123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449 |
- suppressMessages({
- library("ggplot2")
- library("plotly")
- library("htmlwidgets")
- library("dplyr")
- library("rlang")
- library("ggthemes")
- library("data.table")
- library("unix")
- })
- options(warn = 2)
- # Set the memory limit to 30GB (30 * 1024 * 1024 * 1024 bytes)
- soft_limit <- 30 * 1024 * 1024 * 1024
- hard_limit <- 30 * 1024 * 1024 * 1024
- invisible(rlimit_as(soft_limit, hard_limit))
- # Constants for configuration
- plot_width <- 14
- plot_height <- 9
- base_size <- 14
- parse_arguments <- function() {
- args <- if (interactive()) {
- c(
- "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/20240116_jhartman2_DoxoHLD",
- "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/apps/r/SGD_features.tab",
- "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/easy/20240116_jhartman2_DoxoHLD/results_std.txt",
- "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/20240822_jhartman2_DoxoHLD/exp1",
- "Experiment 1: Doxo versus HLD",
- 3,
- "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/20240822_jhartman2_DoxoHLD/exp2",
- "Experiment 2: HLD versus Doxo",
- 3
- )
- } else {
- commandArgs(trailingOnly = TRUE)
- }
- out_dir <- normalizePath(args[1], mustWork = FALSE)
- sgd_gene_list <- normalizePath(args[2], mustWork = FALSE)
- easy_results_file <- normalizePath(args[3], mustWork = FALSE)
- # The remaining arguments should be in groups of 3
- exp_args <- args[-(1:3)]
- if (length(exp_args) %% 3 != 0) {
- stop("Experiment arguments should be in groups of 3: path, name, sd.")
- }
- experiments <- list()
- for (i in seq(1, length(exp_args), by = 3)) {
- exp_name <- exp_args[i + 1]
- experiments[[exp_name]] <- list(
- path = normalizePath(exp_args[i], mustWork = FALSE),
- sd = as.numeric(exp_args[i + 2])
- )
- }
- list(
- out_dir = out_dir,
- sgd_gene_list = sgd_gene_list,
- easy_results_file = easy_results_file,
- experiments = experiments
- )
- }
- args <- parse_arguments()
- # Should we keep output in exp dirs or combine in the study output dir?
- # dir.create(file.path(args$out_dir, "zscores"), showWarnings = FALSE)
- # dir.create(file.path(args$out_dir, "zscores", "qc"), showWarnings = FALSE)
- # Define themes and scales
- theme_publication <- function(base_size = 14, base_family = "sans", legend_position = "bottom") {
- theme_foundation <- ggplot2::theme_grey(base_size = base_size, base_family = base_family)
-
- theme_foundation %+replace%
- theme(
- plot.title = element_text(face = "bold", size = rel(1.2), hjust = 0.5),
- text = element_text(),
- panel.background = element_rect(colour = NA),
- plot.background = element_rect(colour = NA),
- panel.border = element_rect(colour = NA),
- axis.title = element_text(face = "bold", size = rel(1)),
- axis.title.y = element_text(angle = 90, vjust = 2, size = 18),
- axis.title.x = element_text(vjust = -0.2, size = 18),
- axis.line = element_line(colour = "black"),
- axis.text.x = element_text(size = 16),
- axis.text.y = element_text(size = 16),
- panel.grid.major = element_line(colour = "#f0f0f0"),
- panel.grid.minor = element_blank(),
- legend.key = element_rect(colour = NA),
- legend.position = legend_position,
- legend.direction = ifelse(legend_position == "right", "vertical", "horizontal"),
- plot.margin = unit(c(10, 5, 5, 5), "mm"),
- strip.background = element_rect(colour = "#f0f0f0", fill = "#f0f0f0"),
- strip.text = element_text(face = "bold")
- )
- }
- scale_fill_publication <- function(...) {
- discrete_scale("fill", "Publication", manual_pal(values = c(
- "#386cb0", "#fdb462", "#7fc97f", "#ef3b2c", "#662506",
- "#a6cee3", "#fb9a99", "#984ea3", "#ffff33"
- )), ...)
- }
- scale_colour_publication <- function(...) {
- discrete_scale("colour", "Publication", manual_pal(values = c(
- "#386cb0", "#fdb462", "#7fc97f", "#ef3b2c", "#662506",
- "#a6cee3", "#fb9a99", "#984ea3", "#ffff33"
- )), ...)
- }
- # Load the initial dataframe from the easy_results_file
- load_and_process_data <- function(easy_results_file, sd = 3) {
- df <- read.delim(easy_results_file, skip = 2, as.is = TRUE, row.names = 1, strip.white = TRUE)
- df <- df %>%
- filter(!(.[[1]] %in% c("", "Scan"))) %>%
- filter(!is.na(ORF) & ORF != "" & !Gene %in% c("BLANK", "Blank", "blank") & Drug != "BMH21") %>%
- # Rename columns
- rename(L = l, num = Num., AUC = AUC96, scan = Scan, last_bg = LstBackgrd, first_bg = X1stBackgrd) %>%
- mutate(
- across(c(Col, Row, num, L, K, r, scan, AUC, last_bg, first_bg), as.numeric),
- delta_bg = last_bg - first_bg,
- delta_bg_tolerance = mean(delta_bg, na.rm = TRUE) + (sd * sd(delta_bg, na.rm = TRUE)),
- NG = if_else(L == 0 & !is.na(L), 1, 0),
- DB = if_else(delta_bg >= delta_bg_tolerance, 1, 0),
- SM = 0,
- OrfRep = if_else(ORF == "YDL227C", "YDL227C", OrfRep), # should these be hardcoded?
