calculate_interaction_zscores.R 64 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690
  1. suppressMessages({
  2. library("ggplot2")
  3. library("plotly")
  4. library("htmlwidgets")
  5. library("htmltools")
  6. library("dplyr")
  7. library("rlang")
  8. library("ggthemes")
  9. library("data.table")
  10. library("grid")
  11. library("gridExtra")
  12. library("future")
  13. library("furrr")
  14. library("purrr")
  15. })
  16. # These parallelization libraries are very noisy
  17. suppressPackageStartupMessages({
  18. library("future")
  19. library("furrr")
  20. library("purrr")
  21. })
  22. # Turn all warnings into errors for development
  23. options(warn = 2)
  24. parse_arguments <- function() {
  25. args <- if (interactive()) {
  26. c(
  27. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/20240116_jhartman2_DoxoHLD",
  28. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/apps/r/SGD_features.tab",
  29. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/easy/20240116_jhartman2_DoxoHLD/results_std.txt",
  30. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/20240822_jhartman2_DoxoHLD/exp1",
  31. "Experiment 1: Doxo versus HLD",
  32. 3,
  33. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/20240822_jhartman2_DoxoHLD/exp2",
  34. "Experiment 2: HLD versus Doxo",
  35. 3
  36. )
  37. } else {
  38. commandArgs(trailingOnly = TRUE)
  39. }
  40. out_dir <- normalizePath(args[1], mustWork = FALSE)
  41. sgd_gene_list <- normalizePath(args[2], mustWork = FALSE)
  42. easy_results_file <- normalizePath(args[3], mustWork = FALSE)
  43. # The remaining arguments should be in groups of 3
  44. exp_args <- args[-(1:3)]
  45. if (length(exp_args) %% 3 != 0) {
  46. stop("Experiment arguments should be in groups of 3: path, name, sd.")
  47. }
  48. # Extract the experiments into a list
  49. experiments <- list()
  50. for (i in seq(1, length(exp_args), by = 3)) {
  51. exp_name <- exp_args[i + 1]
  52. experiments[[exp_name]] <- list(
  53. path = normalizePath(exp_args[i], mustWork = FALSE),
  54. sd = as.numeric(exp_args[i + 2])
  55. )
  56. }
  57. # Extract the trailing number from each path
  58. trailing_numbers <- sapply(experiments, function(x) {
  59. path <- x$path
  60. nums <- gsub("[^0-9]", "", basename(path))
  61. as.integer(nums)
  62. })
  63. # Sort the experiments based on the trailing numbers
  64. sorted_experiments <- experiments[order(trailing_numbers)]
  65. list(
  66. out_dir = out_dir,
  67. sgd_gene_list = sgd_gene_list,
  68. easy_results_file = easy_results_file,
  69. experiments = sorted_experiments
  70. )
  71. }
  72. args <- parse_arguments()
  73. # Should we keep output in exp dirs or combine in the study output dir?
  74. # dir.create(file.path(args$out_dir, "zscores"), showWarnings = FALSE)
  75. # dir.create(file.path(args$out_dir, "zscores", "qc"), showWarnings = FALSE)
  76. theme_publication <- function(base_size = 14, base_family = "sans", legend_position = NULL) {
  77. # Ensure that legend_position has a valid value or default to "none"
  78. legend_position <- if (is.null(legend_position) || length(legend_position) == 0) "none" else legend_position
  79. theme_foundation <- ggthemes::theme_foundation(base_size = base_size, base_family = base_family)
  80. theme_foundation %+replace%
  81. theme(
  82. plot.title = element_text(face = "bold", size = rel(1.6), hjust = 0.5),
  83. text = element_text(),
  84. panel.background = element_blank(),
  85. plot.background = element_blank(),
  86. panel.border = element_blank(),
  87. axis.title = element_text(face = "bold", size = rel(1.4)),
  88. axis.title.y = element_text(angle = 90, vjust = 2),
  89. axis.text = element_text(size = rel(1.2)),
  90. axis.line = element_line(colour = "black"),
  91. panel.grid.major = element_line(colour = "#f0f0f0"),
  92. panel.grid.minor = element_blank(),
  93. legend.key = element_rect(colour = NA),
  94. legend.position = legend_position,
  95. legend.direction =
  96. if (legend_position == "right") {
  97. "vertical"
  98. } else if (legend_position == "bottom") {
  99. "horizontal"
  100. } else {
  101. NULL # No legend direction if position is "none" or other values
  102. },
  103. legend.spacing = unit(0, "cm"),
  104. legend.title = element_text(face = "italic", size = rel(1.3)),
  105. legend.text = element_text(size = rel(1.2)),
  106. plot.margin = unit(c(10, 5, 5, 5), "mm")
  107. )
  108. }
  109. scale_fill_publication <- function(...) {
  110. discrete_scale("fill", "Publication", manual_pal(values = c(
  111. "#386cb0", "#fdb462", "#7fc97f", "#ef3b2c", "#662506",
  112. "#a6cee3", "#fb9a99", "#984ea3", "#ffff33"
  113. )), ...)
  114. }
  115. scale_colour_publication <- function(...) {
  116. discrete_scale("colour", "Publication", manual_pal(values = c(
  117. "#386cb0", "#fdb462", "#7fc97f", "#ef3b2c", "#662506",
  118. "#a6cee3", "#fb9a99", "#984ea3", "#ffff33"
  119. )), ...)
  120. }
  121. # Load the initial dataframe from the easy_results_file
  122. load_and_filter_data <- function(easy_results_file, sd = 3) {
  123. df <- read.delim(easy_results_file, skip = 2, as.is = TRUE, row.names = 1, strip.white = TRUE)
  124. df <- df %>%
  125. filter(!(.[[1]] %in% c("", "Scan"))) %>%
  126. filter(!is.na(ORF) & ORF != "" & !Gene %in% c("BLANK", "Blank", "blank") & Drug != "BMH21") %>%
  127. # Rename columns
  128. rename(L = l, num = Num., AUC = AUC96, scan = Scan, last_bg = LstBackgrd, first_bg = X1stBackgrd) %>%
  129. mutate(
  130. across(c(Col, Row, num, L, K, r, scan, AUC, last_bg, first_bg), as.numeric),
  131. delta_bg = last_bg - first_bg,
  132. delta_bg_tolerance = mean(delta_bg, na.rm = TRUE) + (sd * sd(delta_bg, na.rm = TRUE)),
  133. NG = if_else(L == 0 & !is.na(L), 1, 0),
  134. DB = if_else(delta_bg >= delta_bg_tolerance, 1, 0),
  135. SM = 0,
  136. OrfRep = if_else(ORF == "YDL227C", "YDL227C", OrfRep), # should these be hardcoded?
  137. conc_num = as.numeric(gsub("[^0-9\\.]", "", Conc)),
  138. conc_num_factor = as.numeric(as.factor(conc_num)) - 1, # for legacy purposes
  139. conc_num_factor_factor = as.factor(conc_num)
  140. )
  141. return(df)
  142. }
  143. update_gene_names <- function(df, sgd_gene_list) {
  144. genes <- read.delim(file = sgd_gene_list, quote = "", header = FALSE,
  145. colClasses = c(rep("NULL", 3), rep("character", 2), rep("NULL", 11)))
  146. gene_map <- setNames(genes$V5, genes$V4) # ORF to GeneName mapping
  147. df <- df %>%
  148. mutate(
  149. mapped_genes = gene_map[ORF],
  150. Gene = if_else(is.na(mapped_genes) | OrfRep == "YDL227C", Gene, mapped_genes),
  151. Gene = if_else(Gene == "" | Gene == "OCT1", OrfRep, Gene) # Handle invalid names
  152. )
  153. return(df)
  154. }
  155. calculate_summary_stats <- function(df, variables, group_vars) {
  156. summary_stats <- df %>%
  157. group_by(across(all_of(group_vars))) %>%
  158. summarise(
  159. N = n(),
  160. across(all_of(variables),
  161. list(
  162. mean = ~ mean(.x, na.rm = TRUE),
  163. median = ~ median(.x, na.rm = TRUE),
  164. max = ~ ifelse(all(is.na(.x)), NA, max(.x, na.rm = TRUE)),
  165. min = ~ ifelse(all(is.na(.x)), NA, min(.x, na.rm = TRUE)),
  166. sd = ~ sd(.x, na.rm = TRUE),
  167. se = ~ sd(.x, na.rm = TRUE) / sqrt(n() - 1)
  168. ),
  169. .names = "{.fn}_{.col}"
  170. ),
  171. .groups = "drop"
  172. )
  173. # Create a cleaned version of df that doesn't overlap with summary_stats
  174. df_cleaned <- df %>%
  175. select(-any_of(setdiff(intersect(names(df), names(summary_stats)), group_vars)))
  176. df_joined <- left_join(df_cleaned, summary_stats, by = group_vars)
  177. return(list(summary_stats = summary_stats, df_with_stats = df_joined))
  178. }
  179. calculate_interaction_scores <- function(df, df_bg, type, overlap_threshold = 2) {
  180. max_conc <- max(as.numeric(df$conc_num_factor), na.rm = TRUE)
  181. total_conc_num <- length(unique(df$conc_num))
  182. if (type == "reference") {
  183. bg_group_vars <- c("OrfRep", "Gene", "num", "Drug", "conc_num", "conc_num_factor", "conc_num_factor_factor")
  184. group_vars <- c("OrfRep", "Gene", "num", "Drug")
  185. } else if (type == "deletion") {
  186. bg_group_vars <- c("Drug", "conc_num", "conc_num_factor", "conc_num_factor_factor")
  187. group_vars <- c("OrfRep", "Gene", "Drug")
  188. }
  189. # Calculate WT statistics from df_bg
  190. wt_stats <- df_bg %>%
  191. group_by(across(all_of(bg_group_vars))) %>%
  192. summarise(
  193. WT_L = mean(mean_L, na.rm = TRUE),
  194. WT_sd_L = mean(sd_L, na.rm = TRUE),
