adjust or skip based on whether the values fall within limits
  709. if (ymin_within_limits && ymax_within_limits) {
  710. plot <- plot + annotate(
  711. "segment",
  712. x = xmin,
  713. xend = xmax,
  714. y = ymin,
  715. yend = ymax,
  716. color = color,
  717. linewidth = linewidth,
  718. )
  719. } else {
  720. message("Skipping linear regression line due to y-values outside of limits")
  721. }
  722. } else {
  723. # If no y-limits are provided, proceed with the annotation
  724. plot <- plot + annotate(
  725. "segment",
  726. x = xmin,
  727. xend = xmax,
  728. y = ymin,
  729. yend = ymax,
  730. color = color,
  731. linewidth = linewidth
  732. )
  733. }
  734. }
  735. # Add SD Bands if specified
  736. if (!is.null(config$sd_band)) {
  737. plot <- plot +
  738. annotate(
  739. "rect",
  740. xmin = -Inf, xmax = Inf,
  741. ymin = config$sd_band, ymax = Inf,
  742. fill = ifelse(!is.null(config$fill_positive), config$fill_positive, "#542788"),
  743. alpha = ifelse(!is.null(config$alpha_positive), config$alpha_positive, 0.3)
  744. ) +
  745. annotate(
  746. "rect",
  747. xmin = -Inf, xmax = Inf,
  748. ymin = -config$sd_band, ymax = -Inf,
  749. fill = ifelse(!is.null(config$fill_negative), config$fill_negative, "orange"),
  750. alpha = ifelse(!is.null(config$alpha_negative), config$alpha_negative, 0.3)
  751. ) +
  752. geom_hline(
  753. yintercept = c(-config$sd_band, config$sd_band),
  754. color = ifelse(!is.null(config$hl_color), config$hl_color, "black")
  755. )
  756. }
  757. # # Add rectangles if specified
  758. # if (!is.null(config$rectangles)) {
  759. # for (rect in config$rectangles) {
  760. # plot <- plot + annotate(
  761. # "rect",
  762. # xmin = rect$xmin,
  763. # xmax = rect$xmax,
  764. # ymin = rect$ymin,
  765. # ymax = rect$ymax,
  766. # fill = ifelse(is.null(rect$fill), NA, rect$fill),
  767. # color = ifelse(is.null(rect$color), "black", rect$color),
  768. # alpha = ifelse(is.null(rect$alpha), 0.1, rect$alpha)
  769. # )
  770. # }
  771. # }
  772. # Customize X-axis if specified
  773. if (!is.null(config$x_breaks) && !is.null(config$x_labels) && !is.null(config$x_label)) {
  774. # Check if x_var is factor or character (for discrete x-axis)
  775. if (is.factor(plot$data[[config$x_var]]) || is.character(plot$data[[config$x_var]])) {
  776. plot <- plot +
  777. scale_x_discrete(
  778. name = config$x_label,
  779. breaks = config$x_breaks,
  780. labels = config$x_labels
  781. )
  782. } else {
  783. plot <- plot +
  784. scale_x_continuous(
  785. name = config$x_label,
  786. breaks = config$x_breaks,
  787. labels = config$x_labels
  788. )
  789. }
  790. }
  791. # Set Y-axis limits if specified
  792. if (!is.null(config$ylim_vals)) {
  793. plot <- plot + scale_y_continuous(limits = config$ylim_vals)
  794. }
  795. return(plot)
  796. }
  797. generate_boxplot <- function(plot, config) {
  798. # Convert x_var to a factor within aes mapping
  799. plot <- plot + geom_boxplot(aes(x = factor(!!sym(config$x_var))))
  800. # Customize X-axis if specified
  801. if (!is.null(config$x_breaks) && !is.null(config$x_labels) && !is.null(config$x_label)) {
  802. # Check if x_var is factor or character (for discrete x-axis)
  803. if (is.factor(plot$data[[config$x_var]]) || is.character(plot$data[[config$x_var]])) {
  804. plot <- plot +
  805. scale_x_discrete(
  806. name = config$x_label,
  807. breaks = config$x_breaks,
  808. labels = config$x_labels
  809. )
  810. } else {
  811. plot <- plot +
  812. scale_x_continuous(
  813. name = config$x_label,
  814. breaks = config$x_breaks,
  815. labels = config$x_labels
  816. )
  817. }
  818. }
  819. return(plot)
  820. }
  821. generate_plate_analysis_plot_configs <- function(variables, df_before = NULL, df_after = NULL,
  822. plot_type = "scatter", stages = c("before", "after")) {
  823. plot_configs <- list()
  824. for (var in variables) {
  825. for (stage in stages) {
  826. df_plot <- if (stage == "before") df_before else df_after
  827. # Check for non-finite values in the y-variable
  828. # df_plot_filtered <- df_plot %>% filter(is.finite(!!sym(var)))
  829. # Adjust settings based on plot_type
  830. plot_config <- list(
  831. df = df_plot,
  832. x_var = "scan",
  833. y_var = var,
  834. plot_type = plot_type,
  835. title = paste("Plate analysis by Drug Conc for", var, stage, "quality control"),
  836. color_var = "conc_num_factor_factor",
  837. size = 0.2,
