calculate_interaction_zscores.R 63 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674
  1. suppressMessages({
  2. library("ggplot2")
  3. library("plotly")
  4. library("htmlwidgets")
  5. library("htmltools")
  6. library("dplyr")
  7. library("rlang")
  8. library("ggthemes")
  9. library("data.table")
  10. library("grid")
  11. library("gridExtra")
  12. library("future")
  13. library("furrr")
  14. library("purrr")
  15. })
  16. # These parallelization libraries are very noisy
  17. suppressPackageStartupMessages({
  18. library("future")
  19. library("furrr")
  20. library("purrr")
  21. })
  22. # Turn all warnings into errors for development
  23. options(warn = 2)
  24. parse_arguments <- function() {
  25. args <- if (interactive()) {
  26. c(
  27. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/20240116_jhartman2_DoxoHLD",
  28. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/apps/r/SGD_features.tab",
  29. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/easy/20240116_jhartman2_DoxoHLD/results_std.txt",
  30. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/20240822_jhartman2_DoxoHLD/exp1",
  31. "Experiment 1: Doxo versus HLD",
  32. 3,
  33. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/20240822_jhartman2_DoxoHLD/exp2",
  34. "Experiment 2: HLD versus Doxo",
  35. 3
  36. )
  37. } else {
  38. commandArgs(trailingOnly = TRUE)
  39. }
  40. out_dir <- normalizePath(args[1], mustWork = FALSE)
  41. sgd_gene_list <- normalizePath(args[2], mustWork = FALSE)
  42. easy_results_file <- normalizePath(args[3], mustWork = FALSE)
  43. # The remaining arguments should be in groups of 3
  44. exp_args <- args[-(1:3)]
  45. if (length(exp_args) %% 3 != 0) {
  46. stop("Experiment arguments should be in groups of 3: path, name, sd.")
  47. }
  48. # Extract the experiments into a list
  49. experiments <- list()
  50. for (i in seq(1, length(exp_args), by = 3)) {
  51. exp_name <- exp_args[i + 1]
  52. experiments[[exp_name]] <- list(
  53. path = normalizePath(exp_args[i], mustWork = FALSE),
  54. sd = as.numeric(exp_args[i + 2])
  55. )
  56. }
  57. # Extract the trailing number from each path
  58. trailing_numbers <- sapply(experiments, function(x) {
  59. path <- x$path
  60. nums <- gsub("[^0-9]", "", basename(path))
  61. as.integer(nums)
  62. })
  63. # Sort the experiments based on the trailing numbers
  64. sorted_experiments <- experiments[order(trailing_numbers)]
  65. list(
  66. out_dir = out_dir,
  67. sgd_gene_list = sgd_gene_list,
  68. easy_results_file = easy_results_file,
  69. experiments = sorted_experiments
  70. )
  71. }
  72. args <- parse_arguments()
  73. # Should we keep output in exp dirs or combine in the study output dir?
  74. # dir.create(file.path(args$out_dir, "zscores"), showWarnings = FALSE)
  75. # dir.create(file.path(args$out_dir, "zscores", "qc"), showWarnings = FALSE)
  76. theme_publication <- function(base_size = 14, base_family = "sans", legend_position = NULL) {
  77. # Ensure that legend_position has a valid value or default to "none"
  78. legend_position <- if (is.null(legend_position) || length(legend_position) == 0) "none" else legend_position
  79. theme_foundation <- ggthemes::theme_foundation(base_size = base_size, base_family = base_family)
  80. theme_foundation %+replace%
  81. theme(
  82. plot.title = element_text(face = "bold", size = rel(1.6), hjust = 0.5),
  83. text = element_text(),
  84. panel.background = element_blank(),
  85. plot.background = element_blank(),
  86. panel.border = element_blank(),
  87. axis.title = element_text(face = "bold", size = rel(1.4)),
  88. axis.title.y = element_text(angle = 90, vjust = 2),
  89. axis.text = element_text(size = rel(1.2)),
  90. axis.line = element_line(colour = "black"),
  91. panel.grid.major = element_line(colour = "#f0f0f0"),
  92. panel.grid.minor = element_blank(),
  93. legend.key = element_rect(colour = NA),
  94. legend.position = legend_position,
  95. legend.direction =
  96. if (legend_position == "right") {
  97. "vertical"
  98. } else if (legend_position == "bottom") {
  99. "horizontal"
  100. } else {
  101. NULL # No legend direction if position is "none" or other values
  102. },
  103. legend.spacing = unit(0, "cm"),
  104. legend.title = element_text(face = "italic", size = rel(1.3)),
  105. legend.text = element_text(size = rel(1.2)),
  106. plot.margin = unit(c(10, 5, 5, 5), "mm")
  107. )
  108. }
  109. scale_fill_publication <- function(...) {
  110. discrete_scale("fill", "Publication", manual_pal(values = c(
  111. "#386cb0", "#fdb462", "#7fc97f", "#ef3b2c", "#662506",
  112. "#a6cee3", "#fb9a99", "#984ea3", "#ffff33"
  113. )), ...)
  114. }
  115. scale_colour_publication <- function(...) {
  116. discrete_scale("colour", "Publication", manual_pal(values = c(
  117. "#386cb0", "#fdb462", "#7fc97f", "#ef3b2c", "#662506",
  118. "#a6cee3", "#fb9a99", "#984ea3", "#ffff33"
  119. )), ...)
  120. }
  121. # Load the initial dataframe from the easy_results_file
  122. load_and_filter_data <- function(easy_results_file, sd = 3) {
  123. df <- read.delim(easy_results_file, skip = 2, as.is = TRUE, row.names = 1, strip.white = TRUE)
  124. df <- df %>%
  125. filter(!(.[[1]] %in% c("", "Scan"))) %>%
  126. filter(!is.na(ORF) & ORF != "" & !Gene %in% c("BLANK", "Blank", "blank") & Drug != "BMH21") %>%
  127. # Rename columns
  128. rename(L = l, num = Num., AUC = AUC96, scan = Scan, last_bg = LstBackgrd, first_bg = X1stBackgrd) %>%
  129. mutate(
  130. across(c(Col, Row, num, L, K, r, scan, AUC, last_bg, first_bg), as.numeric),
  131. delta_bg = last_bg - first_bg,
  132. delta_bg_tolerance = mean(delta_bg, na.rm = TRUE) + (sd * sd(delta_bg, na.rm = TRUE)),
  133. NG = if_else(L == 0 & !is.na(L), 1, 0),
  134. DB = if_else(delta_bg >= delta_bg_tolerance, 1, 0),
  135. SM = 0,
  136. OrfRep = if_else(ORF == "YDL227C", "YDL227C", OrfRep), # should these be hardcoded?
  137. conc_num = as.numeric(gsub("[^0-9\\.]", "", Conc)),
  138. conc_num_factor = as.numeric(as.factor(conc_num)) - 1, # for legacy purposes
  139. conc_num_factor_factor = as.factor(conc_num)
  140. )
  141. return(df)
  142. }
  143. update_gene_names <- function(df, sgd_gene_list) {
  144. genes <- read.delim(file = sgd_gene_list, quote = "", header = FALSE,
  145. colClasses = c(rep("NULL", 3), rep("character", 2), rep("NULL", 11)))
  146. gene_map <- setNames(genes$V5, genes$V4) # ORF to GeneName mapping
  147. df <- df %>%
  148. mutate(
  149. mapped_genes = gene_map[ORF],
  150. Gene = if_else(is.na(mapped_genes) | OrfRep == "YDL227C", Gene, mapped_genes),
  151. Gene = if_else(Gene == "" | Gene == "OCT1", OrfRep, Gene) # Handle invalid names
  152. )
  153. return(df)
  154. }
  155. calculate_summary_stats <- function(df, variables, group_vars) {
  156. summary_stats <- df %>%
  157. group_by(across(all_of(group_vars))) %>%
  158. summarise(
  159. N = n(),
  160. across(all_of(variables),
  161. list(
  162. mean = ~ mean(.x, na.rm = TRUE),
  163. median = ~ median(.x, na.rm = TRUE),
  164. max = ~ ifelse(all(is.na(.x)), NA, max(.x, na.rm = TRUE)),
  165. min = ~ ifelse(all(is.na(.x)), NA, min(.x, na.rm = TRUE)),
  166. sd = ~ sd(.x, na.rm = TRUE),
  167. se = ~ sd(.x, na.rm = TRUE) / sqrt(n() - 1)
  168. ),
  169. .names = "{.fn}_{.col}"
  170. ),
  171. .groups = "drop"
  172. )
  173. # Create a cleaned version of df that doesn't overlap with summary_stats
  174. df_cleaned <- df %>%
  175. select(-any_of(setdiff(intersect(names(df), names(summary_stats)), group_vars)))
  176. df_joined <- left_join(df_cleaned, summary_stats, by = group_vars)
  177. return(list(summary_stats = summary_stats, df_with_stats = df_joined))
  178. }
  179. calculate_interaction_scores <- function(df, df_bg, group_vars, overlap_threshold = 2) {
  180. max_conc <- max(as.numeric(df$conc_num_factor), na.rm = TRUE)
  181. total_conc_num <- length(unique(df$conc_num))
  182. # Calculate WT statistics from df_bg
  183. wt_stats <- df_bg %>%
  184. filter(conc_num == 0) %>%
  185. summarise(
  186. WT_L = mean(mean_L, na.rm = TRUE),
  187. WT_sd_L = mean(sd_L, na.rm = TRUE),
  188. WT_K = mean(mean_K, na.rm = TRUE),
  189. WT_sd_K = mean(sd_K, na.rm = TRUE),
  190. WT_r = mean(mean_r, na.rm = TRUE),