  195. WT_K = mean(mean_K, na.rm = TRUE),
  196. WT_sd_K = mean(sd_K, na.rm = TRUE),
  197. WT_r = mean(mean_r, na.rm = TRUE),
  198. WT_sd_r = mean(sd_r, na.rm = TRUE),
  199. WT_AUC = mean(mean_AUC, na.rm = TRUE),
  200. WT_sd_AUC = mean(sd_AUC, na.rm = TRUE),
  201. .groups = "drop"
  202. )
  203. # Join WT statistics to df
  204. df <- df %>%
  205. left_join(wt_stats, by = bg_group_vars)
  206. # Compute mean values at zero concentration
  207. mean_zeroes <- df %>%
  208. filter(conc_num == 0) %>%
  209. group_by(across(all_of(group_vars))) %>%
  210. summarise(
  211. mean_L_zero = mean(mean_L, na.rm = TRUE),
  212. mean_K_zero = mean(mean_K, na.rm = TRUE),
  213. mean_r_zero = mean(mean_r, na.rm = TRUE),
  214. mean_AUC_zero = mean(mean_AUC, na.rm = TRUE),
  215. .groups = "drop"
  216. )
  217. df <- df %>%
  218. left_join(mean_zeroes, by = c(group_vars))
  219. # Calculate Raw Shifts and Z Shifts
  220. df <- df %>%
  221. mutate(
  222. Raw_Shift_L = mean_L_zero - WT_L,
  223. Raw_Shift_K = mean_K_zero - WT_K,
  224. Raw_Shift_r = mean_r_zero - WT_r,
  225. Raw_Shift_AUC = mean_AUC_zero - WT_AUC,
  226. Z_Shift_L = Raw_Shift_L / WT_sd_L,
  227. Z_Shift_K = Raw_Shift_K / WT_sd_K,
  228. Z_Shift_r = Raw_Shift_r / WT_sd_r,
  229. Z_Shift_AUC = Raw_Shift_AUC / WT_sd_AUC
  230. )
  231. calculations <- df %>%
  232. group_by(across(all_of(c(group_vars, "conc_num", "conc_num_factor", "conc_num_factor_factor")))) %>%
  233. mutate(
  234. NG_sum = sum(NG, na.rm = TRUE),
  235. DB_sum = sum(DB, na.rm = TRUE),
  236. SM_sum = sum(SM, na.rm = TRUE),
  237. num_non_removed_concs = total_conc_num - sum(DB, na.rm = TRUE) - 1,
  238. # Expected values
  239. Exp_L = WT_L + Raw_Shift_L,
  240. Exp_K = WT_K + Raw_Shift_K,
  241. Exp_r = WT_r + Raw_Shift_r,
  242. Exp_AUC = WT_AUC + Raw_Shift_AUC,
  243. # Deltas
  244. Delta_L = mean_L - Exp_L,
  245. Delta_K = mean_K - Exp_K,
  246. Delta_r = mean_r - Exp_r,
  247. Delta_AUC = mean_AUC - Exp_AUC,
  248. # Adjust deltas for NG and SM
  249. Delta_L = if_else(NG == 1, mean_L - WT_L, Delta_L),
  250. Delta_K = if_else(NG == 1, mean_K - WT_K, Delta_K),
  251. Delta_r = if_else(NG == 1, mean_r - WT_r, Delta_r),
  252. Delta_AUC = if_else(NG == 1, mean_AUC - WT_AUC, Delta_AUC),
  253. Delta_L = if_else(SM == 1, mean_L - WT_L, Delta_L),
  254. # Calculate Z-scores
  255. Zscore_L = Delta_L / WT_sd_L,
  256. Zscore_K = Delta_K / WT_sd_K,
  257. Zscore_r = Delta_r / WT_sd_r,
  258. Zscore_AUC = Delta_AUC / WT_sd_AUC
  259. ) %>%
  260. ungroup() %>% # Ungroup before group_modify
  261. group_by(across(all_of(group_vars))) %>%
  262. group_modify(~ {
  263. # Filter each column for valid data or else linear modeling will fail
  264. valid_data_L <- .x %>% filter(!is.na(Delta_L))
  265. valid_data_K <- .x %>% filter(!is.na(Delta_K))
  266. valid_data_r <- .x %>% filter(!is.na(Delta_r))
  267. valid_data_AUC <- .x %>% filter(!is.na(Delta_AUC))
  268. # Perform linear modeling
  269. lm_L <- if (nrow(valid_data_L) > 1) lm(Delta_L ~ conc_num_factor, data = valid_data_L) else NULL
  270. lm_K <- if (nrow(valid_data_K) > 1) lm(Delta_K ~ conc_num_factor, data = valid_data_K) else NULL
  271. lm_r <- if (nrow(valid_data_r) > 1) lm(Delta_r ~ conc_num_factor, data = valid_data_r) else NULL
  272. lm_AUC <- if (nrow(valid_data_AUC) > 1) lm(Delta_AUC ~ conc_num_factor, data = valid_data_AUC) else NULL
  273. # Extract coefficients for calculations and plotting
  274. .x %>%
  275. mutate(
  276. lm_intercept_L = if (!is.null(lm_L)) coef(lm_L)[1] else NA,
  277. lm_slope_L = if (!is.null(lm_L)) coef(lm_L)[2] else NA,
  278. R_Squared_L = if (!is.null(lm_L)) summary(lm_L)$r.squared else NA,
  279. lm_Score_L = if (!is.null(lm_L)) max_conc * coef(lm_L)[2] + coef(lm_L)[1] else NA,
  280. lm_intercept_K = if (!is.null(lm_K)) coef(lm_K)[1] else NA,
  281. lm_slope_K = if (!is.null(lm_K)) coef(lm_K)[2] else NA,
  282. R_Squared_K = if (!is.null(lm_K)) summary(lm_K)$r.squared else NA,
  283. lm_Score_K = if (!is.null(lm_K)) max_conc * coef(lm_K)[2] + coef(lm_K)[1] else NA,
  284. lm_intercept_r = if (!is.null(lm_r)) coef(lm_r)[1] else NA,
  285. lm_slope_r = if (!is.null(lm_r)) coef(lm_r)[2] else NA,
  286. R_Squared_r = if (!is.null(lm_r)) summary(lm_r)$r.squared else NA,
  287. lm_Score_r = if (!is.null(lm_r)) max_conc * coef(lm_r)[2] + coef(lm_r)[1] else NA,
  288. lm_intercept_AUC = if (!is.null(lm_AUC)) coef(lm_AUC)[1] else NA,
  289. lm_slope_AUC = if (!is.null(lm_AUC)) coef(lm_AUC)[2] else NA,
  290. R_Squared_AUC = if (!is.null(lm_AUC)) summary(lm_AUC)$r.squared else NA,
  291. lm_Score_AUC = if (!is.null(lm_AUC)) max_conc * coef(lm_AUC)[2] + coef(lm_AUC)[1] else NA
  292. )
  293. }) %>%
  294. ungroup()
  295. # For interaction plot error bars
  296. delta_means_sds <- calculations %>%
  297. group_by(across(all_of(group_vars))) %>%
  298. summarise(
  299. mean_Delta_L = mean(Delta_L, na.rm = TRUE),
  300. mean_Delta_K = mean(Delta_K, na.rm = TRUE),
  301. mean_Delta_r = mean(Delta_r, na.rm = TRUE),
  302. mean_Delta_AUC = mean(Delta_AUC, na.rm = TRUE),
  303. sd_Delta_L = sd(Delta_L, na.rm = TRUE),
  304. sd_Delta_K = sd(Delta_K, na.rm = TRUE),
  305. sd_Delta_r = sd(Delta_r, na.rm = TRUE),
  306. sd_Delta_AUC = sd(Delta_AUC, na.rm = TRUE),
  307. .groups = "drop"
  308. )
  309. calculations <- calculations %>%
  310. left_join(delta_means_sds, by = group_vars)
  311. # Summary statistics for lm scores
  312. calculations <- calculations %>%
  313. mutate(
  314. lm_mean_L = mean(lm_Score_L, na.rm = TRUE),
  315. lm_sd_L = sd(lm_Score_L, na.rm = TRUE),
  316. lm_mean_K = mean(lm_Score_K, na.rm = TRUE),
  317. lm_sd_K = sd(lm_Score_K, na.rm = TRUE),
  318. lm_mean_r = mean(lm_Score_r, na.rm = TRUE),
  319. lm_sd_r = sd(lm_Score_r, na.rm = TRUE),
  320. lm_mean_AUC = mean(lm_Score_AUC, na.rm = TRUE),
  321. lm_sd_AUC = sd(lm_Score_AUC, na.rm = TRUE)
  322. ) %>%
  323. # Calculate Z-lm scores
  324. mutate(
  325. Z_lm_L = (lm_Score_L - lm_mean_L) / lm_sd_L,
  326. Z_lm_K = (lm_Score_K - lm_mean_K) / lm_sd_K,
  327. Z_lm_r = (lm_Score_r - lm_mean_r) / lm_sd_r,
  328. Z_lm_AUC = (lm_Score_AUC - lm_mean_AUC) / lm_sd_AUC
  329. )
  330. # Build summary stats (interactions)
  331. interactions <- calculations %>%
  332. group_by(across(all_of(group_vars))) %>%
  333. summarise(
  334. Avg_Zscore_L = sum(Zscore_L, na.rm = TRUE) / first(num_non_removed_concs),
  335. Avg_Zscore_K = sum(Zscore_K, na.rm = TRUE) / first(num_non_removed_concs),
  336. Avg_Zscore_r = sum(Zscore_r, na.rm = TRUE) / (total_conc_num - 1),
  337. Avg_Zscore_AUC = sum(Zscore_AUC, na.rm = TRUE) / (total_conc_num - 1),
  338. # Interaction Z-scores
  339. Z_lm_L = first(Z_lm_L),
  340. Z_lm_K = first(Z_lm_K),
  341. Z_lm_r = first(Z_lm_r),
  342. Z_lm_AUC = first(Z_lm_AUC),
  343. # Raw Shifts
  344. Raw_Shift_L = first(Raw_Shift_L),
  345. Raw_Shift_K = first(Raw_Shift_K),
  346. Raw_Shift_r = first(Raw_Shift_r),
  347. Raw_Shift_AUC = first(Raw_Shift_AUC),
  348. # Z Shifts
  349. Z_Shift_L = first(Z_Shift_L),
  350. Z_Shift_K = first(Z_Shift_K),
  351. Z_Shift_r = first(Z_Shift_r),
  352. Z_Shift_AUC = first(Z_Shift_AUC),
  353. # R Squared values
  354. R_Squared_L = first(R_Squared_L),
  355. R_Squared_K = first(R_Squared_K),
  356. R_Squared_r = first(R_Squared_r),
  357. R_Squared_AUC = first(R_Squared_AUC),
  358. # lm intercepts
  359. lm_intercept_L = first(lm_intercept_L),
  360. lm_intercept_K = first(lm_intercept_K),
  361. lm_intercept_r = first(lm_intercept_r),
  362. lm_intercept_AUC = first(lm_intercept_AUC),
  363. # lm slopes
  364. lm_slope_L = first(lm_slope_L),
  365. lm_slope_K = first(lm_slope_K),
  366. lm_slope_r = first(lm_slope_r),
  367. lm_slope_AUC = first(lm_slope_AUC),
  368. # NG, DB, SM values
  369. NG = first(NG),
  370. DB = first(DB),
  371. SM = first(SM),
  372. .groups = "drop"
  373. )
  374. # Add overlap threshold categories based on Z-lm and Avg-Z scores
  375. interactions <- interactions %>%
  376. filter(!is.na(Z_lm_L) | !is.na(Avg_Zscore_L)) %>%
  377. mutate(
  378. Overlap = case_when(
  379. Z_lm_L >= overlap_threshold & Avg_Zscore_L >= overlap_threshold ~ "Deletion Enhancer Both",
  380. Z_lm_L <= -overlap_threshold & Avg_Zscore_L <= -overlap_threshold ~ "Deletion Suppressor Both",
  381. Z_lm_L >= overlap_threshold & Avg_Zscore_L <= overlap_threshold ~ "Deletion Enhancer lm only",
  382. Z_lm_L <= overlap_threshold & Avg_Zscore_L >= overlap_threshold ~ "Deletion Enhancer Avg Zscore only",
  383. Z_lm_L <= -overlap_threshold & Avg_Zscore_L >= -overlap_threshold ~ "Deletion Suppressor lm only",
