calculate_interaction_zscores.R 43 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077
  1. suppressMessages({
  2. library(ggplot2)
  3. library(plotly)
  4. library(htmlwidgets)
  5. library(dplyr)
  6. library(ggthemes)
  7. library(data.table)
  8. library(unix)
  9. })
  10. options(warn = 2)
  11. options(width = 10000)
  12. # Set the memory limit to 30GB (30 * 1024 * 1024 * 1024 bytes)
  13. soft_limit <- 30 * 1024 * 1024 * 1024
  14. hard_limit <- 30 * 1024 * 1024 * 1024
  15. rlimit_as(soft_limit, hard_limit)
  16. # Constants for configuration
  17. plot_width <- 14
  18. plot_height <- 9
  19. base_size <- 14
  20. parse_arguments <- function() {
  21. args <- if (interactive()) {
  22. c(
  23. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/20240116_jhartman2_DoxoHLD",
  24. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/apps/r/SGD_features.tab",
  25. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/easy/20240116_jhartman2_DoxoHLD/results_std.txt",
  26. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/20240822_jhartman2_DoxoHLD/exp1",
  27. "Experiment 1: Doxo versus HLD",
  28. 3,
  29. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/20240822_jhartman2_DoxoHLD/exp2",
  30. "Experiment 2: HLD versus Doxo",
  31. 3
  32. )
  33. } else {
  34. commandArgs(trailingOnly = TRUE)
  35. }
  36. # Extract paths, names, and standard deviations
  37. paths <- args[seq(4, length(args), by = 3)]
  38. names <- args[seq(5, length(args), by = 3)]
  39. sds <- as.numeric(args[seq(6, length(args), by = 3)])
  40. # Normalize paths
  41. normalized_paths <- normalizePath(paths, mustWork = FALSE)
  42. # Create named list of experiments
  43. experiments <- list()
  44. for (i in seq_along(paths)) {
  45. experiments[[names[i]]] <- list(
  46. path = normalized_paths[i],
  47. sd = sds[i]
  48. )
  49. }
  50. list(
  51. out_dir = normalizePath(args[1], mustWork = FALSE),
  52. sgd_gene_list = normalizePath(args[2], mustWork = FALSE),
  53. easy_results_file = normalizePath(args[3], mustWork = FALSE),
  54. experiments = experiments
  55. )
  56. }
  57. args <- parse_arguments()
  58. # Should we keep output in exp dirs or combine in the study output dir?
  59. # dir.create(file.path(args$out_dir, "zscores"), showWarnings = FALSE)
  60. # dir.create(file.path(args$out_dir, "zscores", "qc"), showWarnings = FALSE)
  61. # Define themes and scales
  62. theme_publication <- function(base_size = 14, base_family = "sans", legend_position = "bottom") {
  63. theme_foundation <- ggplot2::theme_grey(base_size = base_size, base_family = base_family)
  64. theme_foundation %+replace%
  65. theme(
  66. plot.title = element_text(face = "bold", size = rel(1.2), hjust = 0.5),
  67. text = element_text(),
  68. panel.background = element_rect(colour = NA),
  69. plot.background = element_rect(colour = NA),
  70. panel.border = element_rect(colour = NA),
  71. axis.title = element_text(face = "bold", size = rel(1)),
  72. axis.title.y = element_text(angle = 90, vjust = 2),
  73. axis.title.x = element_text(vjust = -0.2),
  74. axis.line = element_line(colour = "black"),
  75. panel.grid.major = element_line(colour = "#f0f0f0"),
  76. panel.grid.minor = element_blank(),
  77. legend.key = element_rect(colour = NA),
  78. legend.position = legend_position,
  79. legend.direction = ifelse(legend_position == "right", "vertical", "horizontal"),
  80. plot.margin = unit(c(10, 5, 5, 5), "mm"),
  81. strip.background = element_rect(colour = "#f0f0f0", fill = "#f0f0f0"),
  82. strip.text = element_text(face = "bold")
  83. )
  84. }
  85. scale_fill_publication <- function(...) {
  86. discrete_scale("fill", "Publication", manual_pal(values = c(
  87. "#386cb0", "#fdb462", "#7fc97f", "#ef3b2c", "#662506",
  88. "#a6cee3", "#fb9a99", "#984ea3", "#ffff33"
  89. )), ...)
  90. }
  91. scale_colour_publication <- function(...) {
  92. discrete_scale("colour", "Publication", manual_pal(values = c(
  93. "#386cb0", "#fdb462", "#7fc97f", "#ef3b2c", "#662506",
  94. "#a6cee3", "#fb9a99", "#984ea3", "#ffff33"
  95. )), ...)
  96. }
  97. # Load the initial dataframe from the easy_results_file
  98. load_and_process_data <- function(easy_results_file, sd = 3) {
  99. df <- read.delim(easy_results_file, skip = 2, as.is = TRUE, row.names = 1, strip.white = TRUE)
  100. df <- df %>%
  101. filter(!(.[[1]] %in% c("", "Scan"))) %>%
  102. filter(!is.na(ORF) & ORF != "" & !Gene %in% c("BLANK", "Blank", "blank") & Drug != "BMH21") %>%
  103. # Rename columns
  104. rename(L = l, num = Num., AUC = AUC96, scan = Scan, last_bg = LstBackgrd, first_bg = X1stBackgrd) %>%
  105. mutate(
  106. across(c(Col, Row, num, L, K, r, scan, AUC, last_bg, first_bg), as.numeric),
  107. delta_bg = last_bg - first_bg,
  108. delta_bg_tolerance = mean(delta_bg, na.rm = TRUE) + (sd * sd(delta_bg, na.rm = TRUE)),