- conc_num = as.numeric(gsub("[^0-9\\.]", "", Conc))
- ) %>%
- mutate(
- conc_num_factor = as.factor(match(conc_num, sort(unique(conc_num))) - 1)
- )
-
- return(df)
- }
- # Update Gene names using the SGD gene list
- update_gene_names <- function(df, sgd_gene_list) {
- # Load SGD gene list
- genes <- read.delim(file = sgd_gene_list,
- quote = "", header = FALSE,
- colClasses = c(rep("NULL", 3), rep("character", 2), rep("NULL", 11)))
-
- # Create a named vector for mapping ORF to GeneName
- gene_map <- setNames(genes$V5, genes$V4)
- # Vectorized match to find the GeneName from gene_map
- mapped_genes <- gene_map[df$ORF]
- # Replace NAs in mapped_genes with original Gene names (preserves existing Gene names if ORF is not found)
- updated_genes <- ifelse(is.na(mapped_genes) | df$OrfRep == "YDL227C", df$Gene, mapped_genes)
- # Ensure Gene is not left blank or incorrectly updated to "OCT1"
- df <- df %>%
- mutate(Gene = ifelse(updated_genes == "" | updated_genes == "OCT1", OrfRep, updated_genes))
-
- return(df)
- }
- calculate_summary_stats <- function(df, variables, group_vars) {
- summary_stats <- df %>%
- group_by(across(all_of(group_vars))) %>%
- summarise(
- N = n(),
- across(all_of(variables), list(
- mean = ~mean(., na.rm = TRUE),
- median = ~median(., na.rm = TRUE),
- max = ~max(., na.rm = TRUE),
- min = ~min(., na.rm = TRUE),
- sd = ~sd(., na.rm = TRUE),
- se = ~sd(., na.rm = TRUE) / sqrt(N) # Corrected SE calculation
- ), .names = "{.fn}_{.col}"),
- .groups = "drop"
- )
- # Create a cleaned version of df that doesn't overlap with summary_stats
- cols_to_keep <- setdiff(names(df), names(summary_stats)[-which(names(summary_stats) %in% group_vars)])
- df_cleaned <- df %>%
- select(all_of(cols_to_keep))
- df_with_stats <- left_join(df_cleaned, summary_stats, by = group_vars)
- return(list(summary_stats = summary_stats, df_with_stats = df_with_stats))
- }
- calculate_interaction_scores <- function(df, max_conc, variables, group_vars) {
- # Calculate total concentration variables
- total_conc_num <- length(unique(df$conc_num))
- # Pull the background means and standard deviations from zero concentration
- bg_means <- list(
- L = df %>% filter(conc_num == 0) %>% pull(mean_L) %>% first(),
- K = df %>% filter(conc_num == 0) %>% pull(mean_K) %>% first(),
- r = df %>% filter(conc_num == 0) %>% pull(mean_r) %>% first(),
- AUC = df %>% filter(conc_num == 0) %>% pull(mean_AUC) %>% first()
- )
- bg_sd <- list(
- L = df %>% filter(conc_num == 0) %>% pull(sd_L) %>% first(),
- K = df %>% filter(conc_num == 0) %>% pull(sd_K) %>% first(),
- r = df %>% filter(conc_num == 0) %>% pull(sd_r) %>% first(),
- AUC = df %>% filter(conc_num == 0) %>% pull(sd_AUC) %>% first()
- )
- stats <- calculate_summary_stats(df,
- variables = variables,
- group_vars = c("OrfRep", "Gene", "num", "conc_num", "conc_num_factor")
- )$summary_stats
- stats <- df %>%
- group_by(across(all_of(group_vars))) %>%
- mutate(
- WT_L = mean_L,
- WT_K = mean_K,
- WT_r = mean_r,
- WT_AUC = mean_AUC,
- WT_sd_L = sd_L,
- WT_sd_K = sd_K,
- WT_sd_r = sd_r,
- WT_sd_AUC = sd_AUC
- )
- stats <- stats %>%
- mutate(
- Raw_Shift_L = first(mean_L) - bg_means$L,
- Raw_Shift_K = first(mean_K) - bg_means$K,
- Raw_Shift_r = first(mean_r) - bg_means$r,
- Raw_Shift_AUC = first(mean_AUC) - bg_means$AUC,
- Z_Shift_L = first(Raw_Shift_L) / bg_sd$L,
- Z_Shift_K = first(Raw_Shift_K) / bg_sd$K,
- Z_Shift_r = first(Raw_Shift_r) / bg_sd$r,
- Z_Shift_AUC = first(Raw_Shift_AUC) / bg_sd$AUC
- )
- stats <- stats %>%
- mutate(
- Exp_L = WT_L + Raw_Shift_L,
- Exp_K = WT_K + Raw_Shift_K,
- Exp_r = WT_r + Raw_Shift_r,
- Exp_AUC = WT_AUC + Raw_Shift_AUC,
- Delta_L = mean_L - Exp_L,
- Delta_K = mean_K - Exp_K,
- Delta_r = mean_r - Exp_r,
- Delta_AUC = mean_AUC - Exp_AUC
- )
- stats <- stats %>%
- mutate(
- Delta_L = if_else(NG == 1, mean_L - WT_L, Delta_L),
- Delta_K = if_else(NG == 1, mean_K - WT_K, Delta_K),
- Delta_r = if_else(NG == 1, mean_r - WT_r, Delta_r),
- Delta_AUC = if_else(NG == 1, mean_AUC - WT_AUC, Delta_AUC),
- Delta_L = if_else(SM == 1, mean_L - WT_L, Delta_L)
- )
- stats <- stats %>%
- mutate(
- Zscore_L = Delta_L / WT_sd_L,
- Zscore_K = Delta_K / WT_sd_K,
- Zscore_r = Delta_r / WT_sd_r,
- Zscore_AUC = Delta_AUC / WT_sd_AUC
- )
- # Calculate linear models
- lm_L <- lm(Delta_L ~ conc_num, data = stats)
- lm_K <- lm(Delta_K ~ conc_num, data = stats)
- lm_r <- lm(Delta_r ~ conc_num, data = stats)
- lm_AUC <- lm(Delta_AUC ~ conc_num, data = stats)
- interactions <- stats %>%
- group_by(across(all_of(group_vars))) %>%
- summarise(
- OrfRep = first(OrfRep),
- Gene = first(Gene),
- num = first(num),
- conc_num = first(conc_num),
- conc_num_factor = first(conc_num_factor),
- Raw_Shift_L = first(Raw_Shift_L),
- Raw_Shift_K = first(Raw_Shift_K),
- Raw_Shift_r = first(Raw_Shift_r),
- Raw_Shift_AUC = first(Raw_Shift_AUC),
- Z_Shift_L = first(Z_Shift_L),
- Z_Shift_K = first(Z_Shift_K),
- Z_Shift_r = first(Z_Shift_r),
- Z_Shift_AUC = first(Z_Shift_AUC),
- Sum_Zscore_L = sum(Zscore_L, na.rm = TRUE),
- Sum_Zscore_K = sum(Zscore_K, na.rm = TRUE),
- Sum_Zscore_r = sum(Zscore_r, na.rm = TRUE),
- Sum_Zscore_AUC = sum(Zscore_AUC, na.rm = TRUE),
- lm_Score_L = max_conc * coef(lm_L)[2] + coef(lm_L)[1],
- lm_Score_K = max_conc * coef(lm_K)[2] + coef(lm_K)[1],
- lm_Score_r = max_conc * coef(lm_r)[2] + coef(lm_r)[1],
- lm_Score_AUC = max_conc * coef(lm_AUC)[2] + coef(lm_AUC)[1],
- R_Squared_L = summary(lm_L)$r.squared,
- R_Squared_K = summary(lm_K)$r.squared,
- R_Squared_r = summary(lm_r)$r.squared,
- R_Squared_AUC = summary(lm_AUC)$r.squared,
- lm_intercept_L = coef(lm_L)[1],
- lm_slope_L = coef(lm_L)[2],
- lm_intercept_K = coef(lm_K)[1],
- lm_slope_K = coef(lm_K)[2],
- lm_intercept_r = coef(lm_r)[1],
- lm_slope_r = coef(lm_r)[2],
- lm_intercept_AUC = coef(lm_AUC)[1],
- lm_slope_AUC = coef(lm_AUC)[2],
- NG = sum(NG, na.rm = TRUE),
- DB = sum(DB, na.rm = TRUE),
- SM = sum(SM, na.rm = TRUE),
- .groups = "keep"
- )
- num_non_removed_concs <- total_conc_num - sum(stats$DB, na.rm = TRUE) - 1
-
- interactions <- interactions %>%
- mutate(
- Avg_Zscore_L = Sum_Zscore_L / num_non_removed_concs,
- Avg_Zscore_K = Sum_Zscore_K / num_non_removed_concs,
- Avg_Zscore_r = Sum_Zscore_r / (total_conc_num - 1),