  384. Z_lm_L >= -overlap_threshold & Avg_Zscore_L <= -overlap_threshold ~ "Deletion Suppressor Avg Zscore only",
  385. Z_lm_L >= overlap_threshold & Avg_Zscore_L <= -overlap_threshold ~ "Deletion Enhancer lm, Deletion Suppressor Avg Zscore",
  386. Z_lm_L <= -overlap_threshold & Avg_Zscore_L >= overlap_threshold ~ "Deletion Suppressor lm, Deletion Enhancer Avg Zscore",
  387. TRUE ~ "No Effect"
  388. ),
  389. # For correlation plots
  390. lm_R_squared_L = summary(lm(Z_lm_L ~ Avg_Zscore_L))$r.squared,
  391. lm_R_squared_K = summary(lm(Z_lm_K ~ Avg_Zscore_K))$r.squared,
  392. lm_R_squared_r = summary(lm(Z_lm_r ~ Avg_Zscore_r))$r.squared,
  393. lm_R_squared_AUC = summary(lm(Z_lm_AUC ~ Avg_Zscore_AUC))$r.squared
  394. )
  395. # Creating the final calculations and interactions dataframes with only required columns for csv output
  396. df_calculations <- calculations %>%
  397. select(
  398. all_of(group_vars),
  399. conc_num, conc_num_factor, conc_num_factor_factor, N,
  400. mean_L, median_L, sd_L, se_L,
  401. mean_K, median_K, sd_K, se_K,
  402. mean_r, median_r, sd_r, se_r,
  403. mean_AUC, median_AUC, sd_AUC, se_AUC,
  404. Raw_Shift_L, Raw_Shift_K, Raw_Shift_r, Raw_Shift_AUC,
  405. Z_Shift_L, Z_Shift_K, Z_Shift_r, Z_Shift_AUC,
  406. WT_L, WT_K, WT_r, WT_AUC,
  407. WT_sd_L, WT_sd_K, WT_sd_r, WT_sd_AUC,
  408. Exp_L, Exp_K, Exp_r, Exp_AUC,
  409. Delta_L, Delta_K, Delta_r, Delta_AUC,
  410. mean_Delta_L, mean_Delta_K, mean_Delta_r, mean_Delta_AUC,
  411. Zscore_L, Zscore_K, Zscore_r, Zscore_AUC
  412. )
  413. df_interactions <- interactions %>%
  414. select(
  415. all_of(group_vars),
  416. NG, DB, SM,
  417. Avg_Zscore_L, Avg_Zscore_K, Avg_Zscore_r, Avg_Zscore_AUC,
  418. Z_lm_L, Z_lm_K, Z_lm_r, Z_lm_AUC,
  419. Raw_Shift_L, Raw_Shift_K, Raw_Shift_r, Raw_Shift_AUC,
  420. Z_Shift_L, Z_Shift_K, Z_Shift_r, Z_Shift_AUC,
  421. lm_R_squared_L, lm_R_squared_K, lm_R_squared_r, lm_R_squared_AUC,
  422. lm_intercept_L, lm_intercept_K, lm_intercept_r, lm_intercept_AUC,
  423. lm_slope_L, lm_slope_K, lm_slope_r, lm_slope_AUC, Overlap
  424. )
  425. # Join calculations and interactions to avoid dimension mismatch
  426. calculations_no_overlap <- calculations %>%
  427. select(-any_of(c("DB", "NG", "SM",
  428. "Raw_Shift_L", "Raw_Shift_K", "Raw_Shift_r", "Raw_Shift_AUC",
  429. "Z_Shift_L", "Z_Shift_K", "Z_Shift_r", "Z_Shift_AUC",
  430. "Z_lm_L", "Z_lm_K", "Z_lm_r", "Z_lm_AUC",
  431. "lm_R_squared_L", "lm_R_squared_K", "lm_R_squared_r", "lm_R_squared_AUC",
  432. "lm_intercept_L", "lm_intercept_K", "lm_intercept_r", "lm_intercept_AUC",
  433. "lm_slope_L", "lm_slope_K", "lm_slope_r", "lm_slope_AUC"
  434. )))
  435. full_data <- calculations_no_overlap %>%
  436. left_join(df_interactions, by = group_vars)
  437. # Return final dataframes
  438. return(list(
  439. calculations = df_calculations,
  440. interactions = df_interactions,
  441. full_data = full_data
  442. ))
  443. }
  444. generate_and_save_plots <- function(out_dir, filename, plot_configs, page_width = 12, page_height = 8) {
  445. message("Generating ", filename, ".pdf and ", filename, ".html")
  446. plot_groups <- if ("plots" %in% names(plot_configs)) {
  447. list(plot_configs) # Single group
  448. } else {
  449. plot_configs # Multiple groups
  450. }
  451. pdf(file.path(out_dir, paste0(filename, ".pdf")), width = page_width, height = page_height)
  452. for (group in plot_groups) {
  453. static_plots <- list()
  454. plotly_plots <- list()
  455. for (i in seq_along(group$plots)) {
  456. config <- group$plots[[i]]
  457. df <- config$df
  458. # Filter NAs
  459. if (!is.null(config$filter_na) && config$filter_na) {
  460. df <- df %>%
  461. filter(!is.na(.data[[config$y_var]]))
  462. }
  463. # TODO for now skip all NA plots NA data
  464. # Eventually add to own or filter_na block so we can handle selectively
  465. if (nrow(df) == 0) {
  466. message("Insufficient data for plot:", config$title)
  467. next # skip plot if insufficient data is available
  468. }
  469. # Create initial aes mappings for all plot types
  470. aes_mapping <- aes(x = .data[[config$x_var]]) # required
  471. if (!is.null(config$y_var)) {
  472. aes_mapping <- modifyList(aes_mapping, aes(y = .data[[config$y_var]])) # optional for density/bar plots
  473. }
  474. if (!is.null(config$color_var)) {
  475. aes_mapping <- modifyList(aes_mapping, aes(color = .data[[config$color_var]])) # dynamic color_var
  476. } else if (!is.null(config$color)) {
  477. aes_mapping <- modifyList(aes_mapping, aes(color = config$color)) # static color
  478. }
  479. if (config$plot_type == "bar" && !is.null(config$color_var)) {
  480. aes_mapping <- modifyList(aes_mapping, aes(fill = .data[[config$color_var]])) # only fill bar plots
  481. }
  482. # Begin plot generation
  483. plot <- ggplot(df, aes_mapping) + theme_publication(legend_position = config$legend_position)
  484. plot <- switch(config$plot_type,
  485. "scatter" = generate_scatter_plot(plot, config),
  486. "box" = generate_boxplot(plot, config),
  487. "density" = plot + geom_density(),
  488. "bar" = plot + geom_bar(),
  489. plot # default
  490. )
  491. if (!is.null(config$title)) {
  492. plot <- plot + ggtitle(config$title)
  493. if (!is.null(config$title_size)) {
  494. plot <- plot + theme(plot.title = element_text(size = config$title_size))
  495. }
  496. }
  497. if (!is.null(config$x_label)) plot <- plot + xlab(config$x_label)
  498. if (!is.null(config$y_label)) plot <- plot + ylab(config$y_label)
  499. if (!is.null(config$coord_cartesian)) plot <- plot + coord_cartesian(ylim = config$coord_cartesian)
  500. #plotly_plot <- suppressWarnings(plotly::ggplotly(plot))
  501. static_plots[[i]] <- plot
  502. #plotly_plots[[i]] <- plotly_plot
  503. }
  504. grid_layout <- group$grid_layout
  505. if (!is.null(grid_layout)) {
  506. if (is.null(grid_layout$ncol)) {
  507. grid_layout$ncol <- 1
  508. }
  509. if (!is.null(grid_layout$ncol) && is.null(grid_layout$nrow)) {
  510. num_plots <- length(static_plots)
  511. grid_layout$nrow <- ceiling(num_plots / grid_layout$ncol)
  512. }
  513. # total_spots <- grid_layout$nrow * grid_layout$ncol
  514. # num_plots <- length(static_plots)
  515. # if (num_plots < total_spots) {
  516. # message("Filling ", total_spots - num_plots, " empty spots with nullGrob()")
  517. # static_plots <- c(static_plots, replicate(total_spots - num_plots, nullGrob(), simplify = FALSE))
  518. # }
  519. grid.arrange(
  520. grobs = static_plots,
  521. ncol = grid_layout$ncol,
  522. nrow = grid_layout$nrow
  523. )
  524. } else {
  525. for (plot in static_plots) {
  526. print(plot)
  527. }
  528. }
  529. }
  530. dev.off()
  531. # out_html_file <- file.path(out_dir, paste0(filename, ".html"))
  532. # message("Saving combined HTML file: ", out_html_file)
  533. # htmltools::save_html(
  534. # htmltools::tagList(plotly_plots),
  535. # file = out_html_file
  536. # )
  537. }
  538. generate_scatter_plot <- function(plot, config) {
  539. # Define the points
  540. shape <- if (!is.null(config$shape)) config$shape else 3
  541. size <- if (!is.null(config$size)) config$size else 1.5
  542. position <-
  543. if (!is.null(config$position) && config$position == "jitter") {
  544. position_jitter(width = 0.4, height = 0.1)
  545. } else {
  546. "identity"
  547. }
  548. plot <- plot + geom_point(
  549. shape = shape,
  550. size = size,
  551. position = position
  552. )
  553. # Add a cyan point for the reference data for correlation plots
  554. if (!is.null(config$cyan_points) && config$cyan_points) {
  555. plot <- plot + geom_point(
  556. data = config$df_reference,
  557. mapping = aes(x = .data[[config$x_var]], y = .data[[config$y_var]]),
  558. color = "cyan",
  559. shape = 3,
  560. size = 0.5,
  561. inherit.aes = FALSE
  562. )
  563. }
  564. # Add error bars if specified
  565. if (!is.null(config$error_bar) && config$error_bar) {
  566. # Check if custom columns are provided for y_mean and y_sd, or use the defaults
  567. y_mean_col <- if (!is.null(config$error_bar_params$y_mean_col)) {
  568. config$error_bar_params$y_mean_col
  569. } else {
  570. paste0("mean_", config$y_var)
  571. }
  572. y_sd_col <- if (!is.null(config$error_bar_params$y_sd_col)) {
  573. config$error_bar_params$y_sd_col
  574. } else {
  575. paste0("sd_", config$y_var)
  576. }
  577. # Use rlang to handle custom error bar calculations
  578. if (!is.null(config$error_bar_params$custom_error_bar)) {