  109. NG = if_else(L == 0 & !is.na(L), 1, 0),
  110. DB = if_else(delta_bg >= delta_bg_tolerance, 1, 0),
  111. SM = 0,
  112. OrfRep = if_else(ORF == "YDL227C", "YDL227C", OrfRep), # should these be hardcoded?
  113. conc_num = as.numeric(gsub("[^0-9\\.]", "", Conc)),
  114. conc_num_factor = as.numeric(as.factor(conc_num)) - 1
  115. )
  116. return(df)
  117. }
  118. # Update Gene names using the SGD gene list
  119. update_gene_names <- function(df, sgd_gene_list) {
  120. # Load SGD gene list
  121. genes <- read.delim(file = sgd_gene_list,
  122. quote = "", header = FALSE,
  123. colClasses = c(rep("NULL", 3), rep("character", 2), rep("NULL", 11)))
  124. # Create a named vector for mapping ORF to GeneName
  125. gene_map <- setNames(genes$V5, genes$V4)
  126. # Vectorized match to find the GeneName from gene_map
  127. mapped_genes <- gene_map[df$ORF]
  128. # Replace NAs in mapped_genes with original Gene names (preserves existing Gene names if ORF is not found)
  129. updated_genes <- ifelse(is.na(mapped_genes) | df$OrfRep == "YDL227C", df$Gene, mapped_genes)
  130. # Ensure Gene is not left blank or incorrectly updated to "OCT1"
  131. df <- df %>%
  132. mutate(Gene = ifelse(updated_genes == "" | updated_genes == "OCT1", OrfRep, updated_genes))
  133. return(df)
  134. }
  135. # Calculate summary statistics for all variables
  136. calculate_summary_stats <- function(df, variables, group_vars = c("OrfRep", "conc_num", "conc_num_factor")) {
  137. # Summarize the variables within the grouped data
  138. summary_stats <- df %>%
  139. group_by(across(all_of(group_vars))) %>%
  140. summarise(
  141. N = sum(!is.na(L)),
  142. across(all_of(variables), list(
  143. mean = ~mean(., na.rm = TRUE),
  144. median = ~median(., na.rm = TRUE),
  145. max = ~ ifelse(all(is.na(.)), NA, max(., na.rm = TRUE)),
  146. min = ~ ifelse(all(is.na(.)), NA, min(., na.rm = TRUE)),
  147. sd = ~sd(., na.rm = TRUE),
  148. se = ~ ifelse(all(is.na(.)), NA, sd(., na.rm = TRUE) / sqrt(sum(!is.na(.)) - 1))
  149. ), .names = "{.fn}_{.col}")
  150. )
  151. print(summary_stats)
  152. # Prevent .x and .y suffix issues by renaming columns
  153. df_cleaned <- df %>%
  154. select(-any_of(setdiff(names(summary_stats), group_vars))) # Avoid duplicate columns in the final join
  155. # Join the stats back to the original dataframe
  156. df_with_stats <- left_join(df_cleaned, summary_stats, by = group_vars)
  157. return(list(summary_stats = summary_stats, df_with_stats = df_with_stats))
  158. }
  159. calculate_interaction_scores <- function(df, max_conc, variables, group_vars = c("OrfRep", "Gene", "num")) {
  160. # Calculate total concentration variables
  161. total_conc_num <- length(unique(df$conc_num))
  162. num_non_removed_concs <- total_conc_num - sum(df$DB, na.rm = TRUE) - 1
  163. # Pull the background means and standard deviations from zero concentration
  164. bg_means <- list(
  165. L = df %>% filter(conc_num_factor == 0) %>% pull(mean_L) %>% first(),
  166. K = df %>% filter(conc_num_factor == 0) %>% pull(mean_K) %>% first(),
  167. r = df %>% filter(conc_num_factor == 0) %>% pull(mean_r) %>% first(),
  168. AUC = df %>% filter(conc_num_factor == 0) %>% pull(mean_AUC) %>% first()
  169. )
  170. bg_sd <- list(
  171. L = df %>% filter(conc_num_factor == 0) %>% pull(sd_L) %>% first(),
  172. K = df %>% filter(conc_num_factor == 0) %>% pull(sd_K) %>% first(),
  173. r = df %>% filter(conc_num_factor == 0) %>% pull(sd_r) %>% first(),
  174. AUC = df %>% filter(conc_num_factor == 0) %>% pull(sd_AUC) %>% first()
  175. )
  176. calculations <- df %>%
  177. mutate(
  178. WT_L = df$mean_L,
  179. WT_K = df$mean_K,
  180. WT_r = df$mean_r,
  181. WT_AUC = df$mean_AUC,
  182. WT_sd_L = df$sd_L,
  183. WT_sd_K = df$sd_K,
  184. WT_sd_r = df$sd_r,
  185. WT_sd_AUC = df$sd_AUC
  186. ) %>%
  187. group_by(across(all_of(group_vars)), conc_num, conc_num_factor) %>%
  188. mutate(
  189. N = sum(!is.na(L)),
  190. NG = sum(NG, na.rm = TRUE),
  191. DB = sum(DB, na.rm = TRUE),
  192. SM = sum(SM, na.rm = TRUE),
  193. across(all_of(variables), list(
  194. mean = ~mean(., na.rm = TRUE),
  195. median = ~median(., na.rm = TRUE),
  196. max = ~max(., na.rm = TRUE),
  197. min = ~min(., na.rm = TRUE),
  198. sd = ~sd(., na.rm = TRUE),
  199. se = ~sd(., na.rm = TRUE) / sqrt(sum(!is.na(.)) - 1)
  200. ), .names = "{.fn}_{.col}")
  201. ) %>%
  202. ungroup()
  203. calculations <- calculations %>%
  204. group_by(across(all_of(group_vars))) %>%
  205. mutate(
  206. Raw_Shift_L = mean_L[[1]] - bg_means$L,
  207. Raw_Shift_K = mean_K[[1]] - bg_means$K,
  208. Raw_Shift_r = mean_r[[1]] - bg_means$r,
  209. Raw_Shift_AUC = mean_AUC[[1]] - bg_means$AUC,
  210. Z_Shift_L = Raw_Shift_L[[1]] / bg_sd$L,
  211. Z_Shift_K = Raw_Shift_K[[1]] / bg_sd$K,
  212. Z_Shift_r = Raw_Shift_r[[1]] / bg_sd$r,
  213. Z_Shift_AUC = Raw_Shift_AUC[[1]] / bg_sd$AUC
  214. )
  215. calculations <- calculations %>%
  216. mutate(
  217. Exp_L = WT_L + Raw_Shift_L,
  218. Delta_L = mean_L - Exp_L,
  219. Exp_K = WT_K + Raw_Shift_K,
  220. Delta_K = mean_K - Exp_K,
  221. Exp_r = WT_r + Raw_Shift_r,
  222. Delta_r = mean_r - Exp_r,
  223. Exp_AUC = WT_AUC + Raw_Shift_AUC,
  224. Delta_AUC = mean_AUC - Exp_AUC
  225. )
  226. calculations <- calculations %>%
  227. mutate(
  228. Delta_L = if_else(NG == 1, mean_L - WT_L, Delta_L),
  229. Delta_K = if_else(NG == 1, mean_K - WT_K, Delta_K),
  230. Delta_r = if_else(NG == 1, mean_r - WT_r, Delta_r),
  231. Delta_AUC = if_else(NG == 1, mean_AUC - WT_AUC, Delta_AUC),
  232. Delta_L = if_else(SM == 1, mean_L - WT_L, Delta_L)
