calculate_interaction_zscores.R 52 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460
  1. suppressMessages({
  2. library("ggplot2")
  3. library("plotly")
  4. library("htmlwidgets")
  5. library("dplyr")
  6. library("rlang")
  7. library("ggthemes")
  8. library("data.table")
  9. library("unix")
  10. })
  11. options(warn = 2)
  12. # Set the memory limit to 30GB (30 * 1024 * 1024 * 1024 bytes)
  13. soft_limit <- 30 * 1024 * 1024 * 1024
  14. hard_limit <- 30 * 1024 * 1024 * 1024
  15. invisible(rlimit_as(soft_limit, hard_limit))
  16. # Constants for configuration
  17. plot_width <- 14
  18. plot_height <- 9
  19. base_size <- 14
  20. parse_arguments <- function() {
  21. args <- if (interactive()) {
  22. c(
  23. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/20240116_jhartman2_DoxoHLD",
  24. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/apps/r/SGD_features.tab",
  25. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/easy/20240116_jhartman2_DoxoHLD/results_std.txt",
  26. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/20240822_jhartman2_DoxoHLD/exp1",
  27. "Experiment 1: Doxo versus HLD",
  28. 3,
  29. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/20240822_jhartman2_DoxoHLD/exp2",
  30. "Experiment 2: HLD versus Doxo",
  31. 3
  32. )
  33. } else {
  34. commandArgs(trailingOnly = TRUE)
  35. }
  36. out_dir <- normalizePath(args[1], mustWork = FALSE)
  37. sgd_gene_list <- normalizePath(args[2], mustWork = FALSE)
  38. easy_results_file <- normalizePath(args[3], mustWork = FALSE)
  39. # The remaining arguments should be in groups of 3
  40. exp_args <- args[-(1:3)]
  41. if (length(exp_args) %% 3 != 0) {
  42. stop("Experiment arguments should be in groups of 3: path, name, sd.")
  43. }
  44. experiments <- list()
  45. for (i in seq(1, length(exp_args), by = 3)) {
  46. exp_name <- exp_args[i + 1]
  47. experiments[[exp_name]] <- list(
  48. path = normalizePath(exp_args[i], mustWork = FALSE),
  49. sd = as.numeric(exp_args[i + 2])
  50. )
  51. }
  52. list(
  53. out_dir = out_dir,
  54. sgd_gene_list = sgd_gene_list,
  55. easy_results_file = easy_results_file,
  56. experiments = experiments
  57. )
  58. }
  59. args <- parse_arguments()
  60. # Should we keep output in exp dirs or combine in the study output dir?
  61. # dir.create(file.path(args$out_dir, "zscores"), showWarnings = FALSE)
  62. # dir.create(file.path(args$out_dir, "zscores", "qc"), showWarnings = FALSE)
  63. # Define themes and scales
  64. theme_publication <- function(base_size = 14, base_family = "sans", legend_position = "bottom") {
  65. theme_foundation <- ggplot2::theme_grey(base_size = base_size, base_family = base_family)
  66. theme_foundation %+replace%
  67. theme(
  68. plot.title = element_text(face = "bold", size = rel(1.2), hjust = 0.5),
  69. text = element_text(),
  70. panel.background = element_rect(colour = NA),
  71. plot.background = element_rect(colour = NA),
  72. panel.border = element_rect(colour = NA),
  73. axis.title = element_text(face = "bold", size = rel(1)),
  74. axis.title.y = element_text(angle = 90, vjust = 2, size = 18),
  75. axis.title.x = element_text(vjust = -0.2, size = 18),
  76. axis.line = element_line(colour = "black"),
  77. axis.text.x = element_text(size = 16),
  78. axis.text.y = element_text(size = 16),
  79. panel.grid.major = element_line(colour = "#f0f0f0"),
  80. panel.grid.minor = element_blank(),
  81. legend.key = element_rect(colour = NA),
  82. legend.position = legend_position,
  83. legend.direction = ifelse(legend_position == "right", "vertical", "horizontal"),
  84. plot.margin = unit(c(10, 5, 5, 5), "mm"),
  85. strip.background = element_rect(colour = "#f0f0f0", fill = "#f0f0f0"),
  86. strip.text = element_text(face = "bold")
  87. )
  88. }
  89. scale_fill_publication <- function(...) {
  90. discrete_scale("fill", "Publication", manual_pal(values = c(
  91. "#386cb0", "#fdb462", "#7fc97f", "#ef3b2c", "#662506",
  92. "#a6cee3", "#fb9a99", "#984ea3", "#ffff33"
  93. )), ...)
  94. }
  95. scale_colour_publication <- function(...) {
  96. discrete_scale("colour", "Publication", manual_pal(values = c(
  97. "#386cb0", "#fdb462", "#7fc97f", "#ef3b2c", "#662506",
  98. "#a6cee3", "#fb9a99", "#984ea3", "#ffff33"
  99. )), ...)
  100. }
  101. # Load the initial dataframe from the easy_results_file
  102. load_and_process_data <- function(easy_results_file, sd = 3) {
  103. df <- read.delim(easy_results_file, skip = 2, as.is = TRUE, row.names = 1, strip.white = TRUE)
  104. df <- df %>%
  105. filter(!(.[[1]] %in% c("", "Scan"))) %>%
  106. filter(!is.na(ORF) & ORF != "" & !Gene %in% c("BLANK", "Blank", "blank") & Drug != "BMH21") %>%
  107. # Rename columns
  108. rename(L = l, num = Num., AUC = AUC96, scan = Scan, last_bg = LstBackgrd, first_bg = X1stBackgrd) %>%
  109. mutate(
  110. across(c(Col, Row, num, L, K, r, scan, AUC, last_bg, first_bg), as.numeric),
  111. delta_bg = last_bg - first_bg,
  112. delta_bg_tolerance = mean(delta_bg, na.rm = TRUE) + (sd * sd(delta_bg, na.rm = TRUE)),