  191. WT_sd_r = mean(sd_r, na.rm = TRUE),
  192. WT_AUC = mean(mean_AUC, na.rm = TRUE),
  193. WT_sd_AUC = mean(sd_AUC, na.rm = TRUE)
  194. )
  195. # Add WT statistics to df
  196. df <- df %>%
  197. mutate(
  198. WT_L = wt_stats$WT_L,
  199. WT_sd_L = wt_stats$WT_sd_L,
  200. WT_K = wt_stats$WT_K,
  201. WT_sd_K = wt_stats$WT_sd_K,
  202. WT_r = wt_stats$WT_r,
  203. WT_sd_r = wt_stats$WT_sd_r,
  204. WT_AUC = wt_stats$WT_AUC,
  205. WT_sd_AUC = wt_stats$WT_sd_AUC
  206. )
  207. # Compute mean values at zero concentration
  208. mean_L_zero_df <- df %>%
  209. filter(conc_num == 0) %>%
  210. group_by(across(all_of(group_vars))) %>%
  211. summarise(
  212. mean_L_zero = mean(mean_L, na.rm = TRUE),
  213. mean_K_zero = mean(mean_K, na.rm = TRUE),
  214. mean_r_zero = mean(mean_r, na.rm = TRUE),
  215. mean_AUC_zero = mean(mean_AUC, na.rm = TRUE),
  216. .groups = "drop"
  217. )
  218. # Join mean_L_zero_df to df
  219. df <- df %>%
  220. left_join(mean_L_zero_df, by = group_vars)
  221. # Calculate Raw Shifts and Z Shifts
  222. df <- df %>%
  223. mutate(
  224. Raw_Shift_L = mean_L_zero - WT_L,
  225. Raw_Shift_K = mean_K_zero - WT_K,
  226. Raw_Shift_r = mean_r_zero - WT_r,
  227. Raw_Shift_AUC = mean_AUC_zero - WT_AUC,
  228. Z_Shift_L = Raw_Shift_L / WT_sd_L,
  229. Z_Shift_K = Raw_Shift_K / WT_sd_K,
  230. Z_Shift_r = Raw_Shift_r / WT_sd_r,
  231. Z_Shift_AUC = Raw_Shift_AUC / WT_sd_AUC
  232. )
  233. calculations <- df %>%
  234. group_by(across(all_of(group_vars))) %>%
  235. mutate(
  236. NG_sum = sum(NG, na.rm = TRUE),
  237. DB_sum = sum(DB, na.rm = TRUE),
  238. SM_sum = sum(SM, na.rm = TRUE),
  239. num_non_removed_concs = total_conc_num - sum(DB, na.rm = TRUE) - 1,
  240. # Expected values
  241. Exp_L = WT_L + Raw_Shift_L,
  242. Exp_K = WT_K + Raw_Shift_K,
  243. Exp_r = WT_r + Raw_Shift_r,
  244. Exp_AUC = WT_AUC + Raw_Shift_AUC,
  245. # Deltas
  246. Delta_L = mean_L - Exp_L,
  247. Delta_K = mean_K - Exp_K,
  248. Delta_r = mean_r - Exp_r,
  249. Delta_AUC = mean_AUC - Exp_AUC,
  250. # Adjust deltas for NG and SM
  251. Delta_L = if_else(NG == 1, mean_L - WT_L, Delta_L),
  252. Delta_K = if_else(NG == 1, mean_K - WT_K, Delta_K),
  253. Delta_r = if_else(NG == 1, mean_r - WT_r, Delta_r),
  254. Delta_AUC = if_else(NG == 1, mean_AUC - WT_AUC, Delta_AUC),
  255. Delta_L = if_else(SM == 1, mean_L - WT_L, Delta_L),
  256. # Calculate Z-scores
  257. Zscore_L = Delta_L / WT_sd_L,
  258. Zscore_K = Delta_K / WT_sd_K,
  259. Zscore_r = Delta_r / WT_sd_r,
  260. Zscore_AUC = Delta_AUC / WT_sd_AUC
  261. ) %>%
  262. group_modify(~ {
  263. # Perform linear models only if there are enough unique conc_num_factor levels
  264. if (length(unique(.x$conc_num_factor)) > 1) {
  265. # Filter and calculate each lm() separately with individual checks for NAs
  266. lm_L <- if (!all(is.na(.x$Delta_L))) tryCatch(lm(Delta_L ~ conc_num_factor, data = .x), error = function(e) NULL) else NULL
  267. lm_K <- if (!all(is.na(.x$Delta_K))) tryCatch(lm(Delta_K ~ conc_num_factor, data = .x), error = function(e) NULL) else NULL
  268. lm_r <- if (!all(is.na(.x$Delta_r))) tryCatch(lm(Delta_r ~ conc_num_factor, data = .x), error = function(e) NULL) else NULL
  269. lm_AUC <- if (!all(is.na(.x$Delta_AUC))) tryCatch(lm(Delta_AUC ~ conc_num_factor, data = .x), error = function(e) NULL) else NULL
  270. # Mutate results for each lm if it was successfully calculated, suppress warnings for perfect fits
  271. .x %>%
  272. mutate(
  273. lm_intercept_L = if (!is.null(lm_L)) coef(lm_L)[1] else NA,
  274. lm_slope_L = if (!is.null(lm_L)) coef(lm_L)[2] else NA,
  275. R_Squared_L = if (!is.null(lm_L)) suppressWarnings(summary(lm_L)$r.squared) else NA,
  276. lm_Score_L = if (!is.null(lm_L)) max_conc * coef(lm_L)[2] + coef(lm_L)[1] else NA,
  277. lm_intercept_K = if (!is.null(lm_K)) coef(lm_K)[1] else NA,
  278. lm_slope_K = if (!is.null(lm_K)) coef(lm_K)[2] else NA,
  279. R_Squared_K = if (!is.null(lm_K)) suppressWarnings(summary(lm_K)$r.squared) else NA,
  280. lm_Score_K = if (!is.null(lm_K)) max_conc * coef(lm_K)[2] + coef(lm_K)[1] else NA,
  281. lm_intercept_r = if (!is.null(lm_r)) coef(lm_r)[1] else NA,
  282. lm_slope_r = if (!is.null(lm_r)) coef(lm_r)[2] else NA,
  283. R_Squared_r = if (!is.null(lm_r)) suppressWarnings(summary(lm_r)$r.squared) else NA,
  284. lm_Score_r = if (!is.null(lm_r)) max_conc * coef(lm_r)[2] + coef(lm_r)[1] else NA,
  285. lm_intercept_AUC = if (!is.null(lm_AUC)) coef(lm_AUC)[1] else NA,
  286. lm_slope_AUC = if (!is.null(lm_AUC)) coef(lm_AUC)[2] else NA,
  287. R_Squared_AUC = if (!is.null(lm_AUC)) suppressWarnings(summary(lm_AUC)$r.squared) else NA,
  288. lm_Score_AUC = if (!is.null(lm_AUC)) max_conc * coef(lm_AUC)[2] + coef(lm_AUC)[1] else NA
  289. )
  290. } else {
  291. # If not enough conc_num_factor levels, set lm-related values to NA
  292. .x %>%
  293. mutate(
  294. lm_intercept_L = NA, lm_slope_L = NA, R_Squared_L = NA, lm_Score_L = NA,
  295. lm_intercept_K = NA, lm_slope_K = NA, R_Squared_K = NA, lm_Score_K = NA,
  296. lm_intercept_r = NA, lm_slope_r = NA, R_Squared_r = NA, lm_Score_r = NA,
  297. lm_intercept_AUC = NA, lm_slope_AUC = NA, R_Squared_AUC = NA, lm_Score_AUC = NA
  298. )
  299. }
  300. }) %>%
  301. ungroup()
  302. # For interaction plot error bars
  303. delta_means_sds <- calculations %>%
  304. group_by(across(all_of(group_vars))) %>%
  305. summarise(
  306. mean_Delta_L = mean(Delta_L, na.rm = TRUE),
  307. mean_Delta_K = mean(Delta_K, na.rm = TRUE),
  308. mean_Delta_r = mean(Delta_r, na.rm = TRUE),
  309. mean_Delta_AUC = mean(Delta_AUC, na.rm = TRUE),
  310. sd_Delta_L = sd(Delta_L, na.rm = TRUE),
  311. sd_Delta_K = sd(Delta_K, na.rm = TRUE),
  312. sd_Delta_r = sd(Delta_r, na.rm = TRUE),
  313. sd_Delta_AUC = sd(Delta_AUC, na.rm = TRUE),
  314. .groups = "drop"
  315. )
  316. calculations <- calculations %>%
  317. left_join(delta_means_sds, by = group_vars)
  318. # Summary statistics for lm scores
  319. lm_means_sds <- calculations %>%
  320. summarise(
  321. lm_mean_L = mean(lm_Score_L, na.rm = TRUE),
  322. lm_sd_L = sd(lm_Score_L, na.rm = TRUE),
  323. lm_mean_K = mean(lm_Score_K, na.rm = TRUE),
  324. lm_sd_K = sd(lm_Score_K, na.rm = TRUE),
  325. lm_mean_r = mean(lm_Score_r, na.rm = TRUE),
  326. lm_sd_r = sd(lm_Score_r, na.rm = TRUE),
  327. lm_mean_AUC = mean(lm_Score_AUC, na.rm = TRUE),
  328. lm_sd_AUC = sd(lm_Score_AUC, na.rm = TRUE),
  329. .groups = "drop"
  330. )
  331. # Add lm score means and standard deviations to calculations
  332. calculations <- calculations %>%
  333. mutate(
  334. lm_mean_L = lm_means_sds$lm_mean_L,
  335. lm_sd_L = lm_means_sds$lm_sd_L,
  336. lm_mean_K = lm_means_sds$lm_mean_K,
  337. lm_sd_K = lm_means_sds$lm_sd_K,
  338. lm_mean_r = lm_means_sds$lm_mean_r,
  339. lm_sd_r = lm_means_sds$lm_sd_r,
  340. lm_mean_AUC = lm_means_sds$lm_mean_AUC,
  341. lm_sd_AUC = lm_means_sds$lm_sd_AUC
  342. )
  343. # Calculate Z-lm scores
  344. calculations <- calculations %>%
  345. mutate(
  346. Z_lm_L = (lm_Score_L - lm_mean_L) / lm_sd_L,
  347. Z_lm_K = (lm_Score_K - lm_mean_K) / lm_sd_K,
  348. Z_lm_r = (lm_Score_r - lm_mean_r) / lm_sd_r,
  349. Z_lm_AUC = (lm_Score_AUC - lm_mean_AUC) / lm_sd_AUC
  350. )
  351. # Build summary stats (interactions)
  352. interactions <- calculations %>%
  353. group_by(across(all_of(group_vars))) %>%
  354. summarise(
  355. Avg_Zscore_L = sum(Zscore_L, na.rm = TRUE) / first(num_non_removed_concs),
  356. Avg_Zscore_K = sum(Zscore_K, na.rm = TRUE) / first(num_non_removed_concs),
  357. Avg_Zscore_r = sum(Zscore_r, na.rm = TRUE) / (total_conc_num - 1),
  358. Avg_Zscore_AUC = sum(Zscore_AUC, na.rm = TRUE) / (total_conc_num - 1),
  359. # Interaction Z-scores
  360. Z_lm_L = first(Z_lm_L),
  361. Z_lm_K = first(Z_lm_K),
  362. Z_lm_r = first(Z_lm_r),
  363. Z_lm_AUC = first(Z_lm_AUC),
  364. # Raw Shifts
  365. Raw_Shift_L = first(Raw_Shift_L),
  366. Raw_Shift_K = first(Raw_Shift_K),
  367. Raw_Shift_r = first(Raw_Shift_r),
  368. Raw_Shift_AUC = first(Raw_Shift_AUC),
  369. # Z Shifts
  370. Z_Shift_L = first(Z_Shift_L),
  371. Z_Shift_K = first(Z_Shift_K),
  372. Z_Shift_r = first(Z_Shift_r),
  373. Z_Shift_AUC = first(Z_Shift_AUC),
  374. # R Squared values
  375. R_Squared_L = first(R_Squared_L),