  233. )
  234. interactions <- calculations %>%
  235. mutate(
  236. lm_L = lm(Delta_L ~ conc_num_factor),
  237. lm_K = lm(Delta_K ~ conc_num_factor),
  238. lm_r = lm(Delta_r ~ conc_num_factor),
  239. lm_AUC = lm(Delta_AUC ~ conc_num_factor),
  240. Zscore_L = Delta_L / WT_sd_L,
  241. Zscore_K = Delta_K / WT_sd_K,
  242. Zscore_r = Delta_r / WT_sd_r,
  243. Zscore_AUC = Delta_AUC / WT_sd_AUC
  244. )
  245. interactions <- interactions %>%
  246. mutate(
  247. lm_Score_L = max_conc * coef(lm_L)[2] + coef(lm_L)[1],
  248. lm_Score_K = max_conc * coef(lm_K)[2] + coef(lm_K)[1],
  249. lm_Score_r = max_conc * coef(lm_r)[2] + coef(lm_r)[1],
  250. lm_Score_AUC = max_conc * coef(lm_AUC)[2] + coef(lm_AUC)[1],
  251. r_squared_L = summary(lm_L)$r.squared,
  252. r_squared_K = summary(lm_K)$r.squared,
  253. r_squared_r = summary(lm_r)$r.squared,
  254. r_squared_AUC = summary(lm_AUC)$r.squared,
  255. Sum_Zscore_L = sum(Zscore_L, na.rm = TRUE),
  256. Sum_Zscore_K = sum(Zscore_K, na.rm = TRUE),
  257. Sum_Zscore_r = sum(Zscore_r, na.rm = TRUE),
  258. Sum_Zscore_AUC = sum(Zscore_AUC, na.rm = TRUE)
  259. )
  260. interactions <- interactions %>%
  261. mutate(
  262. Avg_Zscore_L = Sum_Zscore_L / num_non_removed_concs,
  263. Avg_Zscore_K = Sum_Zscore_K / num_non_removed_concs,
  264. Avg_Zscore_r = Sum_Zscore_r / (total_conc_num - 1),
  265. Avg_Zscore_AUC = Sum_Zscore_AUC / (total_conc_num - 1),
  266. Z_lm_L = (lm_Score_L - mean(lm_Score_L, na.rm = TRUE)) / sd(lm_Score_L, na.rm = TRUE),
  267. Z_lm_K = (lm_Score_K - mean(lm_Score_K, na.rm = TRUE)) / sd(lm_Score_K, na.rm = TRUE),
  268. Z_lm_r = (lm_Score_r - mean(lm_Score_r, na.rm = TRUE)) / sd(lm_Score_r, na.rm = TRUE),
  269. Z_lm_AUC = (lm_Score_AUC - mean(lm_Score_AUC, na.rm = TRUE)) / sd(lm_Score_AUC, na.rm = TRUE)
  270. )
  271. # Declare column order for output
  272. calculations <- calculations %>%
  273. select("OrfRep", "Gene", "num", "conc_num", "conc_num_factor",
  274. "mean_L", "mean_K", "mean_r", "mean_AUC",
  275. "median_L", "median_K", "median_r", "median_AUC",
  276. "sd_L", "sd_K", "sd_r", "sd_AUC",
  277. "se_L", "se_K", "se_r", "se_AUC",
  278. "Raw_Shift_L", "Raw_Shift_K", "Raw_Shift_r", "Raw_Shift_AUC",
  279. "Z_Shift_L", "Z_Shift_K", "Z_Shift_r", "Z_Shift_AUC",
  280. "WT_L", "WT_K", "WT_r", "WT_AUC", "WT_sd_L", "WT_sd_K", "WT_sd_r", "WT_sd_AUC",
  281. "Exp_L", "Exp_K", "Exp_r", "Exp_AUC", "Delta_L", "Delta_K", "Delta_r", "Delta_AUC",
  282. "Zscore_L", "Zscore_K", "Zscore_r", "Zscore_AUC",
  283. "NG", "SM", "DB") %>%
  284. ungroup()
  285. # Also arrange results by Z_lm_L and NG
  286. interactions <- interactions %>%
  287. select("OrfRep", "Gene", "num", "Raw_Shift_L", "Raw_Shift_K", "Raw_Shift_AUC", "Raw_Shift_r",
  288. "Z_Shift_L", "Z_Shift_K", "Z_Shift_r", "Z_Shift_AUC",
  289. "lm_Score_L", "lm_Score_K", "lm_Score_AUC", "lm_Score_r",
  290. "R_Squared_L", "R_Squared_K", "R_Squared_r", "R_Squared_AUC",
  291. "Sum_Z_Score_L", "Sum_Z_Score_K", "Sum_Z_Score_r", "Sum_Z_Score_AUC",
  292. "Avg_Zscore_L", "Avg_Zscore_K", "Avg_Zscore_r", "Avg_Zscore_AUC",
  293. "Z_lm_L", "Z_lm_K", "Z_lm_r", "Z_lm_AUC",
  294. "NG", "SM", "DB") %>%
  295. arrange(desc(lm_Score_L)) %>%
  296. arrange(desc(NG)) %>%
  297. ungroup()
  298. return(list(calculations = calculations, interactions = interaction))
  299. }
  300. generate_and_save_plots <- function(output_dir, file_name, plot_configs, grid_layout = NULL) {
  301. message("Generating html and pdf plots for: ", file_name, ".pdf|html")
  302. plots <- lapply(plot_configs, function(config) {
  303. # Log details and setup
  304. df <- config$df
  305. aes_mapping <-
  306. if (is.null(config$y_var))
  307. aes(x = !!sym(config$x_var), color = as.factor(!!sym(config$color_var)))
  308. else
  309. aes(x = !!sym(config$x_var), y = !!sym(config$y_var), color = as.factor(!!sym(config$color_var)))
  310. plot <- ggplot(df, aes_mapping)
  311. # Plot type handling
  312. plot <- switch(config$plot_type,
  313. "scatter" = {
  314. plot + geom_point(aes(ORF = ORF, Gene = Gene, !!sym(config$x_var) := !!sym(config$x_var)),
  315. shape = config$shape %||% 3, size = config$size %||% 0.6) +
  316. (if (!is.null(config$add_smooth) && config$add_smooth)
  317. geom_smooth(method = "lm", se = FALSE)
  318. else NULL) +
  319. (if (!is.null(config$position) && config$position == "jitter")
  320. geom_point(position = "jitter")
  321. else NULL) +
  322. # Use precalculated mean and sd for error bars
  323. geom_errorbar(aes(
  324. ymin = !!sym(paste0("mean_", config$y_var)) - !!sym(paste0("sd_", config$y_var)),
  325. ymax = !!sym(paste0("mean_", config$y_var)) + !!sym(paste0("sd_", config$y_var))), width = 0.1) +
  326. geom_point(aes(y = !!sym(paste0("mean_", config$y_var))), size = 0.6)
  327. },
  328. "rank" = {
  329. plot + geom_point(size = config$size %||% 0.1, shape = config$shape %||% 3) +
  330. (if (!is.null(config$sd_band))
  331. Reduce(`+`, lapply(seq_len(config$sd_band), function(i) {
  332. list(
  333. annotate("rect", xmin = -Inf, xmax = Inf, ymin = i, ymax = Inf, fill = "#542788", alpha = 0.3),
  334. annotate("rect", xmin = -Inf, xmax = Inf, ymin = -i, ymax = -Inf, fill = "orange", alpha = 0.3),
  335. geom_hline(yintercept = c(-i, i), color = "gray")
  336. )
  337. })) else NULL) +
  338. (if (!is.null(config$enhancer_label))
  339. annotate("text", x = config$enhancer_label$x, y = config$enhancer_label$y, label = config$enhancer_label$label)
  340. else NULL) +
  341. (if (!is.null(config$suppressor_label))