  838. error_bar = (plot_type == "scatter"),
  839. legend_position = "bottom",
  840. filter_na = TRUE
  841. )
  842. # Add config to plots list
  843. plot_configs <- append(plot_configs, list(plot_config))
  844. }
  845. }
  846. return(list(plots = plot_configs))
  847. }
  848. generate_interaction_plot_configs <- function(df_summary, df_interactions, type) {
  849. # Define the y-limits for the plots
  850. limits_map <- list(
  851. L = c(0, 130),
  852. K = c(-20, 160),
  853. r = c(0, 1),
  854. AUC = c(0, 12500)
  855. )
  856. stats_plot_configs <- list()
  857. stats_boxplot_configs <- list()
  858. delta_plot_configs <- list()
  859. # Overall statistics plots
  860. OrfRep <- first(df_summary$OrfRep) # this should correspond to the reference strain
  861. for (plot_type in c("scatter", "box")) {
  862. for (var in names(limits_map)) {
  863. y_limits <- limits_map[[var]]
  864. y_span <- y_limits[2] - y_limits[1]
  865. # Common plot configuration
  866. plot_config <- list(
  867. df = df_summary,
  868. plot_type = plot_type,
  869. x_var = "conc_num_factor_factor",
  870. y_var = var,
  871. shape = 16,
  872. x_label = paste0("[", unique(df_summary$Drug)[1], "]"),
  873. coord_cartesian = y_limits,
  874. x_breaks = unique(df_summary$conc_num_factor_factor),
  875. x_labels = as.character(unique(df_summary$conc_num))
  876. )
  877. # Add specific configurations for scatter and box plots
  878. if (plot_type == "scatter") {
  879. plot_config$title <- sprintf("%s Scatter RF for %s with SD", OrfRep, var)
  880. plot_config$error_bar <- TRUE
  881. plot_config$error_bar_params <- list(
  882. color = "red",
  883. mean_point = TRUE,
  884. y_mean_col = paste0("mean_mean_", var),
  885. y_sd_col = paste0("mean_sd_", var)
  886. )
  887. plot_config$position <- "jitter"
  888. annotations <- list(
  889. list(x = 0.25, y = y_limits[1] + 0.08 * y_span, label = " NG =", size = 4),
  890. list(x = 0.25, y = y_limits[1] + 0.04 * y_span, label = " DB =", size = 4),
  891. list(x = 0.25, y = y_limits[1], label = " SM =", size = 4)
  892. )
  893. for (x_val in unique(df_summary$conc_num_factor_factor)) {
  894. current_df <- df_summary %>% filter(!!sym(plot_config$x_var) == x_val)
  895. annotations <- append(annotations, list(
  896. list(x = x_val, y = y_limits[1] + 0.08 * y_span, label = first(current_df$NG, default = 0), size = 4),
  897. list(x = x_val, y = y_limits[1] + 0.04 * y_span, label = first(current_df$DB, default = 0), size = 4),
  898. list(x = x_val, y = y_limits[1], label = first(current_df$SM, default = 0), size = 4)
  899. ))
  900. }
  901. plot_config$annotations <- annotations
  902. stats_plot_configs <- append(stats_plot_configs, list(plot_config))
  903. } else if (plot_type == "box") {
  904. plot_config$title <- sprintf("%s Box RF for %s with SD", OrfRep, var)
  905. plot_config$position <- "dodge"
  906. stats_boxplot_configs <- append(stats_boxplot_configs, list(plot_config))
  907. }
  908. }
  909. }
  910. # Delta interaction plots
  911. delta_limits_map <- list(
  912. L = c(-60, 60),
  913. K = c(-60, 60),
  914. r = c(-0.6, 0.6),
  915. AUC = c(-6000, 6000)
  916. )
  917. # Select the data grouping by data type
  918. if (type == "reference") {
  919. group_vars <- c("OrfRep", "Gene", "num")
  920. } else if (type == "deletion") {
  921. group_vars <- c("OrfRep", "Gene")
  922. }
  923. grouped_data <- df_interactions %>%
  924. group_by(across(all_of(group_vars))) %>%
  925. group_split()
  926. for (group_data in grouped_data) {
  927. # Build the plot title
  928. OrfRep <- first(group_data$OrfRep)
  929. Gene <- first(group_data$Gene)
  930. if (type == "reference") {
  931. num <- if ("num" %in% names(group_data)) first(group_data$num) else ""
  932. OrfRepTitle <- paste(OrfRep, Gene, num, sep = "_")
  933. } else if (type == "deletion") {
  934. OrfRepTitle <- OrfRep
  935. }
  936. for (var in names(delta_limits_map)) {
  937. y_limits <- delta_limits_map[[var]]
  938. y_span <- y_limits[2] - y_limits[1]
  939. y_var_name <- paste0("Delta_", var)
  940. # Anti-filter to select out-of-bounds rows
  941. out_of_bounds <- group_data %>%
  942. filter(is.na(!!sym(y_var_name)) |
  943. !!sym(y_var_name) < y_limits[1] |
  944. !!sym(y_var_name) > y_limits[2])
  945. if (nrow(out_of_bounds) > 0) {
  946. message(sprintf("Filtered %d row(s) from '%s' because %s is outside of y-limits: [%f, %f]",
  947. nrow(out_of_bounds), OrfRepTitle, y_var_name, y_limits[1], y_limits[2]