- Avg_Zscore_AUC = Sum_Zscore_AUC / (total_conc_num - 1),
- Z_lm_L = (lm_Score_L - mean(lm_Score_L, na.rm = TRUE)) / sd(lm_Score_L, na.rm = TRUE),
- Z_lm_K = (lm_Score_K - mean(lm_Score_K, na.rm = TRUE)) / sd(lm_Score_K, na.rm = TRUE),
- Z_lm_r = (lm_Score_r - mean(lm_Score_r, na.rm = TRUE)) / sd(lm_Score_r, na.rm = TRUE),
- Z_lm_AUC = (lm_Score_AUC - mean(lm_Score_AUC, na.rm = TRUE)) / sd(lm_Score_AUC, na.rm = TRUE)
- ) %>%
- arrange(desc(Z_lm_L), desc(NG))
- # Declare column order for output
- calculations <- stats %>%
- select(
- "OrfRep", "Gene", "conc_num", "conc_num_factor", "N",
- "mean_L", "mean_K", "mean_r", "mean_AUC",
- "median_L", "median_K", "median_r", "median_AUC",
- "sd_L", "sd_K", "sd_r", "sd_AUC",
- "se_L", "se_K", "se_r", "se_AUC",
- "Raw_Shift_L", "Raw_Shift_K", "Raw_Shift_r", "Raw_Shift_AUC",
- "Z_Shift_L", "Z_Shift_K", "Z_Shift_r", "Z_Shift_AUC",
- "WT_L", "WT_K", "WT_r", "WT_AUC",
- "WT_sd_L", "WT_sd_K", "WT_sd_r", "WT_sd_AUC",
- "Exp_L", "Exp_K", "Exp_r", "Exp_AUC",
- "Delta_L", "Delta_K", "Delta_r", "Delta_AUC",
- "Zscore_L", "Zscore_K", "Zscore_r", "Zscore_AUC",
- "NG", "SM", "DB")
-
- calculations_joined <- df %>% select(-any_of(setdiff(names(calculations), c("OrfRep", "Gene", "num", "conc_num", "conc_num_factor"))))
- calculations_joined <- left_join(calculations_joined, calculations, by = c("OrfRep", "Gene", "num", "conc_num", "conc_num_factor"))
- interactions_joined <- df %>% select(-any_of(setdiff(names(interactions), c("OrfRep", "Gene", "num", "conc_num", "conc_num_factor"))))
- interactions_joined <- left_join(interactions_joined, interactions, by = c("OrfRep", "Gene", "num", "conc_num", "conc_num_factor"))
- return(list(calculations = calculations, interactions = interactions, interactions_joined = interactions_joined,
- calculations_joined = calculations_joined))
- }
- generate_and_save_plots <- function(out_dir, file_name, plot_configs, grid_layout = NULL) {
- message("Generating ", file_name, ".pdf and ", file_name, ".html")
- # Prepare lists to collect plots
- static_plots <- list()
- plotly_plots <- list()
- for (i in seq_along(plot_configs)) {
- config <- plot_configs[[i]]
- df <- config$df
- # Build the aes_mapping based on config
- aes_mapping <- if (is.null(config$color_var)) {
- if (is.null(config$y_var)) {
- aes(x = .data[[config$x_var]])
- } else {
- aes(x = .data[[config$x_var]], y = .data[[config$y_var]])
- }
- } else {
- if (is.null(config$y_var)) {
- aes(x = .data[[config$x_var]], color = as.factor(.data[[config$color_var]]))
- } else {
- aes(x = .data[[config$x_var]], y = .data[[config$y_var]], color = as.factor(.data[[config$color_var]]))
- }
- }
- # Start building the plot with aes_mapping
- plot_base <- ggplot(df, aes_mapping)
- # Use appropriate helper function based on plot type
- plot <- switch(config$plot_type,
- "scatter" = generate_scatter_plot(plot_base, config),
- "box" = generate_box_plot(plot_base, config),
- "density" = plot_base + geom_density(),
- "bar" = plot_base + geom_bar(),
- plot_base # default case if no type matches
- )
- # Apply additional settings if provided
- if (!is.null(config$legend_position)) {
- plot <- plot + theme(legend.position = config$legend_position)
- }
- # Add title and labels if provided
- if (!is.null(config$title)) {
- plot <- plot + ggtitle(config$title)
- }
- if (!is.null(config$x_label)) {
- plot <- plot + xlab(config$x_label)
- }
- if (!is.null(config$y_label)) {
- plot <- plot + ylab(config$y_label)
- }
- # Add interactive tooltips for plotly plots
- tooltip_vars <- c()
- if (config$plot_type == "scatter") {
- tooltip_vars <- c(config$x_var, config$y_var)
- }
- # Convert to plotly object
- plotly_plot <- ggplotly(plot, tooltip = tooltip_vars)
- if (!is.null(config$legend_position) && config$legend_position == "bottom") {
- plotly_plot <- plotly_plot %>% layout(legend = list(orientation = "h"))
- }
- # Add plots to lists
- static_plots[[i]] <- plot
- plotly_plots[[i]] <- plotly_plot
- }
- # Save static PDF plots
- pdf(file.path(out_dir, paste0(file_name, ".pdf")), width = 14, height = 9)
- lapply(static_plots, print)
- dev.off()
- # Combine and save interactive HTML plots
- combined_plot <- subplot(plotly_plots,
- nrows = ifelse(is.null(grid_layout$nrow), length(plotly_plots), grid_layout$nrow),
- margin = 0.05)
- saveWidget(combined_plot, file = file.path(out_dir, paste0(file_name, ".html")), selfcontained = TRUE)
- }
- generate_scatter_plot <- function(plot, config) {
-
- # Determine Shape, Size, and Position for geom_point
- shape <- if (!is.null(config$shape)) config$shape else 3
- size <- if (!is.null(config$size)) config$size else 0.1
- position <- if (!is.null(config$position) && config$position == "jitter") "jitter" else "identity"
-
- # Add geom_point with determined parameters
- plot <- plot + geom_point(
- shape = shape,
- size = size,
- position = position
- )
- if (!is.null(config$cyan_points)) {
- plot <- plot + geom_point(
- aes(x = .data[[config$x_var]], y = .data[[config$y_var]]),
- color = "cyan",
- shape = 3,
- size = 0.5
- )
- }
-
- # Add Smooth Line if specified
- if (!is.null(config$add_smooth) && config$add_smooth) {
- if (!is.null(config$lm_line)) {
- plot <- plot +
- geom_abline(
- intercept = config$lm_line$intercept,
- slope = config$lm_line$slope,
- color = "blue"
- )
- } else {
- plot <- plot +
- geom_smooth(
- method = "lm",
- se = FALSE,
- color = "blue"
- )
- }
- }
-
- # Add SD Bands if specified
- if (!is.null(config$sd_band_values)) {
- for (sd_band in config$sd_band_values) {
- plot <- plot +
- annotate(
- "rect",
- xmin = -Inf, xmax = Inf,
- ymin = sd_band, ymax = Inf,
- fill = "#542788",
- alpha = 0.3
- ) +
- annotate(
- "rect",
- xmin = -Inf, xmax = Inf,
- ymin = -sd_band, ymax = -Inf,
- fill = "orange",
- alpha = 0.3
- ) +
- geom_hline(
- yintercept = c(-sd_band, sd_band),
- color = "gray"
- )
- }
- }
- # Add Rectangles if specified
- if (!is.null(config$rectangles)) {
- for (rect in config$rectangles) {
- plot <- plot + annotate(
- "rect",
- xmin = rect$xmin,
- xmax = rect$xmax,
- ymin = rect$ymin,
- ymax = rect$ymax,
- fill = ifelse(is.null(rect$fill), NA, rect$fill),
- color = ifelse(is.null(rect$color), "black", rect$color),