  376. R_Squared_K = first(R_Squared_K),
  377. R_Squared_r = first(R_Squared_r),
  378. R_Squared_AUC = first(R_Squared_AUC),
  379. # NG, DB, SM values
  380. NG = first(NG),
  381. DB = first(DB),
  382. SM = first(SM),
  383. .groups = "drop"
  384. )
  385. # Add overlap threshold categories based on Z-lm and Avg-Z scores
  386. interactions <- interactions %>%
  387. filter(!is.na(Z_lm_L) | !is.na(Avg_Zscore_L)) %>%
  388. mutate(
  389. Overlap = case_when(
  390. Z_lm_L >= overlap_threshold & Avg_Zscore_L >= overlap_threshold ~ "Deletion Enhancer Both",
  391. Z_lm_L <= -overlap_threshold & Avg_Zscore_L <= -overlap_threshold ~ "Deletion Suppressor Both",
  392. Z_lm_L >= overlap_threshold & Avg_Zscore_L <= overlap_threshold ~ "Deletion Enhancer lm only",
  393. Z_lm_L <= overlap_threshold & Avg_Zscore_L >= overlap_threshold ~ "Deletion Enhancer Avg Zscore only",
  394. Z_lm_L <= -overlap_threshold & Avg_Zscore_L >= -overlap_threshold ~ "Deletion Suppressor lm only",
  395. Z_lm_L >= -overlap_threshold & Avg_Zscore_L <= -overlap_threshold ~ "Deletion Suppressor Avg Zscore only",
  396. Z_lm_L >= overlap_threshold & Avg_Zscore_L <= -overlap_threshold ~ "Deletion Enhancer lm, Deletion Suppressor Avg Zscore",
  397. Z_lm_L <= -overlap_threshold & Avg_Zscore_L >= overlap_threshold ~ "Deletion Suppressor lm, Deletion Enhancer Avg Zscore",
  398. TRUE ~ "No Effect"
  399. ),
  400. # For correlations
  401. lm_R_squared_L = if (!all(is.na(Z_lm_L)) && !all(is.na(Avg_Zscore_L))) summary(lm(Z_lm_L ~ Avg_Zscore_L))$r.squared else NA,
  402. lm_R_squared_K = if (!all(is.na(Z_lm_K)) && !all(is.na(Avg_Zscore_K))) summary(lm(Z_lm_K ~ Avg_Zscore_K))$r.squared else NA,
  403. lm_R_squared_r = if (!all(is.na(Z_lm_r)) && !all(is.na(Avg_Zscore_r))) summary(lm(Z_lm_r ~ Avg_Zscore_r))$r.squared else NA,
  404. lm_R_squared_AUC = if (!all(is.na(Z_lm_AUC)) && !all(is.na(Avg_Zscore_AUC))) summary(lm(Z_lm_AUC ~ Avg_Zscore_AUC))$r.squared else NA
  405. )
  406. # Creating the final calculations and interactions dataframes with only required columns for csv output
  407. calculations_df <- calculations %>%
  408. select(
  409. all_of(group_vars),
  410. conc_num, conc_num_factor, conc_num_factor_factor, N,
  411. mean_L, median_L, sd_L, se_L,
  412. mean_K, median_K, sd_K, se_K,
  413. mean_r, median_r, sd_r, se_r,
  414. mean_AUC, median_AUC, sd_AUC, se_AUC,
  415. Raw_Shift_L, Raw_Shift_K, Raw_Shift_r, Raw_Shift_AUC,
  416. Z_Shift_L, Z_Shift_K, Z_Shift_r, Z_Shift_AUC,
  417. WT_L, WT_K, WT_r, WT_AUC,
  418. WT_sd_L, WT_sd_K, WT_sd_r, WT_sd_AUC,
  419. Exp_L, Exp_K, Exp_r, Exp_AUC,
  420. Delta_L, Delta_K, Delta_r, Delta_AUC,
  421. mean_Delta_L, mean_Delta_K, mean_Delta_r, mean_Delta_AUC,
  422. Zscore_L, Zscore_K, Zscore_r, Zscore_AUC
  423. )
  424. interactions_df <- interactions %>%
  425. select(
  426. all_of(group_vars),
  427. NG, DB, SM,
  428. Avg_Zscore_L, Avg_Zscore_K, Avg_Zscore_r, Avg_Zscore_AUC,
  429. Z_lm_L, Z_lm_K, Z_lm_r, Z_lm_AUC,
  430. Raw_Shift_L, Raw_Shift_K, Raw_Shift_r, Raw_Shift_AUC,
  431. Z_Shift_L, Z_Shift_K, Z_Shift_r, Z_Shift_AUC,
  432. lm_R_squared_L, lm_R_squared_K, lm_R_squared_r, lm_R_squared_AUC,
  433. Overlap
  434. )
  435. # Join calculations and interactions to avoid dimension mismatch
  436. calculations_no_overlap <- calculations %>%
  437. select(-any_of(c("DB", "NG", "SM",
  438. "Raw_Shift_L", "Raw_Shift_K", "Raw_Shift_r", "Raw_Shift_AUC",
  439. "Z_Shift_L", "Z_Shift_K", "Z_Shift_r", "Z_Shift_AUC",
  440. "Z_lm_L", "Z_lm_K", "Z_lm_r", "Z_lm_AUC")))
  441. full_data <- calculations_no_overlap %>%
  442. left_join(interactions_df, by = group_vars)
  443. # Return final dataframes
  444. return(list(
  445. calculations = calculations_df,
  446. interactions = interactions_df,
  447. full_data = full_data
  448. ))
  449. }
  450. generate_and_save_plots <- function(out_dir, filename, plot_configs, page_width = 12, page_height = 8) {
  451. message("Generating ", filename, ".pdf and ", filename, ".html")
  452. # Check if we're dealing with multiple plot groups
  453. plot_groups <- if ("plots" %in% names(plot_configs)) {
  454. list(plot_configs) # Single group
  455. } else {
  456. plot_configs # Multiple groups
  457. }
  458. # Open the PDF device once for all plots
  459. pdf(file.path(out_dir, paste0(filename, ".pdf")), width = page_width, height = page_height)
  460. # Loop through each plot group
  461. for (group in plot_groups) {
  462. static_plots <- list()
  463. plotly_plots <- list()
  464. # Retrieve grid layout if it exists, otherwise skip
  465. grid_layout <- group$grid_layout
  466. plots <- group$plots
  467. # Only handle grid layout if it exists
  468. if (!is.null(grid_layout)) {
  469. # Set grid_ncol to 1 if not specified
  470. if (is.null(grid_layout$ncol)) {
  471. grid_layout$ncol <- 1
  472. }
  473. # If ncol is set but nrow is not, calculate nrow dynamically based on num_plots
  474. if (!is.null(grid_layout$ncol) && is.null(grid_layout$nrow)) {
  475. num_plots <- length(plots)
  476. nrow <- ceiling(num_plots / grid_layout$ncol)
  477. message("No nrow provided, automatically using nrow = ", nrow)
  478. grid_layout$nrow <- nrow
  479. }
  480. }
  481. for (i in seq_along(plots)) {
  482. config <- plots[[i]]
  483. df <- config$df
  484. # Filter points outside of y-limits if specified
  485. if (!is.null(config$ylim_vals)) {
  486. out_of_bounds_df <- df %>%
  487. filter(
  488. is.na(.data[[config$y_var]]) |
  489. .data[[config$y_var]] < config$ylim_vals[1] |
  490. .data[[config$y_var]] > config$ylim_vals[2]
  491. )
  492. # Print rows being filtered out
  493. if (nrow(out_of_bounds_df) > 0) {
  494. message("# of filtered rows outside y-limits (for plotting): ", nrow(out_of_bounds_df))
  495. # print(out_of_bounds_df)
  496. }
  497. # Filter the valid data for plotting
  498. df <- df %>%
  499. filter(
  500. !is.na(.data[[config$y_var]]) &
  501. .data[[config$y_var]] >= config$ylim_vals[1] &
  502. .data[[config$y_var]] <= config$ylim_vals[2]
  503. )
  504. }
  505. # Set up aes mapping based on plot type
  506. aes_mapping <- if (config$plot_type == "bar") {
  507. if (!is.null(config$color_var)) {
  508. aes(x = .data[[config$x_var]], fill = .data[[config$color_var]], color = .data[[config$color_var]])
  509. } else {
  510. aes(x = .data[[config$x_var]])
  511. }
  512. } else if (config$plot_type == "density") {
  513. if (!is.null(config$color_var)) {
  514. aes(x = .data[[config$x_var]], color = .data[[config$color_var]])
  515. } else {
  516. aes(x = .data[[config$x_var]])
  517. }
  518. } else {
  519. if (!is.null(config$y_var) && !is.null(config$color_var)) {
  520. aes(x = .data[[config$x_var]], y = .data[[config$y_var]], color = .data[[config$color_var]])
  521. } else if (!is.null(config$y_var)) {
  522. aes(x = .data[[config$x_var]], y = .data[[config$y_var]])
  523. } else {
  524. aes(x = .data[[config$x_var]])
  525. }
  526. }
  527. plot <- ggplot(df, aes_mapping) + theme_publication(legend_position = config$legend_position)
  528. # Add appropriate plot layer or helper function based on plot type
  529. plot <- switch(config$plot_type,
  530. "scatter" = generate_scatter_plot(plot, config),
  531. "box" = generate_boxplot(plot, config),
  532. "density" = plot + geom_density(),
  533. "bar" = plot + geom_bar(),
  534. plot # default (unused)
  535. )
  536. # Add labels and title
  537. if (!is.null(config$title)) {
  538. plot <- plot + ggtitle(config$title)
  539. if (!is.null(config$title_size)) {
  540. plot <- plot + theme(plot.title = element_text(size = config$title_size))
  541. }
  542. }
  543. if (!is.null(config$x_label)) plot <- plot + xlab(config$x_label)
  544. if (!is.null(config$y_label)) plot <- plot + ylab(config$y_label)
  545. if (!is.null(config$coord_cartesian)) plot <- plot + coord_cartesian(ylim = config$coord_cartesian)
  546. # Add annotations if specified
  547. if (!is.null(config$annotations)) {
  548. for (annotation in config$annotations) {
  549. plot <- plot +
  550. annotate(
  551. "text",
  552. x = ifelse(is.null(annotation$x), 0, annotation$x),
  553. y = ifelse(is.null(annotation$y), Inf, annotation$y),
  554. label = annotation$label,
  555. hjust = ifelse(is.null(annotation$hjust), 0.5, annotation$hjust),