  948. ))
  949. }
  950. # Do the actual filtering
  951. group_data_filtered <- group_data %>%
  952. filter(!is.na(!!sym(y_var_name)) &
  953. !!sym(y_var_name) >= y_limits[1] &
  954. !!sym(y_var_name) <= y_limits[2])
  955. if (nrow(group_data_filtered) == 0) {
  956. message("Insufficient data for plot: ", OrfRepTitle, " ", var)
  957. next # skip plot if insufficient data is available
  958. }
  959. WT_sd_value <- first(group_data_filtered[[paste0("WT_sd_", var)]], default = 0)
  960. Z_Shift_value <- round(first(group_data_filtered[[paste0("Z_Shift_", var)]], default = 0), 2)
  961. Z_lm_value <- round(first(group_data_filtered[[paste0("Z_lm_", var)]], default = 0), 2)
  962. R_squared_value <- round(first(group_data_filtered[[paste0("R_Squared_", var)]], default = 0), 2)
  963. NG_value <- first(group_data_filtered$NG, default = 0)
  964. DB_value <- first(group_data_filtered$DB, default = 0)
  965. SM_value <- first(group_data_filtered$SM, default = 0)
  966. lm_intercept_col <- paste0("lm_intercept_", var)
  967. lm_slope_col <- paste0("lm_slope_", var)
  968. lm_intercept <- first(group_data_filtered[[lm_intercept_col]], default = 0)
  969. lm_slope <- first(group_data_filtered[[lm_slope_col]], default = 0)
  970. plot_config <- list(
  971. df = group_data_filtered,
  972. plot_type = "scatter",
  973. x_var = "conc_num_factor_factor",
  974. y_var = y_var_name,
  975. x_label = paste0("[", unique(df_summary$Drug)[1], "]"),
  976. shape = 16,
  977. title = paste(OrfRepTitle, Gene, sep = " "),
  978. title_size = rel(1.4),
  979. coord_cartesian = y_limits,
  980. annotations = list(
  981. list(x = 1, y = y_limits[2] - 0.1 * y_span, label = paste(" ZShift =", round(Z_Shift_value, 2))),
  982. list(x = 1, y = y_limits[2] - 0.2 * y_span, label = paste(" lm ZScore =", round(Z_lm_value, 2))),
  983. # list(x = 1, y = y_limits[2] - 0.3 * y_span, label = paste(" R-squared =", round(R_squared_value, 2))),
  984. list(x = 1, y = y_limits[1] + 0.1 * y_span, label = paste("NG =", NG_value)),
  985. list(x = 1, y = y_limits[1] + 0.05 * y_span, label = paste("DB =", DB_value)),
  986. list(x = 1, y = y_limits[1], label = paste("SM =", SM_value))
  987. ),
  988. error_bar = TRUE,
  989. error_bar_params = list(
  990. custom_error_bar = list(
  991. ymin = paste0("0 - 2 * WT_sd_", var),
  992. ymax = paste0("0 + 2 * WT_sd_", var)
  993. ),
  994. color = "gray70",
  995. linewidth = 0.5
  996. ),
  997. x_breaks = unique(group_data_filtered$conc_num_factor_factor),
  998. x_labels = as.character(unique(group_data_filtered$conc_num)),
  999. ylim_vals = y_limits,
  1000. lm_line = list(
  1001. intercept = lm_intercept,
  1002. slope = lm_slope,
  1003. color = "blue",
  1004. linewidth = 0.8
  1005. )
  1006. )
  1007. delta_plot_configs <- append(delta_plot_configs, list(plot_config))
  1008. }
  1009. }
  1010. # Group delta plots in chunks of 12 per page
  1011. chunk_size <- 12
  1012. delta_plot_chunks <- split(delta_plot_configs, ceiling(seq_along(delta_plot_configs) / chunk_size))
  1013. return(c(
  1014. list(list(grid_layout = list(ncol = 2), plots = stats_plot_configs)),
  1015. list(list(grid_layout = list(ncol = 2), plots = stats_boxplot_configs)),
  1016. lapply(delta_plot_chunks, function(chunk) list(grid_layout = list(ncol = 4), plots = chunk))
  1017. ))
  1018. }
  1019. generate_rank_plot_configs <- function(df, is_lm = FALSE, filter_na = FALSE, overlap_color = FALSE) {
  1020. sd_bands <- c(1, 2, 3)
  1021. plot_configs <- list()
  1022. variables <- c("L", "K")
  1023. # Helper function to create a rank plot configuration
  1024. create_plot_config <- function(variable, rank_var, zscore_var, y_label, sd_band, filter_na, with_annotations = TRUE) {
  1025. num_enhancers <- sum(df[[zscore_var]] >= sd_band, na.rm = TRUE)
  1026. num_suppressors <- sum(df[[zscore_var]] <= -sd_band, na.rm = TRUE)
  1027. # Default plot config
  1028. plot_config <- list(
  1029. df = df,
  1030. x_var = rank_var,
  1031. y_var = zscore_var,
  1032. x_label = "Rank",
  1033. y_label = y_label,
  1034. plot_type = "scatter",
  1035. title = paste(y_label, "vs. Rank for", variable, "above", sd_band, "SD"),
  1036. sd_band = sd_band,
  1037. fill_positive = "#542788",
  1038. fill_negative = "orange",
  1039. alpha_positive = 0.3,
  1040. alpha_negative = 0.3,
  1041. shape = 3,
  1042. size = 0.1,
  1043. filter_na = filter_na,
  1044. legend_position = "none"
  1045. )