  579. custom_ymin_expr <- rlang::parse_expr(config$error_bar_params$custom_error_bar$ymin)
  580. custom_ymax_expr <- rlang::parse_expr(config$error_bar_params$custom_error_bar$ymax)
  581. plot <- plot + geom_errorbar(
  582. aes(
  583. ymin = !!custom_ymin_expr,
  584. ymax = !!custom_ymax_expr
  585. ),
  586. color = config$error_bar_params$color,
  587. linewidth = ifelse(is.null(config$error_bar_params$linewidth), 0.1, config$error_bar_params$linewidth)
  588. )
  589. } else {
  590. # If no custom error bar formula, use the default or dynamic ones
  591. if (!is.null(config$color_var) && config$color_var %in% colnames(config$df)) {
  592. # Only use color_var if it's present in the dataframe
  593. plot <- plot + geom_errorbar(
  594. aes(
  595. ymin = .data[[y_mean_col]] - .data[[y_sd_col]],
  596. ymax = .data[[y_mean_col]] + .data[[y_sd_col]],
  597. color = .data[[config$color_var]]
  598. ),
  599. linewidth = 0.1
  600. )
  601. } else {
  602. # If color_var is missing, fall back to a default color or none
  603. plot <- plot + geom_errorbar(
  604. aes(
  605. ymin = .data[[y_mean_col]] - .data[[y_sd_col]],
  606. ymax = .data[[y_mean_col]] + .data[[y_sd_col]]
  607. ),
  608. color = config$error_bar_params$color, # use the provided color or default
  609. linewidth = ifelse(is.null(config$error_bar_params$linewidth), 0.1, config$error_bar_params$linewidth)
  610. )
  611. }
  612. }
  613. # Add the center point if the option is provided
  614. if (!is.null(config$error_bar_params$mean_point) && config$error_bar_params$mean_point) {
  615. if (!is.null(config$error_bar_params$color)) {
  616. plot <- plot + geom_point(
  617. mapping = aes(x = .data[[config$x_var]], y = .data[[y_mean_col]]), # Include both x and y mappings
  618. color = config$error_bar_params$color,
  619. shape = 16,
  620. inherit.aes = FALSE # Prevent overriding global aesthetics
  621. )
  622. } else {
  623. plot <- plot + geom_point(
  624. mapping = aes(x = .data[[config$x_var]], y = .data[[y_mean_col]]), # Include both x and y mappings
  625. shape = 16,
  626. inherit.aes = FALSE # Prevent overriding global aesthetics
  627. )
  628. }
  629. }
  630. }
  631. # Add linear regression line if specified
  632. if (!is.null(config$lm_line)) {
  633. # Extract necessary values
  634. x_min <- config$lm_line$x_min
  635. x_max <- config$lm_line$x_max
  636. intercept <- config$lm_line$intercept
  637. slope <- config$lm_line$slope
  638. color <- ifelse(!is.null(config$lm_line$color), config$lm_line$color, "blue")
  639. linewidth <- ifelse(!is.null(config$lm_line$linewidth), config$lm_line$linewidth, 1)
  640. y_min <- intercept + slope * x_min
  641. y_max <- intercept + slope * x_max
  642. # Ensure y-values are within y-limits (if any)
  643. if (!is.null(config$ylim_vals)) {
  644. y_min_within_limits <- y_min >= config$ylim_vals[1] && y_min <= config$ylim_vals[2]
  645. y_max_within_limits <- y_max >= config$ylim_vals[1] && y_max <= config$ylim_vals[2]
  646. # Adjust or skip based on whether the values fall within limits
  647. if (y_min_within_limits && y_max_within_limits) {
  648. plot <- plot + annotate(
  649. "segment",
  650. x = x_min,
  651. xend = x_max,
  652. y = y_min,
  653. yend = y_max,
  654. color = color,
  655. linewidth = linewidth
  656. )
  657. } else {
  658. message("Skipping linear regression line due to y-values outside of limits")
  659. }
  660. } else {
  661. # If no y-limits are provided, proceed with the annotation
  662. plot <- plot + annotate(
  663. "segment",
  664. x = x_min,
  665. xend = x_max,
  666. y = y_min,
  667. yend = y_max,
  668. color = color,
  669. linewidth = linewidth
  670. )
  671. }
  672. }
  673. # Add SD Bands if specified
  674. if (!is.null(config$sd_band)) {
  675. plot <- plot +
  676. annotate(
  677. "rect",
  678. xmin = -Inf, xmax = Inf,
  679. ymin = config$sd_band, ymax = Inf,
  680. fill = ifelse(!is.null(config$fill_positive), config$fill_positive, "#542788"),
  681. alpha = ifelse(!is.null(config$alpha_positive), config$alpha_positive, 0.3)
  682. ) +
  683. annotate(
  684. "rect",
  685. xmin = -Inf, xmax = Inf,
  686. ymin = -config$sd_band, ymax = -Inf,
  687. fill = ifelse(!is.null(config$fill_negative), config$fill_negative, "orange"),
  688. alpha = ifelse(!is.null(config$alpha_negative), config$alpha_negative, 0.3)
  689. ) +
  690. geom_hline(
  691. yintercept = c(-config$sd_band, config$sd_band),
  692. color = ifelse(!is.null(config$hl_color), config$hl_color, "black")
  693. )
  694. }
  695. # # Add rectangles if specified
  696. # if (!is.null(config$rectangles)) {
  697. # for (rect in config$rectangles) {
  698. # plot <- plot + annotate(
  699. # "rect",
  700. # xmin = rect$xmin,
  701. # xmax = rect$xmax,
  702. # ymin = rect$ymin,
  703. # ymax = rect$ymax,
  704. # fill = ifelse(is.null(rect$fill), NA, rect$fill),
  705. # color = ifelse(is.null(rect$color), "black", rect$color),
  706. # alpha = ifelse(is.null(rect$alpha), 0.1, rect$alpha)
  707. # )
  708. # }
  709. # }
  710. # Customize X-axis if specified
  711. if (!is.null(config$x_breaks) && !is.null(config$x_labels) && !is.null(config$x_label)) {
  712. # Check if x_var is factor or character (for discrete x-axis)
  713. if (is.factor(plot$data[[config$x_var]]) || is.character(plot$data[[config$x_var]])) {
  714. plot <- plot +
  715. scale_x_discrete(
  716. name = config$x_label,
  717. breaks = config$x_breaks,
  718. labels = config$x_labels
  719. )
  720. } else {
  721. plot <- plot +
  722. scale_x_continuous(
  723. name = config$x_label,
  724. breaks = config$x_breaks,
  725. labels = config$x_labels
  726. )
  727. }
  728. }
  729. # Set Y-axis limits if specified
  730. if (!is.null(config$ylim_vals)) {
  731. plot <- plot + scale_y_continuous(limits = config$ylim_vals)
  732. }
  733. return(plot)
  734. }
  735. generate_boxplot <- function(plot, config) {
  736. # Convert x_var to a factor within aes mapping
  737. plot <- plot + geom_boxplot(aes(x = factor(.data[[config$x_var]])))
  738. # Customize X-axis if specified
  739. if (!is.null(config$x_breaks) && !is.null(config$x_labels) && !is.null(config$x_label)) {
  740. # Check if x_var is factor or character (for discrete x-axis)
  741. if (is.factor(plot$data[[config$x_var]]) || is.character(plot$data[[config$x_var]])) {
  742. plot <- plot +
  743. scale_x_discrete(
  744. name = config$x_label,
  745. breaks = config$x_breaks,
  746. labels = config$x_labels
  747. )
  748. } else {
  749. plot <- plot +
  750. scale_x_continuous(
  751. name = config$x_label,
  752. breaks = config$x_breaks,
  753. labels = config$x_labels
  754. )
  755. }
  756. }
  757. return(plot)
  758. }
  759. generate_plate_analysis_plot_configs <- function(variables, df_before = NULL, df_after = NULL,
  760. plot_type = "scatter", stages = c("before", "after")) {
  761. plot_configs <- list()
  762. for (var in variables) {
  763. for (stage in stages) {
  764. df_plot <- if (stage == "before") df_before else df_after
  765. # Check for non-finite values in the y-variable
  766. # df_plot_filtered <- df_plot %>% filter(is.finite(.data[[var]]))
  767. # Adjust settings based on plot_type
  768. plot_config <- list(
  769. df = df_plot,
  770. x_var = "scan",
  771. y_var = var,
  772. plot_type = plot_type,
  773. title = paste("Plate analysis by Drug Conc for", var, stage, "quality control"),
  774. color_var = "conc_num_factor_factor",
  775. size = 0.2,
  776. error_bar = (plot_type == "scatter"),
  777. legend_position = "bottom",
  778. filter_na = TRUE
  779. )
  780. # Add config to plots list
  781. plot_configs <- append(plot_configs, list(plot_config))
  782. }
  783. }
  784. return(list(plots = plot_configs))
  785. }
  786. generate_interaction_plot_configs <- function(df_summary, df_interactions, type) {
  787. # Define the y-limits for the plots
  788. limits_map <- list(
  789. L = c(0, 130),
  790. K = c(-20, 160),
  791. r = c(0, 1),
  792. AUC = c(0, 12500)
  793. )
  794. stats_plot_configs <- list()
  795. stats_boxplot_configs <- list()
  796. delta_plot_configs <- list()
  797. # Overall statistics plots
  798. OrfRep <- first(df_summary$OrfRep) # this should correspond to the reference strain
  799. for (plot_type in c("scatter", "box")) {
  800. for (var in names(limits_map)) {
  801. y_limits <- limits_map[[var]]
  802. y_span <- y_limits[2] - y_limits[1]
  803. # Common plot configuration
  804. plot_config <- list(
  805. df = df_summary,