  556. vjust = ifelse(is.null(annotation$vjust), 1, annotation$vjust),
  557. size = ifelse(is.null(annotation$size), 3, annotation$size),
  558. color = ifelse(is.null(annotation$color), "black", annotation$color)
  559. )
  560. }
  561. }
  562. # Add error bars if specified
  563. if (!is.null(config$error_bar) && config$error_bar) {
  564. # Check if custom columns are provided for y_mean and y_sd, or use the defaults
  565. y_mean_col <- if (!is.null(config$error_bar_params$y_mean_col)) {
  566. config$error_bar_params$y_mean_col
  567. } else {
  568. paste0("mean_", config$y_var)
  569. }
  570. y_sd_col <- if (!is.null(config$error_bar_params$y_sd_col)) {
  571. config$error_bar_params$y_sd_col
  572. } else {
  573. paste0("sd_", config$y_var)
  574. }
  575. # If color_var is provided and no fixed error bar color is set, use aes() to map color dynamically
  576. if (!is.null(config$color_var) && is.null(config$error_bar_params$color)) {
  577. plot <- plot + geom_errorbar(
  578. aes(
  579. x = .data[[config$x_var]],
  580. ymin = .data[[y_mean_col]] - .data[[y_sd_col]],
  581. ymax = .data[[y_mean_col]] + .data[[y_sd_col]],
  582. color = .data[[config$color_var]]
  583. )
  584. )
  585. } else {
  586. # If a fixed error bar color is set, use it outside aes
  587. plot <- plot + geom_errorbar(
  588. aes(
  589. x = .data[[config$x_var]],
  590. ymin = .data[[y_mean_col]] - .data[[y_sd_col]],
  591. ymax = .data[[y_mean_col]] + .data[[y_sd_col]]
  592. ),
  593. color = config$error_bar_params$color
  594. )
  595. }
  596. # Add the center point if the option is provided
  597. if (!is.null(config$error_bar_params$center_point)) {
  598. plot <- plot + geom_point(aes(
  599. x = .data[[config$x_var]],
  600. y = .data[[y_mean_col]]),
  601. color = config$error_bar_params$color,
  602. shape = 16
  603. )
  604. }
  605. }
  606. # Convert ggplot to plotly for interactive version
  607. plotly_plot <- suppressWarnings(plotly::ggplotly(plot))
  608. # Store both static and interactive versions
  609. static_plots[[i]] <- plot
  610. plotly_plots[[i]] <- plotly_plot
  611. }
  612. # Print the plots in the current group to the PDF
  613. if (is.null(grid_layout)) {
  614. # Print each plot individually on separate pages if no grid layout is specified
  615. for (plot in static_plots) {
  616. print(plot)
  617. }
  618. } else {
  619. # Arrange plots in grid layout on a single page
  620. grid.arrange(
  621. grobs = static_plots,
  622. ncol = grid_layout$ncol,
  623. nrow = grid_layout$nrow
  624. )
  625. # grid.newpage()
  626. }
  627. }
  628. # Close the PDF device after all plots are done
  629. dev.off()
  630. # Save HTML file with interactive plots if needed
  631. out_html_file <- file.path(out_dir, paste0(filename, ".html"))
  632. message("Saving combined HTML file: ", out_html_file)
  633. htmltools::save_html(
  634. htmltools::tagList(plotly_plots),
  635. file = out_html_file
  636. )
  637. }
  638. generate_scatter_plot <- function(plot, config) {
  639. # Define the points
  640. shape <- if (!is.null(config$shape)) config$shape else 3
  641. size <- if (!is.null(config$size)) config$size else 1.5
  642. position <-
  643. if (!is.null(config$position) && config$position == "jitter") {
  644. position_jitter(width = 0.4, height = 0.1)
  645. } else {
  646. "identity"
  647. }
  648. plot <- plot + geom_point(
  649. shape = shape,
  650. size = size,
  651. position = position
  652. )
  653. if (!is.null(config$cyan_points) && config$cyan_points) {
  654. plot <- plot + geom_point(
  655. aes(x = .data[[config$x_var]], y = .data[[config$y_var]]),
  656. color = "cyan",
  657. shape = 3,
  658. size = 0.5
  659. )
  660. }
  661. if (!is.null(config$gray_points) && config$gray_points) {
  662. plot <- plot + geom_point(shape = 3, color = "gray70", size = 1)
  663. }
  664. # Add Smooth Line if specified
  665. if (!is.null(config$smooth) && config$smooth) {
  666. smooth_color <- if (!is.null(config$smooth_color)) config$smooth_color else "blue"
  667. if (!is.null(config$lm_line)) {
  668. plot <- plot +
  669. geom_abline(
  670. intercept = config$lm_line$intercept,
  671. slope = config$lm_line$slope,
  672. color = smooth_color
  673. )
  674. }
  675. # For now I want to try and hardcode it
  676. # else {
  677. # plot <- plot +
  678. # geom_smooth(
  679. # method = "lm",
  680. # se = FALSE,
  681. # color = smooth_color
  682. # )
  683. # }
  684. }
  685. # Add SD Bands if specified
  686. if (!is.null(config$sd_band)) {
  687. plot <- plot +
  688. annotate(
  689. "rect",
  690. xmin = -Inf, xmax = Inf,
  691. ymin = config$sd_band, ymax = Inf,
  692. fill = ifelse(!is.null(config$fill_positive), config$fill_positive, "#542788"),
  693. alpha = ifelse(!is.null(config$alpha_positive), config$alpha_positive, 0.3)
  694. ) +
  695. annotate(
  696. "rect",
  697. xmin = -Inf, xmax = Inf,
  698. ymin = -config$sd_band, ymax = -Inf,
  699. fill = ifelse(!is.null(config$fill_negative), config$fill_negative, "orange"),
  700. alpha = ifelse(!is.null(config$alpha_negative), config$alpha_negative, 0.3)
  701. ) +
  702. geom_hline(
  703. yintercept = c(-config$sd_band, config$sd_band),
  704. color = ifelse(!is.null(config$hl_color), config$hl_color, "gray")
  705. )
  706. }
  707. # Add Rectangles if specified
  708. if (!is.null(config$rectangles)) {
  709. for (rect in config$rectangles) {
  710. plot <- plot + annotate(
  711. "rect",
  712. xmin = rect$xmin,
  713. xmax = rect$xmax,
  714. ymin = rect$ymin,
  715. ymax = rect$ymax,
  716. fill = ifelse(is.null(rect$fill), NA, rect$fill),
  717. color = ifelse(is.null(rect$color), "black", rect$color),
  718. alpha = ifelse(is.null(rect$alpha), 0.1, rect$alpha)
  719. )
  720. }
  721. }
  722. # Customize X-axis if specified
  723. if (!is.null(config$x_breaks) && !is.null(config$x_labels) && !is.null(config$x_label)) {
  724. # Check if x_var is factor or character (for discrete x-axis)
  725. if (is.factor(plot$data[[config$x_var]]) || is.character(plot$data[[config$x_var]])) {
  726. plot <- plot +
  727. scale_x_discrete(
  728. name = config$x_label,
  729. breaks = config$x_breaks,
  730. labels = config$x_labels
  731. )
  732. } else {
  733. plot <- plot +
  734. scale_x_continuous(
  735. name = config$x_label,
  736. breaks = config$x_breaks,
  737. labels = config$x_labels
  738. )
  739. }
  740. }
  741. # Set Y-axis limits if specified
  742. if (!is.null(config$ylim_vals)) {
  743. plot <- plot + scale_y_continuous(limits = config$ylim_vals)
  744. }
  745. return(plot)
  746. }
  747. generate_boxplot <- function(plot, config) {
  748. # Convert x_var to a factor within aes mapping
  749. plot <- plot + geom_boxplot(aes(x = factor(.data[[config$x_var]])))
  750. # Customize X-axis if specified
  751. if (!is.null(config$x_breaks) && !is.null(config$x_labels) && !is.null(config$x_label)) {
  752. # Check if x_var is factor or character (for discrete x-axis)
  753. if (is.factor(plot$data[[config$x_var]]) || is.character(plot$data[[config$x_var]])) {
  754. plot <- plot +
  755. scale_x_discrete(
  756. name = config$x_label,
  757. breaks = config$x_breaks,
  758. labels = config$x_labels
  759. )
  760. } else {
  761. plot <- plot +
  762. scale_x_continuous(
  763. name = config$x_label,
  764. breaks = config$x_breaks,
  765. labels = config$x_labels
  766. )
  767. }
  768. }
  769. return(plot)
  770. }
  771. generate_plate_analysis_plot_configs <- function(variables, df_before = NULL, df_after = NULL,
  772. plot_type = "scatter", stages = c("before", "after")) {
  773. plot_configs <- list()
  774. for (var in variables) {
  775. for (stage in stages) {
  776. df_plot <- if (stage == "before") df_before else df_after
  777. # Check for non-finite values in the y-variable
  778. df_plot_filtered <- df_plot %>% filter(is.finite(!!sym(var)))
  779. # Adjust settings based on plot_type
  780. plot_config <- list(
  781. df = df_plot_filtered,
  782. x_var = "scan",
  783. y_var = var,
  784. plot_type = plot_type,
  785. title = paste("Plate analysis by Drug Conc for", var, stage, "quality control"),
  786. color_var = "conc_num_factor_factor",
  787. size = 0.2,
  788. error_bar = (plot_type == "scatter"),
  789. legend_position = "bottom"