  113. NG = if_else(L == 0 & !is.na(L), 1, 0),
  114. DB = if_else(delta_bg >= delta_bg_tolerance, 1, 0),
  115. SM = 0,
  116. OrfRep = if_else(ORF == "YDL227C", "YDL227C", OrfRep), # should these be hardcoded?
  117. conc_num = as.numeric(gsub("[^0-9\\.]", "", Conc)),
  118. conc_num_factor = as.factor(conc_num)
  119. # conc_num_factor = factor(conc_num, levels = sort(unique(conc_num)))
  120. )
  121. return(df)
  122. }
  123. # Update Gene names using the SGD gene list
  124. update_gene_names <- function(df, sgd_gene_list) {
  125. # Load SGD gene list
  126. genes <- read.delim(file = sgd_gene_list,
  127. quote = "", header = FALSE,
  128. colClasses = c(rep("NULL", 3), rep("character", 2), rep("NULL", 11)))
  129. # Create a named vector for mapping ORF to GeneName
  130. gene_map <- setNames(genes$V5, genes$V4)
  131. # Vectorized match to find the GeneName from gene_map
  132. mapped_genes <- gene_map[df$ORF]
  133. # Replace NAs in mapped_genes with original Gene names (preserves existing Gene names if ORF is not found)
  134. updated_genes <- ifelse(is.na(mapped_genes) | df$OrfRep == "YDL227C", df$Gene, mapped_genes)
  135. # Ensure Gene is not left blank or incorrectly updated to "OCT1"
  136. df <- df %>%
  137. mutate(Gene = ifelse(updated_genes == "" | updated_genes == "OCT1", OrfRep, updated_genes))
  138. return(df)
  139. }
  140. calculate_summary_stats <- function(df, variables, group_vars) {
  141. summary_stats <- df %>%
  142. group_by(across(all_of(group_vars))) %>%
  143. summarise(
  144. N = n(),
  145. sd_check = sd(L, na.rm = TRUE), # Test sd on a specific variable, e.g., L
  146. se_check = sd(L, na.rm = TRUE) / sqrt(N) # Test se on a specific variable, e.g., L
  147. )
  148. summary_stats <- df %>%
  149. group_by(across(all_of(group_vars))) %>%
  150. summarise(
  151. N = n(),
  152. across(all_of(variables), list(
  153. mean = ~mean(., na.rm = TRUE),
  154. median = ~median(., na.rm = TRUE),
  155. max = ~max(., na.rm = TRUE),
  156. min = ~min(., na.rm = TRUE),
  157. sd = ~sd(., na.rm = TRUE),
  158. se = ~sd(., na.rm = TRUE) / sqrt(N) # Corrected SE calculation
  159. ), .names = "{.fn}_{.col}"),
  160. .groups = "drop"
  161. )
  162. # sd = ~sd(., na.rm = TRUE)
  163. # se = ~sd(., na.rm = TRUE) / sqrt(sum(!is.na(.)) - 1)
  164. # Create a cleaned version of df that doesn't overlap with summary_stats
  165. cols_to_keep <- setdiff(names(df), names(summary_stats)[-which(names(summary_stats) %in% group_vars)])
  166. df_cleaned <- df %>%
  167. select(all_of(cols_to_keep))
  168. df_with_stats <- left_join(df_cleaned, summary_stats, by = group_vars)
  169. return(list(summary_stats = summary_stats, df_with_stats = df_with_stats))
  170. }
  171. calculate_interaction_scores <- function(df, max_conc, variables, group_vars) {
  172. # Calculate total concentration variables
  173. total_conc_num <- length(unique(df$conc_num))
  174. # Pull the background means and standard deviations from zero concentration
  175. bg_means <- list(
  176. L = df %>% filter(conc_num == 0) %>% pull(mean_L) %>% first(),
  177. K = df %>% filter(conc_num == 0) %>% pull(mean_K) %>% first(),
  178. r = df %>% filter(conc_num == 0) %>% pull(mean_r) %>% first(),
  179. AUC = df %>% filter(conc_num == 0) %>% pull(mean_AUC) %>% first()
  180. )
  181. bg_sd <- list(
  182. L = df %>% filter(conc_num == 0) %>% pull(sd_L) %>% first(),
  183. K = df %>% filter(conc_num == 0) %>% pull(sd_K) %>% first(),
  184. r = df %>% filter(conc_num == 0) %>% pull(sd_r) %>% first(),
  185. AUC = df %>% filter(conc_num == 0) %>% pull(sd_AUC) %>% first()
  186. )
  187. stats <- calculate_summary_stats(df,
  188. variables = variables,
  189. group_vars = c("OrfRep", "Gene", "num", "conc_num_factor"
  190. ))$summary_stats
  191. stats <- df %>%
  192. group_by(OrfRep, Gene, num) %>%
  193. mutate(
  194. WT_L = mean_L,
  195. WT_K = mean_K,
  196. WT_r = mean_r,
  197. WT_AUC = mean_AUC,
  198. WT_sd_L = sd_L,
  199. WT_sd_K = sd_K,
  200. WT_sd_r = sd_r,
  201. WT_sd_AUC = sd_AUC
  202. )
  203. stats <- stats %>%
  204. mutate(
  205. Raw_Shift_L = first(mean_L) - bg_means$L,
  206. Raw_Shift_K = first(mean_K) - bg_means$K,
  207. Raw_Shift_r = first(mean_r) - bg_means$r,
  208. Raw_Shift_AUC = first(mean_AUC) - bg_means$AUC,
  209. Z_Shift_L = first(Raw_Shift_L) / bg_sd$L,
  210. Z_Shift_K = first(Raw_Shift_K) / bg_sd$K,
  211. Z_Shift_r = first(Raw_Shift_r) / bg_sd$r,
  212. Z_Shift_AUC = first(Raw_Shift_AUC) / bg_sd$AUC
  213. )
  214. stats <- stats %>%
  215. mutate(
  216. Exp_L = WT_L + Raw_Shift_L,
  217. Exp_K = WT_K + Raw_Shift_K,
  218. Exp_r = WT_r + Raw_Shift_r,
  219. Exp_AUC = WT_AUC + Raw_Shift_AUC,
  220. Delta_L = mean_L - Exp_L,
  221. Delta_K = mean_K - Exp_K,
  222. Delta_r = mean_r - Exp_r,
  223. Delta_AUC = mean_AUC - Exp_AUC
  224. )
  225. stats <- stats %>%
  226. mutate(
  227. Delta_L = if_else(NG == 1, mean_L - WT_L, Delta_L),
  228. Delta_K = if_else(NG == 1, mean_K - WT_K, Delta_K),
  229. Delta_r = if_else(NG == 1, mean_r - WT_r, Delta_r),
  230. Delta_AUC = if_else(NG == 1, mean_AUC - WT_AUC, Delta_AUC),
  231. Delta_L = if_else(SM == 1, mean_L - WT_L, Delta_L)
  232. )
  233. stats <- stats %>%
  234. mutate(
  235. Zscore_L = Delta_L / WT_sd_L,
  236. Zscore_K = Delta_K / WT_sd_K,
  237. Zscore_r = Delta_r / WT_sd_r,
  238. Zscore_AUC = Delta_AUC / WT_sd_AUC
  239. )
  240. # Calculate linear models
  241. lm_L <- lm(Delta_L ~ conc_num_factor, data = stats)
  242. lm_K <- lm(Delta_K ~ conc_num_factor, data = stats)
  243. lm_r <- lm(Delta_r ~ conc_num_factor, data = stats)
  244. lm_AUC <- lm(Delta_AUC ~ conc_num_factor, data = stats)
  245. interactions <- stats %>%
  246. group_by(OrfRep, Gene, num) %>%
  247. summarise(
  248. OrfRep = first(OrfRep),
  249. Gene = first(Gene),
  250. num = first(num),
  251. conc_num = first(conc_num),
  252. conc_num_factor = first(conc_num_factor),
  253. Raw_Shift_L = first(Raw_Shift_L),
  254. Raw_Shift_K = first(Raw_Shift_K),
  255. Raw_Shift_r = first(Raw_Shift_r),
  256. Raw_Shift_AUC = first(Raw_Shift_AUC),
  257. Z_Shift_L = first(Z_Shift_L),
  258. Z_Shift_K = first(Z_Shift_K),
  259. Z_Shift_r = first(Z_Shift_r),
  260. Z_Shift_AUC = first(Z_Shift_AUC),
  261. Sum_Zscore_L = sum(Zscore_L, na.rm = TRUE),
  262. Sum_Zscore_K = sum(Zscore_K, na.rm = TRUE),
  263. Sum_Zscore_r = sum(Zscore_r, na.rm = TRUE),
  264. Sum_Zscore_AUC = sum(Zscore_AUC, na.rm = TRUE),
  265. lm_Score_L = max_conc * coef(lm_L)[2] + coef(lm_L)[1],
  266. lm_Score_K = max_conc * coef(lm_K)[2] + coef(lm_K)[1],
  267. lm_Score_r = max_conc * coef(lm_r)[2] + coef(lm_r)[1],
  268. lm_Score_AUC = max_conc * coef(lm_AUC)[2] + coef(lm_AUC)[1],
  269. R_Squared_L = summary(lm_L)$r.squared,
  270. R_Squared_K = summary(lm_K)$r.squared,
  271. R_Squared_r = summary(lm_r)$r.squared,
  272. R_Squared_AUC = summary(lm_AUC)$r.squared,
  273. lm_intercept_L = coef(lm_L)[1],
  274. lm_slope_L = coef(lm_L)[2],
  275. lm_intercept_K = coef(lm_K)[1],
  276. lm_slope_K = coef(lm_K)[2],
  277. lm_intercept_r = coef(lm_r)[1],
  278. lm_slope_r = coef(lm_r)[2],
  279. lm_intercept_AUC = coef(lm_AUC)[1],
  280. lm_slope_AUC = coef(lm_AUC)[2],
  281. NG = sum(NG, na.rm = TRUE),