  1046. # Selectively add annotations
  1047. if (with_annotations) {
  1048. plot_config$annotations <- list(
  1049. list(
  1050. x = nrow(df) / 2,
  1051. y = 10,
  1052. label = paste("Deletion Enhancers =", num_enhancers)
  1053. ),
  1054. list(
  1055. x = nrow(df) / 2,
  1056. y = -10,
  1057. label = paste("Deletion Suppressors =", num_suppressors)
  1058. )
  1059. )
  1060. }
  1061. return(plot_config)
  1062. }
  1063. # Generate plots for each variable
  1064. for (variable in variables) {
  1065. rank_var <- if (is_lm) paste0("Rank_lm_", variable) else paste0("Rank_", variable)
  1066. zscore_var <- if (is_lm) paste0("Z_lm_", variable) else paste0("Avg_Zscore_", variable)
  1067. y_label <- if (is_lm) paste("Int Z score", variable) else paste("Avg Z score", variable)
  1068. # Loop through SD bands
  1069. for (sd_band in sd_bands) {
  1070. # Create plot with annotations
  1071. plot_configs[[length(plot_configs) + 1]] <-
  1072. create_plot_config(variable, rank_var, zscore_var, y_label, sd_band, filter_na, with_annotations = TRUE)
  1073. # Create plot without annotations
  1074. plot_configs[[length(plot_configs) + 1]] <-
  1075. create_plot_config(variable, rank_var, zscore_var, y_label, sd_band, filter_na, with_annotations = FALSE)
  1076. }
  1077. }
  1078. # Group delta plots in chunks of 6 per page
  1079. chunk_size <- 6
  1080. plot_chunks <- split(plot_configs, ceiling(seq_along(plot_configs) / chunk_size))
  1081. return(c(
  1082. lapply(plot_chunks, function(chunk) list(grid_layout = list(ncol = 3), plots = chunk))
  1083. ))
  1084. }
  1085. generate_correlation_plot_configs <- function(df, df_reference) {
  1086. # Define relationships for different-variable correlations
  1087. relationships <- list(
  1088. list(x = "L", y = "K"),
  1089. list(x = "L", y = "r"),
  1090. list(x = "L", y = "AUC"),
  1091. list(x = "K", y = "r"),
  1092. list(x = "K", y = "AUC"),
  1093. list(x = "r", y = "AUC")
  1094. )
  1095. # Filter both dataframes for missing linear model zscores for plotting
  1096. df <- df %>%
  1097. filter(!is.na(Z_lm_L))
  1098. df_reference <- df_reference %>%
  1099. filter(!is.na(Z_lm_L))
  1100. plot_configs <- list()
  1101. # Iterate over the option to highlight cyan points (TRUE/FALSE)
  1102. highlight_cyan_options <- c(FALSE, TRUE)
  1103. for (highlight_cyan in highlight_cyan_options) {
  1104. for (rel in relationships) {
  1105. # Extract relevant variable names for Z_lm values
  1106. x_var <- paste0("Z_lm_", rel$x)
  1107. y_var <- paste0("Z_lm_", rel$y)
  1108. # Find the max and min of both dataframes for printing linear regression line
  1109. xmin <- min(c(min(df[[x_var]], na.rm = TRUE), min(df_reference[[x_var]], na.rm = TRUE)), na.rm = TRUE)
  1110. xmax <- max(c(max(df[[x_var]], na.rm = TRUE), max(df_reference[[x_var]], na.rm = TRUE)), na.rm = TRUE)
  1111. # Extract the R-squared, intercept, and slope from the df (first value)
  1112. intercept <- df[[paste0("lm_intercept_", rel$x)]][1]
  1113. slope <- df[[paste0("lm_slope_", rel$x)]][1]
  1114. r_squared <- df[[paste0("lm_R_squared_", rel$x)]][1]
  1115. # Generate the label for the plot
  1116. plot_label <- paste("Interaction", rel$x, "vs.", rel$y)
  1117. # Construct plot config
  1118. plot_config <- list(
  1119. df = df,
  1120. df_reference = df_reference,
  1121. x_var = x_var,
  1122. y_var = y_var,
  1123. plot_type = "scatter",
  1124. title = plot_label,
  1125. annotations = list(
  1126. list(
  1127. x = mean(df[[x_var]], na.rm = TRUE),
  1128. y = mean(df[[y_var]], na.rm = TRUE),
  1129. label = paste("R-squared =", round(r_squared, 3))
  1130. )
  1131. ),
  1132. lm_line = list(
  1133. intercept = intercept,
  1134. slope = slope,
  1135. color = "tomato3",
  1136. linewidth = 0.8,
  1137. xmin = xmin,
  1138. xmax = xmax
  1139. ),
  1140. color = "gray70",
  1141. filter_na = TRUE,
  1142. cyan_points = highlight_cyan # include cyan points or not based on the loop
  1143. )
  1144. plot_configs <- append(plot_configs, list(plot_config))
  1145. }
  1146. }
  1147. return(list(plots = plot_configs))
  1148. }
  1149. main <- function() {
  1150. lapply(names(args$experiments), function(exp_name) {
  1151. exp <- args$experiments[[exp_name]]
  1152. exp_path <- exp$path
  1153. exp_sd <- exp$sd
  1154. out_dir <- file.path(exp_path, "zscores")
  1155. out_dir_qc <- file.path(exp_path, "zscores", "qc")
  1156. dir.create(out_dir, recursive = TRUE, showWarnings = FALSE)