  790. )
  791. # Add config to plots list
  792. plot_configs <- append(plot_configs, list(plot_config))
  793. }
  794. }
  795. return(list(plots = plot_configs))
  796. }
  797. generate_interaction_plot_configs <- function(df_summary, df_interaction, type) {
  798. # Define the y-limits for the plots
  799. limits_map <- list(
  800. L = c(0, 130),
  801. K = c(-20, 160),
  802. r = c(0, 1),
  803. AUC = c(0, 12500)
  804. )
  805. stats_plot_configs <- list()
  806. stats_boxplot_configs <- list()
  807. delta_plot_configs <- list()
  808. # Overall statistics plots
  809. OrfRep <- first(df_summary$OrfRep) # this should correspond to the reference strain
  810. for (plot_type in c("scatter", "box")) {
  811. for (var in names(limits_map)) {
  812. y_limits <- limits_map[[var]]
  813. y_span <- y_limits[2] - y_limits[1]
  814. # Common plot configuration
  815. plot_config <- list(
  816. df = df_summary,
  817. plot_type = plot_type,
  818. x_var = "conc_num_factor_factor",
  819. y_var = var,
  820. shape = 16,
  821. x_label = paste0("[", unique(df_summary$Drug)[1], "]"),
  822. coord_cartesian = y_limits,
  823. x_breaks = unique(df_summary$conc_num_factor_factor),
  824. x_labels = as.character(unique(df_summary$conc_num))
  825. )
  826. # Add specific configurations for scatter and box plots
  827. if (plot_type == "scatter") {
  828. plot_config$title <- sprintf("%s Scatter RF for %s with SD", OrfRep, var)
  829. plot_config$error_bar <- TRUE
  830. plot_config$error_bar_params <- list(
  831. color = "red",
  832. center_point = TRUE,
  833. y_mean_col = paste0("mean_mean_", var),
  834. y_sd_col = paste0("mean_sd_", var)
  835. )
  836. plot_config$position <- "jitter"
  837. # Cannot figure out how to place these properly for discrete x-axis so let's be hacky
  838. annotations <- list(
  839. list(x = 0.25, y = y_limits[1] + 0.08 * y_span, label = " NG =", size = 4),
  840. list(x = 0.25, y = y_limits[1] + 0.04 * y_span, label = " DB =", size = 4),
  841. list(x = 0.25, y = y_limits[1], label = " SM =", size = 4)
  842. )
  843. for (x_val in unique(df_summary$conc_num_factor_factor)) {
  844. current_df <- df_summary %>% filter(.data[[plot_config$x_var]] == x_val)
  845. annotations <- append(annotations, list(
  846. list(x = x_val, y = y_limits[1] + 0.08 * y_span, label = first(current_df$NG, default = 0), size = 4),
  847. list(x = x_val, y = y_limits[1] + 0.04 * y_span, label = first(current_df$DB, default = 0), size = 4),
  848. list(x = x_val, y = y_limits[1], label = first(current_df$SM, default = 0), size = 4)
  849. ))
  850. }
  851. plot_config$annotations <- annotations
  852. stats_plot_configs <- append(stats_plot_configs, list(plot_config))
  853. } else if (plot_type == "box") {
  854. plot_config$title <- sprintf("%s Box RF for %s with SD", OrfRep, var)
  855. plot_config$position <- "dodge"
  856. stats_boxplot_configs <- append(stats_boxplot_configs, list(plot_config))
  857. }
  858. }
  859. }
  860. # Delta interaction plots
  861. if (type == "reference") {
  862. group_vars <- c("OrfRep", "Gene", "num")
  863. } else if (type == "deletion") {
  864. group_vars <- c("OrfRep", "Gene")
  865. }
  866. delta_limits_map <- list(
  867. L = c(-60, 60),
  868. K = c(-60, 60),
  869. r = c(-0.6, 0.6),
  870. AUC = c(-6000, 6000)
  871. )
  872. grouped_data <- df_interaction %>%
  873. group_by(across(all_of(group_vars))) %>%
  874. group_split()
  875. for (group_data in grouped_data) {
  876. OrfRep <- first(group_data$OrfRep)
  877. Gene <- first(group_data$Gene)
  878. num <- if ("num" %in% names(group_data)) first(group_data$num) else ""
  879. if (type == "reference") {
  880. OrfRepTitle <- paste(OrfRep, Gene, num, sep = "_")
  881. } else if (type == "deletion") {
  882. OrfRepTitle <- OrfRep
  883. }
  884. for (var in names(delta_limits_map)) {
  885. y_limits <- delta_limits_map[[var]]
  886. y_span <- y_limits[2] - y_limits[1]
  887. WT_sd_value <- first(group_data[[paste0("WT_sd_", var)]], default = 0)
  888. Z_Shift_value <- round(first(group_data[[paste0("Z_Shift_", var)]], default = 0), 2)
  889. Z_lm_value <- round(first(group_data[[paste0("Z_lm_", var)]], default = 0), 2)
  890. R_squared_value <- round(first(group_data[[paste0("R_Squared_", var)]], default = 0), 2)
  891. NG_value <- first(group_data$NG, default = 0)
  892. DB_value <- first(group_data$DB, default = 0)
  893. SM_value <- first(group_data$SM, default = 0)
  894. lm_intercept_col <- paste0("lm_intercept_", var)
  895. lm_slope_col <- paste0("lm_slope_", var)
  896. lm_intercept_value <- first(group_data[[lm_intercept_col]], default = 0)
  897. lm_slope_value <- first(group_data[[lm_slope_col]], default = 0)
  898. plot_config <- list(
  899. df = group_data,
  900. plot_type = "scatter",
  901. x_var = "conc_num_factor_factor",
  902. y_var = paste0("Delta_", var),
  903. x_label = paste0("[", unique(df_summary$Drug)[1], "]"),
  904. shape = 16,
  905. title = paste(OrfRepTitle, Gene, sep = " "),
  906. title_size = rel(1.3),
  907. coord_cartesian = y_limits,
  908. annotations = list(
  909. list(x = 1, y = y_limits[2] - 0.2 * y_span, label = paste("ZShift =", Z_Shift_value)),
  910. list(x = 1, y = y_limits[2] - 0.3 * y_span, label = paste("lm ZScore =", Z_lm_value)),
  911. list(x = 1, y = y_limits[2] - 0.4 * y_span, label = paste("R-squared =", R_squared_value)),
  912. list(x = 1, y = y_limits[1] + 0.2 * y_span, label = paste("NG =", NG_value)),
  913. list(x = 1, y = y_limits[1] + 0.1 * y_span, label = paste("DB =", DB_value)),
  914. list(x = 1, y = y_limits[1], label = paste("SM =", SM_value))
  915. ),
  916. error_bar = TRUE,
  917. error_bar_params = list(
  918. ymin = 0 - (2 * WT_sd_value),
  919. ymax = 0 + (2 * WT_sd_value),
  920. color = "gray"
  921. ),
  922. x_breaks = unique(group_data$conc_num_factor_factor),
  923. x_labels = as.character(unique(group_data$conc_num)),
  924. ylim_vals = y_limits,
  925. y_filter = FALSE,
  926. smooth = TRUE,
  927. lm_line = list(
  928. intercept = lm_intercept_value,
  929. slope = lm_slope_value,
  930. color = "blue"
  931. )
  932. )
  933. delta_plot_configs <- append(delta_plot_configs, list(plot_config))
  934. }
  935. }
  936. # Group delta plots in chunks of 12
  937. chunk_size <- 12
  938. delta_plot_chunks <- split(delta_plot_configs, ceiling(seq_along(delta_plot_configs) / chunk_size))
  939. return(c(
  940. list(list(grid_layout = list(ncol = 2), plots = stats_plot_configs)),
  941. list(list(grid_layout = list(ncol = 2), plots = stats_boxplot_configs)),
  942. lapply(delta_plot_chunks, function(chunk) list(grid_layout = list(ncol = 4), plots = chunk))
  943. ))
  944. }
  945. generate_rank_plot_configs <- function(df, is_lm = FALSE, adjust = FALSE, overlap_color = FALSE) {
  946. sd_bands <- c(1, 2, 3)
  947. plot_configs <- list()
  948. variables <- c("L", "K")
  949. # Adjust (if necessary) and rank columns
  950. for (variable in variables) {
  951. if (adjust) {
  952. df[[paste0("Avg_Zscore_", variable)]] <- ifelse(is.na(df[[paste0("Avg_Zscore_", variable)]]), 0.001, df[[paste0("Avg_Zscore_", variable)]])
  953. df[[paste0("Z_lm_", variable)]] <- ifelse(is.na(df[[paste0("Z_lm_", variable)]]), 0.001, df[[paste0("Z_lm_", variable)]])
  954. }
  955. df[[paste0("Rank_", variable)]] <- rank(df[[paste0("Avg_Zscore_", variable)]], na.last = "keep")
  956. df[[paste0("Rank_lm_", variable)]] <- rank(df[[paste0("Z_lm_", variable)]], na.last = "keep")
  957. }
  958. # Helper function to create a plot configuration
  959. create_plot_config <- function(variable, rank_var, zscore_var, y_label, sd_band, with_annotations = TRUE) {
  960. num_enhancers <- sum(df[[zscore_var]] >= sd_band, na.rm = TRUE)
  961. num_suppressors <- sum(df[[zscore_var]] <= -sd_band, na.rm = TRUE)
  962. # Default plot config
  963. plot_config <- list(
  964. df = df,
  965. x_var = rank_var,
  966. y_var = zscore_var,
  967. x_label = "Rank",
  968. plot_type = "scatter",
  969. title = paste(y_label, "vs. Rank for", variable, "above", sd_band),
  970. sd_band = sd_band,
  971. fill_positive = "#542788",
  972. fill_negative = "orange",
  973. alpha_positive = 0.3,
  974. alpha_negative = 0.3,
  975. shape = 3,
  976. size = 0.1,
  977. y_label = y_label,