- alpha = ifelse(is.null(rect$alpha), 0.1, rect$alpha)
- )
- }
- }
-
- # Add Error Bars if specified
- if (!is.null(config$error_bar) && config$error_bar && !is.null(config$y_var)) {
- y_mean_col <- paste0("mean_", config$y_var)
- y_sd_col <- paste0("sd_", config$y_var)
-
- plot <- plot +
- geom_errorbar(
- aes(
- ymin = !!sym(y_mean_col) - !!sym(y_sd_col),
- ymax = !!sym(y_mean_col) + !!sym(y_sd_col)
- ),
- alpha = 0.3
- )
- }
-
- # Customize X-axis if specified
- if (!is.null(config$x_breaks) && !is.null(config$x_labels) && !is.null(config$x_label)) {
- plot <- plot +
- scale_x_discrete(
- name = config$x_label,
- breaks = config$x_breaks,
- labels = config$x_labels
- )
- }
-
- # Apply coord_cartesian if specified
- if (!is.null(config$coord_cartesian)) {
- plot <- plot + coord_cartesian(ylim = config$coord_cartesian)
- }
-
- # Set Y-axis limits if specified
- if (!is.null(config$ylim_vals)) {
- plot <- plot + scale_y_continuous(limits = config$ylim_vals)
- }
-
- # Add Annotations if specified
- if (!is.null(config$annotations)) {
- for (annotation in config$annotations) {
- plot <- plot +
- annotate(
- "text",
- x = annotation$x,
- y = annotation$y,
- label = annotation$label,
- na.rm = TRUE
- )
- }
- }
-
- # Add Title if specified
- if (!is.null(config$title)) {
- plot <- plot + ggtitle(config$title)
- }
-
- # Adjust Legend Position if specified
- if (!is.null(config$legend_position)) {
- plot <- plot + theme(legend.position = config$legend_position)
- }
-
- return(plot)
- }
- generate_box_plot <- function(plot, config) {
- plot <- plot + geom_boxplot()
-
- if (!is.null(config$x_breaks) && !is.null(config$x_labels) && !is.null(config$x_label)) {
- plot <- plot + scale_x_discrete(
- name = config$x_label,
- breaks = config$x_breaks,
- labels = config$x_labels
- )
- }
- if (!is.null(config$coord_cartesian)) {
- plot <- plot + coord_cartesian(ylim = config$coord_cartesian)
- }
- return(plot)
- }
- generate_plate_analysis_plot_configs <- function(variables, stages = c("before", "after"),
- df_before = NULL, df_after = NULL, plot_type = "scatter") {
- plots <- list()
- for (var in variables) {
- for (stage in stages) {
- df_plot <- if (stage == "before") df_before else df_after
-
- # Adjust settings based on plot_type
- if (plot_type == "scatter") {
- error_bar <- TRUE
- position <- "jitter"
- } else if (plot_type == "box") {
- error_bar <- FALSE
- position <- NULL
- }
-
- config <- list(
- df = df_plot,
- x_var = "scan",
- y_var = var,
- plot_type = plot_type,
- title = paste("Plate analysis by Drug Conc for", var, stage, "quality control"),
- error_bar = error_bar,
- color_var = "conc_num_factor",
- position = position
- )
- plots <- append(plots, list(config))
- }
- }
- return(plots)
- }
- generate_interaction_plot_configs <- function(df, variables) {
- configs <- list()
- limits_map <- list(
- L = c(-65, 65),
- K = c(-65, 65),
- r = c(-0.65, 0.65),
- AUC = c(-6500, 6500)
- )
- df_filtered <- filter_data(df, variables, missing = TRUE, limits_map = limits_map)
- # Define annotation label functions
- generate_annotation_labels <- function(df, var, annotation_name) {
- switch(annotation_name,
- ZShift = paste("ZShift =", round(df[[paste0("Z_Shift_", var)]], 2)),
- lm_ZScore = paste("lm ZScore =", round(df[[paste0("Z_lm_", var)]], 2)),
- NG = paste("NG =", df$NG),
- DB = paste("DB =", df$DB),
- SM = paste("SM =", df$SM),
- NULL # Default case for unrecognized annotation names
- )
- }
- # Define annotation positions relative to the y-axis range
- calculate_annotation_positions <- function(y_range) {
- y_min <- min(y_range)
- y_max <- max(y_range)
- y_span <- y_max - y_min
- list(
- ZShift = y_max - 0.1 * y_span,
- lm_ZScore = y_max - 0.2 * y_span,
- NG = y_min + 0.2 * y_span,
- DB = y_min + 0.1 * y_span,
- SM = y_min + 0.05 * y_span
- )
- }
- # Create configurations for each variable
- for (variable in variables) {
- y_range <- limits_map[[variable]]
- annotation_positions <- calculate_annotation_positions(y_range)
- lm_line <- list(
- intercept = df_filtered[[paste0("lm_intercept_", variable)]],
- slope = df_filtered[[paste0("lm_slope_", variable)]]
- )
- # Determine x-axis midpoint
- num_levels <- length(levels(df_filtered$conc_num_factor))
- x_pos <- (1 + num_levels) / 2 # Midpoint of x-axis
- # Generate annotations
- annotations <- lapply(names(annotation_positions), function(annotation_name) {
- label <- generate_annotation_labels(df_filtered, variable, annotation_name)
- y_pos <- annotation_positions[[annotation_name]]
- if (!is.null(label)) {
- list(x = x_pos, y = y_pos, label = label)
- } else {
- message(paste("Warning: No annotation found for", annotation_name))
- NULL
- }
- })
- # Remove NULL annotations
- annotations <- Filter(Negate(is.null), annotations)
- # Shared plot settings
- plot_settings <- list(
- df = df_filtered,
- x_var = "conc_num_factor",
- y_var = variable,
- ylim_vals = y_range,
- annotations = annotations,
- lm_line = lm_line,
- x_breaks = levels(df_filtered$conc_num_factor),
- x_labels = levels(df_filtered$conc_num_factor),
- x_label = unique(df_filtered$Drug[1]),
- coord_cartesian = y_range # Use the actual y-limits
- )
- # Scatter plot config
- configs[[length(configs) + 1]] <- modifyList(plot_settings, list(
- plot_type = "scatter",
- title = sprintf("%s %s", df_filtered$OrfRep[1], df_filtered$Gene[1]),
- error_bar = TRUE,
- position = "jitter"
- ))
- # Box plot config
- configs[[length(configs) + 1]] <- modifyList(plot_settings, list(
- plot_type = "box",
- title = sprintf("%s %s (box plot)", df_filtered$OrfRep[1], df_filtered$Gene[1]),
- error_bar = FALSE
- ))
- }
- return(configs)
- }
- generate_rank_plot_configs <- function(df_filtered, variables, is_lm = FALSE) {
- sd_bands <- c(1, 2, 3)
-
- configs <- list()
-
- # SD-based plots for L and K
- for (variable in c("L", "K")) {
- for (sd_band in sd_bands) {
- # Determine columns based on whether it's lm or not
- if (is_lm) {
- rank_var <- paste0("Rank_lm_", variable)
- zscore_var <- paste0("Z_lm_", variable)
- y_label <- paste("Int Z score", variable)
- } else {
- rank_var <- paste0("Rank_", variable)
- zscore_var <- paste0("Avg_Zscore_", variable)
- y_label <- paste("Avg Z score", variable)
- }
-