  1157. dir.create(out_dir_qc, recursive = TRUE, showWarnings = FALSE)
  1158. # Each list of plots corresponds to a separate file
  1159. message("Loading and filtering data for experiment: ", exp_name)
  1160. df <- load_and_filter_data(args$easy_results_file, sd = exp_sd) %>%
  1161. update_gene_names(args$sgd_gene_list) %>%
  1162. as_tibble()
  1163. l_vs_k_plot_configs <- list(
  1164. plots = list(
  1165. list(
  1166. df = df,
  1167. x_var = "L",
  1168. y_var = "K",
  1169. plot_type = "scatter",
  1170. tooltip_vars = c("OrfRep", "Gene", "delta_bg"),
  1171. title = "Raw L vs K before quality control",
  1172. color_var = "conc_num_factor_factor",
  1173. error_bar = FALSE,
  1174. legend_position = "right"
  1175. )
  1176. )
  1177. )
  1178. message("Calculating summary statistics before quality control")
  1179. df_stats <- calculate_summary_stats( # formerly X_stats_ALL
  1180. df = df,
  1181. variables = c("L", "K", "r", "AUC", "delta_bg"),
  1182. group_vars = c("conc_num", "conc_num_factor_factor"))$df_with_stats
  1183. frequency_delta_bg_plot_configs <- list(
  1184. plots = list(
  1185. list(
  1186. df = df_stats,
  1187. x_var = "delta_bg",
  1188. y_var = NULL,
  1189. plot_type = "density",
  1190. title = "Density plot for Delta Background by [Drug] (All Data)",
  1191. color_var = "conc_num_factor_factor",
  1192. x_label = "Delta Background",
  1193. y_label = "Density",
  1194. error_bar = FALSE,
  1195. legend_position = "right"
  1196. ),
  1197. list(
  1198. df = df_stats,
  1199. x_var = "delta_bg",
  1200. y_var = NULL,
  1201. plot_type = "bar",
  1202. title = "Bar plot for Delta Background by [Drug] (All Data)",
  1203. color_var = "conc_num_factor_factor",
  1204. x_label = "Delta Background",
  1205. y_label = "Count",
  1206. error_bar = FALSE,
  1207. legend_position = "right"
  1208. )
  1209. )
  1210. )
  1211. message("Filtering rows above delta background tolerance for plotting")
  1212. df_above_tolerance <- df %>% filter(DB == 1)
  1213. above_threshold_plot_configs <- list(
  1214. plots = list(
  1215. list(
  1216. df = df_above_tolerance,
  1217. x_var = "L",
  1218. y_var = "K",
  1219. plot_type = "scatter",
  1220. tooltip_vars = c("OrfRep", "Gene", "delta_bg"),
  1221. title = paste("Raw L vs K for strains above Delta Background threshold of",
  1222. round(df_above_tolerance$delta_bg_tolerance[[1]], 3), "or above"),
  1223. color_var = "conc_num_factor_factor",
  1224. position = "jitter",
  1225. annotations = list(
  1226. list(
  1227. x = median(df_above_tolerance$L, na.rm = TRUE) / 2,
  1228. y = median(df_above_tolerance$K, na.rm = TRUE) / 2,
  1229. label = paste("# strains above Delta Background tolerance =", nrow(df_above_tolerance))
  1230. )
  1231. ),
  1232. error_bar = FALSE,
  1233. legend_position = "right"
  1234. )
  1235. )
  1236. )
  1237. message("Setting rows above delta background tolerance to NA")
  1238. df_na <- df %>% mutate(across(all_of(c("L", "K", "r", "AUC", "delta_bg")), ~ ifelse(DB == 1, NA, .))) # formerly X
  1239. message("Calculating summary statistics across all strains")
  1240. ss <- calculate_summary_stats(
  1241. df = df_na,
  1242. variables = c("L", "K", "r", "AUC", "delta_bg"),
  1243. group_vars = c("conc_num", "conc_num_factor_factor"))
  1244. df_na_ss <- ss$summary_stats
  1245. df_na_stats <- ss$df_with_stats # formerly X_stats_ALL
  1246. write.csv(df_na_ss, file = file.path(out_dir, "summary_stats_all_strains.csv"), row.names = FALSE)
  1247. # This can help bypass missing values ggplot warnings during testing
  1248. df_na_stats_filtered <- df_na_stats %>% filter(if_all(all_of(c("L", "K", "r", "AUC", "delta_bg")), is.finite))
  1249. message("Calculating summary statistics excluding zero values")
  1250. df_no_zeros <- df_na %>% filter(L > 0) # formerly X_noZero
  1251. df_no_zeros_stats <- calculate_summary_stats(
  1252. df = df_no_zeros,
  1253. variables = c("L", "K", "r", "AUC", "delta_bg"),
  1254. group_vars = c("conc_num", "conc_num_factor_factor")
  1255. )$df_with_stats
  1256. message("Filtering by 2SD of K")
  1257. df_na_within_2sd_k <- df_na_stats %>%
  1258. filter(K >= (mean_K - 2 * sd_K) & K <= (mean_K + 2 * sd_K))
  1259. df_na_outside_2sd_k <- df_na_stats %>%
  1260. filter(K < (mean_K - 2 * sd_K) | K > (mean_K + 2 * sd_K))
  1261. message("Calculating summary statistics for L within 2SD of K")
  1262. # TODO We're omitting the original z_max calculation, not sure if needed?