  978. x_label = "Rank",
  979. legend_position = "none"
  980. )
  981. if (with_annotations) {
  982. # Add specific annotations for plots with annotations
  983. plot_config$annotations <- list(
  984. list(
  985. x = nrow(df) / 2,
  986. y = 10,
  987. label = paste("Deletion Enhancers =", num_enhancers)
  988. ),
  989. list(
  990. x = nrow(df) / 2,
  991. y = -10,
  992. label = paste("Deletion Suppressors =", num_suppressors)
  993. )
  994. )
  995. }
  996. return(plot_config)
  997. }
  998. # Generate plots for each variable
  999. for (variable in variables) {
  1000. rank_var <- if (is_lm) paste0("Rank_lm_", variable) else paste0("Rank_", variable)
  1001. zscore_var <- if (is_lm) paste0("Z_lm_", variable) else paste0("Avg_Zscore_", variable)
  1002. y_label <- if (is_lm) paste("Int Z score", variable) else paste("Avg Z score", variable)
  1003. # Loop through SD bands
  1004. for (sd_band in sd_bands) {
  1005. # Create plot with annotations
  1006. plot_configs[[length(plot_configs) + 1]] <- create_plot_config(variable, rank_var, zscore_var, y_label, sd_band, with_annotations = TRUE)
  1007. # Create plot without annotations
  1008. plot_configs[[length(plot_configs) + 1]] <- create_plot_config(variable, rank_var, zscore_var, y_label, sd_band, with_annotations = FALSE)
  1009. }
  1010. }
  1011. return(list(grid_layout = list(ncol = 3), plots = plot_configs))
  1012. }
  1013. generate_correlation_plot_configs <- function(df) {
  1014. # Define relationships for different-variable correlations
  1015. relationships <- list(
  1016. list(x = "L", y = "K"),
  1017. list(x = "L", y = "r"),
  1018. list(x = "L", y = "AUC"),
  1019. list(x = "K", y = "r"),
  1020. list(x = "K", y = "AUC"),
  1021. list(x = "r", y = "AUC")
  1022. )
  1023. plot_configs <- list()
  1024. # Iterate over the option to highlight cyan points (TRUE/FALSE)
  1025. highlight_cyan_options <- c(FALSE, TRUE)
  1026. for (highlight_cyan in highlight_cyan_options) {
  1027. for (rel in relationships) {
  1028. # Extract relevant variable names for Z_lm values
  1029. x_var <- paste0("Z_lm_", rel$x)
  1030. y_var <- paste0("Z_lm_", rel$y)
  1031. # Access the correlation statistics from the correlation_stats list
  1032. relationship_name <- paste0(rel$x, "_vs_", rel$y) # Example: L_vs_K
  1033. stats <- correlation_stats[[relationship_name]]
  1034. intercept <- stats$intercept
  1035. slope <- stats$slope
  1036. r_squared <- stats$r_squared
  1037. # Generate the label for the plot
  1038. plot_label <- paste("Interaction", rel$x, "vs.", rel$y)
  1039. # Construct plot config
  1040. plot_config <- list(
  1041. df = df,
  1042. x_var = x_var,
  1043. y_var = y_var,
  1044. plot_type = "scatter",
  1045. title = plot_label,
  1046. annotations = list(
  1047. list(
  1048. x = mean(df[[x_var]], na.rm = TRUE),
  1049. y = mean(df[[y_var]], na.rm = TRUE),
  1050. label = paste("R-squared =", round(r_squared, 3))
  1051. )
  1052. ),
  1053. smooth = TRUE,
  1054. smooth_color = "tomato3",
  1055. lm_line = list(
  1056. intercept = intercept,
  1057. slope = slope
  1058. ),
  1059. shape = 3,
  1060. size = 0.5,
  1061. color_var = "Overlap",
  1062. cyan_points = highlight_cyan, # include cyan points or not based on the loop
  1063. gray_points = TRUE
  1064. )
  1065. plot_configs <- append(plot_configs, list(plot_config))
  1066. }
  1067. }
  1068. return(list(plots = plot_configs))
  1069. }
  1070. main <- function() {
  1071. lapply(names(args$experiments), function(exp_name) {
  1072. exp <- args$experiments[[exp_name]]
  1073. exp_path <- exp$path
  1074. exp_sd <- exp$sd
  1075. out_dir <- file.path(exp_path, "zscores")
  1076. out_dir_qc <- file.path(exp_path, "zscores", "qc")
  1077. dir.create(out_dir, recursive = TRUE, showWarnings = FALSE)
  1078. dir.create(out_dir_qc, recursive = TRUE, showWarnings = FALSE)
  1079. # Each list of plots corresponds to a separate file
  1080. message("Loading and filtering data for experiment: ", exp_name)
  1081. df <- load_and_filter_data(args$easy_results_file, sd = exp_sd) %>%
  1082. update_gene_names(args$sgd_gene_list) %>%
  1083. as_tibble()
  1084. l_vs_k_plot_configs <- list(
  1085. plots = list(
  1086. list(
  1087. df = df,
  1088. x_var = "L",
  1089. y_var = "K",
  1090. plot_type = "scatter",
  1091. tooltip_vars = c("OrfRep", "Gene", "delta_bg"),
  1092. title = "Raw L vs K before quality control",
  1093. color_var = "conc_num_factor_factor",
  1094. error_bar = FALSE,
  1095. legend_position = "right"
  1096. )
  1097. )
  1098. )
  1099. message("Calculating summary statistics before quality control")
  1100. df_stats <- calculate_summary_stats( # formerly X_stats_ALL
  1101. df = df,
  1102. variables = c("L", "K", "r", "AUC", "delta_bg"),
  1103. group_vars = c("conc_num", "conc_num_factor_factor"))$df_with_stats
  1104. frequency_delta_bg_plot_configs <- list(
  1105. plots = list(
  1106. list(
  1107. df = df_stats,
  1108. x_var = "delta_bg",
  1109. y_var = NULL,
  1110. plot_type = "density",
  1111. title = "Density plot for Delta Background by [Drug] (All Data)",
  1112. color_var = "conc_num_factor_factor",
  1113. x_label = "Delta Background",
  1114. y_label = "Density",
  1115. error_bar = FALSE,
  1116. legend_position = "right"
  1117. ),
  1118. list(
  1119. df = df_stats,
  1120. x_var = "delta_bg",
  1121. y_var = NULL,
  1122. plot_type = "bar",
  1123. title = "Bar plot for Delta Background by [Drug] (All Data)",
  1124. color_var = "conc_num_factor_factor",
  1125. x_label = "Delta Background",
  1126. y_label = "Count",
  1127. error_bar = FALSE,
  1128. legend_position = "right"
  1129. )
  1130. )
  1131. )
  1132. message("Filtering rows above delta background tolerance for plotting")
  1133. df_above_tolerance <- df %>% filter(DB == 1)
  1134. above_threshold_plot_configs <- list(
  1135. plots = list(
  1136. list(
  1137. df = df_above_tolerance,
  1138. x_var = "L",
  1139. y_var = "K",
  1140. plot_type = "scatter",
  1141. tooltip_vars = c("OrfRep", "Gene", "delta_bg"),
  1142. title = paste("Raw L vs K for strains above Delta Background threshold of",
  1143. round(df_above_tolerance$delta_bg_tolerance[[1]], 3), "or above"),
  1144. color_var = "conc_num_factor_factor",
  1145. position = "jitter",
  1146. annotations = list(
  1147. list(
  1148. x = median(df_above_tolerance$L, na.rm = TRUE) / 2,
  1149. y = median(df_above_tolerance$K, na.rm = TRUE) / 2,
  1150. label = paste("# strains above Delta Background tolerance =", nrow(df_above_tolerance))
  1151. )
  1152. ),
  1153. error_bar = FALSE,
  1154. legend_position = "right"
  1155. )
  1156. )
  1157. )
  1158. message("Setting rows above delta background tolerance to NA")
  1159. df_na <- df %>% mutate(across(all_of(c("L", "K", "r", "AUC", "delta_bg")), ~ ifelse(DB == 1, NA, .))) # formerly X
  1160. message("Calculating summary statistics across all strains")
  1161. ss <- calculate_summary_stats(
  1162. df = df_na,
  1163. variables = c("L", "K", "r", "AUC", "delta_bg"),
  1164. group_vars = c("conc_num", "conc_num_factor_factor"))
  1165. df_na_ss <- ss$summary_stats
  1166. df_na_stats <- ss$df_with_stats # formerly X_stats_ALL
  1167. write.csv(df_na_ss, file = file.path(out_dir, "summary_stats_all_strains.csv"), row.names = FALSE)
  1168. # This can help bypass missing values ggplot warnings during testing
  1169. df_na_stats_filtered <- df_na_stats %>% filter(if_all(all_of(c("L", "K", "r", "AUC", "delta_bg")), is.finite))
  1170. message("Calculating summary statistics excluding zero values")
  1171. df_no_zeros <- df_na %>% filter(L > 0) # formerly X_noZero
  1172. df_no_zeros_stats <- calculate_summary_stats(
  1173. df = df_no_zeros,
  1174. variables = c("L", "K", "r", "AUC", "delta_bg"),
  1175. group_vars = c("conc_num", "conc_num_factor_factor")
  1176. )$df_with_stats
  1177. message("Filtering by 2SD of K")
  1178. df_na_within_2sd_k <- df_na_stats %>%
  1179. filter(K >= (mean_K - 2 * sd_K) & K <= (mean_K + 2 * sd_K))
  1180. df_na_outside_2sd_k <- df_na_stats %>%
  1181. filter(K < (mean_K - 2 * sd_K) | K > (mean_K + 2 * sd_K))
  1182. message("Calculating summary statistics for L within 2SD of K")
  1183. # TODO We're omitting the original z_max calculation, not sure if needed?