  342. annotate("text", x = config$suppressor_label$x, y = config$suppressor_label$y, label = config$suppressor_label$label)
  343. else NULL)
  344. },
  345. "correlation" = plot + geom_point(shape = config$shape %||% 3, color = "gray70") +
  346. geom_smooth(method = "lm", color = "tomato3") +
  347. annotate("text", x = 0, y = 0, label = config$correlation_text),
  348. "box" = plot + geom_boxplot(),
  349. "density" = plot + geom_density(),
  350. "bar" = plot + geom_bar(),
  351. # Default case (scatter with smooth line)
  352. plot + geom_point(shape = config$shape %||% 3) + geom_smooth(method = "lm", se = FALSE)
  353. )
  354. # Error bars using pre-calculated mean and sd columns
  355. if (!is.null(config$error_bar) && config$error_bar) {
  356. y_mean_col <- paste0("mean_", config$y_var)
  357. y_sd_col <- paste0("sd_", config$y_var)
  358. plot <- plot + geom_errorbar(aes(
  359. ymin = !!sym(y_mean_col) - !!sym(y_sd_col),
  360. ymax = !!sym(y_mean_col) + !!sym(y_sd_col)), width = 0.1) +
  361. geom_point(aes(y = !!sym(y_mean_col)), size = 0.6)
  362. }
  363. # Y-limits and labels
  364. plot <- plot + (if (!is.null(config$ylim_vals)) coord_cartesian(ylim = config$ylim_vals) else NULL) +
  365. ggtitle(config$title) +
  366. theme_publication(legend_position = config$legend_position %||% "bottom") +
  367. xlab(config$x_label %||% "") + ylab(config$y_label %||% "")
  368. # Annotations
  369. if (!is.null(config$annotations)) {
  370. for (annotation in config$annotations) {
  371. plot <- plot + geom_text(aes(x = annotation$x, y = annotation$y, label = annotation$label))
  372. }
  373. }
  374. return(plot)
  375. })
  376. # Save plots to PDF and HTML
  377. pdf(file.path(output_dir, paste0(file_name, ".pdf")), width = 14, height = 9)
  378. lapply(plots, print)
  379. dev.off()
  380. plotly_plots <- lapply(plots, function(plot) suppressWarnings(ggplotly(plot) %>% layout(legend = list(orientation = "h"))))
  381. combined_plot <- subplot(plotly_plots, nrows = grid_layout$nrow %||% length(plots), margin = 0.05)
  382. saveWidget(combined_plot, file = file.path(output_dir, paste0(file_name, ".html")), selfcontained = TRUE)
  383. }
  384. generate_interaction_plot_configs <- function(df, variables) {
  385. configs <- list()
  386. for (variable in variables) {
  387. # Define the y-limits based on the variable being plotted
  388. ylim_vals <- switch(variable,
  389. "L" = c(-65, 65),
  390. "K" = c(-65, 65),
  391. "r" = c(-0.65, 0.65),
  392. "AUC" = c(-6500, 6500)
  393. )
  394. # Dynamically generate the column names for standard deviation and delta
  395. wt_sd_col <- paste0("WT_sd_", variable)
  396. delta_var <- paste0("Delta_", variable)
  397. z_shift <- paste0("Z_Shift_", variable)
  398. z_lm <- paste0("Z_lm_", variable)
  399. # Set annotations for ZShift, Z lm Score, NG, DB, SM
  400. annotations <- list(
  401. list(x = 1, y = ifelse(variable == "L", 45, ifelse(variable == "K", 45,
  402. ifelse(variable == "r", 0.45, 4500))), label = paste("ZShift =", round(df[[z_shift]], 2))),
  403. list(x = 1, y = ifelse(variable == "L", 25, ifelse(variable == "K", 25,
  404. ifelse(variable == "r", 0.25, 2500))), label = paste("lm ZScore =", round(df[[z_lm]], 2))),
  405. list(x = 1, y = ifelse(variable == "L", -25, ifelse(variable == "K", -25,
  406. ifelse(variable == "r", -0.25, -2500))), label = paste("NG =", df$NG)),
  407. list(x = 1, y = ifelse(variable == "L", -35, ifelse(variable == "K", -35,
  408. ifelse(variable == "r", -0.35, -3500))), label = paste("DB =", df$DB)),
  409. list(x = 1, y = ifelse(variable == "L", -45, ifelse(variable == "K", -45,
  410. ifelse(variable == "r", -0.45, -4500))), label = paste("SM =", df$SM))
  411. )
  412. # Add scatter plot configuration for this variable
  413. configs[[length(configs) + 1]] <- list(
  414. df = df,
  415. x_var = "conc_num_factor",
  416. y_var = delta_var,
  417. plot_type = "scatter",
  418. title = sprintf("%s %s", df$OrfRep[1], df$Gene[1]),
  419. ylim_vals = ylim_vals,
  420. annotations = annotations,
  421. error_bar = list(
  422. ymin = 0 - (2 * df[[wt_sd_col]][1]),
  423. ymax = 0 + (2 * df[[wt_sd_col]][1])
  424. ),
  425. x_breaks = unique(df$conc_num_factor),
  426. x_labels = unique(as.character(df$conc_num)),
  427. x_label = unique(df$Drug[1]),
  428. shape = 3,
  429. size = 0.6,
  430. position = "jitter"
  431. )
  432. # Add box plot configuration for this variable
  433. configs[[length(configs) + 1]] <- list(
  434. df = df,
  435. x_var = "conc_num_factor",
  436. y_var = variable,
  437. plot_type = "box",
  438. title = sprintf("%s %s (Boxplot)", df$OrfRep[1], df$Gene[1]),
  439. ylim_vals = ylim_vals,
  440. annotations = annotations,
  441. error_bar = FALSE, # Boxplots typically don't need error bars
  442. x_breaks = unique(df$conc_num_factor),
  443. x_labels = unique(as.character(df$conc_num)),
  444. x_label = unique(df$Drug[1])
  445. )
  446. }
  447. return(configs)
  448. }
  449. # Adjust missing values and calculate ranks
  450. adjust_missing_and_rank <- function(df, variables) {
  451. # Adjust missing values in Avg_Zscore and Z_lm columns, and apply rank to the specified variables
  452. df <- df %>%
  453. mutate(across(all_of(variables), list(
  454. Avg_Zscore = ~ if_else(is.na(get(paste0("Avg_Zscore_", cur_column()))), 0.001, get(paste0("Avg_Zscore_", cur_column()))),
  455. Z_lm = ~ if_else(is.na(get(paste0("Z_lm_", cur_column()))), 0.001, get(paste0("Z_lm_", cur_column()))),
  456. Rank = ~ rank(get(paste0("Avg_Zscore_", cur_column()))),
  457. Rank_lm = ~ rank(get(paste0("Z_lm_", cur_column())))
  458. ), .names = "{fn}_{col}"))