  282. DB = sum(DB, na.rm = TRUE),
  283. SM = sum(SM, na.rm = TRUE),
  284. .groups = "keep"
  285. )
  286. num_non_removed_concs <- total_conc_num - sum(stats$DB, na.rm = TRUE) - 1
  287. interactions <- interactions %>%
  288. mutate(
  289. Avg_Zscore_L = Sum_Zscore_L / num_non_removed_concs,
  290. Avg_Zscore_K = Sum_Zscore_K / num_non_removed_concs,
  291. Avg_Zscore_r = Sum_Zscore_r / (total_conc_num - 1),
  292. Avg_Zscore_AUC = Sum_Zscore_AUC / (total_conc_num - 1),
  293. Z_lm_L = (lm_Score_L - mean(lm_Score_L, na.rm = TRUE)) / sd(lm_Score_L, na.rm = TRUE),
  294. Z_lm_K = (lm_Score_K - mean(lm_Score_K, na.rm = TRUE)) / sd(lm_Score_K, na.rm = TRUE),
  295. Z_lm_r = (lm_Score_r - mean(lm_Score_r, na.rm = TRUE)) / sd(lm_Score_r, na.rm = TRUE),
  296. Z_lm_AUC = (lm_Score_AUC - mean(lm_Score_AUC, na.rm = TRUE)) / sd(lm_Score_AUC, na.rm = TRUE)
  297. ) %>%
  298. arrange(desc(Z_lm_L), desc(NG))
  299. # Declare column order for output
  300. calculations <- stats %>%
  301. select(
  302. "OrfRep", "Gene", "conc_num", "conc_num_factor", "N",
  303. "mean_L", "mean_K", "mean_r", "mean_AUC",
  304. "median_L", "median_K", "median_r", "median_AUC",
  305. "sd_L", "sd_K", "sd_r", "sd_AUC",
  306. "se_L", "se_K", "se_r", "se_AUC",
  307. "Raw_Shift_L", "Raw_Shift_K", "Raw_Shift_r", "Raw_Shift_AUC",
  308. "Z_Shift_L", "Z_Shift_K", "Z_Shift_r", "Z_Shift_AUC",
  309. "WT_L", "WT_K", "WT_r", "WT_AUC",
  310. "WT_sd_L", "WT_sd_K", "WT_sd_r", "WT_sd_AUC",
  311. "Exp_L", "Exp_K", "Exp_r", "Exp_AUC",
  312. "Delta_L", "Delta_K", "Delta_r", "Delta_AUC",
  313. "Zscore_L", "Zscore_K", "Zscore_r", "Zscore_AUC",
  314. "NG", "SM", "DB")
  315. calculations_joined <- df %>% select(-any_of(setdiff(names(calculations), c("OrfRep", "Gene", "num", "conc_num", "conc_num_factor"))))
  316. calculations_joined <- left_join(calculations_joined, calculations, by = c("OrfRep", "Gene", "num", "conc_num_factor"))
  317. interactions_joined <- df %>% select(-any_of(setdiff(names(interactions), c("OrfRep", "Gene", "num", "conc_num", "conc_num_factor"))))
  318. interactions_joined <- left_join(interactions_joined, interactions, by = c("OrfRep", "Gene", "num", "conc_num_factor"))
  319. return(list(calculations = calculations, interactions = interactions, interactions_joined = interactions_joined,
  320. calculations_joined = calculations_joined))
  321. }
  322. generate_and_save_plots <- function(out_dir, file_name, plot_configs, grid_layout = NULL) {
  323. message("Generating ", file_name, ".pdf and ", file_name, ".html")
  324. # Prepare lists to collect plots
  325. static_plots <- list()
  326. plotly_plots <- list()
  327. for (i in seq_along(plot_configs)) {
  328. config <- plot_configs[[i]]
  329. df <- config$df
  330. # Build the aes_mapping based on config
  331. aes_mapping <- if (is.null(config$color_var)) {
  332. if (is.null(config$y_var)) {
  333. aes(x = .data[[config$x_var]])
  334. } else {
  335. aes(x = .data[[config$x_var]], y = .data[[config$y_var]])
  336. }
  337. } else {
  338. if (is.null(config$y_var)) {
  339. aes(x = .data[[config$x_var]], color = as.factor(.data[[config$color_var]]))
  340. } else {
  341. aes(x = .data[[config$x_var]], y = .data[[config$y_var]], color = as.factor(.data[[config$color_var]]))
  342. }
  343. }
  344. # Start building the plot with aes_mapping
  345. plot_base <- ggplot(df, aes_mapping)
  346. # Use appropriate helper function based on plot type
  347. plot <- switch(config$plot_type,
  348. "scatter" = generate_scatter_plot(plot_base, config),
  349. "box" = generate_box_plot(plot_base, config),
  350. "density" = plot_base + geom_density(),
  351. "bar" = plot_base + geom_bar(),
  352. plot_base # default case if no type matches
  353. )
  354. # Apply additional settings if provided
  355. if (!is.null(config$legend_position)) {
  356. plot <- plot + theme(legend.position = config$legend_position)
  357. }
  358. # Add title and labels if provided
  359. if (!is.null(config$title)) {
  360. plot <- plot + ggtitle(config$title)
  361. }
  362. if (!is.null(config$x_label)) {
  363. plot <- plot + xlab(config$x_label)
  364. }
  365. if (!is.null(config$y_label)) {
  366. plot <- plot + ylab(config$y_label)
  367. }
  368. # Add interactive tooltips for plotly plots
  369. tooltip_vars <- c()
  370. if (config$plot_type == "scatter") {
  371. tooltip_vars <- c(config$x_var, config$y_var)
  372. }
  373. # Convert to plotly object
  374. plotly_plot <- ggplotly(plot, tooltip = tooltip_vars)
  375. if (!is.null(config$legend_position) && config$legend_position == "bottom") {
  376. plotly_plot <- plotly_plot %>% layout(legend = list(orientation = "h"))
  377. }
  378. # Add plots to lists
  379. static_plots[[i]] <- plot
  380. plotly_plots[[i]] <- plotly_plot
  381. }
  382. # Save static PDF plots
  383. pdf(file.path(out_dir, paste0(file_name, ".pdf")), width = 14, height = 9)
  384. lapply(static_plots, print)
  385. dev.off()
  386. # Combine and save interactive HTML plots
  387. combined_plot <- subplot(plotly_plots,
  388. nrows = ifelse(is.null(grid_layout$nrow), length(plotly_plots), grid_layout$nrow),
  389. margin = 0.05)
  390. saveWidget(combined_plot, file = file.path(out_dir, paste0(file_name, ".html")), selfcontained = TRUE)
  391. }
  392. generate_scatter_plot <- function(plot, config) {
  393. # Determine Shape, Size, and Position for geom_point
  394. shape <- if (!is.null(config$shape)) config$shape else 3
  395. size <- if (!is.null(config$size)) config$size else 0.1
  396. position <- if (!is.null(config$position) && config$position == "jitter") "jitter" else "identity"
  397. # Add geom_point with determined parameters
  398. plot <- plot + geom_point(
  399. shape = shape,
  400. size = size,
  401. position = position
  402. )
  403. if (!is.null(config$cyan_points)) {
  404. plot <- plot + geom_point(
  405. aes(x = .data[[config$x_var]], y = .data[[config$y_var]]),
  406. color = "cyan",
  407. shape = 3,
  408. size = 0.5
  409. )
  410. }
  411. # Add Smooth Line if specified
  412. if (!is.null(config$add_smooth) && config$add_smooth) {
  413. if (!is.null(config$lm_line)) {
  414. plot <- plot +
  415. geom_abline(
  416. intercept = config$lm_line$intercept,
  417. slope = config$lm_line$slope,
  418. color = "blue"
  419. )
  420. } else {
  421. plot <- plot +
  422. geom_smooth(
  423. method = "lm",
  424. se = FALSE,
  425. color = "blue"
  426. )
  427. }
  428. }
  429. # Add SD Bands if specified
  430. if (!is.null(config$sd_band_values)) {
  431. for (sd_band in config$sd_band_values) {
  432. plot <- plot +
  433. annotate(
  434. "rect",
  435. xmin = -Inf, xmax = Inf,
  436. ymin = sd_band, ymax = Inf,
  437. fill = "#542788",
  438. alpha = 0.3
  439. ) +
  440. annotate(
  441. "rect",
  442. xmin = -Inf, xmax = Inf,
  443. ymin = -sd_band, ymax = -Inf,
  444. fill = "orange",
  445. alpha = 0.3
  446. ) +
  447. geom_hline(
  448. yintercept = c(-sd_band, sd_band),
  449. color = "gray"
  450. )
  451. }
  452. }
  453. # Add Rectangles if specified
  454. if (!is.null(config$rectangles)) {
  455. for (rect in config$rectangles) {
  456. plot <- plot + annotate(
  457. "rect",
  458. xmin = rect$xmin,