  806. plot_type = plot_type,
  807. x_var = "conc_num_factor_factor",
  808. y_var = var,
  809. shape = 16,
  810. x_label = paste0("[", unique(df_summary$Drug)[1], "]"),
  811. coord_cartesian = y_limits,
  812. x_breaks = unique(df_summary$conc_num_factor_factor),
  813. x_labels = as.character(unique(df_summary$conc_num))
  814. )
  815. # Add specific configurations for scatter and box plots
  816. if (plot_type == "scatter") {
  817. plot_config$title <- sprintf("%s Scatter RF for %s with SD", OrfRep, var)
  818. plot_config$error_bar <- TRUE
  819. plot_config$error_bar_params <- list(
  820. color = "red",
  821. mean_point = TRUE,
  822. y_mean_col = paste0("mean_mean_", var),
  823. y_sd_col = paste0("mean_sd_", var)
  824. )
  825. plot_config$position <- "jitter"
  826. annotations <- list(
  827. list(x = 0.25, y = y_limits[1] + 0.08 * y_span, label = " NG =", size = 4),
  828. list(x = 0.25, y = y_limits[1] + 0.04 * y_span, label = " DB =", size = 4),
  829. list(x = 0.25, y = y_limits[1], label = " SM =", size = 4)
  830. )
  831. for (x_val in unique(df_summary$conc_num_factor_factor)) {
  832. current_df <- df_summary %>% filter(.data[[plot_config$x_var]] == x_val)
  833. annotations <- append(annotations, list(
  834. list(x = x_val, y = y_limits[1] + 0.08 * y_span, label = first(current_df$NG, default = 0), size = 4),
  835. list(x = x_val, y = y_limits[1] + 0.04 * y_span, label = first(current_df$DB, default = 0), size = 4),
  836. list(x = x_val, y = y_limits[1], label = first(current_df$SM, default = 0), size = 4)
  837. ))
  838. }
  839. plot_config$annotations <- annotations
  840. stats_plot_configs <- append(stats_plot_configs, list(plot_config))
  841. } else if (plot_type == "box") {
  842. plot_config$title <- sprintf("%s Box RF for %s with SD", OrfRep, var)
  843. plot_config$position <- "dodge"
  844. stats_boxplot_configs <- append(stats_boxplot_configs, list(plot_config))
  845. }
  846. }
  847. }
  848. # Delta interaction plots
  849. delta_limits_map <- list(
  850. L = c(-60, 60),
  851. K = c(-60, 60),
  852. r = c(-0.6, 0.6),
  853. AUC = c(-6000, 6000)
  854. )
  855. # Select the data grouping by data type
  856. if (type == "reference") {
  857. group_vars <- c("OrfRep", "Gene", "num")
  858. } else if (type == "deletion") {
  859. group_vars <- c("OrfRep", "Gene")
  860. }
  861. grouped_data <- df_interactions %>%
  862. group_by(across(all_of(group_vars))) %>%
  863. group_split()
  864. for (group_data in grouped_data) {
  865. # Build the plot title
  866. OrfRep <- first(group_data$OrfRep)
  867. Gene <- first(group_data$Gene)
  868. if (type == "reference") {
  869. num <- if ("num" %in% names(group_data)) first(group_data$num) else ""
  870. OrfRepTitle <- paste(OrfRep, Gene, num, sep = "_")
  871. } else if (type == "deletion") {
  872. OrfRepTitle <- OrfRep
  873. }
  874. for (var in names(delta_limits_map)) {
  875. y_limits <- delta_limits_map[[var]]
  876. y_span <- y_limits[2] - y_limits[1]
  877. y_var_name <- paste0("Delta_", var)
  878. # Anti-filter to select out-of-bounds rows
  879. out_of_bounds <- group_data %>%
  880. filter(is.na(.data[[y_var_name]]) |
  881. .data[[y_var_name]] < y_limits[1] |
  882. .data[[y_var_name]] > y_limits[2])
  883. if (nrow(out_of_bounds) > 0) {
  884. message(sprintf("Filtered %d row(s) from '%s' because %s is outside of y-limits: [%f, %f]",
  885. nrow(out_of_bounds), OrfRepTitle, y_var_name, y_limits[1], y_limits[2]
  886. ))
  887. }
  888. # Do the actual filtering
  889. group_data_filtered <- group_data %>%
  890. filter(!is.na(.data[[y_var_name]]) &
  891. .data[[y_var_name]] >= y_limits[1] &
  892. .data[[y_var_name]] <= y_limits[2])
  893. if (nrow(group_data_filtered) == 0) {
  894. message("Insufficient data for plot: ", OrfRepTitle, " ", var)
  895. next # skip plot if insufficient data is available
  896. }
  897. WT_sd_value <- first(group_data_filtered[[paste0("WT_sd_", var)]], default = 0)
  898. Z_Shift_value <- round(first(group_data_filtered[[paste0("Z_Shift_", var)]], default = 0), 2)
  899. Z_lm_value <- round(first(group_data_filtered[[paste0("Z_lm_", var)]], default = 0), 2)
  900. R_squared_value <- round(first(group_data_filtered[[paste0("R_Squared_", var)]], default = 0), 2)
  901. NG_value <- first(group_data_filtered$NG, default = 0)
  902. DB_value <- first(group_data_filtered$DB, default = 0)
  903. SM_value <- first(group_data_filtered$SM, default = 0)
  904. lm_intercept_col <- paste0("lm_intercept_", var)
  905. lm_slope_col <- paste0("lm_slope_", var)
  906. lm_intercept_value <- first(group_data_filtered[[lm_intercept_col]], default = 0)
  907. lm_slope_value <- first(group_data_filtered[[lm_slope_col]], default = 0)
  908. plot_config <- list(
  909. df = group_data_filtered,
  910. plot_type = "scatter",
  911. x_var = "conc_num_factor_factor",
  912. y_var = y_var_name,
  913. x_label = paste0("[", unique(df_summary$Drug)[1], "]"),
  914. shape = 16,
  915. title = paste(OrfRepTitle, Gene, sep = " "),
  916. title_size = rel(1.4),
  917. coord_cartesian = y_limits,
  918. annotations = list(
  919. list(x = 1, y = y_limits[2] - 0.1 * y_span, label = paste(" ZShift =", round(Z_Shift_value, 2))),
  920. list(x = 1, y = y_limits[2] - 0.2 * y_span, label = paste(" lm ZScore =", round(Z_lm_value, 2))),
  921. # list(x = 1, y = y_limits[2] - 0.3 * y_span, label = paste(" R-squared =", round(R_squared_value, 2))),
  922. list(x = 1, y = y_limits[1] + 0.1 * y_span, label = paste("NG =", NG_value)),
  923. list(x = 1, y = y_limits[1] + 0.05 * y_span, label = paste("DB =", DB_value)),
  924. list(x = 1, y = y_limits[1], label = paste("SM =", SM_value))
  925. ),
  926. error_bar = TRUE,
  927. error_bar_params = list(
  928. custom_error_bar = list(
  929. ymin = paste0("0 - 2 * WT_sd_", var),
  930. ymax = paste0("0 + 2 * WT_sd_", var)
  931. ),
  932. color = "gray70",
  933. linewidth = 0.5
  934. ),
  935. x_breaks = unique(group_data_filtered$conc_num_factor_factor),
  936. x_labels = as.character(unique(group_data_filtered$conc_num)),
  937. ylim_vals = y_limits,
  938. lm_line = list(
  939. intercept = lm_intercept_value,
  940. slope = lm_slope_value,
  941. color = "blue",
  942. linewidth = 0.8,
  943. x_min = min(as.numeric(group_data_filtered$conc_num_factor_factor)),
  944. x_max = max(as.numeric(group_data_filtered$conc_num_factor_factor))
  945. )
  946. )
  947. delta_plot_configs <- append(delta_plot_configs, list(plot_config))
  948. }
  949. }
  950. # Group delta plots in chunks of 12 per page
  951. chunk_size <- 12
  952. delta_plot_chunks <- split(delta_plot_configs, ceiling(seq_along(delta_plot_configs) / chunk_size))
  953. return(c(
  954. list(list(grid_layout = list(ncol = 2), plots = stats_plot_configs)),
  955. list(list(grid_layout = list(ncol = 2), plots = stats_boxplot_configs)),
  956. lapply(delta_plot_chunks, function(chunk) list(grid_layout = list(ncol = 4), plots = chunk))
  957. ))
  958. }
  959. generate_rank_plot_configs <- function(df, is_lm = FALSE, adjust = FALSE, filter_na = FALSE, overlap_color = FALSE) {
  960. sd_bands <- c(1, 2, 3)
  961. plot_configs <- list()
  962. variables <- c("L", "K")
  963. # Adjust (if necessary) and rank columns
  964. for (variable in variables) {
  965. if (adjust) {
  966. df[[paste0("Avg_Zscore_", variable)]] <- ifelse(is.na(df[[paste0("Avg_Zscore_", variable)]]), 0.001, df[[paste0("Avg_Zscore_", variable)]])
  967. df[[paste0("Z_lm_", variable)]] <- ifelse(is.na(df[[paste0("Z_lm_", variable)]]), 0.001, df[[paste0("Z_lm_", variable)]])
  968. }
  969. df[[paste0("Rank_", variable)]] <- rank(df[[paste0("Avg_Zscore_", variable)]], na.last = "keep")
  970. df[[paste0("Rank_lm_", variable)]] <- rank(df[[paste0("Z_lm_", variable)]], na.last = "keep")
  971. }
  972. # Helper function to create a rank plot configuration
  973. create_plot_config <- function(variable, rank_var, zscore_var, y_label, sd_band, filter_na, with_annotations = TRUE) {
  974. num_enhancers <- sum(df[[zscore_var]] >= sd_band, na.rm = TRUE)
  975. num_suppressors <- sum(df[[zscore_var]] <= -sd_band, na.rm = TRUE)
  976. # Default plot config
  977. plot_config <- list(
  978. df = df,
  979. x_var = rank_var,
  980. y_var = zscore_var,
  981. x_label = "Rank",
  982. y_label = y_label,
  983. plot_type = "scatter",
  984. title = paste(y_label, "vs. Rank for", variable, "above", sd_band, "SD"),
  985. sd_band = sd_band,
  986. fill_positive = "#542788",
  987. fill_negative = "orange",
  988. alpha_positive = 0.3,
  989. alpha_negative = 0.3,