- num_enhancers <- sum(df_filtered[[zscore_var]] >= sd_band, na.rm = TRUE)
- num_suppressors <- sum(df_filtered[[zscore_var]] <= -sd_band, na.rm = TRUE)
-
- # Annotated plot configuration
- configs[[length(configs) + 1]] <- list(
- df = df_filtered,
- x_var = rank_var,
- y_var = zscore_var,
- plot_type = "scatter",
- title = paste(y_label, "vs. Rank for", variable, "above", sd_band, "SD"),
- sd_band = sd_band,
- annotations = list(
- list(
- x = median(df_filtered[[rank_var]], na.rm = TRUE),
- y = 10,
- label = paste("Deletion Enhancers =", num_enhancers)
- ),
- list(
- x = median(df_filtered[[rank_var]], na.rm = TRUE),
- y = -10,
- label = paste("Deletion Suppressors =", num_suppressors)
- )
- ),
- sd_band_values = sd_band,
- shape = 3,
- size = 0.1,
- y_label = y_label,
- x_label = "Rank",
- legend_position = "none"
- )
-
- # Non-Annotated Plot Configuration
- configs[[length(configs) + 1]] <- list(
- df = df_filtered,
- x_var = rank_var,
- y_var = zscore_var,
- plot_type = "scatter",
- title = paste(y_label, "vs. Rank for", variable, "above", sd_band, "SD No Annotations"),
- sd_band = sd_band,
- annotations = NULL,
- sd_band_values = sd_band,
- shape = 3,
- size = 0.1,
- y_label = y_label,
- x_label = "Rank",
- legend_position = "none"
- )
- }
- }
-
- # Avg ZScore and Rank Avg ZScore Plots for r, L, K, and AUC
- for (variable in variables) {
- for (plot_type in c("Avg_Zscore_vs_lm", "Rank_Avg_Zscore_vs_lm")) {
- # Define specific variables based on plot type
- if (plot_type == "Avg_Zscore_vs_lm") {
- x_var <- paste0("Avg_Zscore_", variable)
- y_var <- paste0("Z_lm_", variable)
- title_suffix <- paste("Avg Zscore vs lm", variable)
- rectangles <- list(
- list(xmin = -2, xmax = 2, ymin = -2, ymax = 2,
- fill = NA, color = "grey20", alpha = 0.1
- )
- )
- } else {
- x_var <- paste0("Rank_", variable)
- y_var <- paste0("Rank_lm_", variable)
- title_suffix <- paste("Rank Avg Zscore vs lm", variable)
- rectangles <- NULL
- }
- print(df_filtered %>% select(all_of(c(x_var, y_var))))
- # Check if there is sufficient variation
- if (length(unique(df_filtered[[x_var]])) < 2 || length(unique(df_filtered[[y_var]])) < 2) {
- message("Not enough variation in ", x_var, " or ", y_var, " to fit linear model. Skipping.")
- next
- }
-
- # Fit linear model
- lm_fit <- lm(df_filtered[[y_var]] ~ df_filtered[[x_var]], data = df_filtered)
-
- # # Check for perfect fit
- # if (summary(lm_fit)$sigma == 0) {
- # next # Skip this iteration if the fit is perfect
- # }
-
- r_squared <- summary(lm_fit)$r.squared
-
- configs[[length(configs) + 1]] <- list(
- df = df_filtered,
- x_var = x_var,
- y_var = y_var,
- plot_type = "scatter",
- title = title_suffix,
- annotations = list(
- list(
- x = 0,
- y = 0,
- label = paste("R-squared =", round(r_squared, 2))
- )
- ),
- sd_band_values = NULL, # Not applicable
- shape = 3,
- size = 0.1,
- add_smooth = TRUE,
- lm_line = list(intercept = coef(lm_fit)[1], slope = coef(lm_fit)[2]),
- legend_position = "right",
- color_var = "Overlap",
- x_label = x_var,
- y_label = y_var,
- rectangles = rectangles
- )
- }
- }
- return(configs)
- }
- generate_correlation_plot_configs <- function(df) {
- # Define relationships for plotting
- relationships <- list(
- list(x = "Z_lm_L", y = "Z_lm_K", label = "Interaction L vs. Interaction K"),
- list(x = "Z_lm_L", y = "Z_lm_r", label = "Interaction L vs. Interaction r"),
- list(x = "Z_lm_L", y = "Z_lm_AUC", label = "Interaction L vs. Interaction AUC"),
- list(x = "Z_lm_K", y = "Z_lm_r", label = "Interaction K vs. Interaction r"),
- list(x = "Z_lm_K", y = "Z_lm_AUC", label = "Interaction K vs. Interaction AUC"),
- list(x = "Z_lm_r", y = "Z_lm_AUC", label = "Interaction r vs. Interaction AUC")
- )
- configs <- list()
- for (rel in relationships) {
- # Fit linear model
- lm_model <- lm(as.formula(paste(rel$y, "~", rel$x)), data = df)
- lm_summary <- summary(lm_model)
- # Construct plot configuration
- config <- list(
- df = df,
- x_var = rel$x,
- y_var = rel$y,
- plot_type = "scatter",
- title = rel$label,
- x_label = paste("z-score", gsub("Z_lm_", "", rel$x)),
- y_label = paste("z-score", gsub("Z_lm_", "", rel$y)),
- annotations = list(
- list(x = 0, y = 0, label = paste("R-squared =", round(lm_summary$r.squared, 3)))
- ),
- add_smooth = TRUE, # Add regression line
- lm_line = list(intercept = coef(lm_model)[1], slope = coef(lm_model)[2]),
- legend_position = "right",
- shape = 3,
- size = 0.5,
- color_var = "Overlap",
- rectangles = list(
- list(
- xmin = -2, xmax = 2, ymin = -2, ymax = 2,
- fill = NA, color = "grey20", alpha = 0.1
- )
- ),
- cyan_points = TRUE
- )
- configs[[length(configs) + 1]] <- config
- }
- return(configs)
- }
- filter_data <- function(df, variables, nf = FALSE, missing = FALSE, adjust = FALSE,
- rank = FALSE, limits_map = NULL, verbose = TRUE) {
-
- avg_zscore_cols <- paste0("Avg_Zscore_", variables)
- z_lm_cols <- paste0("Z_lm_", variables)
-
- # Adjust NAs to .001 for linear model
- if (adjust) {
- if (verbose) message("Replacing NA with 0.001 for Avg_Zscore_ and Z_lm_ columns.")
- df <- df %>%
- mutate(
- across(all_of(avg_zscore_cols), ~ ifelse(is.na(.), 0.001, .)),
- across(all_of(z_lm_cols), ~ ifelse(is.na(.), 0.001, .))
- )
- }
-
- # Filter non-finite values
- if (nf) {
- if (verbose) message("Filtering non-finite values for variables: ", paste(variables, collapse = ", "))
-
- non_finite_df <- df %>%
- filter(if_any(all_of(variables), ~ !is.finite(.)))
-
- if (verbose && nrow(non_finite_df) > 0) {
- message("Filtering non-finite rows for variables ", paste(variables, collapse = ", "), ":")
- print(non_finite_df)
- }
-
- df <- df %>%
- filter(if_all(all_of(variables), ~ is.finite(.)))
- }
-
- # Filter missing values
- if (missing) {
- if (verbose) message("Filtering missing values for variables: ", paste(variables, collapse = ", "))
-
- # Identify missing rows for logging
- missing_df <- df %>%
- filter(if_any(all_of(variables), ~ is.na(.)))
-
- if (verbose && nrow(missing_df) > 0) {
- message("Missing data for variables ", paste(variables, collapse = ", "), ":")
- print(missing_df)
- }
-
- # Keep only rows where all specified variables are not missing
- df <- df %>%
- filter(if_all(all_of(variables), ~ !is.na(.)))