  1263. ss <- calculate_summary_stats(df_na_within_2sd_k, "L", # formerly X_stats_BY_L_within_2SD_K
  1264. group_vars = c("conc_num", "conc_num_factor_factor"))$summary_stats
  1265. write.csv(ss,
  1266. file = file.path(out_dir_qc, "max_observed_L_vals_for_spots_within_2SD_K.csv"),
  1267. row.names = FALSE)
  1268. message("Calculating summary statistics for L outside 2SD of K")
  1269. ss <- calculate_summary_stats(df_na_outside_2sd_k, "L", # formerly X_stats_BY_L_outside_2SD_K
  1270. group_vars = c("conc_num", "conc_num_factor_factor"))
  1271. df_na_l_outside_2sd_k_stats <- ss$df_with_stats
  1272. write.csv(ss$summary_stats,
  1273. file = file.path(out_dir, "max_observed_L_vals_for_spots_outside_2SD_K.csv"),
  1274. row.names = FALSE)
  1275. plate_analysis_plot_configs <- generate_plate_analysis_plot_configs(
  1276. variables = c("L", "K", "r", "AUC", "delta_bg"),
  1277. df_before = df_stats,
  1278. df_after = df_na_stats_filtered
  1279. )
  1280. plate_analysis_boxplot_configs <- generate_plate_analysis_plot_configs(
  1281. variables = c("L", "K", "r", "AUC", "delta_bg"),
  1282. df_before = df_stats,
  1283. df_after = df_na_stats_filtered,
  1284. plot_type = "box"
  1285. )
  1286. plate_analysis_no_zeros_plot_configs <- generate_plate_analysis_plot_configs(
  1287. variables = c("L", "K", "r", "AUC", "delta_bg"),
  1288. stages = c("after"), # Only after QC
  1289. df_after = df_no_zeros_stats
  1290. )
  1291. plate_analysis_no_zeros_boxplot_configs <- generate_plate_analysis_plot_configs(
  1292. variables = c("L", "K", "r", "AUC", "delta_bg"),
  1293. stages = c("after"), # Only after QC
  1294. df_after = df_no_zeros_stats,
  1295. plot_type = "box"
  1296. )
  1297. l_outside_2sd_k_plot_configs <- list(
  1298. plots = list(
  1299. list(
  1300. df = df_na_l_outside_2sd_k_stats,
  1301. x_var = "L",
  1302. y_var = "K",
  1303. plot_type = "scatter",
  1304. title = "Raw L vs K for strains falling outside 2 SD of the K mean at each Conc",
  1305. color_var = "conc_num_factor_factor",
  1306. position = "jitter",
  1307. tooltip_vars = c("OrfRep", "Gene", "delta_bg"),
  1308. annotations = list(
  1309. list(
  1310. x = median(df_na_l_outside_2sd_k_stats$L, na.rm = TRUE) / 2,
  1311. y = median(df_na_l_outside_2sd_k_stats$K, na.rm = TRUE) / 2,
  1312. label = paste("Total strains:", nrow(df_na_l_outside_2sd_k_stats))
  1313. )
  1314. ),
  1315. error_bar = FALSE,
  1316. legend_position = "right"
  1317. )
  1318. )
  1319. )
  1320. delta_bg_outside_2sd_k_plot_configs <- list(
  1321. plots = list(
  1322. list(
  1323. df = df_na_l_outside_2sd_k_stats,
  1324. x_var = "delta_bg",
  1325. x_label = "Delta Background",
  1326. y_var = "K",
  1327. plot_type = "scatter",
  1328. title = "Delta Background vs K for strains falling outside 2 SD of K",
  1329. color_var = "conc_num_factor_factor",
  1330. position = "jitter",
  1331. tooltip_vars = c("OrfRep", "Gene", "delta_bg"),
  1332. annotations = list(
  1333. list(
  1334. x = 0.05,
  1335. y = 0.95,
  1336. hjust = 0,
  1337. vjust = 1,
  1338. label = paste("Total strains:", nrow(df_na_l_outside_2sd_k_stats)),
  1339. size = 5
  1340. )
  1341. ),
  1342. error_bar = FALSE,
  1343. legend_position = "right"
  1344. )
  1345. )
  1346. )
  1347. message("Generating quality control plots in parallel")
  1348. # future::plan(future::multicore, workers = parallel::detectCores())
  1349. future::plan(future::multisession, workers = 3) # generate 3 plot files in parallel
  1350. plot_configs <- list(
  1351. list(out_dir = out_dir_qc, filename = "L_vs_K_before_quality_control",
  1352. plot_configs = l_vs_k_plot_configs, page_width = 12, page_height = 8),
  1353. list(out_dir = out_dir_qc, filename = "frequency_delta_background",
  1354. plot_configs = frequency_delta_bg_plot_configs, page_width = 12, page_height = 8),
  1355. list(out_dir = out_dir_qc, filename = "L_vs_K_above_threshold",
  1356. plot_configs = above_threshold_plot_configs, page_width = 12, page_height = 8),
  1357. list(out_dir = out_dir_qc, filename = "plate_analysis",
  1358. plot_configs = plate_analysis_plot_configs, page_width = 14, page_height = 9),
  1359. list(out_dir = out_dir_qc, filename = "plate_analysis_boxplots",
  1360. plot_configs = plate_analysis_boxplot_configs, page_width = 18, page_height = 9),
  1361. list(out_dir = out_dir_qc, filename = "plate_analysis_no_zeros",
  1362. plot_configs = plate_analysis_no_zeros_plot_configs, page_width = 14, page_height = 9),
  1363. list(out_dir = out_dir_qc, filename = "plate_analysis_no_zeros_boxplots",
  1364. plot_configs = plate_analysis_no_zeros_boxplot_configs, page_width = 18, page_height = 9),
  1365. list(out_dir = out_dir_qc, filename = "L_vs_K_for_strains_2SD_outside_mean_K",
  1366. plot_configs = l_outside_2sd_k_plot_configs, page_width = 10, page_height = 8),
  1367. list(out_dir = out_dir_qc, filename = "delta_background_vs_K_for_strains_2SD_outside_mean_K",
  1368. plot_configs = delta_bg_outside_2sd_k_plot_configs, page_width = 10, page_height = 8)
  1369. )
  1370. # Parallelize background and quality control plot generation
  1371. # furrr::future_map(plot_configs, function(config) {
  1372. # generate_and_save_plots(config$out_dir, config$filename, config$plot_configs,
  1373. # page_width = config$page_width, page_height = config$page_height)
  1374. # }, .options = furrr_options(seed = TRUE))
  1375. # Loop over background strains
  1376. # TODO currently only tested against one strain, if we want to do multiple strains we'll
  1377. # have to rename or group the output files by dir or something so they don't get clobbered
  1378. bg_strains <- c("YDL227C")