  1184. ss <- calculate_summary_stats(df_na_within_2sd_k, "L", # formerly X_stats_BY_L_within_2SD_K
  1185. group_vars = c("conc_num", "conc_num_factor_factor"))$summary_stats
  1186. write.csv(ss,
  1187. file = file.path(out_dir_qc, "max_observed_L_vals_for_spots_within_2SD_K.csv"),
  1188. row.names = FALSE)
  1189. message("Calculating summary statistics for L outside 2SD of K")
  1190. ss <- calculate_summary_stats(df_na_outside_2sd_k, "L", # formerly X_stats_BY_L_outside_2SD_K
  1191. group_vars = c("conc_num", "conc_num_factor_factor"))
  1192. df_na_l_outside_2sd_k_stats <- ss$df_with_stats
  1193. write.csv(ss$summary_stats,
  1194. file = file.path(out_dir, "max_observed_L_vals_for_spots_outside_2SD_K.csv"),
  1195. row.names = FALSE)
  1196. plate_analysis_plot_configs <- generate_plate_analysis_plot_configs(
  1197. variables = c("L", "K", "r", "AUC", "delta_bg"),
  1198. df_before = df_stats,
  1199. df_after = df_na_stats_filtered
  1200. )
  1201. plate_analysis_boxplot_configs <- generate_plate_analysis_plot_configs(
  1202. variables = c("L", "K", "r", "AUC", "delta_bg"),
  1203. df_before = df_stats,
  1204. df_after = df_na_stats_filtered,
  1205. plot_type = "box"
  1206. )
  1207. plate_analysis_no_zeros_plot_configs <- generate_plate_analysis_plot_configs(
  1208. variables = c("L", "K", "r", "AUC", "delta_bg"),
  1209. stages = c("after"), # Only after QC
  1210. df_after = df_no_zeros_stats
  1211. )
  1212. plate_analysis_no_zeros_boxplot_configs <- generate_plate_analysis_plot_configs(
  1213. variables = c("L", "K", "r", "AUC", "delta_bg"),
  1214. stages = c("after"), # Only after QC
  1215. df_after = df_no_zeros_stats,
  1216. plot_type = "box"
  1217. )
  1218. l_outside_2sd_k_plot_configs <- list(
  1219. plots = list(
  1220. list(
  1221. df = df_na_l_outside_2sd_k_stats,
  1222. x_var = "L",
  1223. y_var = "K",
  1224. plot_type = "scatter",
  1225. title = "Raw L vs K for strains falling outside 2SD of the K mean at each Conc",
  1226. color_var = "conc_num_factor_factor",
  1227. position = "jitter",
  1228. tooltip_vars = c("OrfRep", "Gene", "delta_bg"),
  1229. annotations = list(
  1230. list(
  1231. x = median(df_na_l_outside_2sd_k_stats$L, na.rm = TRUE) / 2,
  1232. y = median(df_na_l_outside_2sd_k_stats$K, na.rm = TRUE) / 2,
  1233. label = paste("Total strains:", nrow(df_na_l_outside_2sd_k_stats))
  1234. )
  1235. ),
  1236. error_bar = FALSE,
  1237. legend_position = "right"
  1238. )
  1239. )
  1240. )
  1241. delta_bg_outside_2sd_k_plot_configs <- list(
  1242. plots = list(
  1243. list(
  1244. df = df_na_l_outside_2sd_k_stats,
  1245. x_var = "delta_bg",
  1246. x_label = "Delta Background",
  1247. y_var = "K",
  1248. plot_type = "scatter",
  1249. title = "Delta Background vs K for strains falling outside 2SD of the K mean at each Conc",
  1250. color_var = "conc_num_factor_factor",
  1251. position = "jitter",
  1252. tooltip_vars = c("OrfRep", "Gene", "delta_bg"),
  1253. annotations = list(
  1254. list(
  1255. x = 0.05,
  1256. y = 0.95,
  1257. hjust = 0,
  1258. vjust = 1,
  1259. label = paste("Total strains:", nrow(df_na_l_outside_2sd_k_stats)),
  1260. size = 5
  1261. )
  1262. ),
  1263. error_bar = FALSE,
  1264. legend_position = "right"
  1265. )
  1266. )
  1267. )
  1268. message("Generating quality control plots in parallel")
  1269. # future::plan(future::multicore, workers = parallel::detectCores())
  1270. future::plan(future::multisession, workers = 3) # generate 3 plots in parallel
  1271. plot_configs <- list(
  1272. list(out_dir = out_dir_qc, filename = "L_vs_K_before_quality_control",
  1273. plot_configs = l_vs_k_plot_configs, page_width = 12, page_height = 8),
  1274. list(out_dir = out_dir_qc, filename = "frequency_delta_background",
  1275. plot_configs = frequency_delta_bg_plot_configs, page_width = 12, page_height = 8),
  1276. list(out_dir = out_dir_qc, filename = "L_vs_K_above_threshold",
  1277. plot_configs = above_threshold_plot_configs, page_width = 12, page_height = 8),
  1278. list(out_dir = out_dir_qc, filename = "plate_analysis",
  1279. plot_configs = plate_analysis_plot_configs, page_width = 14, page_height = 9),
  1280. list(out_dir = out_dir_qc, filename = "plate_analysis_boxplots",
  1281. plot_configs = plate_analysis_boxplot_configs, page_width = 18, page_height = 9),
  1282. list(out_dir = out_dir_qc, filename = "plate_analysis_no_zeros",
  1283. plot_configs = plate_analysis_no_zeros_plot_configs, page_width = 14, page_height = 9),
  1284. list(out_dir = out_dir_qc, filename = "plate_analysis_no_zeros_boxplots",
  1285. plot_configs = plate_analysis_no_zeros_boxplot_configs, page_width = 18, page_height = 9),
  1286. list(out_dir = out_dir_qc, filename = "L_vs_K_for_strains_2SD_outside_mean_K",
  1287. plot_configs = l_outside_2sd_k_plot_configs, page_width = 10, page_height = 8),
  1288. list(out_dir = out_dir_qc, filename = "delta_background_vs_K_for_strains_2SD_outside_mean_K",
  1289. plot_configs = delta_bg_outside_2sd_k_plot_configs, page_width = 10, page_height = 8)
  1290. )
  1291. # Parallelize background and quality control plot generation
  1292. # furrr::future_map(plot_configs, function(config) {
  1293. # generate_and_save_plots(config$out_dir, config$filename, config$plot_configs,
  1294. # page_width = config$page_width, page_height = config$page_height)
  1295. # }, .options = furrr_options(seed = TRUE))
  1296. # Loop over background strains
  1297. # TODO currently only tested against one strain, if we want to do multiple strains we'll
  1298. # have to rename or group the output files by dir or something so they don't get clobbered
  1299. bg_strains <- c("YDL227C")
  1300. lapply(bg_strains, function(strain) {
  1301. message("Processing background strain: ", strain)
  1302. # Handle missing data by setting zero values to NA
  1303. # and then removing any rows with NA in L col
  1304. df_bg <- df_na %>%
  1305. filter(OrfRep == strain) %>%
  1306. mutate(
  1307. L = if_else(L == 0, NA, L),
  1308. K = if_else(K == 0, NA, K),
  1309. r = if_else(r == 0, NA, r),
  1310. AUC = if_else(AUC == 0, NA, AUC)
  1311. ) %>%
  1312. filter(!is.na(L))
  1313. message("Calculating background strain summary statistics")
  1314. ss_bg <- calculate_summary_stats(df_bg, c("L", "K", "r", "AUC", "delta_bg"), # formerly X_stats_BY
  1315. group_vars = c("OrfRep", "Drug", "conc_num", "conc_num_factor_factor"))
  1316. summary_stats_bg <- ss_bg$summary_stats
  1317. df_bg_stats <- ss_bg$df_with_stats
  1318. write.csv(
  1319. summary_stats_bg,
  1320. file = file.path(out_dir, paste0("summary_stats_background_strain_", strain, ".csv")),
  1321. row.names = FALSE)
  1322. message("Setting missing reference values to the highest theoretical value at each drug conc for L")
  1323. df_reference <- df_na_stats %>% # formerly X2_RF
  1324. filter(OrfRep == strain) %>%
  1325. filter(!is.na(L)) %>%
  1326. group_by(OrfRep, Drug, conc_num, conc_num_factor_factor) %>%
  1327. mutate(
  1328. max_l_theoretical = max(max_L, na.rm = TRUE),
  1329. L = ifelse(L == 0 & !is.na(L) & conc_num > 0, max_l_theoretical, L),
  1330. SM = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, 1, 0),
  1331. L = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, max_l_theoretical, L)) %>%
  1332. ungroup()
  1333. message("Calculating reference strain summary statistics")
  1334. df_reference_summary_stats <- calculate_summary_stats( # formerly X_stats_X2_RF
  1335. df = df_reference,
  1336. variables = c("L", "K", "r", "AUC"),
  1337. group_vars = c("OrfRep", "Drug", "conc_num", "conc_num_factor_factor")
  1338. )$df_with_stats
  1339. # Summarise statistics for error bars
  1340. df_reference_summary_stats <- df_reference_summary_stats %>%
  1341. group_by(OrfRep, Drug, conc_num, conc_num_factor_factor) %>%
  1342. mutate(
  1343. mean_mean_L = first(mean_L),
  1344. mean_sd_L = first(sd_L),
  1345. mean_mean_K = first(mean_K),
  1346. mean_sd_K = first(sd_K),
  1347. mean_mean_r = first(mean_r),
  1348. mean_sd_r = first(sd_r),
  1349. mean_mean_AUC = first(mean_AUC),
  1350. mean_sd_AUC = first(sd_AUC),