  459. return(df)
  460. }
  461. generate_rank_plot_configs <- function(df, rank_var, zscore_var, var, is_lm = FALSE) {
  462. configs <- list()
  463. # Adjust titles for _lm plots if is_lm is TRUE
  464. plot_title_prefix <- if (is_lm) "Interaction Z score vs. Rank for" else "Average Z score vs. Rank for"
  465. # Annotated version (with text)
  466. for (sd_band in c(1, 2, 3)) {
  467. configs[[length(configs) + 1]] <- list(
  468. df = df,
  469. x_var = rank_var,
  470. y_var = zscore_var,
  471. plot_type = "rank",
  472. title = paste(plot_title_prefix, var, "above", sd_band, "SD"),
  473. sd_band = sd_band,
  474. enhancer_label = list(
  475. x = nrow(df) / 2, y = 10,
  476. label = paste("Deletion Enhancers =", nrow(df[df[[zscore_var]] >= sd_band, ]))
  477. ),
  478. suppressor_label = list(
  479. x = nrow(df) / 2, y = -10,
  480. label = paste("Deletion Suppressors =", nrow(df[df[[zscore_var]] <= -sd_band, ]))
  481. ),
  482. shape = 3,
  483. size = 0.1,
  484. position = "jitter"
  485. )
  486. }
  487. # Non-annotated version (_notext)
  488. for (sd_band in c(1, 2, 3)) {
  489. configs[[length(configs) + 1]] <- list(
  490. df = df,
  491. x_var = rank_var,
  492. y_var = zscore_var,
  493. plot_type = "rank",
  494. title = paste(plot_title_prefix, var, "above", sd_band, "SD"),
  495. sd_band = sd_band,
  496. enhancer_label = NULL, # No annotations for _notext
  497. suppressor_label = NULL, # No annotations for _notext
  498. shape = 3,
  499. size = 0.1,
  500. position = "jitter"
  501. )
  502. }
  503. return(configs)
  504. }
  505. generate_correlation_plot_configs <- function(df, variables) {
  506. configs <- list()
  507. for (variable in variables) {
  508. z_lm_var <- paste0("Z_lm_", variable)
  509. avg_zscore_var <- paste0("Avg_Zscore_", variable)
  510. lm_r_squared_col <- paste0("lm_R_squared_", variable)
  511. configs[[length(configs) + 1]] <- list(
  512. df = df,
  513. x_var = avg_zscore_var,
  514. y_var = z_lm_var,
  515. plot_type = "correlation",
  516. title = paste("Avg Zscore vs lm", variable),
  517. color_var = "Overlap",
  518. correlation_text = paste("R-squared =", round(df[[lm_r_squared_col]][1], 2)),
  519. shape = 3,
  520. geom_smooth = TRUE,
  521. legend_position = "right"
  522. )
  523. }
  524. return(configs)
  525. }
  526. main <- function() {
  527. lapply(names(args$experiments), function(exp_name) {
  528. exp <- args$experiments[[exp_name]]
  529. exp_path <- exp$path
  530. exp_sd <- exp$sd
  531. out_dir <- file.path(exp_path, "zscores")
  532. out_dir_qc <- file.path(exp_path, "zscores", "qc")
  533. dir.create(out_dir, recursive = TRUE, showWarnings = FALSE)
  534. dir.create(out_dir_qc, recursive = TRUE, showWarnings = FALSE)
  535. summary_vars <- c("L", "K", "r", "AUC", "delta_bg") # fields to filter and calculate summary stats across
  536. group_vars <- c("OrfRep", "conc_num", "conc_num_factor") # default fields to group by
  537. print_vars <- c("OrfRep", "Plate", "scan", "Col", "Row", "num", "OrfRep", "conc_num", "conc_num_factor",
  538. "delta_bg_tolerance", "delta_bg", "Gene", "L", "K", "r", "AUC", "NG", "DB")
  539. message("Loading and filtering data")
  540. df <- load_and_process_data(args$easy_results_file, sd = exp_sd)
  541. df <- update_gene_names(df, args$sgd_gene_list)
  542. df <- as_tibble(df)
  543. # Filter rows that are above tolerance for quality control plots
  544. df_above_tolerance <- df %>% filter(DB == 1)
  545. # Set L, r, K, AUC (and delta_bg?) to NA for rows that are above tolerance
  546. df_na <- df %>% mutate(across(all_of(summary_vars), ~ ifelse(DB == 1, NA, .)))
  547. # Remove rows with 0 values in L
  548. df_no_zeros <- df_na %>% filter(L > 0)
  549. # Save some constants
  550. max_conc <- max(df$conc_num_factor)
  551. l_half_median <- (median(df_above_tolerance$L, na.rm = TRUE)) / 2
  552. k_half_median <- (median(df_above_tolerance$K, na.rm = TRUE)) / 2
  553. message("Calculating summary statistics before quality control")
  554. ss <- calculate_summary_stats(df, summary_vars, group_vars = group_vars)
  555. df_ss <- ss$summary_stats
  556. df_stats <- ss$df_with_stats
  557. df_filtered_stats <- df_stats %>%
  558. {
  559. non_finite_rows <- filter(., if_any(c(L), ~ !is.finite(.)))
  560. if (nrow(non_finite_rows) > 0) {
  561. message("Removed the following non-finite rows:")
  562. print(non_finite_rows %>% select(any_of(print_vars)), n = 200)
  563. }
  564. filter(., if_all(c(L), is.finite))
  565. }
  566. message("Calculating summary statistics after quality control")
  567. ss <- calculate_summary_stats(df_na, summary_vars, group_vars = group_vars)
  568. df_na_ss <- ss$summary_stats
  569. df_na_stats <- ss$df_with_stats
  570. write.csv(df_na_ss, file = file.path(out_dir, "summary_stats_all_strains.csv"), row.names = FALSE)
  571. # Filter out non-finite rows for plotting
  572. df_na_filtered_stats <- df_na_stats %>%
  573. {
  574. non_finite_rows <- filter(., if_any(c(L), ~ !is.finite(.)))
  575. if (nrow(non_finite_rows) > 0) {
  576. message("Removed the following non-finite rows:")
  577. print(non_finite_rows %>% select(any_of(print_vars)), n = 200)
  578. }
  579. filter(., if_all(c(L), is.finite))
  580. }
  581. message("Calculating summary statistics after quality control excluding zero values")
  582. ss <- calculate_summary_stats(df_no_zeros, summary_vars, group_vars = group_vars)
  583. df_no_zeros_stats <- ss$df_with_stats
  584. df_no_zeros_filtered_stats <- df_no_zeros_stats %>%
  585. {
  586. non_finite_rows <- filter(., if_any(c(L), ~ !is.finite(.)))