- }
-
- # Apply Limits from 'limits_map' if provided
- if (!is.null(limits_map)) {
- for (variable in names(limits_map)) {
- if (variable %in% variables) {
- ylim_vals <- limits_map[[variable]]
-
- if (verbose) message("Applying limits for variable ", variable, ": [", ylim_vals[1], ", ", ylim_vals[2], "].")
-
- out_of_range_df <- df %>%
- filter(.data[[variable]] < ylim_vals[1] | .data[[variable]] > ylim_vals[2])
-
- if (verbose && nrow(out_of_range_df) > 0) {
- message("Out-of-range data for variable ", variable, ":")
- print(out_of_range_df)
- }
-
- df <- df %>%
- filter(.data[[variable]] >= ylim_vals[1] & .data[[variable]] <= ylim_vals[2])
- }
- }
- }
-
- # Calculate Rank Columns if 'rank' is TRUE
- if (rank) {
- if (verbose) message("Calculating rank columns for variables: ", paste(variables, collapse = ", "))
- for (col in avg_zscore_cols) {
- rank_col <- paste0("Rank_", col)
- df[[rank_col]] <- rank(df[[col]], na.last = "keep")
- }
- for (col in z_lm_cols) {
- rank_lm_col <- paste0("Rank_lm_", col)
- df[[rank_lm_col]] <- rank(df[[col]], na.last = "keep")
- }
- }
- return(df)
- }
- main <- function() {
- lapply(names(args$experiments), function(exp_name) {
- exp <- args$experiments[[exp_name]]
- exp_path <- exp$path
- exp_sd <- exp$sd
- out_dir <- file.path(exp_path, "zscores")
- out_dir_qc <- file.path(exp_path, "zscores", "qc")
- dir.create(out_dir, recursive = TRUE, showWarnings = FALSE)
- dir.create(out_dir_qc, recursive = TRUE, showWarnings = FALSE)
- summary_vars <- c("L", "K", "r", "AUC", "delta_bg") # fields to filter and calculate summary stats across
- interaction_vars <- c("L", "K", "r", "AUC") # fields to calculate interaction z-scores
- print_vars <- c("OrfRep", "Plate", "scan", "Col", "Row", "num", "OrfRep", "conc_num", "conc_num_factor",
- "delta_bg_tolerance", "delta_bg", "Gene", "L", "K", "r", "AUC", "NG", "DB")
-
- message("Loading and filtering data for experiment: ", exp_name)
- df <- load_and_process_data(args$easy_results_file, sd = exp_sd) %>%
- update_gene_names(args$sgd_gene_list) %>%
- as_tibble()
- # Filter rows above delta background tolerance
- df_above_tolerance <- df %>% filter(DB == 1)
- df_na <- df %>% mutate(across(all_of(summary_vars), ~ ifelse(DB == 1, NA, .)))
- df_no_zeros <- df_na %>% filter(L > 0)
-
- # Save some constants
- max_conc <- max(df$conc_num)
- l_half_median <- (median(df_above_tolerance$L, na.rm = TRUE)) / 2
- k_half_median <- (median(df_above_tolerance$K, na.rm = TRUE)) / 2
- message("Calculating summary statistics before quality control")
- ss <- calculate_summary_stats(
- df = df,
- variables = summary_vars,
- group_vars = c("conc_num", "conc_num_factor"))
- df_stats <- ss$df_with_stats
- message("Filtering non-finite data")
- df_filtered_stats <- filter_data(df_stats, c("L"), nf = TRUE)
- message("Calculating summary statistics after quality control")
- ss <- calculate_summary_stats(
- df = df_na,
- variables = summary_vars,
- group_vars = c("conc_num", "conc_num_factor"))
- df_na_ss <- ss$summary_stats
- df_na_stats <- ss$df_with_stats
- write.csv(df_na_ss, file = file.path(out_dir, "summary_stats_all_strains.csv"), row.names = FALSE)
- df_na_filtered_stats <- filter_data(df_na_stats, c("L"), nf = TRUE)
- message("Calculating summary statistics after quality control excluding zero values")
- ss <- calculate_summary_stats(
- df = df_no_zeros,
- variables = summary_vars,
- group_vars = c("conc_num", "conc_num_factor"))
- df_no_zeros_stats <- ss$df_with_stats
- df_no_zeros_filtered_stats <- filter_data(df_no_zeros_stats, c("L"), nf = TRUE)
- message("Filtering by 2SD of K")
- df_na_within_2sd_k <- df_na_stats %>%
- filter(K >= (mean_K - 2 * sd_K) & K <= (mean_K + 2 * sd_K))
- df_na_outside_2sd_k <- df_na_stats %>%
- filter(K < (mean_K - 2 * sd_K) | K > (mean_K + 2 * sd_K))
- message("Calculating summary statistics for L within 2SD of K")
- # TODO We're omitting the original z_max calculation, not sure if needed?
- ss <- calculate_summary_stats(df_na_within_2sd_k, "L", group_vars = c("conc_num", "conc_num_factor"))
- # df_na_l_within_2sd_k_stats <- ss$df_with_stats
- write.csv(ss$summary_stats,
- file = file.path(out_dir_qc, "max_observed_L_vals_for_spots_within_2sd_K.csv"),
- row.names = FALSE)
-
- message("Calculating summary statistics for L outside 2SD of K")
- ss <- calculate_summary_stats(df_na_outside_2sd_k, "L", group_vars = c("conc_num", "conc_num_factor"))
- df_na_l_outside_2sd_k_stats <- ss$df_with_stats
- write.csv(ss$summary_stats,
- file = file.path(out_dir, "max_observed_L_vals_for_spots_outside_2sd_K.csv"),
- row.names = FALSE)
-
- # Each plots list corresponds to a file
- l_vs_k_plots <- list(
- list(
- df = df,
- x_var = "L",
- y_var = "K",
- plot_type = "scatter",
- delta_bg_point = TRUE,
- title = "Raw L vs K before quality control",
- color_var = "conc_num_factor",
- error_bar = FALSE,
- legend_position = "right"
- )
- )
- frequency_delta_bg_plots <- list(
- list(
- df = df_filtered_stats,
- x_var = "delta_bg",
- y_var = NULL,
- plot_type = "density",
- title = "Plate analysis by Drug Conc for Delta Background before quality control",
- color_var = "conc_num_factor",
- x_label = "Delta Background",
- y_label = "Density",
- error_bar = FALSE,
- legend_position = "right"),
- list(
- df = df_filtered_stats,
- x_var = "delta_bg",
- y_var = NULL,
- plot_type = "bar",
- title = "Plate analysis by Drug Conc for Delta Background before quality control",
- color_var = "conc_num_factor",
- x_label = "Delta Background",
- y_label = "Count",
- error_bar = FALSE,
- legend_position = "right")
- )
- above_threshold_plots <- list(
- list(
- df = df_above_tolerance,
- x_var = "L",
- y_var = "K",
- plot_type = "scatter",
- delta_bg_point = TRUE,
- title = paste("Raw L vs K for strains above Delta Background threshold of",
- df_above_tolerance$delta_bg_tolerance[[1]], "or above"),
- color_var = "conc_num_factor",
- position = "jitter",
- annotations = list(
- list(
- x = l_half_median,
- y = k_half_median,
- label = paste("# strains above Delta Background tolerance =", nrow(df_above_tolerance))
- )
- ),
- error_bar = FALSE,
- legend_position = "right"
- )
- )
- plate_analysis_plot_configs <- generate_plate_analysis_plot_configs(
- variables = summary_vars,
- df_before = df_filtered_stats,
- df_after = df_na_filtered_stats,
- )
- plate_analysis_boxplot_configs <- generate_plate_analysis_plot_configs(
- variables = summary_vars,