  1351. .groups = "drop"
  1352. )
  1353. message("Calculating reference strain interaction summary statistics") # formerly X_stats_interaction
  1354. df_reference_interaction_stats <- calculate_summary_stats(
  1355. df = df_reference,
  1356. variables = c("L", "K", "r", "AUC"),
  1357. group_vars = c("OrfRep", "Gene", "num", "Drug", "conc_num", "conc_num_factor_factor")
  1358. )$df_with_stats
  1359. message("Calculating reference strain interaction scores")
  1360. results <- calculate_interaction_scores(df_reference_interaction_stats,
  1361. df_bg_stats, group_vars = c("OrfRep", "Gene", "num", "Drug"))
  1362. df_reference_calculations <- results$calculations
  1363. df_reference_interactions <- results$interactions
  1364. df_reference_interactions_joined <- results$full_data
  1365. write.csv(df_reference_calculations, file = file.path(out_dir, "zscore_calculations_reference.csv"), row.names = FALSE)
  1366. write.csv(df_reference_interactions, file = file.path(out_dir, "zscore_interactions_reference.csv"), row.names = FALSE)
  1367. message("Generating reference interaction plots")
  1368. reference_plot_configs <- generate_interaction_plot_configs(df_reference_summary_stats, df_reference_interactions_joined, "reference")
  1369. generate_and_save_plots(out_dir, "interaction_plots_reference", reference_plot_configs, page_width = 16, page_height = 16)
  1370. message("Setting missing deletion values to the highest theoretical value at each drug conc for L")
  1371. df_deletion <- df_na_stats %>% # formerly X2
  1372. filter(OrfRep != strain) %>%
  1373. filter(!is.na(L)) %>%
  1374. group_by(OrfRep, Gene, conc_num) %>%
  1375. mutate(
  1376. max_l_theoretical = max(max_L, na.rm = TRUE),
  1377. L = ifelse(L == 0 & !is.na(L) & conc_num > 0, max_l_theoretical, L),
  1378. SM = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, 1, SM),
  1379. L = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, max_l_theoretical, L)) %>%
  1380. ungroup()
  1381. message("Calculating deletion strain(s) interaction summary statistics")
  1382. df_deletion_stats <- calculate_summary_stats(
  1383. df = df_deletion,
  1384. variables = c("L", "K", "r", "AUC"),
  1385. group_vars = c("OrfRep", "Gene", "Drug", "conc_num", "conc_num_factor_factor")
  1386. )$df_with_stats
  1387. message("Calculating deletion strain(s) interactions scores")
  1388. results <- calculate_interaction_scores(df_deletion_stats, df_bg_stats, group_vars = c("OrfRep", "Gene", "Drug"))
  1389. df_calculations <- results$calculations
  1390. df_interactions <- results$interactions
  1391. df_interactions_joined <- results$full_data
  1392. write.csv(df_calculations, file = file.path(out_dir, "zscore_calculations.csv"), row.names = FALSE)
  1393. write.csv(df_interactions, file = file.path(out_dir, "zscore_interactions.csv"), row.names = FALSE)
  1394. message("Generating deletion interaction plots")
  1395. deletion_plot_configs <- generate_interaction_plot_configs(df_reference_summary_stats, df_interactions_joined, "deletion")
  1396. generate_and_save_plots(out_dir, "interaction_plots", deletion_plot_configs, page_width = 16, page_height = 16)
  1397. message("Writing enhancer/suppressor csv files")
  1398. interaction_threshold <- 2 # TODO add to study config?
  1399. enhancer_condition_L <- df_interactions$Avg_Zscore_L >= interaction_threshold
  1400. suppressor_condition_L <- df_interactions$Avg_Zscore_L <= -interaction_threshold
  1401. enhancer_condition_K <- df_interactions$Avg_Zscore_K >= interaction_threshold
  1402. suppressor_condition_K <- df_interactions$Avg_Zscore_K <= -interaction_threshold
  1403. enhancers_L <- df_interactions[enhancer_condition_L, ]
  1404. suppressors_L <- df_interactions[suppressor_condition_L, ]
  1405. enhancers_K <- df_interactions[enhancer_condition_K, ]
  1406. suppressors_K <- df_interactions[suppressor_condition_K, ]
  1407. enhancers_and_suppressors_L <- df_interactions[enhancer_condition_L | suppressor_condition_L, ]
  1408. enhancers_and_suppressors_K <- df_interactions[enhancer_condition_K | suppressor_condition_K, ]
  1409. write.csv(enhancers_L, file = file.path(out_dir, "zscore_interactions_deletion_enhancers_L.csv"), row.names = FALSE)
  1410. write.csv(suppressors_L, file = file.path(out_dir, "zscore_interactions_deletion_suppressors_L.csv"), row.names = FALSE)
  1411. write.csv(enhancers_K, file = file.path(out_dir, "zscore_interactions_deletion_enhancers_K.csv"), row.names = FALSE)
  1412. write.csv(suppressors_K, file = file.path(out_dir, "zscore_interactions_deletion_suppressors_K.csv"), row.names = FALSE)
  1413. write.csv(enhancers_and_suppressors_L,
  1414. file = file.path(out_dir, "zscore_interactions_deletion_enhancers_and_suppressors_L.csv"), row.names = FALSE)
  1415. write.csv(enhancers_and_suppressors_K,
  1416. file = file.path(out_dir, "zscore_interaction_deletion_enhancers_and_suppressors_K.csv"), row.names = FALSE)
  1417. message("Writing linear model enhancer/suppressor csv files")
  1418. lm_interaction_threshold <- 2 # TODO add to study config?
  1419. enhancers_lm_L <- df_interactions[df_interactions$Z_lm_L >= lm_interaction_threshold, ]
  1420. suppressors_lm_L <- df_interactions[df_interactions$Z_lm_L <= -lm_interaction_threshold, ]
  1421. enhancers_lm_K <- df_interactions[df_interactions$Z_lm_K >= lm_interaction_threshold, ]
  1422. suppressors_lm_K <- df_interactions[df_interactions$Z_lm_K <= -lm_interaction_threshold, ]
  1423. write.csv(enhancers_lm_L, file = file.path(out_dir, "zscore_interactions_deletion_enhancers_lm_L.csv"), row.names = FALSE)
  1424. write.csv(suppressors_lm_L, file = file.path(out_dir, "zscore_interactions_deletion_suppressors_lm_L.csv"), row.names = FALSE)
  1425. write.csv(enhancers_lm_K, file = file.path(out_dir, "zscore_interactions_deletion_enhancers_lm_K.csv"), row.names = FALSE)
  1426. write.csv(suppressors_lm_K, file = file.path(out_dir, "zscore_interactions_deletion_suppressors_lm_K.csv"), row.names = FALSE)
  1427. message("Generating rank plots")
  1428. rank_plot_configs <- generate_rank_plot_configs(
  1429. df_interactions_joined,
  1430. is_lm = FALSE,
  1431. adjust = TRUE
  1432. )
  1433. generate_and_save_plots(out_dir, "rank_plots", rank_plot_configs,
  1434. page_width = 18, page_height = 12)
  1435. message("Generating ranked linear model plots")
  1436. rank_lm_plot_configs <- generate_rank_plot_configs(
  1437. df_interactions_joined,
  1438. is_lm = TRUE,
  1439. adjust = TRUE
  1440. )
  1441. generate_and_save_plots(out_dir, "rank_plots_lm", rank_lm_plot_configs,
  1442. page_width = 18, page_height = 12)
  1443. message("Generating filtered ranked plots")
  1444. rank_plot_filtered_configs <- generate_rank_plot_configs(
  1445. df_interactions_joined,
  1446. is_lm = FALSE,
  1447. adjust = FALSE,
  1448. overlap_color = TRUE
  1449. )
  1450. generate_and_save_plots(out_dir, "RankPlots_na_rm", rank_plot_filtered_configs,
  1451. page_width = 18, page_height = 12)
  1452. message("Generating filtered ranked linear model plots")
  1453. rank_plot_lm_filtered_configs <- generate_rank_plot_configs(
  1454. df_interactions_joined,
  1455. is_lm = TRUE,
  1456. adjust = FALSE,
  1457. overlap_color = TRUE
  1458. )
  1459. generate_and_save_plots(out_dir, "rank_plots_lm_na_rm", rank_plot_lm_filtered_configs,
  1460. page_width = 18, page_height = 12)
  1461. message("Generating correlation curve parameter pair plots")
  1462. correlation_plot_configs <- generate_correlation_plot_configs(
  1463. df_interactions_joined
  1464. )
  1465. generate_and_save_plots(out_dir, "correlation_cpps", correlation_plot_configs,
  1466. page_width = 10, page_height = 7)
  1467. })
  1468. })
  1469. }
  1470. main()
  1471. # For future simplification of joined dataframes
  1472. # df_joined <- left_join(cleaned_df, summary_stats, by = group_vars, suffix = c("_original", "_stats"))
  1473. # # Add a custom horizontal line (for rank plots)
  1474. # if (!is.null(config$hline) && config$hline) {
  1475. # plot <- plot + geom_hline(yintercept = config$hline, linetype = "dashed", color = "black")
  1476. # }