  587. if (nrow(non_finite_rows) > 0) {
  588. message("Removed the following non-finite rows:")
  589. print(non_finite_rows %>% select(any_of(print_vars)), n = 200)
  590. }
  591. filter(., if_all(c(L), is.finite))
  592. }
  593. message("Filtering by 2SD of K")
  594. df_na_within_2sd_k <- df_na_stats %>%
  595. filter(K >= (mean_K - 2 * sd_K) & K <= (mean_K + 2 * sd_K))
  596. df_na_outside_2sd_k <- df_na_stats %>%
  597. filter(K < (mean_K - 2 * sd_K) | K > (mean_K + 2 * sd_K))
  598. message("Calculating summary statistics for L within 2SD of K")
  599. # TODO We're omitting the original z_max calculation, not sure if needed?
  600. ss <- calculate_summary_stats(df_na_within_2sd_k, "L", group_vars = c("conc_num", "conc_num_factor"))
  601. l_within_2sd_k_ss <- ss$summary_stats
  602. df_na_l_within_2sd_k_stats <- ss$df_with_stats
  603. write.csv(l_within_2sd_k_ss,
  604. file = file.path(out_dir_qc, "max_observed_L_vals_for_spots_within_2sd_K.csv"), row.names = FALSE)
  605. message("Calculating summary statistics for L outside 2SD of K")
  606. ss <- calculate_summary_stats(df_na_outside_2sd_k, "L", group_vars = c("conc_num", "conc_num_factor"))
  607. l_outside_2sd_k_ss <- ss$summary_stats
  608. df_na_l_outside_2sd_k_stats <- ss$df_with_stats
  609. write.csv(l_outside_2sd_k_ss,
  610. file = file.path(out_dir, "max_observed_L_vals_for_spots_outside_2sd_K.csv"), row.names = FALSE)
  611. # Each plots list corresponds to a file
  612. message("Generating QC plot configurations")
  613. l_vs_k_plots <- list(
  614. list(
  615. df = df,
  616. x_var = "L",
  617. y_var = "K",
  618. plot_type = "scatter",
  619. title = "Raw L vs K before quality control",
  620. color_var = "conc_num",
  621. position = "jitter",
  622. legend_position = "right"
  623. )
  624. )
  625. frequency_delta_bg_plots <- list(
  626. list(
  627. df = df_filtered_stats,
  628. x_var = "delta_bg",
  629. y_var = NULL,
  630. plot_type = "density",
  631. title = "Plate analysis by Drug Conc for Delta Background before quality control",
  632. color_var = "conc_num",
  633. x_label = "Delta Background",
  634. y_label = "Density",
  635. error_bar = FALSE,
  636. legend_position = "right"),
  637. list(
  638. df = df_filtered_stats,
  639. x_var = "delta_bg",
  640. y_var = NULL,
  641. plot_type = "bar",
  642. title = "Plate analysis by Drug Conc for Delta Background before quality control",
  643. color_var = "conc_num",
  644. x_label = "Delta Background",
  645. y_label = "Count",
  646. error_bar = FALSE,
  647. legend_position = "right")
  648. )
  649. above_threshold_plots <- list(
  650. list(
  651. df = df_above_tolerance,
  652. x_var = "L",
  653. y_var = "K",
  654. plot_type = "scatter",
  655. title = paste("Raw L vs K for strains above Delta Background threshold of",
  656. df_above_tolerance$delta_bg_tolerance[[1]], "or above"),
  657. color_var = "conc_num",
  658. position = "jitter",
  659. annotations = list(
  660. x = l_half_median,
  661. y = k_half_median,
  662. label = paste("# strains above Delta Background tolerance =", nrow(df_above_tolerance))
  663. ),
  664. error_bar = FALSE,
  665. legend_position = "right"
  666. )
  667. )
  668. plate_analysis_plots <- list()
  669. for (var in summary_vars) {
  670. for (stage in c("before", "after")) {
  671. if (stage == "before") {
  672. df_plot <- df_filtered_stats
  673. } else {
  674. df_plot <- df_na_filtered_stats
  675. }
  676. config <- list(
  677. df = df_plot,
  678. x_var = "scan",
  679. y_var = var,
  680. plot_type = "scatter",
  681. title = paste("Plate analysis by Drug Conc for", var, stage, "quality control"),
  682. error_bar = TRUE,
  683. color_var = "conc_num",
  684. position = "jitter")
  685. plate_analysis_plots <- append(plate_analysis_plots, list(config))
  686. }
  687. }
  688. plate_analysis_boxplots <- list()
  689. for (var in summary_vars) {
  690. for (stage in c("before", "after")) {
  691. if (stage == "before") {
  692. df_plot <- df_filtered_stats
  693. } else {
  694. df_plot <- df_na_filtered_stats
  695. }
  696. config <- list(
  697. df = df_plot,
  698. x_var = "scan",
  699. y_var = var,
  700. plot_type = "box",
  701. title = paste("Plate analysis by Drug Conc for", var, stage, "quality control"),
  702. error_bar = FALSE, color_var = "conc_num")
  703. plate_analysis_boxplots <- append(plate_analysis_boxplots, list(config))
  704. }
  705. }
  706. plate_analysis_no_zeros_plots <- list()
  707. for (var in summary_vars) {
  708. config <- list(
  709. df = df_no_zeros_filtered_stats,
  710. x_var = "scan",
  711. y_var = var,
  712. plot_type = "scatter",
  713. title = paste("Plate analysis by Drug Conc for", var, "after quality control"),
  714. error_bar = TRUE,
  715. color_var = "conc_num",
  716. position = "jitter")
  717. plate_analysis_no_zeros_plots <- append(plate_analysis_no_zeros_plots, list(config))
  718. }
  719. plate_analysis_no_zeros_boxplots <- list()
  720. for (var in summary_vars) {
  721. # Create the plot configuration
  722. config <- list(
  723. df = df_no_zeros_filtered_stats,
  724. x_var = "scan",
  725. y_var = var,
  726. plot_type = "box",
  727. title = paste("Plate analysis by Drug Conc for", var, "after quality control"),
  728. error_bar = FALSE,
  729. color_var = "conc_num"
  730. )
  731. plate_analysis_no_zeros_boxplots <- append(plate_analysis_no_zeros_boxplots, list(config))
  732. }
  733. l_outside_2sd_k_plots <- list(
  734. list(
  735. df = df_na_l_outside_2sd_k_stats,
  736. x_var = "L",
  737. y_var = "K",
  738. plot_type = "scatter",
  739. title = "Raw L vs K for strains falling outside 2SD of the K mean at each Conc",
  740. color_var = "conc_num",