  459. xmax = rect$xmax,
  460. ymin = rect$ymin,
  461. ymax = rect$ymax,
  462. fill = ifelse(is.null(rect$fill), NA, rect$fill),
  463. color = ifelse(is.null(rect$color), "black", rect$color),
  464. alpha = ifelse(is.null(rect$alpha), 0.1, rect$alpha)
  465. )
  466. }
  467. }
  468. # Add Error Bars if specified
  469. if (!is.null(config$error_bar) && config$error_bar && !is.null(config$y_var)) {
  470. y_mean_col <- paste0("mean_", config$y_var)
  471. y_sd_col <- paste0("sd_", config$y_var)
  472. plot <- plot +
  473. geom_errorbar(
  474. aes(
  475. ymin = !!sym(y_mean_col) - !!sym(y_sd_col),
  476. ymax = !!sym(y_mean_col) + !!sym(y_sd_col)
  477. ),
  478. alpha = 0.3
  479. )
  480. }
  481. # Customize X-axis if specified
  482. if (!is.null(config$x_breaks) && !is.null(config$x_labels) && !is.null(config$x_label)) {
  483. plot <- plot +
  484. scale_x_discrete(
  485. name = config$x_label,
  486. breaks = config$x_breaks,
  487. labels = config$x_labels
  488. )
  489. }
  490. # Apply coord_cartesian if specified
  491. if (!is.null(config$coord_cartesian)) {
  492. plot <- plot + coord_cartesian(ylim = config$coord_cartesian)
  493. }
  494. # Set Y-axis limits if specified
  495. if (!is.null(config$ylim_vals)) {
  496. plot <- plot + scale_y_continuous(limits = config$ylim_vals)
  497. }
  498. # Add Annotations if specified
  499. if (!is.null(config$annotations)) {
  500. for (annotation in config$annotations) {
  501. plot <- plot +
  502. annotate(
  503. "text",
  504. x = annotation$x,
  505. y = annotation$y,
  506. label = annotation$label,
  507. na.rm = TRUE
  508. )
  509. }
  510. }
  511. # Add Title if specified
  512. if (!is.null(config$title)) {
  513. plot <- plot + ggtitle(config$title)
  514. }
  515. # Adjust Legend Position if specified
  516. if (!is.null(config$legend_position)) {
  517. plot <- plot + theme(legend.position = config$legend_position)
  518. }
  519. return(plot)
  520. }
  521. generate_box_plot <- function(plot, config) {
  522. plot <- plot + geom_boxplot()
  523. if (!is.null(config$x_breaks) && !is.null(config$x_labels) && !is.null(config$x_label)) {
  524. plot <- plot + scale_x_discrete(
  525. name = config$x_label,
  526. breaks = config$x_breaks,
  527. labels = config$x_labels
  528. )
  529. }
  530. if (!is.null(config$coord_cartesian)) {
  531. plot <- plot + coord_cartesian(ylim = config$coord_cartesian)
  532. }
  533. return(plot)
  534. }
  535. generate_plate_analysis_plot_configs <- function(variables, stages = c("before", "after"),
  536. df_before = NULL, df_after = NULL, plot_type = "scatter") {
  537. plots <- list()
  538. for (var in variables) {
  539. for (stage in stages) {
  540. df_plot <- if (stage == "before") df_before else df_after
  541. # Adjust settings based on plot_type
  542. if (plot_type == "scatter") {
  543. error_bar <- TRUE
  544. position <- "jitter"
  545. } else if (plot_type == "box") {
  546. error_bar <- FALSE
  547. position <- NULL
  548. }
  549. config <- list(
  550. df = df_plot,
  551. x_var = "scan",
  552. y_var = var,
  553. plot_type = plot_type,
  554. title = paste("Plate analysis by Drug Conc for", var, stage, "quality control"),
  555. error_bar = error_bar,
  556. color_var = "conc_num_factor",
  557. position = position
  558. )
  559. plots <- append(plots, list(config))
  560. }
  561. }
  562. return(plots)
  563. }
  564. generate_interaction_plot_configs <- function(df, variables) {
  565. configs <- list()
  566. limits_map <- list(
  567. L = c(-65, 65),
  568. K = c(-65, 65),
  569. r = c(-0.65, 0.65),
  570. AUC = c(-6500, 6500)
  571. )
  572. df_filtered <- filter_data(df, variables, missing = TRUE, limits_map = limits_map)
  573. # Define annotation label functions
  574. generate_annotation_labels <- function(df, var, annotation_name) {
  575. switch(annotation_name,
  576. ZShift = paste("ZShift =", round(df[[paste0("Z_Shift_", var)]], 2)),
  577. lm_ZScore = paste("lm ZScore =", round(df[[paste0("Z_lm_", var)]], 2)),
  578. NG = paste("NG =", df$NG),
  579. DB = paste("DB =", df$DB),
  580. SM = paste("SM =", df$SM),
  581. NULL # Default case for unrecognized annotation names
  582. )
  583. }
  584. # Define annotation positions relative to the y-axis range
  585. calculate_annotation_positions <- function(y_range) {
  586. y_min <- min(y_range)
  587. y_max <- max(y_range)
  588. y_span <- y_max - y_min
  589. list(
  590. ZShift = y_max - 0.1 * y_span,
  591. lm_ZScore = y_max - 0.2 * y_span,
  592. NG = y_min + 0.2 * y_span,
  593. DB = y_min + 0.1 * y_span,
  594. SM = y_min + 0.05 * y_span
  595. )
  596. }
  597. # Create configurations for each variable
  598. for (variable in variables) {
  599. y_range <- limits_map[[variable]]
  600. annotation_positions <- calculate_annotation_positions(y_range)
  601. lm_line <- list(
  602. intercept = df_filtered[[paste0("lm_intercept_", variable)]],
  603. slope = df_filtered[[paste0("lm_slope_", variable)]]
  604. )
  605. # Determine x-axis midpoint
  606. num_levels <- length(levels(df_filtered$conc_num_factor))
  607. x_pos <- (1 + num_levels) / 2 # Midpoint of x-axis
  608. # Generate annotations
  609. annotations <- lapply(names(annotation_positions), function(annotation_name) {
  610. label <- generate_annotation_labels(df_filtered, variable, annotation_name)
  611. y_pos <- annotation_positions[[annotation_name]]
  612. if (!is.null(label)) {
  613. list(x = x_pos, y = y_pos, label = label)
  614. } else {
  615. message(paste("Warning: No annotation found for", annotation_name))
  616. NULL
  617. }
  618. })
  619. # Remove NULL annotations
  620. annotations <- Filter(Negate(is.null), annotations)
  621. # Shared plot settings
  622. plot_settings <- list(
  623. df = df_filtered,
  624. x_var = "conc_num_factor",
  625. y_var = variable,
  626. ylim_vals = y_range,
  627. annotations = annotations,
  628. lm_line = lm_line,
  629. x_breaks = levels(df_filtered$conc_num_factor),
  630. x_labels = levels(df_filtered$conc_num_factor),
  631. x_label = unique(df_filtered$Drug[1]),
  632. coord_cartesian = y_range # Use the actual y-limits
  633. )
  634. # Scatter plot config
  635. configs[[length(configs) + 1]] <- modifyList(plot_settings, list(
  636. plot_type = "scatter",
  637. title = sprintf("%s %s", df_filtered$OrfRep[1], df_filtered$Gene[1]),
  638. error_bar = TRUE,
  639. position = "jitter"
  640. ))
  641. # Box plot config
  642. configs[[length(configs) + 1]] <- modifyList(plot_settings, list(
  643. plot_type = "box",
  644. title = sprintf("%s %s (box plot)", df_filtered$OrfRep[1], df_filtered$Gene[1]),
  645. error_bar = FALSE
  646. ))
  647. }
  648. return(configs)
  649. }
  650. generate_rank_plot_configs <- function(df_filtered, variables, is_lm = FALSE) {
  651. sd_bands <- c(1, 2, 3)
  652. configs <- list()
  653. # SD-based plots for L and K
  654. for (variable in c("L", "K")) {
  655. for (sd_band in sd_bands) {
  656. # Determine columns based on whether it's lm or not
  657. if (is_lm) {
  658. rank_var <- paste0("Rank_lm_", variable)
  659. zscore_var <- paste0("Z_lm_", variable)
  660. y_label <- paste("Int Z score", variable)
  661. } else {
  662. rank_var <- paste0("Rank_", variable)