  990. shape = 3,
  991. size = 0.1,
  992. filter_na = filter_na,
  993. legend_position = "none"
  994. )
  995. # Selectively add annotations
  996. if (with_annotations) {
  997. plot_config$annotations <- list(
  998. list(
  999. x = nrow(df) / 2,
  1000. y = 10,
  1001. label = paste("Deletion Enhancers =", num_enhancers)
  1002. ),
  1003. list(
  1004. x = nrow(df) / 2,
  1005. y = -10,
  1006. label = paste("Deletion Suppressors =", num_suppressors)
  1007. )
  1008. )
  1009. }
  1010. return(plot_config)
  1011. }
  1012. # Generate plots for each variable
  1013. for (variable in variables) {
  1014. rank_var <- if (is_lm) paste0("Rank_lm_", variable) else paste0("Rank_", variable)
  1015. zscore_var <- if (is_lm) paste0("Z_lm_", variable) else paste0("Avg_Zscore_", variable)
  1016. y_label <- if (is_lm) paste("Int Z score", variable) else paste("Avg Z score", variable)
  1017. # Loop through SD bands
  1018. for (sd_band in sd_bands) {
  1019. # Create plot with annotations
  1020. plot_configs[[length(plot_configs) + 1]] <-
  1021. create_plot_config(variable, rank_var, zscore_var, y_label, sd_band, filter_na, with_annotations = TRUE)
  1022. # Create plot without annotations
  1023. plot_configs[[length(plot_configs) + 1]] <-
  1024. create_plot_config(variable, rank_var, zscore_var, y_label, sd_band, filter_na, with_annotations = FALSE)
  1025. }
  1026. }
  1027. # Group delta plots in chunks of 6 per page
  1028. chunk_size <- 6
  1029. plot_chunks <- split(plot_configs, ceiling(seq_along(plot_configs) / chunk_size))
  1030. return(c(
  1031. lapply(plot_chunks, function(chunk) list(grid_layout = list(ncol = 3), plots = chunk))
  1032. ))
  1033. }
  1034. generate_correlation_plot_configs <- function(df, df_reference) {
  1035. # Define relationships for different-variable correlations
  1036. relationships <- list(
  1037. list(x = "L", y = "K"),
  1038. list(x = "L", y = "r"),
  1039. list(x = "L", y = "AUC"),
  1040. list(x = "K", y = "r"),
  1041. list(x = "K", y = "AUC"),
  1042. list(x = "r", y = "AUC")
  1043. )
  1044. plot_configs <- list()
  1045. # Iterate over the option to highlight cyan points (TRUE/FALSE)
  1046. highlight_cyan_options <- c(FALSE, TRUE)
  1047. for (highlight_cyan in highlight_cyan_options) {
  1048. for (rel in relationships) {
  1049. # Extract relevant variable names for Z_lm values
  1050. x_var <- paste0("Z_lm_", rel$x)
  1051. y_var <- paste0("Z_lm_", rel$y)
  1052. # Extract the R-squared, intercept, and slope from the df
  1053. relationship_name <- paste0(rel$x, "_vs_", rel$y)
  1054. intercept <- df[[paste0("lm_intercept_", rel$x)]]
  1055. slope <- df[[paste0("lm_slope_", rel$x)]]
  1056. r_squared <- df[[paste0("lm_R_squared_", rel$x)]]
  1057. # Generate the label for the plot
  1058. plot_label <- paste("Interaction", rel$x, "vs.", rel$y)
  1059. # Construct plot config
  1060. plot_config <- list(
  1061. df = df,
  1062. df_reference = df_reference,
  1063. x_var = x_var,
  1064. y_var = y_var,
  1065. plot_type = "scatter",
  1066. title = plot_label,
  1067. annotations = list(
  1068. list(
  1069. x = mean(df[[x_var]], na.rm = TRUE),
  1070. y = mean(df[[y_var]], na.rm = TRUE),
  1071. label = paste("R-squared =", round(r_squared, 3))
  1072. )
  1073. ),
  1074. lm_line = list(
  1075. intercept = intercept,
  1076. slope = slope,
  1077. color = "tomato3"
  1078. ),
  1079. color = "gray70",
  1080. filter_na = TRUE,
  1081. cyan_points = highlight_cyan # include cyan points or not based on the loop
  1082. )
  1083. plot_configs <- append(plot_configs, list(plot_config))
  1084. }
  1085. }
  1086. return(list(plots = plot_configs))
  1087. }
  1088. main <- function() {
  1089. lapply(names(args$experiments), function(exp_name) {
  1090. exp <- args$experiments[[exp_name]]
  1091. exp_path <- exp$path
  1092. exp_sd <- exp$sd
  1093. out_dir <- file.path(exp_path, "zscores")
  1094. out_dir_qc <- file.path(exp_path, "zscores", "qc")
  1095. dir.create(out_dir, recursive = TRUE, showWarnings = FALSE)
  1096. dir.create(out_dir_qc, recursive = TRUE, showWarnings = FALSE)
  1097. # Each list of plots corresponds to a separate file
  1098. message("Loading and filtering data for experiment: ", exp_name)
  1099. df <- load_and_filter_data(args$easy_results_file, sd = exp_sd) %>%
  1100. update_gene_names(args$sgd_gene_list) %>%
  1101. as_tibble()
  1102. l_vs_k_plot_configs <- list(
  1103. plots = list(
  1104. list(
  1105. df = df,
  1106. x_var = "L",
  1107. y_var = "K",
  1108. plot_type = "scatter",
  1109. tooltip_vars = c("OrfRep", "Gene", "delta_bg"),
  1110. title = "Raw L vs K before quality control",
  1111. color_var = "conc_num_factor_factor",
  1112. error_bar = FALSE,
  1113. legend_position = "right"
  1114. )
  1115. )
  1116. )
  1117. message("Calculating summary statistics before quality control")
  1118. df_stats <- calculate_summary_stats( # formerly X_stats_ALL
  1119. df = df,
  1120. variables = c("L", "K", "r", "AUC", "delta_bg"),
  1121. group_vars = c("conc_num", "conc_num_factor_factor"))$df_with_stats
  1122. frequency_delta_bg_plot_configs <- list(
  1123. plots = list(
  1124. list(
  1125. df = df_stats,
  1126. x_var = "delta_bg",
  1127. y_var = NULL,
  1128. plot_type = "density",
  1129. title = "Density plot for Delta Background by [Drug] (All Data)",
  1130. color_var = "conc_num_factor_factor",
  1131. x_label = "Delta Background",
  1132. y_label = "Density",
  1133. error_bar = FALSE,
  1134. legend_position = "right"
  1135. ),
  1136. list(
  1137. df = df_stats,
  1138. x_var = "delta_bg",
  1139. y_var = NULL,
  1140. plot_type = "bar",
  1141. title = "Bar plot for Delta Background by [Drug] (All Data)",
  1142. color_var = "conc_num_factor_factor",
  1143. x_label = "Delta Background",
  1144. y_label = "Count",
  1145. error_bar = FALSE,
  1146. legend_position = "right"
  1147. )
  1148. )
  1149. )
  1150. message("Filtering rows above delta background tolerance for plotting")
  1151. df_above_tolerance <- df %>% filter(DB == 1)
  1152. above_threshold_plot_configs <- list(
  1153. plots = list(
  1154. list(
  1155. df = df_above_tolerance,
  1156. x_var = "L",
  1157. y_var = "K",
  1158. plot_type = "scatter",
  1159. tooltip_vars = c("OrfRep", "Gene", "delta_bg"),
  1160. title = paste("Raw L vs K for strains above Delta Background threshold of",
  1161. round(df_above_tolerance$delta_bg_tolerance[[1]], 3), "or above"),
  1162. color_var = "conc_num_factor_factor",
  1163. position = "jitter",
  1164. annotations = list(
  1165. list(
  1166. x = median(df_above_tolerance$L, na.rm = TRUE) / 2,
  1167. y = median(df_above_tolerance$K, na.rm = TRUE) / 2,
  1168. label = paste("# strains above Delta Background tolerance =", nrow(df_above_tolerance))
  1169. )
  1170. ),
  1171. error_bar = FALSE,
  1172. legend_position = "right"
  1173. )
  1174. )
  1175. )
  1176. message("Setting rows above delta background tolerance to NA")
  1177. df_na <- df %>% mutate(across(all_of(c("L", "K", "r", "AUC", "delta_bg")), ~ ifelse(DB == 1, NA, .))) # formerly X
  1178. message("Calculating summary statistics across all strains")
  1179. ss <- calculate_summary_stats(
  1180. df = df_na,
  1181. variables = c("L", "K", "r", "AUC", "delta_bg"),
  1182. group_vars = c("conc_num", "conc_num_factor_factor"))
  1183. df_na_ss <- ss$summary_stats
  1184. df_na_stats <- ss$df_with_stats # formerly X_stats_ALL
  1185. write.csv(df_na_ss, file = file.path(out_dir, "summary_stats_all_strains.csv"), row.names = FALSE)
  1186. # This can help bypass missing values ggplot warnings during testing
  1187. df_na_stats_filtered <- df_na_stats %>% filter(if_all(all_of(c("L", "K", "r", "AUC", "delta_bg")), is.finite))
  1188. message("Calculating summary statistics excluding zero values")
  1189. df_no_zeros <- df_na %>% filter(L > 0) # formerly X_noZero
  1190. df_no_zeros_stats <- calculate_summary_stats(
  1191. df = df_no_zeros,
  1192. variables = c("L", "K", "r", "AUC", "delta_bg"),
  1193. group_vars = c("conc_num", "conc_num_factor_factor")
  1194. )$df_with_stats
  1195. message("Filtering by 2SD of K")
  1196. df_na_within_2sd_k <- df_na_stats %>%
  1197. filter(K >= (mean_K - 2 * sd_K) & K <= (mean_K + 2 * sd_K))
  1198. df_na_outside_2sd_k <- df_na_stats %>%
  1199. filter(K < (mean_K - 2 * sd_K) | K > (mean_K + 2 * sd_K))
  1200. message("Calculating summary statistics for L within 2SD of K")
  1201. # TODO We're omitting the original z_max calculation, not sure if needed?