- df_before = df_filtered_stats,
- df_after = df_na_filtered_stats,
- plot_type = "box"
- )
- plate_analysis_no_zeros_plot_configs <- generate_plate_analysis_plot_configs(
- variables = summary_vars,
- stages = c("after"), # Only after QC
- df_after = df_no_zeros_filtered_stats,
- )
- plate_analysis_no_zeros_boxplot_configs <- generate_plate_analysis_plot_configs(
- variables = summary_vars,
- stages = c("after"), # Only after QC
- df_after = df_no_zeros_filtered_stats,
- plot_type = "box"
- )
- l_outside_2sd_k_plots <- list(
- list(
- df = df_na_l_outside_2sd_k_stats,
- x_var = "L",
- y_var = "K",
- plot_type = "scatter",
- delta_bg_point = TRUE,
- title = "Raw L vs K for strains falling outside 2SD of the K mean at each Conc",
- color_var = "conc_num_factor",
- position = "jitter",
- legend_position = "right"
- )
- )
- delta_bg_outside_2sd_k_plots <- list(
- list(
- df = df_na_l_outside_2sd_k_stats,
- x_var = "delta_bg",
- y_var = "K",
- plot_type = "scatter",
- gene_point = TRUE,
- title = "Delta Background vs K for strains falling outside 2SD of the K mean at each Conc",
- color_var = "conc_num_factor",
- position = "jitter",
- legend_position = "right"
- )
- )
- # message("Generating quality control plots")
- # generate_and_save_plots(out_dir_qc, "L_vs_K_before_quality_control", l_vs_k_plots)
- # generate_and_save_plots(out_dir_qc, "frequency_delta_background", frequency_delta_bg_plots)
- # generate_and_save_plots(out_dir_qc, "L_vs_K_above_threshold", above_threshold_plots)
- # generate_and_save_plots(out_dir_qc, "plate_analysis", plate_analysis_plot_configs)
- # generate_and_save_plots(out_dir_qc, "plate_analysis_boxplots", plate_analysis_boxplot_configs)
- # generate_and_save_plots(out_dir_qc, "plate_analysis_no_zeros", plate_analysis_no_zeros_plot_configs)
- # generate_and_save_plots(out_dir_qc, "plate_analysis_no_zeros_boxplots", plate_analysis_no_zeros_boxplot_configs)
- # generate_and_save_plots(out_dir_qc, "L_vs_K_for_strains_2SD_outside_mean_K", l_outside_2sd_k_plots)
- # generate_and_save_plots(out_dir_qc, "delta_background_vs_K_for_strains_2sd_outside_mean_K", delta_bg_outside_2sd_k_plots)
- # Process background strains
- bg_strains <- c("YDL227C")
- lapply(bg_strains, function(strain) {
-
- message("Processing background strain: ", strain)
-
- # Handle missing data by setting zero values to NA
- # and then removing any rows with NA in L col
- df_bg <- df_na %>%
- filter(OrfRep == strain) %>%
- mutate(
- L = if_else(L == 0, NA, L),
- K = if_else(K == 0, NA, K),
- r = if_else(r == 0, NA, r),
- AUC = if_else(AUC == 0, NA, AUC)
- ) %>%
- filter(!is.na(L))
-
- # Recalculate summary statistics for the background strain
- message("Calculating summary statistics for background strain")
- ss_bg <- calculate_summary_stats(df_bg, summary_vars, group_vars = c("OrfRep", "conc_num", "conc_num_factor"))
- summary_stats_bg <- ss_bg$summary_stats
- # df_bg_stats <- ss_bg$df_with_stats
- write.csv(summary_stats_bg,
- file = file.path(out_dir, paste0("SummaryStats_BackgroundStrains_", strain, ".csv")),
- row.names = FALSE)
-
- # Filter reference and deletion strains
- # Formerly X2_RF (reference strains)
- df_reference <- df_na_stats %>%
- filter(OrfRep == strain) %>%
- mutate(SM = 0)
-
- # Formerly X2 (deletion strains)
- df_deletion <- df_na_stats %>%
- filter(OrfRep != strain) %>%
- mutate(SM = 0)
- # Set the missing values to the highest theoretical value at each drug conc for L
- # Leave other values as 0 for the max/min
- reference_strain <- df_reference %>%
- group_by(conc_num, conc_num_factor) %>%
- mutate(
- max_l_theoretical = max(max_L, na.rm = TRUE),
- L = ifelse(L == 0 & !is.na(L) & conc_num > 0, max_l_theoretical, L),
- SM = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, 1, SM),
- L = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, max_l_theoretical, L)) %>%
- ungroup()
- # Ditto for deletion strains
- deletion_strains <- df_deletion %>%
- group_by(conc_num, conc_num_factor) %>%
- mutate(
- max_l_theoretical = max(max_L, na.rm = TRUE),
- L = ifelse(L == 0 & !is.na(L) & conc_num > 0, max_l_theoretical, L),
- SM = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, 1, SM),
- L = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, max_l_theoretical, L)) %>%
- ungroup()
- message("Calculating reference strain interaction scores")
- reference_results <- calculate_interaction_scores(reference_strain, max_conc, interaction_vars, group_vars = c("OrfRep", "Gene", "num"))
- zscores_calculations_reference <- reference_results$calculations
- zscores_interactions_reference <- reference_results$interactions
- zscores_calculations_reference_joined <- reference_results$calculations_joined
- zscores_interactions_reference_joined <- reference_results$interactions_joined
- message("Calculating deletion strain(s) interactions scores")
- deletion_results <- calculate_interaction_scores(deletion_strains, max_conc, interaction_vars, group_vars = c("OrfRep", "Gene", "num"))
- zscores_calculations <- deletion_results$calculations
- zscores_interactions <- deletion_results$interactions
- zscores_calculations_joined <- deletion_results$calculations_joined
- zscores_interactions_joined <- deletion_results$interactions_joined
- # Writing Z-Scores to file
- write.csv(zscores_calculations_reference, file = file.path(out_dir, "RF_ZScores_Calculations.csv"), row.names = FALSE)
- write.csv(zscores_calculations, file = file.path(out_dir, "ZScores_Calculations.csv"), row.names = FALSE)
- write.csv(zscores_interactions_reference, file = file.path(out_dir, "RF_ZScores_Interaction.csv"), row.names = FALSE)
- write.csv(zscores_interactions, file = file.path(out_dir, "ZScores_Interaction.csv"), row.names = FALSE)
- # Create interaction plots
- message("Generating reference interaction plots")
- reference_plot_configs <- generate_interaction_plot_configs(zscores_interactions_reference_joined, interaction_vars)
- generate_and_save_plots(out_dir, "RF_interactionPlots", reference_plot_configs, grid_layout = list(ncol = 4, nrow = 3))
- message("Generating deletion interaction plots")
- deletion_plot_configs <- generate_interaction_plot_configs(zscores_interactions_joined, interaction_vars)
- generate_and_save_plots(out_dir, "InteractionPlots", deletion_plot_configs, grid_layout = list(ncol = 4, nrow = 3))
- # Define conditions for enhancers and suppressors
- # TODO Add to study config file?