  741. position = "jitter",
  742. legend_position = "right"
  743. )
  744. )
  745. delta_bg_outside_2sd_k_plots <- list(
  746. list(
  747. df = df_na_l_outside_2sd_k_stats,
  748. x_var = "delta_bg",
  749. y_var = "K",
  750. plot_type = "scatter",
  751. title = "Delta Background vs K for strains falling outside 2SD of the K mean at each Conc",
  752. color_var = "conc_num",
  753. position = "jitter",
  754. legend_position = "right"
  755. )
  756. )
  757. message("Generating QC plots")
  758. generate_and_save_plots(out_dir_qc, "L_vs_K_before_quality_control", l_vs_k_plots)
  759. generate_and_save_plots(out_dir_qc, "frequency_delta_background", frequency_delta_bg_plots)
  760. generate_and_save_plots(out_dir_qc, "L_vs_K_above_threshold", above_threshold_plots)
  761. generate_and_save_plots(out_dir_qc, "plate_analysis", plate_analysis_plots)
  762. generate_and_save_plots(out_dir_qc, "plate_analysis_boxplots", plate_analysis_boxplots)
  763. generate_and_save_plots(out_dir_qc, "plate_analysis_no_zeros", plate_analysis_no_zeros_plots)
  764. generate_and_save_plots(out_dir_qc, "plate_analysis_no_zeros_boxplots", plate_analysis_no_zeros_boxplots)
  765. generate_and_save_plots(out_dir_qc, "L_vs_K_for_strains_2SD_outside_mean_K", l_outside_2sd_k_plots)
  766. generate_and_save_plots(out_dir_qc, "delta_background_vs_K_for_strains_2sd_outside_mean_K", delta_bg_outside_2sd_k_plots)
  767. # Clean up
  768. rm(df, df_above_tolerance, df_no_zeros)
  769. # TODO: Originally this filtered L NA's
  770. # Let's try to avoid for now since stats have already been calculated
  771. # Process background strains
  772. bg_strains <- c("YDL227C")
  773. lapply(bg_strains, function(strain) {
  774. message("Processing background strain: ", strain)
  775. # Handle missing data by setting zero values to NA
  776. # and then removing any rows with NA in L col
  777. df_bg <- df_na %>%
  778. filter(OrfRep == strain) %>%
  779. mutate(
  780. L = if_else(L == 0, NA, L),
  781. K = if_else(K == 0, NA, K),
  782. r = if_else(r == 0, NA, r),
  783. AUC = if_else(AUC == 0, NA, AUC)
  784. ) %>%
  785. filter(!is.na(L))
  786. # Recalculate summary statistics for the background strain
  787. message("Calculating summary statistics for background strain")
  788. ss_bg <- calculate_summary_stats(df_bg, summary_vars, group_vars = group_vars)
  789. summary_stats_bg <- ss_bg$summary_stats
  790. # df_bg_stats <- ss_bg$df_with_stats
  791. write.csv(summary_stats_bg,
  792. file = file.path(out_dir, paste0("SummaryStats_BackgroundStrains_", strain, ".csv")),
  793. row.names = FALSE)
  794. # Filter reference and deletion strains
  795. # Formerly X2_RF (reference strains)
  796. df_reference <- df_na_stats %>%
  797. filter(OrfRep == strain) %>%
  798. mutate(SM = 0)
  799. # Formerly X2 (deletion strains)
  800. df_deletion <- df_na_stats %>%
  801. filter(OrfRep != strain) %>%
  802. mutate(SM = 0)
  803. # Set the missing values to the highest theoretical value at each drug conc for L
  804. # Leave other values as 0 for the max/min
  805. reference_strain <- df_reference %>%
  806. group_by(conc_num) %>%
  807. mutate(
  808. max_l_theoretical = max(max_L, na.rm = TRUE),
  809. L = ifelse(L == 0 & !is.na(L) & conc_num > 0, max_l_theoretical, L),
  810. SM = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, 1, SM),
  811. L = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, max_l_theoretical, L)) %>%
  812. ungroup()
  813. # Ditto for deletion strains
  814. deletion_strains <- df_deletion %>%
  815. group_by(conc_num) %>%
  816. mutate(
  817. max_l_theoretical = max(max_L, na.rm = TRUE),
  818. L = ifelse(L == 0 & !is.na(L) & conc_num > 0, max_l_theoretical, L),
  819. SM = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, 1, SM),
  820. L = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, max_l_theoretical, L)) %>%
  821. ungroup()
  822. # Calculate interactions
  823. interaction_vars <- c("L", "K", "r", "AUC")
  824. message("Calculating interaction scores")
  825. # print("Reference strain:")
  826. # print(head(reference_strain))
  827. reference_results <- calculate_interaction_scores(reference_strain, max_conc, interaction_vars)
  828. # print("Deletion strains:")
  829. # print(head(deletion_strains))
  830. deletion_results <- calculate_interaction_scores(deletion_strains, max_conc, interaction_vars)
  831. zscores_calculations_reference <- reference_results$calculations
  832. zscores_interactions_reference <- reference_results$interactions
  833. zscores_calculations <- deletion_results$calculations
  834. zscores_interactions <- deletion_results$interactions
  835. # Writing Z-Scores to file
  836. write.csv(zscores_calculations_reference, file = file.path(out_dir, "RF_ZScores_Calculations.csv"), row.names = FALSE)
  837. write.csv(zscores_calculations, file = file.path(out_dir, "ZScores_Calculations.csv"), row.names = FALSE)
  838. write.csv(zscores_interactions_reference, file = file.path(out_dir, "RF_ZScores_Interaction.csv"), row.names = FALSE)
  839. write.csv(zscores_interactions, file = file.path(out_dir, "ZScores_Interaction.csv"), row.names = FALSE)
  840. # Create interaction plots
  841. reference_plot_configs <- generate_interaction_plot_configs(df_reference, interaction_vars)
  842. deletion_plot_configs <- generate_interaction_plot_configs(df_deletion, interaction_vars)
  843. generate_and_save_plots(out_dir, "RF_interactionPlots", reference_plot_configs, grid_layout = list(ncol = 4, nrow = 3))
  844. generate_and_save_plots(out_dir, "InteractionPlots", deletion_plot_configs, grid_layout = list(ncol = 4, nrow = 3))
  845. # Define conditions for enhancers and suppressors
  846. # TODO Add to study config file?