  1202. ss <- calculate_summary_stats(df_na_within_2sd_k, "L", # formerly X_stats_BY_L_within_2SD_K
  1203. group_vars = c("conc_num", "conc_num_factor_factor"))$summary_stats
  1204. write.csv(ss,
  1205. file = file.path(out_dir_qc, "max_observed_L_vals_for_spots_within_2SD_K.csv"),
  1206. row.names = FALSE)
  1207. message("Calculating summary statistics for L outside 2SD of K")
  1208. ss <- calculate_summary_stats(df_na_outside_2sd_k, "L", # formerly X_stats_BY_L_outside_2SD_K
  1209. group_vars = c("conc_num", "conc_num_factor_factor"))
  1210. df_na_l_outside_2sd_k_stats <- ss$df_with_stats
  1211. write.csv(ss$summary_stats,
  1212. file = file.path(out_dir, "max_observed_L_vals_for_spots_outside_2SD_K.csv"),
  1213. row.names = FALSE)
  1214. plate_analysis_plot_configs <- generate_plate_analysis_plot_configs(
  1215. variables = c("L", "K", "r", "AUC", "delta_bg"),
  1216. df_before = df_stats,
  1217. df_after = df_na_stats_filtered
  1218. )
  1219. plate_analysis_boxplot_configs <- generate_plate_analysis_plot_configs(
  1220. variables = c("L", "K", "r", "AUC", "delta_bg"),
  1221. df_before = df_stats,
  1222. df_after = df_na_stats_filtered,
  1223. plot_type = "box"
  1224. )
  1225. plate_analysis_no_zeros_plot_configs <- generate_plate_analysis_plot_configs(
  1226. variables = c("L", "K", "r", "AUC", "delta_bg"),
  1227. stages = c("after"), # Only after QC
  1228. df_after = df_no_zeros_stats
  1229. )
  1230. plate_analysis_no_zeros_boxplot_configs <- generate_plate_analysis_plot_configs(
  1231. variables = c("L", "K", "r", "AUC", "delta_bg"),
  1232. stages = c("after"), # Only after QC
  1233. df_after = df_no_zeros_stats,
  1234. plot_type = "box"
  1235. )
  1236. l_outside_2sd_k_plot_configs <- list(
  1237. plots = list(
  1238. list(
  1239. df = df_na_l_outside_2sd_k_stats,
  1240. x_var = "L",
  1241. y_var = "K",
  1242. plot_type = "scatter",
  1243. title = "Raw L vs K for strains falling outside 2 SD of the K mean at each Conc",
  1244. color_var = "conc_num_factor_factor",
  1245. position = "jitter",
  1246. tooltip_vars = c("OrfRep", "Gene", "delta_bg"),
  1247. annotations = list(
  1248. list(
  1249. x = median(df_na_l_outside_2sd_k_stats$L, na.rm = TRUE) / 2,
  1250. y = median(df_na_l_outside_2sd_k_stats$K, na.rm = TRUE) / 2,
  1251. label = paste("Total strains:", nrow(df_na_l_outside_2sd_k_stats))
  1252. )
  1253. ),
  1254. error_bar = FALSE,
  1255. legend_position = "right"
  1256. )
  1257. )
  1258. )
  1259. delta_bg_outside_2sd_k_plot_configs <- list(
  1260. plots = list(
  1261. list(
  1262. df = df_na_l_outside_2sd_k_stats,
  1263. x_var = "delta_bg",
  1264. x_label = "Delta Background",
  1265. y_var = "K",
  1266. plot_type = "scatter",
  1267. title = "Delta Background vs K for strains falling outside 2 SD of K",
  1268. color_var = "conc_num_factor_factor",
  1269. position = "jitter",
  1270. tooltip_vars = c("OrfRep", "Gene", "delta_bg"),
  1271. annotations = list(
  1272. list(
  1273. x = 0.05,
  1274. y = 0.95,
  1275. hjust = 0,
  1276. vjust = 1,
  1277. label = paste("Total strains:", nrow(df_na_l_outside_2sd_k_stats)),
  1278. size = 5
  1279. )
  1280. ),
  1281. error_bar = FALSE,
  1282. legend_position = "right"
  1283. )
  1284. )
  1285. )
  1286. message("Generating quality control plots in parallel")
  1287. # future::plan(future::multicore, workers = parallel::detectCores())
  1288. future::plan(future::multisession, workers = 3) # generate 3 plot files in parallel
  1289. plot_configs <- list(
  1290. list(out_dir = out_dir_qc, filename = "L_vs_K_before_quality_control",
  1291. plot_configs = l_vs_k_plot_configs, page_width = 12, page_height = 8),
  1292. list(out_dir = out_dir_qc, filename = "frequency_delta_background",
  1293. plot_configs = frequency_delta_bg_plot_configs, page_width = 12, page_height = 8),
  1294. list(out_dir = out_dir_qc, filename = "L_vs_K_above_threshold",
  1295. plot_configs = above_threshold_plot_configs, page_width = 12, page_height = 8),
  1296. list(out_dir = out_dir_qc, filename = "plate_analysis",
  1297. plot_configs = plate_analysis_plot_configs, page_width = 14, page_height = 9),
  1298. list(out_dir = out_dir_qc, filename = "plate_analysis_boxplots",
  1299. plot_configs = plate_analysis_boxplot_configs, page_width = 18, page_height = 9),
  1300. list(out_dir = out_dir_qc, filename = "plate_analysis_no_zeros",
  1301. plot_configs = plate_analysis_no_zeros_plot_configs, page_width = 14, page_height = 9),
  1302. list(out_dir = out_dir_qc, filename = "plate_analysis_no_zeros_boxplots",
  1303. plot_configs = plate_analysis_no_zeros_boxplot_configs, page_width = 18, page_height = 9),
  1304. list(out_dir = out_dir_qc, filename = "L_vs_K_for_strains_2SD_outside_mean_K",
  1305. plot_configs = l_outside_2sd_k_plot_configs, page_width = 10, page_height = 8),
  1306. list(out_dir = out_dir_qc, filename = "delta_background_vs_K_for_strains_2SD_outside_mean_K",
  1307. plot_configs = delta_bg_outside_2sd_k_plot_configs, page_width = 10, page_height = 8)
  1308. )
  1309. # Parallelize background and quality control plot generation
  1310. furrr::future_map(plot_configs, function(config) {
  1311. generate_and_save_plots(config$out_dir, config$filename, config$plot_configs,
  1312. page_width = config$page_width, page_height = config$page_height)
  1313. }, .options = furrr_options(seed = TRUE))
  1314. # Loop over background strains
  1315. # TODO currently only tested against one strain, if we want to do multiple strains we'll
  1316. # have to rename or group the output files by dir or something so they don't get clobbered
  1317. bg_strains <- c("YDL227C")
  1318. lapply(bg_strains, function(strain) {
  1319. message("Processing background strain: ", strain)
  1320. # Handle missing data by setting zero values to NA
  1321. # and then removing any rows with NA in L col
  1322. df_bg <- df_na %>%
  1323. filter(OrfRep == strain) %>%
  1324. mutate(
  1325. L = if_else(L == 0, NA, L),
  1326. K = if_else(K == 0, NA, K),
  1327. r = if_else(r == 0, NA, r),
  1328. AUC = if_else(AUC == 0, NA, AUC)
  1329. ) %>%
  1330. filter(!is.na(L))
  1331. message("Calculating background summary statistics")
  1332. ss_bg <- calculate_summary_stats(df_bg, c("L", "K", "r", "AUC", "delta_bg"), # formerly X_stats_BY
  1333. group_vars = c("OrfRep", "Drug", "conc_num", "conc_num_factor_factor"))
  1334. summary_stats_bg <- ss_bg$summary_stats
  1335. df_bg_stats <- ss_bg$df_with_stats
  1336. write.csv(
  1337. summary_stats_bg,
  1338. file = file.path(out_dir, paste0("summary_stats_background_strain_", strain, ".csv")),
  1339. row.names = FALSE)
  1340. message("Setting missing reference values to the highest theoretical value at each drug conc for L")
  1341. df_reference <- df_na_stats %>% # formerly X2_RF
  1342. filter(OrfRep == strain) %>%
  1343. filter(!is.na(L)) %>%
  1344. group_by(OrfRep, Drug, conc_num, conc_num_factor_factor) %>%
  1345. mutate(
  1346. max_l_theoretical = max(max_L, na.rm = TRUE),
  1347. L = ifelse(L == 0 & !is.na(L) & conc_num > 0, max_l_theoretical, L),
  1348. SM = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, 1, 0),
  1349. L = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, max_l_theoretical, L)) %>%
  1350. ungroup()
  1351. message("Calculating reference strain summary statistics")
  1352. df_reference_summary_stats <- calculate_summary_stats( # formerly X_stats_X2_RF
  1353. df = df_reference,
  1354. variables = c("L", "K", "r", "AUC"),
  1355. group_vars = c("OrfRep", "Drug", "conc_num", "conc_num_factor_factor")
  1356. )$df_with_stats
  1357. # Summarise statistics for error bars
  1358. df_reference_summary_stats <- df_reference_summary_stats %>%
  1359. group_by(OrfRep, Drug, conc_num, conc_num_factor_factor) %>%
  1360. mutate(
  1361. mean_mean_L = first(mean_L),
  1362. mean_sd_L = first(sd_L),
  1363. mean_mean_K = first(mean_K),