  663. zscore_var <- paste0("Avg_Zscore_", variable)
  664. y_label <- paste("Avg Z score", variable)
  665. }
  666. num_enhancers <- sum(df_filtered[[zscore_var]] >= sd_band, na.rm = TRUE)
  667. num_suppressors <- sum(df_filtered[[zscore_var]] <= -sd_band, na.rm = TRUE)
  668. # Annotated plot configuration
  669. configs[[length(configs) + 1]] <- list(
  670. df = df_filtered,
  671. x_var = rank_var,
  672. y_var = zscore_var,
  673. plot_type = "scatter",
  674. title = paste(y_label, "vs. Rank for", variable, "above", sd_band, "SD"),
  675. sd_band = sd_band,
  676. annotations = list(
  677. list(
  678. x = median(df_filtered[[rank_var]], na.rm = TRUE),
  679. y = 10,
  680. label = paste("Deletion Enhancers =", num_enhancers)
  681. ),
  682. list(
  683. x = median(df_filtered[[rank_var]], na.rm = TRUE),
  684. y = -10,
  685. label = paste("Deletion Suppressors =", num_suppressors)
  686. )
  687. ),
  688. sd_band_values = sd_band,
  689. shape = 3,
  690. size = 0.1,
  691. y_label = y_label,
  692. x_label = "Rank",
  693. legend_position = "none"
  694. )
  695. # Non-Annotated Plot Configuration
  696. configs[[length(configs) + 1]] <- list(
  697. df = df_filtered,
  698. x_var = rank_var,
  699. y_var = zscore_var,
  700. plot_type = "scatter",
  701. title = paste(y_label, "vs. Rank for", variable, "above", sd_band, "SD No Annotations"),
  702. sd_band = sd_band,
  703. annotations = NULL,
  704. sd_band_values = sd_band,
  705. shape = 3,
  706. size = 0.1,
  707. y_label = y_label,
  708. x_label = "Rank",
  709. legend_position = "none"
  710. )
  711. }
  712. }
  713. # Avg ZScore and Rank Avg ZScore Plots for r, L, K, and AUC
  714. for (variable in variables) {
  715. for (plot_type in c("Avg_Zscore_vs_lm", "Rank_Avg_Zscore_vs_lm")) {
  716. # Define specific variables based on plot type
  717. if (plot_type == "Avg_Zscore_vs_lm") {
  718. x_var <- paste0("Avg_Zscore_", variable)
  719. y_var <- paste0("Z_lm_", variable)
  720. title_suffix <- paste("Avg Zscore vs lm", variable)
  721. rectangles <- list(
  722. list(xmin = -2, xmax = 2, ymin = -2, ymax = 2,
  723. fill = NA, color = "grey20", alpha = 0.1
  724. )
  725. )
  726. } else {
  727. x_var <- paste0("Rank_", variable)
  728. y_var <- paste0("Rank_lm_", variable)
  729. title_suffix <- paste("Rank Avg Zscore vs lm", variable)
  730. rectangles <- NULL
  731. }
  732. print(df_filtered %>% select(all_of(c(x_var, y_var))))
  733. # Check if there is sufficient variation
  734. if (length(unique(df_filtered[[x_var]])) < 2 || length(unique(df_filtered[[y_var]])) < 2) {
  735. message("Not enough variation in ", x_var, " or ", y_var, " to fit linear model. Skipping.")
  736. next
  737. }
  738. # Fit linear model
  739. lm_fit <- lm(df_filtered[[y_var]] ~ df_filtered[[x_var]], data = df_filtered)
  740. # # Check for perfect fit
  741. # if (summary(lm_fit)$sigma == 0) {
  742. # next # Skip this iteration if the fit is perfect
  743. # }
  744. r_squared <- summary(lm_fit)$r.squared
  745. configs[[length(configs) + 1]] <- list(
  746. df = df_filtered,
  747. x_var = x_var,
  748. y_var = y_var,
  749. plot_type = "scatter",
  750. title = title_suffix,
  751. annotations = list(
  752. list(
  753. x = 0,
  754. y = 0,
  755. label = paste("R-squared =", round(r_squared, 2))
  756. )
  757. ),
  758. sd_band_values = NULL, # Not applicable
  759. shape = 3,
  760. size = 0.1,
  761. add_smooth = TRUE,
  762. lm_line = list(intercept = coef(lm_fit)[1], slope = coef(lm_fit)[2]),
  763. legend_position = "right",
  764. color_var = "Overlap",
  765. x_label = x_var,
  766. y_label = y_var,
  767. rectangles = rectangles
  768. )
  769. }
  770. }
  771. return(configs)
  772. }
  773. generate_correlation_plot_configs <- function(df) {
  774. # Define relationships for plotting
  775. relationships <- list(
  776. list(x = "Z_lm_L", y = "Z_lm_K", label = "Interaction L vs. Interaction K"),
  777. list(x = "Z_lm_L", y = "Z_lm_r", label = "Interaction L vs. Interaction r"),
  778. list(x = "Z_lm_L", y = "Z_lm_AUC", label = "Interaction L vs. Interaction AUC"),
  779. list(x = "Z_lm_K", y = "Z_lm_r", label = "Interaction K vs. Interaction r"),
  780. list(x = "Z_lm_K", y = "Z_lm_AUC", label = "Interaction K vs. Interaction AUC"),
  781. list(x = "Z_lm_r", y = "Z_lm_AUC", label = "Interaction r vs. Interaction AUC")
  782. )
  783. configs <- list()
  784. for (rel in relationships) {
  785. # Fit linear model
  786. lm_model <- lm(as.formula(paste(rel$y, "~", rel$x)), data = df)
  787. lm_summary <- summary(lm_model)
  788. # Construct plot configuration
  789. config <- list(
  790. df = df,
  791. x_var = rel$x,
  792. y_var = rel$y,
  793. plot_type = "scatter",
  794. title = rel$label,
  795. x_label = paste("z-score", gsub("Z_lm_", "", rel$x)),
  796. y_label = paste("z-score", gsub("Z_lm_", "", rel$y)),
  797. annotations = list(
  798. list(x = 0, y = 0, label = paste("R-squared =", round(lm_summary$r.squared, 3)))
  799. ),
  800. add_smooth = TRUE, # Add regression line
  801. lm_line = list(intercept = coef(lm_model)[1], slope = coef(lm_model)[2]),
  802. legend_position = "right",
  803. shape = 3,
  804. size = 0.5,
  805. color_var = "Overlap",
  806. rectangles = list(
  807. list(
  808. xmin = -2, xmax = 2, ymin = -2, ymax = 2,
  809. fill = NA, color = "grey20", alpha = 0.1
  810. )
  811. ),
  812. cyan_points = TRUE
  813. )
  814. configs[[length(configs) + 1]] <- config
  815. }
  816. return(configs)
  817. }
  818. filter_data <- function(df, variables, nf = FALSE, missing = FALSE, adjust = FALSE,
  819. rank = FALSE, limits_map = NULL, verbose = TRUE) {
  820. avg_zscore_cols <- paste0("Avg_Zscore_", variables)
  821. z_lm_cols <- paste0("Z_lm_", variables)
  822. # Adjust NAs to .001 for linear model
  823. if (adjust) {
  824. if (verbose) message("Replacing NA with 0.001 for Avg_Zscore_ and Z_lm_ columns.")
  825. df <- df %>%
  826. mutate(
  827. across(all_of(avg_zscore_cols), ~ ifelse(is.na(.), 0.001, .)),
  828. across(all_of(z_lm_cols), ~ ifelse(is.na(.), 0.001, .))
  829. )
  830. }
  831. # Filter non-finite values
  832. if (nf) {
  833. if (verbose) message("Filtering non-finite values for variables: ", paste(variables, collapse = ", "))
  834. non_finite_df <- df %>%
  835. filter(if_any(all_of(variables), ~ !is.finite(.)))
  836. if (verbose && nrow(non_finite_df) > 0) {
  837. message("Filtering non-finite rows for variables ", paste(variables, collapse = ", "), ":")
  838. print(non_finite_df)
  839. }
  840. df <- df %>%
  841. filter(if_all(all_of(variables), ~ is.finite(.)))
  842. }
  843. # Filter missing values
  844. if (missing) {
  845. if (verbose) message("Filtering missing values for variables: ", paste(variables, collapse = ", "))
  846. # Identify missing rows for logging
  847. missing_df <- df %>%
  848. filter(if_any(all_of(variables), ~ is.na(.)))
  849. if (verbose && nrow(missing_df) > 0) {
  850. message("Missing data for variables ", paste(variables, collapse = ", "), ":")
  851. print(missing_df)
  852. }
  853. # Keep only rows where all specified variables are not missing
  854. df <- df %>%
  855. filter(if_all(all_of(variables), ~ !is.na(.)))