  1379. lapply(bg_strains, function(strain) {
  1380. message("Processing background strain: ", strain)
  1381. # Handle missing data by setting zero values to NA
  1382. # and then removing any rows with NA in L col
  1383. df_bg <- df_na %>%
  1384. filter(OrfRep == strain) %>%
  1385. mutate(
  1386. L = if_else(L == 0, NA, L),
  1387. K = if_else(K == 0, NA, K),
  1388. r = if_else(r == 0, NA, r),
  1389. AUC = if_else(AUC == 0, NA, AUC)
  1390. ) %>%
  1391. filter(!is.na(L))
  1392. message("Calculating background summary statistics")
  1393. ss_bg <- calculate_summary_stats(df_bg, c("L", "K", "r", "AUC", "delta_bg"), # formerly X_stats_BY
  1394. group_vars = c("OrfRep", "Drug", "conc_num", "conc_num_factor_factor"))
  1395. summary_stats_bg <- ss_bg$summary_stats
  1396. df_bg_stats <- ss_bg$df_with_stats
  1397. write.csv(
  1398. summary_stats_bg,
  1399. file = file.path(out_dir, paste0("summary_stats_background_strain_", strain, ".csv")),
  1400. row.names = FALSE)
  1401. message("Setting missing reference values to the highest theoretical value at each drug conc for L")
  1402. df_reference <- df_na_stats %>% # formerly X2_RF
  1403. filter(OrfRep == strain) %>%
  1404. filter(!is.na(L)) %>%
  1405. group_by(OrfRep, Drug, conc_num, conc_num_factor_factor) %>%
  1406. mutate(
  1407. max_l_theoretical = max(max_L, na.rm = TRUE),
  1408. L = ifelse(L == 0 & !is.na(L) & conc_num > 0, max_l_theoretical, L),
  1409. SM = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, 1, 0),
  1410. L = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, max_l_theoretical, L)) %>%
  1411. ungroup()
  1412. message("Calculating reference strain summary statistics")
  1413. df_reference_summary_stats <- calculate_summary_stats( # formerly X_stats_X2_RF
  1414. df = df_reference,
  1415. variables = c("L", "K", "r", "AUC"),
  1416. group_vars = c("OrfRep", "Drug", "conc_num", "conc_num_factor_factor")
  1417. )$df_with_stats
  1418. # Summarise statistics for error bars
  1419. df_reference_summary_stats <- df_reference_summary_stats %>%
  1420. group_by(OrfRep, Drug, conc_num, conc_num_factor_factor) %>%
  1421. mutate(
  1422. mean_mean_L = first(mean_L),
  1423. mean_sd_L = first(sd_L),
  1424. mean_mean_K = first(mean_K),
  1425. mean_sd_K = first(sd_K),
  1426. mean_mean_r = first(mean_r),
  1427. mean_sd_r = first(sd_r),
  1428. mean_mean_AUC = first(mean_AUC),
  1429. mean_sd_AUC = first(sd_AUC),
  1430. .groups = "drop"
  1431. )
  1432. message("Calculating reference strain interaction summary statistics") # formerly X_stats_interaction
  1433. df_reference_interaction_stats <- calculate_summary_stats(
  1434. df = df_reference,
  1435. variables = c("L", "K", "r", "AUC"),
  1436. group_vars = c("OrfRep", "Gene", "num", "Drug", "conc_num", "conc_num_factor_factor")
  1437. )$df_with_stats
  1438. message("Calculating reference strain interaction scores")
  1439. reference_results <- calculate_interaction_scores(df_reference_interaction_stats, df_bg_stats, "reference")
  1440. df_reference_interactions_joined <- reference_results$full_data
  1441. df_reference_interactions <- reference_results$interactions
  1442. write.csv(reference_results$calculations, file = file.path(out_dir, "zscore_calculations_reference.csv"), row.names = FALSE)
  1443. write.csv(df_reference_interactions, file = file.path(out_dir, "zscore_interactions_reference.csv"), row.names = FALSE)
  1444. # message("Generating reference interaction plots")
  1445. # reference_plot_configs <- generate_interaction_plot_configs(df_reference_summary_stats, df_reference_interactions_joined, "reference")
  1446. # generate_and_save_plots(out_dir, "interaction_plots_reference", reference_plot_configs, page_width = 16, page_height = 16)
  1447. message("Setting missing deletion values to the highest theoretical value at each drug conc for L")
  1448. df_deletion <- df_na_stats %>% # formerly X2
  1449. filter(OrfRep != strain) %>%
  1450. filter(!is.na(L)) %>%
  1451. group_by(OrfRep, Gene, conc_num, conc_num_factor_factor) %>%
  1452. mutate(
  1453. max_l_theoretical = max(max_L, na.rm = TRUE),
  1454. L = ifelse(L == 0 & !is.na(L) & conc_num > 0, max_l_theoretical, L),
  1455. SM = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, 1, SM),
  1456. L = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, max_l_theoretical, L)) %>%
  1457. ungroup()
  1458. message("Calculating deletion strain(s) interaction summary statistics")
  1459. df_deletion_stats <- calculate_summary_stats(
  1460. df = df_deletion,
  1461. variables = c("L", "K", "r", "AUC"),
  1462. group_vars = c("OrfRep", "Gene", "Drug", "conc_num", "conc_num_factor_factor")
  1463. )$df_with_stats
  1464. message("Calculating deletion strain(s) interactions scores")
  1465. deletion_results <- calculate_interaction_scores(df_deletion_stats, df_bg_stats, "deletion")
  1466. df_interactions <- deletion_results$interactions
  1467. df_interactions_joined <- deletion_results$full_data
  1468. write.csv(deletion_results$calculations, file = file.path(out_dir, "zscore_calculations.csv"), row.names = FALSE)
  1469. write.csv(df_interactions, file = file.path(out_dir, "zscore_interactions.csv"), row.names = FALSE)
  1470. # message("Generating deletion interaction plots")
  1471. # deletion_plot_configs <- generate_interaction_plot_configs(df_reference_summary_stats, df_interactions_joined, "deletion")
  1472. # generate_and_save_plots(out_dir, "interaction_plots", deletion_plot_configs, page_width = 16, page_height = 16)
  1473. # message("Writing enhancer/suppressor csv files")
  1474. # interaction_threshold <- 2 # TODO add to study config?