  847. threshold <- 2
  848. enhancer_condition_L <- zscores_interactions$Avg_Zscore_L >= threshold
  849. suppressor_condition_L <- zscores_interactions$Avg_Zscore_L <= -threshold
  850. enhancer_condition_K <- zscores_interactions$Avg_Zscore_K >= threshold
  851. suppressor_condition_K <- zscores_interactions$Avg_Zscore_K <= -threshold
  852. # Subset data
  853. enhancers_L <- zscores_interactions[enhancer_condition_L, ]
  854. suppressors_L <- zscores_interactions[suppressor_condition_L, ]
  855. enhancers_K <- zscores_interactions[enhancer_condition_K, ]
  856. suppressors_K <- zscores_interactions[suppressor_condition_K, ]
  857. # Save enhancers and suppressors
  858. message("Writing enhancer/suppressor csv files")
  859. write.csv(enhancers_L, file = file.path(out_dir, "ZScores_Interaction_Deletion_Enhancers_L.csv"), row.names = FALSE)
  860. write.csv(suppressors_L, file = file.path(out_dir, "ZScores_Interaction_Deletion_Suppressors_L.csv"), row.names = FALSE)
  861. write.csv(enhancers_K, file = file.path(out_dir, "ZScores_Interaction_Deletion_Enhancers_K.csv"), row.names = FALSE)
  862. write.csv(suppressors_K, file = file.path(out_dir, "ZScores_Interaction_Deletion_Suppressors_K.csv"), row.names = FALSE)
  863. # Combine conditions for enhancers and suppressors
  864. enhancers_and_suppressors_L <- zscores_interactions[enhancer_condition_L | suppressor_condition_L, ]
  865. enhancers_and_suppressors_K <- zscores_interactions[enhancer_condition_K | suppressor_condition_K, ]
  866. # Save combined enhancers and suppressors
  867. write.csv(enhancers_and_suppressors_L,
  868. file = file.path(out_dir, "ZScores_Interaction_Deletion_Enhancers_and_Suppressors_L.csv"), row.names = FALSE)
  869. write.csv(enhancers_and_suppressors_K,
  870. file = file.path(out_dir, "ZScores_Interaction_Deletion_Enhancers_and_Suppressors_K.csv"), row.names = FALSE)
  871. # Handle linear model based enhancers and suppressors
  872. lm_threshold <- 2
  873. enhancers_lm_L <- zscores_interactions[zscores_interactions$Z_lm_L >= lm_threshold, ]
  874. suppressors_lm_L <- zscores_interactions[zscores_interactions$Z_lm_L <= -lm_threshold, ]
  875. enhancers_lm_K <- zscores_interactions[zscores_interactions$Z_lm_K >= lm_threshold, ]
  876. suppressors_lm_K <- zscores_interactions[zscores_interactions$Z_lm_K <= -lm_threshold, ]
  877. # Save linear model based enhancers and suppressors
  878. message("Writing linear model enhancer/suppressor csv files")
  879. write.csv(enhancers_lm_L,
  880. file = file.path(out_dir, "ZScores_Interaction_Deletion_Enhancers_L_lm.csv"), row.names = FALSE)
  881. write.csv(suppressors_lm_L,
  882. file = file.path(out_dir, "ZScores_Interaction_Deletion_Suppressors_L_lm.csv"), row.names = FALSE)
  883. write.csv(enhancers_lm_K,
  884. file = file.path(out_dir, "ZScores_Interaction_Deletion_Enhancers_K_lm.csv"), row.names = FALSE)
  885. write.csv(suppressors_lm_K,
  886. file = file.path(out_dir, "ZScores_Interaction_Deletion_Suppressors_K_lm.csv"), row.names = FALSE)
  887. # TODO needs explanation
  888. zscores_interactions_adjusted <- adjust_missing_and_rank(zscores_interactions)
  889. rank_plot_configs <- c(
  890. generate_rank_plot_configs(zscores_interactions_adjusted, "Rank_L", "Avg_Zscore_L", "L"),
  891. generate_rank_plot_configs(zscores_interactions_adjusted, "Rank_K", "Avg_Zscore_K", "K")
  892. )
  893. generate_and_save_plots(output_dir = out_dir, file_name = "RankPlots",
  894. plot_configs = rank_plot_configs, grid_layout = list(ncol = 3, nrow = 2))
  895. rank_lm_plot_config <- c(
  896. generate_rank_plot_configs(zscores_interactions_adjusted, "Rank_lm_L", "Z_lm_L", "L", is_lm = TRUE),
  897. generate_rank_plot_configs(zscores_interactions_adjusted, "Rank_lm_K", "Z_lm_K", "K", is_lm = TRUE)
  898. )
  899. generate_and_save_plots(output_dir = out_dir, file_name = "RankPlots_lm",
  900. plot_configs = rank_lm_plot_config, grid_layout = list(ncol = 3, nrow = 2))
  901. # Formerly X_NArm
  902. zscores_interactions_filtered <- zscores_interactions %>%
  903. group_by(across(all_of(group_vars))) %>%
  904. filter(!is.na(Z_lm_L) | !is.na(Avg_Zscore_L))
  905. # Final filtered correlation calculations and plots
  906. zscores_interactions_filtered <- zscores_interactions_filtered %>%
  907. mutate(
  908. Overlap = case_when(
  909. Z_lm_L >= 2 & Avg_Zscore_L >= 2 ~ "Deletion Enhancer Both",
  910. Z_lm_L <= -2 & Avg_Zscore_L <= -2 ~ "Deletion Suppressor Both",
  911. Z_lm_L >= 2 & Avg_Zscore_L <= 2 ~ "Deletion Enhancer lm only",
  912. Z_lm_L <= -2 & Avg_Zscore_L >= -2 ~ "Deletion Suppressor lm only",
  913. Z_lm_L >= 2 & Avg_Zscore_L <= -2 ~ "Deletion Enhancer lm, Deletion Suppressor Avg Z score",
  914. Z_lm_L <= -2 & Avg_Zscore_L >= 2 ~ "Deletion Suppressor lm, Deletion Enhancer Avg Z score",
  915. TRUE ~ "No Effect"
  916. ),
  917. lm_R_squared_L = summary(lm(Z_lm_L ~ Avg_Zscore_L))$r.squared,
  918. lm_R_squared_K = summary(lm(Z_lm_K ~ Avg_Zscore_K))$r.squared,
  919. lm_R_squared_r = summary(lm(Z_lm_r ~ Avg_Zscore_r))$r.squared,
  920. lm_R_squared_AUC = summary(lm(Z_lm_AUC ~ Avg_Zscore_AUC))$r.squared
  921. ) %>%
  922. ungroup()
  923. rank_plot_configs <- c(
  924. generate_rank_plot_configs(zscores_interactions_filtered, "Rank_L", "Avg_Zscore_L", "L"),
  925. generate_rank_plot_configs(zscores_interactions_filtered, "Rank_K", "Avg_Zscore_K", "K")
  926. )
  927. generate_and_save_plots(output_dir = out_dir, file_name = "RankPlots",
  928. plot_configs = rank_plot_configs, grid_layout = list(ncol = 3, nrow = 2))
  929. rank_lm_plot_configs <- c(
  930. generate_rank_plot_configs(zscores_interactions_filtered, "Rank_lm_L", "Z_lm_L", "L", is_lm = TRUE),
  931. generate_rank_plot_configs(zscores_interactions_filtered, "Rank_lm_K", "Z_lm_K", "K", is_lm = TRUE)
  932. )
  933. generate_and_save_plots(output_dir = out_dir, file_name = "RankPlots_lm",
  934. plot_configs = rank_lm_plot_configs, grid_layout = list(ncol = 3, nrow = 2))
  935. correlation_plot_configs <- generate_correlation_plot_configs(zscores_interactions_filtered, interaction_vars)
  936. generate_and_save_plots(output_dir = out_dir, file_name = "Avg_Zscore_vs_lm_NA_rm",
  937. plot_configs = correlation_plot_configs, grid_layout = list(ncol = 2, nrow = 2))
  938. })
  939. })
  940. }
  941. main()