  856. }
  857. # Apply Limits from 'limits_map' if provided
  858. if (!is.null(limits_map)) {
  859. for (variable in names(limits_map)) {
  860. if (variable %in% variables) {
  861. ylim_vals <- limits_map[[variable]]
  862. if (verbose) message("Applying limits for variable ", variable, ": [", ylim_vals[1], ", ", ylim_vals[2], "].")
  863. out_of_range_df <- df %>%
  864. filter(.data[[variable]] < ylim_vals[1] | .data[[variable]] > ylim_vals[2])
  865. if (verbose && nrow(out_of_range_df) > 0) {
  866. message("Out-of-range data for variable ", variable, ":")
  867. print(out_of_range_df)
  868. }
  869. df <- df %>%
  870. filter(.data[[variable]] >= ylim_vals[1] & .data[[variable]] <= ylim_vals[2])
  871. }
  872. }
  873. }
  874. # Calculate Rank Columns if 'rank' is TRUE
  875. if (rank) {
  876. if (verbose) message("Calculating rank columns for variables: ", paste(variables, collapse = ", "))
  877. for (col in avg_zscore_cols) {
  878. rank_col <- paste0("Rank_", col)
  879. df[[rank_col]] <- rank(df[[col]], na.last = "keep")
  880. }
  881. for (col in z_lm_cols) {
  882. rank_lm_col <- paste0("Rank_lm_", col)
  883. df[[rank_lm_col]] <- rank(df[[col]], na.last = "keep")
  884. }
  885. }
  886. return(df)
  887. }
  888. main <- function() {
  889. lapply(names(args$experiments), function(exp_name) {
  890. exp <- args$experiments[[exp_name]]
  891. exp_path <- exp$path
  892. exp_sd <- exp$sd
  893. out_dir <- file.path(exp_path, "zscores")
  894. out_dir_qc <- file.path(exp_path, "zscores", "qc")
  895. dir.create(out_dir, recursive = TRUE, showWarnings = FALSE)
  896. dir.create(out_dir_qc, recursive = TRUE, showWarnings = FALSE)
  897. summary_vars <- c("L", "K", "r", "AUC", "delta_bg") # fields to filter and calculate summary stats across
  898. interaction_vars <- c("L", "K", "r", "AUC") # fields to calculate interaction z-scores
  899. print_vars <- c("OrfRep", "Plate", "scan", "Col", "Row", "num", "OrfRep", "conc_num", "conc_num_factor",
  900. "delta_bg_tolerance", "delta_bg", "Gene", "L", "K", "r", "AUC", "NG", "DB")
  901. message("Loading and filtering data for experiment: ", exp_name)
  902. df <- load_and_process_data(args$easy_results_file, sd = exp_sd) %>%
  903. update_gene_names(args$sgd_gene_list) %>%
  904. as_tibble()
  905. # Filter rows above delta background tolerance
  906. df_above_tolerance <- df %>% filter(DB == 1)
  907. df_na <- df %>% mutate(across(all_of(summary_vars), ~ ifelse(DB == 1, NA, .)))
  908. df_no_zeros <- df_na %>% filter(L > 0)
  909. # Save some constants
  910. max_conc <- max(df$conc_num)
  911. l_half_median <- (median(df_above_tolerance$L, na.rm = TRUE)) / 2
  912. k_half_median <- (median(df_above_tolerance$K, na.rm = TRUE)) / 2
  913. message("Calculating summary statistics before quality control")
  914. ss <- calculate_summary_stats(
  915. df = df,
  916. variables = summary_vars,
  917. group_vars = c("OrfRep", "conc_num_factor"))
  918. df_stats <- ss$df_with_stats
  919. message("Filtering non-finite data")
  920. df_filtered_stats <- filter_data(df_stats, c("L"), nf = TRUE)
  921. message("Calculating summary statistics after quality control")
  922. ss <- calculate_summary_stats(
  923. df = df_na,
  924. variables = summary_vars,
  925. group_vars = c("OrfRep", "conc_num_factor"))
  926. df_na_ss <- ss$summary_stats
  927. df_na_stats <- ss$df_with_stats
  928. write.csv(df_na_ss, file = file.path(out_dir, "summary_stats_all_strains.csv"), row.names = FALSE)
  929. df_na_filtered_stats <- filter_data(df_na_stats, c("L"), nf = TRUE)
  930. message("Calculating summary statistics after quality control excluding zero values")
  931. ss <- calculate_summary_stats(
  932. df = df_no_zeros,
  933. variables = summary_vars,
  934. group_vars = c("OrfRep", "conc_num_factor"))
  935. df_no_zeros_stats <- ss$df_with_stats
  936. df_no_zeros_filtered_stats <- filter_data(df_no_zeros_stats, c("L"), nf = TRUE)
  937. message("Filtering by 2SD of K")
  938. df_na_within_2sd_k <- df_na_stats %>%
  939. filter(K >= (mean_K - 2 * sd_K) & K <= (mean_K + 2 * sd_K))
  940. df_na_outside_2sd_k <- df_na_stats %>%
  941. filter(K < (mean_K - 2 * sd_K) | K > (mean_K + 2 * sd_K))
  942. message("Calculating summary statistics for L within 2SD of K")
  943. # TODO We're omitting the original z_max calculation, not sure if needed?
  944. ss <- calculate_summary_stats(df_na_within_2sd_k, "L", group_vars = c("conc_num_factor"))
  945. # df_na_l_within_2sd_k_stats <- ss$df_with_stats
  946. write.csv(ss$summary_stats,
  947. file = file.path(out_dir_qc, "max_observed_L_vals_for_spots_within_2sd_K.csv"),
  948. row.names = FALSE)
  949. message("Calculating summary statistics for L outside 2SD of K")
  950. ss <- calculate_summary_stats(df_na_outside_2sd_k, "L", group_vars = c("conc_num_factor"))
  951. df_na_l_outside_2sd_k_stats <- ss$df_with_stats
  952. write.csv(ss$summary_stats,
  953. file = file.path(out_dir, "max_observed_L_vals_for_spots_outside_2sd_K.csv"),
  954. row.names = FALSE)
  955. # Each plots list corresponds to a file
  956. l_vs_k_plots <- list(
  957. list(
  958. df = df,
  959. x_var = "L",
  960. y_var = "K",
  961. plot_type = "scatter",
  962. delta_bg_point = TRUE,
  963. title = "Raw L vs K before quality control",
  964. color_var = "conc_num_factor",
  965. error_bar = FALSE,
  966. legend_position = "right"
  967. )
  968. )
  969. frequency_delta_bg_plots <- list(
  970. list(
  971. df = df_filtered_stats,
  972. x_var = "delta_bg",
  973. y_var = NULL,
  974. plot_type = "density",
  975. title = "Plate analysis by Drug Conc for Delta Background before quality control",
  976. color_var = "conc_num_factor",
  977. x_label = "Delta Background",
  978. y_label = "Density",
  979. error_bar = FALSE,
  980. legend_position = "right"),
  981. list(
  982. df = df_filtered_stats,
  983. x_var = "delta_bg",
  984. y_var = NULL,
  985. plot_type = "bar",
  986. title = "Plate analysis by Drug Conc for Delta Background before quality control",
  987. color_var = "conc_num_factor",
  988. x_label = "Delta Background",
  989. y_label = "Count",
  990. error_bar = FALSE,
  991. legend_position = "right")
  992. )
  993. above_threshold_plots <- list(
  994. list(
  995. df = df_above_tolerance,
  996. x_var = "L",
  997. y_var = "K",
  998. plot_type = "scatter",
  999. delta_bg_point = TRUE,
  1000. title = paste("Raw L vs K for strains above Delta Background threshold of",
  1001. df_above_tolerance$delta_bg_tolerance[[1]], "or above"),
  1002. color_var = "conc_num_factor",
  1003. position = "jitter",
  1004. annotations = list(
  1005. list(
  1006. x = l_half_median,
  1007. y = k_half_median,
  1008. label = paste("# strains above Delta Background tolerance =", nrow(df_above_tolerance))
  1009. )
  1010. ),
  1011. error_bar = FALSE,
  1012. legend_position = "right"
  1013. )
  1014. )
  1015. plate_analysis_plot_configs <- generate_plate_analysis_plot_configs(
  1016. variables = summary_vars,
  1017. df_before = df_filtered_stats,
  1018. df_after = df_na_filtered_stats,
  1019. )
  1020. plate_analysis_boxplot_configs <- generate_plate_analysis_plot_configs(