- threshold <- 2
- enhancer_condition_L <- zscores_interactions$Avg_Zscore_L >= threshold
- suppressor_condition_L <- zscores_interactions$Avg_Zscore_L <= -threshold
- enhancer_condition_K <- zscores_interactions$Avg_Zscore_K >= threshold
- suppressor_condition_K <- zscores_interactions$Avg_Zscore_K <= -threshold
-
- # Subset data
- enhancers_L <- zscores_interactions[enhancer_condition_L, ]
- suppressors_L <- zscores_interactions[suppressor_condition_L, ]
- enhancers_K <- zscores_interactions[enhancer_condition_K, ]
- suppressors_K <- zscores_interactions[suppressor_condition_K, ]
-
- # Save enhancers and suppressors
- message("Writing enhancer/suppressor csv files")
- write.csv(enhancers_L, file = file.path(out_dir, "ZScores_Interaction_Deletion_Enhancers_L.csv"), row.names = FALSE)
- write.csv(suppressors_L, file = file.path(out_dir, "ZScores_Interaction_Deletion_Suppressors_L.csv"), row.names = FALSE)
- write.csv(enhancers_K, file = file.path(out_dir, "ZScores_Interaction_Deletion_Enhancers_K.csv"), row.names = FALSE)
- write.csv(suppressors_K, file = file.path(out_dir, "ZScores_Interaction_Deletion_Suppressors_K.csv"), row.names = FALSE)
-
- # Combine conditions for enhancers and suppressors
- enhancers_and_suppressors_L <- zscores_interactions[enhancer_condition_L | suppressor_condition_L, ]
- enhancers_and_suppressors_K <- zscores_interactions[enhancer_condition_K | suppressor_condition_K, ]
-
- # Save combined enhancers and suppressors
- write.csv(enhancers_and_suppressors_L,
- file = file.path(out_dir, "ZScores_Interaction_Deletion_Enhancers_and_Suppressors_L.csv"), row.names = FALSE)
- write.csv(enhancers_and_suppressors_K,
- file = file.path(out_dir, "ZScores_Interaction_Deletion_Enhancers_and_Suppressors_K.csv"), row.names = FALSE)
-
- # Handle linear model based enhancers and suppressors
- lm_threshold <- 2
- enhancers_lm_L <- zscores_interactions[zscores_interactions$Z_lm_L >= lm_threshold, ]
- suppressors_lm_L <- zscores_interactions[zscores_interactions$Z_lm_L <= -lm_threshold, ]
- enhancers_lm_K <- zscores_interactions[zscores_interactions$Z_lm_K >= lm_threshold, ]
- suppressors_lm_K <- zscores_interactions[zscores_interactions$Z_lm_K <= -lm_threshold, ]
-
- # Save linear model based enhancers and suppressors
- message("Writing linear model enhancer/suppressor csv files")
- write.csv(enhancers_lm_L,
- file = file.path(out_dir, "ZScores_Interaction_Deletion_Enhancers_L_lm.csv"), row.names = FALSE)
- write.csv(suppressors_lm_L,
- file = file.path(out_dir, "ZScores_Interaction_Deletion_Suppressors_L_lm.csv"), row.names = FALSE)
- write.csv(enhancers_lm_K,
- file = file.path(out_dir, "ZScores_Interaction_Deletion_Enhancers_K_lm.csv"), row.names = FALSE)
- write.csv(suppressors_lm_K,
- file = file.path(out_dir, "ZScores_Interaction_Deletion_Suppressors_K_lm.csv"), row.names = FALSE)
- message("Generating rank plots")
- zscores_interactions_joined_filtered <- filter_data(
- df = zscores_interactions_joined,
- variables = interaction_vars,
- missing = TRUE,
- adjust = TRUE,
- rank = TRUE)
- rank_plot_configs <- generate_rank_plot_configs(
- df = zscores_interactions_joined_filtered,
- variables = interaction_vars,
- is_lm = FALSE
- )
- generate_and_save_plots(out_dir = out_dir, file_name = "RankPlots",
- plot_configs = rank_plot_configs, grid_layout = list(ncol = 3, nrow = 2))
- message("Generating ranked linear model plots")
- rank_lm_plot_configs <- generate_rank_plot_configs(
- df = zscores_interactions_joined_filtered,
- variables = interaction_vars,
- is_lm = TRUE
- )
- generate_and_save_plots(out_dir = out_dir, file_name = "RankPlots_lm",
- plot_configs = rank_lm_plot_configs, grid_layout = list(ncol = 3, nrow = 2))
- message("Filtering and reranking plots")
- # Formerly X_NArm
- zscores_interactions_filtered <- zscores_interactions_joined %>%
- group_by(across(all_of(c("OrfRep", "Gene", "num")))) %>%
- filter(!is.na(Z_lm_L) | !is.na(Avg_Zscore_L)) %>%
- mutate(
- lm_R_squared_L = if (n() > 1) summary(lm(Z_lm_L ~ Avg_Zscore_L))$r.squared else NA,
- lm_R_squared_K = if (n() > 1) summary(lm(Z_lm_K ~ Avg_Zscore_K))$r.squared else NA,
- lm_R_squared_r = if (n() > 1) summary(lm(Z_lm_r ~ Avg_Zscore_r))$r.squared else NA,
- lm_R_squared_AUC = if (n() > 1) summary(lm(Z_lm_AUC ~ Avg_Zscore_AUC))$r.squared else NA,
- Overlap = case_when(
- Z_lm_L >= 2 & Avg_Zscore_L >= 2 ~ "Deletion Enhancer Both",
- Z_lm_L <= -2 & Avg_Zscore_L <= -2 ~ "Deletion Suppressor Both",
- Z_lm_L >= 2 & Avg_Zscore_L <= 2 ~ "Deletion Enhancer lm only",
- Z_lm_L <= -2 & Avg_Zscore_L >= -2 ~ "Deletion Suppressor lm only",
- Z_lm_L >= 2 & Avg_Zscore_L <= -2 ~ "Deletion Enhancer lm, Deletion Suppressor Avg Z score",
- Z_lm_L <= -2 & Avg_Zscore_L >= 2 ~ "Deletion Suppressor lm, Deletion Enhancer Avg Z score",
- TRUE ~ "No Effect"
- )
- )
- # Re-rank
- zscores_interactions_filtered <- filter_data(
- df = zscores_interactions_filtered,
- variables = interaction_vars,
- missing = TRUE, # TODO what I'm currently having issues with
- rank = TRUE
- )
- rank_plot_filtered_configs <- generate_rank_plot_configs(
- df = zscores_interactions_filtered,
- variables = interaction_vars,
- is_lm = FALSE
- )
- message("Generating filtered ranked plots")
- generate_and_save_plots(
- out_dir = out_dir,
- file_name = "RankPlots_na_rm",
- plot_configs = rank_plot_filtered_configs,
- grid_layout = list(ncol = 3, nrow = 2))
- message("Generating filtered ranked linear model plots")
- rank_plot_lm_filtered_configs <- generate_rank_plot_configs(
- df = zscores_interactions_filtered,
- variables = interaction_vars,
- is_lm = TRUE
- )
- generate_and_save_plots(
- out_dir = out_dir,
- file_name = "RankPlots_lm_na_rm",
- plot_configs = rank_plot_lm_filtered_configs,
- grid_layout = list(ncol = 3, nrow = 2))
- message("Generating correlation plots")
- correlation_plot_configs <- generate_correlation_plot_configs(zscores_interactions_filtered)
- generate_and_save_plots(
- out_dir = out_dir,
- file_name = "Avg_Zscore_vs_lm_NA_rm",
- plot_configs = correlation_plot_configs,
- grid_layout = list(ncol = 2, nrow = 2))
- })
- })
- }
- main()
|