  1475. # enhancer_condition_L <- df_interactions$Avg_Zscore_L >= interaction_threshold
  1476. # suppressor_condition_L <- df_interactions$Avg_Zscore_L <= -interaction_threshold
  1477. # enhancer_condition_K <- df_interactions$Avg_Zscore_K >= interaction_threshold
  1478. # suppressor_condition_K <- df_interactions$Avg_Zscore_K <= -interaction_threshold
  1479. # enhancers_L <- df_interactions[enhancer_condition_L, ]
  1480. # suppressors_L <- df_interactions[suppressor_condition_L, ]
  1481. # enhancers_K <- df_interactions[enhancer_condition_K, ]
  1482. # suppressors_K <- df_interactions[suppressor_condition_K, ]
  1483. # enhancers_and_suppressors_L <- df_interactions[enhancer_condition_L | suppressor_condition_L, ]
  1484. # enhancers_and_suppressors_K <- df_interactions[enhancer_condition_K | suppressor_condition_K, ]
  1485. # write.csv(enhancers_L, file = file.path(out_dir, "zscore_interactions_deletion_enhancers_L.csv"), row.names = FALSE)
  1486. # write.csv(suppressors_L, file = file.path(out_dir, "zscore_interactions_deletion_suppressors_L.csv"), row.names = FALSE)
  1487. # write.csv(enhancers_K, file = file.path(out_dir, "zscore_interactions_deletion_enhancers_K.csv"), row.names = FALSE)
  1488. # write.csv(suppressors_K, file = file.path(out_dir, "zscore_interactions_deletion_suppressors_K.csv"), row.names = FALSE)
  1489. # write.csv(enhancers_and_suppressors_L,
  1490. # file = file.path(out_dir, "zscore_interactions_deletion_enhancers_and_suppressors_L.csv"), row.names = FALSE)
  1491. # write.csv(enhancers_and_suppressors_K,
  1492. # file = file.path(out_dir, "zscore_interaction_deletion_enhancers_and_suppressors_K.csv"), row.names = FALSE)
  1493. # message("Writing linear model enhancer/suppressor csv files")
  1494. # lm_interaction_threshold <- 2 # TODO add to study config?
  1495. # enhancers_lm_L <- df_interactions[df_interactions$Z_lm_L >= lm_interaction_threshold, ]
  1496. # suppressors_lm_L <- df_interactions[df_interactions$Z_lm_L <= -lm_interaction_threshold, ]
  1497. # enhancers_lm_K <- df_interactions[df_interactions$Z_lm_K >= lm_interaction_threshold, ]
  1498. # suppressors_lm_K <- df_interactions[df_interactions$Z_lm_K <= -lm_interaction_threshold, ]
  1499. # write.csv(enhancers_lm_L, file = file.path(out_dir, "zscore_interactions_deletion_enhancers_lm_L.csv"), row.names = FALSE)
  1500. # write.csv(suppressors_lm_L, file = file.path(out_dir, "zscore_interactions_deletion_suppressors_lm_L.csv"), row.names = FALSE)
  1501. # write.csv(enhancers_lm_K, file = file.path(out_dir, "zscore_interactions_deletion_enhancers_lm_K.csv"), row.names = FALSE)
  1502. # write.csv(suppressors_lm_K, file = file.path(out_dir, "zscore_interactions_deletion_suppressors_lm_K.csv"), row.names = FALSE)
  1503. # message("Generating rank plots")
  1504. # rank_plot_configs <- generate_rank_plot_configs(
  1505. # df_interactions,
  1506. # is_lm = FALSE,
  1507. # )
  1508. # generate_and_save_plots(out_dir, "rank_plots", rank_plot_configs,
  1509. # page_width = 18, page_height = 12)
  1510. # message("Generating ranked linear model plots")
  1511. # rank_lm_plot_configs <- generate_rank_plot_configs(
  1512. # df_interactions,
  1513. # is_lm = TRUE,
  1514. # )
  1515. # generate_and_save_plots(out_dir, "rank_plots_lm", rank_lm_plot_configs,
  1516. # page_width = 18, page_height = 12)
  1517. # message("Generating overlapped ranked plots")
  1518. # rank_plot_filtered_configs <- generate_rank_plot_configs(
  1519. # df_interactions,
  1520. # is_lm = FALSE,
  1521. # filter_na = TRUE,
  1522. # overlap_color = TRUE
  1523. # )
  1524. # generate_and_save_plots(out_dir, "rank_plots_na_rm", rank_plot_filtered_configs,
  1525. # page_width = 18, page_height = 12)
  1526. # message("Generating overlapped ranked linear model plots")
  1527. # rank_plot_lm_filtered_configs <- generate_rank_plot_configs(
  1528. # df_interactions,
  1529. # is_lm = TRUE,
  1530. # filter_na = TRUE,
  1531. # overlap_color = TRUE
  1532. # )
  1533. # generate_and_save_plots(out_dir, "rank_plots_lm_na_rm", rank_plot_lm_filtered_configs,
  1534. # page_width = 18, page_height = 12)
  1535. message("Generating correlation curve parameter pair plots")
  1536. correlation_plot_configs <- generate_correlation_plot_configs(
  1537. df_interactions,
  1538. df_reference_interactions
  1539. )
  1540. generate_and_save_plots(out_dir, "correlation_cpps", correlation_plot_configs,
  1541. page_width = 10, page_height = 7)
  1542. })
  1543. })
  1544. }
  1545. main()