  1021. variables = summary_vars,
  1022. df_before = df_filtered_stats,
  1023. df_after = df_na_filtered_stats,
  1024. plot_type = "box"
  1025. )
  1026. plate_analysis_no_zeros_plot_configs <- generate_plate_analysis_plot_configs(
  1027. variables = summary_vars,
  1028. stages = c("after"), # Only after QC
  1029. df_after = df_no_zeros_filtered_stats,
  1030. )
  1031. plate_analysis_no_zeros_boxplot_configs <- generate_plate_analysis_plot_configs(
  1032. variables = summary_vars,
  1033. stages = c("after"), # Only after QC
  1034. df_after = df_no_zeros_filtered_stats,
  1035. plot_type = "box"
  1036. )
  1037. l_outside_2sd_k_plots <- list(
  1038. list(
  1039. df = df_na_l_outside_2sd_k_stats,
  1040. x_var = "L",
  1041. y_var = "K",
  1042. plot_type = "scatter",
  1043. delta_bg_point = TRUE,
  1044. title = "Raw L vs K for strains falling outside 2SD of the K mean at each Conc",
  1045. color_var = "conc_num_factor",
  1046. position = "jitter",
  1047. legend_position = "right"
  1048. )
  1049. )
  1050. delta_bg_outside_2sd_k_plots <- list(
  1051. list(
  1052. df = df_na_l_outside_2sd_k_stats,
  1053. x_var = "delta_bg",
  1054. y_var = "K",
  1055. plot_type = "scatter",
  1056. gene_point = TRUE,
  1057. title = "Delta Background vs K for strains falling outside 2SD of the K mean at each Conc",
  1058. color_var = "conc_num_factor",
  1059. position = "jitter",
  1060. legend_position = "right"
  1061. )
  1062. )
  1063. # message("Generating quality control plots")
  1064. # generate_and_save_plots(out_dir_qc, "L_vs_K_before_quality_control", l_vs_k_plots)
  1065. # generate_and_save_plots(out_dir_qc, "frequency_delta_background", frequency_delta_bg_plots)
  1066. # generate_and_save_plots(out_dir_qc, "L_vs_K_above_threshold", above_threshold_plots)
  1067. # generate_and_save_plots(out_dir_qc, "plate_analysis", plate_analysis_plot_configs)
  1068. # generate_and_save_plots(out_dir_qc, "plate_analysis_boxplots", plate_analysis_boxplot_configs)
  1069. # generate_and_save_plots(out_dir_qc, "plate_analysis_no_zeros", plate_analysis_no_zeros_plot_configs)
  1070. # generate_and_save_plots(out_dir_qc, "plate_analysis_no_zeros_boxplots", plate_analysis_no_zeros_boxplot_configs)
  1071. # generate_and_save_plots(out_dir_qc, "L_vs_K_for_strains_2SD_outside_mean_K", l_outside_2sd_k_plots)
  1072. # generate_and_save_plots(out_dir_qc, "delta_background_vs_K_for_strains_2sd_outside_mean_K", delta_bg_outside_2sd_k_plots)
  1073. # Process background strains
  1074. bg_strains <- c("YDL227C")
  1075. lapply(bg_strains, function(strain) {
  1076. message("Processing background strain: ", strain)
  1077. # Handle missing data by setting zero values to NA
  1078. # and then removing any rows with NA in L col
  1079. df_bg <- df_na %>%
  1080. filter(OrfRep == strain) %>%
  1081. mutate(
  1082. L = if_else(L == 0, NA, L),
  1083. K = if_else(K == 0, NA, K),
  1084. r = if_else(r == 0, NA, r),
  1085. AUC = if_else(AUC == 0, NA, AUC)
  1086. ) %>%
  1087. filter(!is.na(L))
  1088. # Recalculate summary statistics for the background strain
  1089. message("Calculating summary statistics for background strain")
  1090. ss_bg <- calculate_summary_stats(df_bg, summary_vars, group_vars = c("OrfRep", "conc_num", "conc_num_factor"))
  1091. summary_stats_bg <- ss_bg$summary_stats
  1092. # df_bg_stats <- ss_bg$df_with_stats
  1093. write.csv(summary_stats_bg,
  1094. file = file.path(out_dir, paste0("SummaryStats_BackgroundStrains_", strain, ".csv")),
  1095. row.names = FALSE)
  1096. # Filter reference and deletion strains
  1097. # Formerly X2_RF (reference strains)
  1098. df_reference <- df_na_stats %>%
  1099. filter(OrfRep == strain) %>%
  1100. mutate(SM = 0)
  1101. # Formerly X2 (deletion strains)
  1102. df_deletion <- df_na_stats %>%
  1103. filter(OrfRep != strain) %>%
  1104. mutate(SM = 0)
  1105. # Set the missing values to the highest theoretical value at each drug conc for L
  1106. # Leave other values as 0 for the max/min
  1107. reference_strain <- df_reference %>%
  1108. group_by(conc_num_factor) %>%
  1109. mutate(
  1110. max_l_theoretical = max(max_L, na.rm = TRUE),
  1111. L = ifelse(L == 0 & !is.na(L) & conc_num > 0, max_l_theoretical, L),
  1112. SM = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, 1, SM),
  1113. L = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, max_l_theoretical, L)) %>%
  1114. ungroup()
  1115. # Ditto for deletion strains
  1116. deletion_strains <- df_deletion %>%
  1117. group_by(conc_num_factor) %>%
  1118. mutate(
  1119. max_l_theoretical = max(max_L, na.rm = TRUE),
  1120. L = ifelse(L == 0 & !is.na(L) & conc_num > 0, max_l_theoretical, L),
  1121. SM = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, 1, SM),
  1122. L = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, max_l_theoretical, L)) %>%
  1123. ungroup()
  1124. message("Calculating reference strain interaction scores")
  1125. reference_results <- calculate_interaction_scores(reference_strain, max_conc, interaction_vars, group_vars = c("OrfRep", "Gene", "num"))
  1126. zscores_calculations_reference <- reference_results$calculations
  1127. zscores_interactions_reference <- reference_results$interactions
  1128. zscores_calculations_reference_joined <- reference_results$calculations_joined
  1129. zscores_interactions_reference_joined <- reference_results$interactions_joined
  1130. message("Calculating deletion strain(s) interactions scores")
  1131. deletion_results <- calculate_interaction_scores(deletion_strains, max_conc, interaction_vars, group_vars = c("OrfRep", "Gene", "num"))
  1132. zscores_calculations <- deletion_results$calculations
  1133. zscores_interactions <- deletion_results$interactions
  1134. zscores_calculations_joined <- deletion_results$calculations_joined
  1135. zscores_interactions_joined <- deletion_results$interactions_joined
  1136. # Writing Z-Scores to file
  1137. write.csv(zscores_calculations_reference, file = file.path(out_dir, "RF_ZScores_Calculations.csv"), row.names = FALSE)
  1138. write.csv(zscores_calculations, file = file.path(out_dir, "ZScores_Calculations.csv"), row.names = FALSE)
  1139. write.csv(zscores_interactions_reference, file = file.path(out_dir, "RF_ZScores_Interaction.csv"), row.names = FALSE)
  1140. write.csv(zscores_interactions, file = file.path(out_dir, "ZScores_Interaction.csv"), row.names = FALSE)
  1141. # Create interaction plots
  1142. message("Generating reference interaction plots")
  1143. reference_plot_configs <- generate_interaction_plot_configs(zscores_interactions_reference_joined, interaction_vars)
  1144. generate_and_save_plots(out_dir, "RF_interactionPlots", reference_plot_configs, grid_layout = list(ncol = 4, nrow = 3))
  1145. message("Generating deletion interaction plots")
  1146. deletion_plot_configs <- generate_interaction_plot_configs(zscores_interactions_joined, interaction_vars)
  1147. generate_and_save_plots(out_dir, "InteractionPlots", deletion_plot_configs, grid_layout = list(ncol = 4, nrow = 3))
  1148. # Define conditions for enhancers and suppressors
  1149. # TODO Add to study config file?