  1364. mean_sd_K = first(sd_K),
  1365. mean_mean_r = first(mean_r),
  1366. mean_sd_r = first(sd_r),
  1367. mean_mean_AUC = first(mean_AUC),
  1368. mean_sd_AUC = first(sd_AUC),
  1369. .groups = "drop"
  1370. )
  1371. message("Calculating reference strain interaction summary statistics") # formerly X_stats_interaction
  1372. df_reference_interaction_stats <- calculate_summary_stats(
  1373. df = df_reference,
  1374. variables = c("L", "K", "r", "AUC"),
  1375. group_vars = c("OrfRep", "Gene", "num", "Drug", "conc_num", "conc_num_factor_factor")
  1376. )$df_with_stats
  1377. message("Calculating reference strain interaction scores")
  1378. reference_results <- calculate_interaction_scores(df_reference_interaction_stats, df_bg_stats, "reference")
  1379. df_reference_interactions_joined <- reference_results$full_data
  1380. df_reference_interactions <- reference_results$interactions
  1381. write.csv(reference_results$calculations, file = file.path(out_dir, "zscore_calculations_reference.csv"), row.names = FALSE)
  1382. write.csv(df_reference_interactions, file = file.path(out_dir, "zscore_interactions_reference.csv"), row.names = FALSE)
  1383. message("Generating reference interaction plots")
  1384. reference_plot_configs <- generate_interaction_plot_configs(df_reference_summary_stats, df_reference_interactions_joined, "reference")
  1385. generate_and_save_plots(out_dir, "interaction_plots_reference", reference_plot_configs, page_width = 16, page_height = 16)
  1386. message("Setting missing deletion values to the highest theoretical value at each drug conc for L")
  1387. df_deletion <- df_na_stats %>% # formerly X2
  1388. filter(OrfRep != strain) %>%
  1389. filter(!is.na(L)) %>%
  1390. group_by(OrfRep, Gene, conc_num, conc_num_factor_factor) %>%
  1391. mutate(
  1392. max_l_theoretical = max(max_L, na.rm = TRUE),
  1393. L = ifelse(L == 0 & !is.na(L) & conc_num > 0, max_l_theoretical, L),
  1394. SM = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, 1, SM),
  1395. L = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, max_l_theoretical, L)) %>%
  1396. ungroup()
  1397. message("Calculating deletion strain(s) interaction summary statistics")
  1398. df_deletion_stats <- calculate_summary_stats(
  1399. df = df_deletion,
  1400. variables = c("L", "K", "r", "AUC"),
  1401. group_vars = c("OrfRep", "Gene", "Drug", "conc_num", "conc_num_factor_factor")
  1402. )$df_with_stats
  1403. message("Calculating deletion strain(s) interactions scores")
  1404. deletion_results <- calculate_interaction_scores(df_deletion_stats, df_bg_stats, "deletion")
  1405. df_interactions <- deletion_results$interactions
  1406. df_interactions_joined <- deletion_results$full_data
  1407. write.csv(deletion_results$calculations, file = file.path(out_dir, "zscore_calculations.csv"), row.names = FALSE)
  1408. write.csv(df_interactions, file = file.path(out_dir, "zscore_interactions.csv"), row.names = FALSE)
  1409. # message("Generating deletion interaction plots")
  1410. # deletion_plot_configs <- generate_interaction_plot_configs(df_reference_summary_stats, df_interactions_joined, "deletion")
  1411. # generate_and_save_plots(out_dir, "interaction_plots", deletion_plot_configs, page_width = 16, page_height = 16)
  1412. message("Writing enhancer/suppressor csv files")
  1413. interaction_threshold <- 2 # TODO add to study config?
  1414. enhancer_condition_L <- df_interactions$Avg_Zscore_L >= interaction_threshold
  1415. suppressor_condition_L <- df_interactions$Avg_Zscore_L <= -interaction_threshold
  1416. enhancer_condition_K <- df_interactions$Avg_Zscore_K >= interaction_threshold
  1417. suppressor_condition_K <- df_interactions$Avg_Zscore_K <= -interaction_threshold
  1418. enhancers_L <- df_interactions[enhancer_condition_L, ]
  1419. suppressors_L <- df_interactions[suppressor_condition_L, ]
  1420. enhancers_K <- df_interactions[enhancer_condition_K, ]
  1421. suppressors_K <- df_interactions[suppressor_condition_K, ]
  1422. enhancers_and_suppressors_L <- df_interactions[enhancer_condition_L | suppressor_condition_L, ]
  1423. enhancers_and_suppressors_K <- df_interactions[enhancer_condition_K | suppressor_condition_K, ]
  1424. write.csv(enhancers_L, file = file.path(out_dir, "zscore_interactions_deletion_enhancers_L.csv"), row.names = FALSE)
  1425. write.csv(suppressors_L, file = file.path(out_dir, "zscore_interactions_deletion_suppressors_L.csv"), row.names = FALSE)
  1426. write.csv(enhancers_K, file = file.path(out_dir, "zscore_interactions_deletion_enhancers_K.csv"), row.names = FALSE)
  1427. write.csv(suppressors_K, file = file.path(out_dir, "zscore_interactions_deletion_suppressors_K.csv"), row.names = FALSE)
  1428. write.csv(enhancers_and_suppressors_L,
  1429. file = file.path(out_dir, "zscore_interactions_deletion_enhancers_and_suppressors_L.csv"), row.names = FALSE)
  1430. write.csv(enhancers_and_suppressors_K,
  1431. file = file.path(out_dir, "zscore_interaction_deletion_enhancers_and_suppressors_K.csv"), row.names = FALSE)
  1432. message("Writing linear model enhancer/suppressor csv files")
  1433. lm_interaction_threshold <- 2 # TODO add to study config?
  1434. enhancers_lm_L <- df_interactions[df_interactions$Z_lm_L >= lm_interaction_threshold, ]
  1435. suppressors_lm_L <- df_interactions[df_interactions$Z_lm_L <= -lm_interaction_threshold, ]
  1436. enhancers_lm_K <- df_interactions[df_interactions$Z_lm_K >= lm_interaction_threshold, ]
  1437. suppressors_lm_K <- df_interactions[df_interactions$Z_lm_K <= -lm_interaction_threshold, ]
  1438. write.csv(enhancers_lm_L, file = file.path(out_dir, "zscore_interactions_deletion_enhancers_lm_L.csv"), row.names = FALSE)
  1439. write.csv(suppressors_lm_L, file = file.path(out_dir, "zscore_interactions_deletion_suppressors_lm_L.csv"), row.names = FALSE)
  1440. write.csv(enhancers_lm_K, file = file.path(out_dir, "zscore_interactions_deletion_enhancers_lm_K.csv"), row.names = FALSE)
  1441. write.csv(suppressors_lm_K, file = file.path(out_dir, "zscore_interactions_deletion_suppressors_lm_K.csv"), row.names = FALSE)
  1442. message("Generating rank plots")
  1443. rank_plot_configs <- generate_rank_plot_configs(
  1444. df_interactions,
  1445. is_lm = FALSE,
  1446. adjust = TRUE
  1447. )
  1448. generate_and_save_plots(out_dir, "rank_plots", rank_plot_configs,
  1449. page_width = 18, page_height = 12)
  1450. message("Generating ranked linear model plots")
  1451. rank_lm_plot_configs <- generate_rank_plot_configs(
  1452. df_interactions,
  1453. is_lm = TRUE,
  1454. adjust = TRUE
  1455. )
  1456. generate_and_save_plots(out_dir, "rank_plots_lm", rank_lm_plot_configs,
  1457. page_width = 18, page_height = 12)
  1458. message("Generating overlapped ranked plots")
  1459. rank_plot_filtered_configs <- generate_rank_plot_configs(
  1460. df_interactions,
  1461. is_lm = FALSE,
  1462. adjust = FALSE,
  1463. filter_na = TRUE,
  1464. overlap_color = TRUE
  1465. )
  1466. generate_and_save_plots(out_dir, "rank_plots_na_rm", rank_plot_filtered_configs,
  1467. page_width = 18, page_height = 12)
  1468. message("Generating overlapped ranked linear model plots")
  1469. rank_plot_lm_filtered_configs <- generate_rank_plot_configs(
  1470. df_interactions,
  1471. is_lm = TRUE,
  1472. adjust = FALSE,
  1473. filter_na = TRUE,
  1474. overlap_color = TRUE
  1475. )
  1476. generate_and_save_plots(out_dir, "rank_plots_lm_na_rm", rank_plot_lm_filtered_configs,
  1477. page_width = 18, page_height = 12)
  1478. message("Generating correlation curve parameter pair plots")
  1479. correlation_plot_configs <- generate_correlation_plot_configs(
  1480. df_interactions,
  1481. df_reference_interactions
  1482. )
  1483. generate_and_save_plots(out_dir, "correlation_cpps", correlation_plot_configs,
  1484. page_width = 10, page_height = 7)
  1485. })
  1486. })
  1487. }
  1488. main()