  1150. threshold <- 2
  1151. enhancer_condition_L <- zscores_interactions$Avg_Zscore_L >= threshold
  1152. suppressor_condition_L <- zscores_interactions$Avg_Zscore_L <= -threshold
  1153. enhancer_condition_K <- zscores_interactions$Avg_Zscore_K >= threshold
  1154. suppressor_condition_K <- zscores_interactions$Avg_Zscore_K <= -threshold
  1155. # Subset data
  1156. enhancers_L <- zscores_interactions[enhancer_condition_L, ]
  1157. suppressors_L <- zscores_interactions[suppressor_condition_L, ]
  1158. enhancers_K <- zscores_interactions[enhancer_condition_K, ]
  1159. suppressors_K <- zscores_interactions[suppressor_condition_K, ]
  1160. # Save enhancers and suppressors
  1161. message("Writing enhancer/suppressor csv files")
  1162. write.csv(enhancers_L, file = file.path(out_dir, "ZScores_Interaction_Deletion_Enhancers_L.csv"), row.names = FALSE)
  1163. write.csv(suppressors_L, file = file.path(out_dir, "ZScores_Interaction_Deletion_Suppressors_L.csv"), row.names = FALSE)
  1164. write.csv(enhancers_K, file = file.path(out_dir, "ZScores_Interaction_Deletion_Enhancers_K.csv"), row.names = FALSE)
  1165. write.csv(suppressors_K, file = file.path(out_dir, "ZScores_Interaction_Deletion_Suppressors_K.csv"), row.names = FALSE)
  1166. # Combine conditions for enhancers and suppressors
  1167. enhancers_and_suppressors_L <- zscores_interactions[enhancer_condition_L | suppressor_condition_L, ]
  1168. enhancers_and_suppressors_K <- zscores_interactions[enhancer_condition_K | suppressor_condition_K, ]
  1169. # Save combined enhancers and suppressors
  1170. write.csv(enhancers_and_suppressors_L,
  1171. file = file.path(out_dir, "ZScores_Interaction_Deletion_Enhancers_and_Suppressors_L.csv"), row.names = FALSE)
  1172. write.csv(enhancers_and_suppressors_K,
  1173. file = file.path(out_dir, "ZScores_Interaction_Deletion_Enhancers_and_Suppressors_K.csv"), row.names = FALSE)
  1174. # Handle linear model based enhancers and suppressors
  1175. lm_threshold <- 2
  1176. enhancers_lm_L <- zscores_interactions[zscores_interactions$Z_lm_L >= lm_threshold, ]
  1177. suppressors_lm_L <- zscores_interactions[zscores_interactions$Z_lm_L <= -lm_threshold, ]
  1178. enhancers_lm_K <- zscores_interactions[zscores_interactions$Z_lm_K >= lm_threshold, ]
  1179. suppressors_lm_K <- zscores_interactions[zscores_interactions$Z_lm_K <= -lm_threshold, ]
  1180. # Save linear model based enhancers and suppressors
  1181. message("Writing linear model enhancer/suppressor csv files")
  1182. write.csv(enhancers_lm_L,
  1183. file = file.path(out_dir, "ZScores_Interaction_Deletion_Enhancers_L_lm.csv"), row.names = FALSE)
  1184. write.csv(suppressors_lm_L,
  1185. file = file.path(out_dir, "ZScores_Interaction_Deletion_Suppressors_L_lm.csv"), row.names = FALSE)
  1186. write.csv(enhancers_lm_K,
  1187. file = file.path(out_dir, "ZScores_Interaction_Deletion_Enhancers_K_lm.csv"), row.names = FALSE)
  1188. write.csv(suppressors_lm_K,
  1189. file = file.path(out_dir, "ZScores_Interaction_Deletion_Suppressors_K_lm.csv"), row.names = FALSE)
  1190. message("Generating rank plots")
  1191. zscores_interactions_joined_filtered <- filter_data(
  1192. df = zscores_interactions_joined,
  1193. variables = interaction_vars,
  1194. missing = TRUE,
  1195. adjust = TRUE,
  1196. rank = TRUE)
  1197. rank_plot_configs <- generate_rank_plot_configs(
  1198. df = zscores_interactions_joined_filtered,
  1199. variables = interaction_vars,
  1200. is_lm = FALSE
  1201. )
  1202. generate_and_save_plots(out_dir = out_dir, file_name = "RankPlots",
  1203. plot_configs = rank_plot_configs, grid_layout = list(ncol = 3, nrow = 2))
  1204. message("Generating ranked linear model plots")
  1205. rank_lm_plot_configs <- generate_rank_plot_configs(
  1206. df = zscores_interactions_joined_filtered,
  1207. variables = interaction_vars,
  1208. is_lm = TRUE
  1209. )
  1210. generate_and_save_plots(out_dir = out_dir, file_name = "RankPlots_lm",
  1211. plot_configs = rank_lm_plot_configs, grid_layout = list(ncol = 3, nrow = 2))
  1212. message("Filtering and reranking plots")
  1213. # Formerly X_NArm
  1214. zscores_interactions_filtered <- zscores_interactions_joined %>%
  1215. group_by(across(all_of(c("OrfRep", "Gene", "num")))) %>%
  1216. filter(!is.na(Z_lm_L) | !is.na(Avg_Zscore_L)) %>%
  1217. mutate(
  1218. lm_R_squared_L = if (n() > 1) summary(lm(Z_lm_L ~ Avg_Zscore_L))$r.squared else NA,
  1219. lm_R_squared_K = if (n() > 1) summary(lm(Z_lm_K ~ Avg_Zscore_K))$r.squared else NA,
  1220. lm_R_squared_r = if (n() > 1) summary(lm(Z_lm_r ~ Avg_Zscore_r))$r.squared else NA,
  1221. lm_R_squared_AUC = if (n() > 1) summary(lm(Z_lm_AUC ~ Avg_Zscore_AUC))$r.squared else NA,
  1222. Overlap = case_when(
  1223. Z_lm_L >= 2 & Avg_Zscore_L >= 2 ~ "Deletion Enhancer Both",
  1224. Z_lm_L <= -2 & Avg_Zscore_L <= -2 ~ "Deletion Suppressor Both",
  1225. Z_lm_L >= 2 & Avg_Zscore_L <= 2 ~ "Deletion Enhancer lm only",
  1226. Z_lm_L <= -2 & Avg_Zscore_L >= -2 ~ "Deletion Suppressor lm only",
  1227. Z_lm_L >= 2 & Avg_Zscore_L <= -2 ~ "Deletion Enhancer lm, Deletion Suppressor Avg Z score",
  1228. Z_lm_L <= -2 & Avg_Zscore_L >= 2 ~ "Deletion Suppressor lm, Deletion Enhancer Avg Z score",
  1229. TRUE ~ "No Effect"
  1230. )
  1231. )
  1232. # Re-rank
  1233. zscores_interactions_filtered <- filter_data(
  1234. df = zscores_interactions_filtered,
  1235. variables = interaction_vars,
  1236. missing = TRUE, # TODO what I'm currently having issues with
  1237. rank = TRUE
  1238. )
  1239. rank_plot_filtered_configs <- generate_rank_plot_configs(
  1240. df = zscores_interactions_filtered,
  1241. variables = interaction_vars,
  1242. is_lm = FALSE
  1243. )
  1244. message("Generating filtered ranked plots")
  1245. generate_and_save_plots(
  1246. out_dir = out_dir,
  1247. file_name = "RankPlots_na_rm",
  1248. plot_configs = rank_plot_filtered_configs,
  1249. grid_layout = list(ncol = 3, nrow = 2))
  1250. message("Generating filtered ranked linear model plots")
  1251. rank_plot_lm_filtered_configs <- generate_rank_plot_configs(
  1252. df = zscores_interactions_filtered,
  1253. variables = interaction_vars,
  1254. is_lm = TRUE
  1255. )
  1256. generate_and_save_plots(
  1257. out_dir = out_dir,
  1258. file_name = "RankPlots_lm_na_rm",
  1259. plot_configs = rank_plot_lm_filtered_configs,
  1260. grid_layout = list(ncol = 3, nrow = 2))
  1261. message("Generating correlation plots")
  1262. correlation_plot_configs <- generate_correlation_plot_configs(zscores_interactions_filtered)
  1263. generate_and_save_plots(
  1264. out_dir = out_dir,
  1265. file_name = "Avg_Zscore_vs_lm_NA_rm",
  1266. plot_configs = correlation_plot_configs,
  1267. grid_layout = list(ncol = 2, nrow = 2))
  1268. })
  1269. })
  1270. }
  1271. main()