calculate_interaction_zscores.R 64 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696
  1. suppressMessages({
  2. library("ggplot2")
  3. library("plotly")
  4. library("htmlwidgets")
  5. library("htmltools")
  6. library("dplyr")
  7. library("rlang")
  8. library("ggthemes")
  9. library("data.table")
  10. library("gridExtra")
  11. library("future")
  12. library("furrr")
  13. library("purrr")
  14. })
  15. # These parallelization libraries are very noisy
  16. suppressPackageStartupMessages({
  17. library("future")
  18. library("furrr")
  19. library("purrr")
  20. })
  21. # Turn all warnings into errors for development
  22. options(warn = 2)
  23. parse_arguments <- function() {
  24. args <- if (interactive()) {
  25. c(
  26. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/20240116_jhartman2_DoxoHLD",
  27. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/apps/r/SGD_features.tab",
  28. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/easy/20240116_jhartman2_DoxoHLD/results_std.txt",
  29. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/20240822_jhartman2_DoxoHLD/exp1",
  30. "Experiment 1: Doxo versus HLD",
  31. 3,
  32. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/20240822_jhartman2_DoxoHLD/exp2",
  33. "Experiment 2: HLD versus Doxo",
  34. 3
  35. )
  36. } else {
  37. commandArgs(trailingOnly = TRUE)
  38. }
  39. out_dir <- normalizePath(args[1], mustWork = FALSE)
  40. sgd_gene_list <- normalizePath(args[2], mustWork = FALSE)
  41. easy_results_file <- normalizePath(args[3], mustWork = FALSE)
  42. # The remaining arguments should be in groups of 3
  43. exp_args <- args[-(1:3)]
  44. if (length(exp_args) %% 3 != 0) {
  45. stop("Experiment arguments should be in groups of 3: path, name, sd.")
  46. }
  47. # Extract the experiments into a list
  48. experiments <- list()
  49. for (i in seq(1, length(exp_args), by = 3)) {
  50. exp_name <- exp_args[i + 1]
  51. experiments[[exp_name]] <- list(
  52. path = normalizePath(exp_args[i], mustWork = FALSE),
  53. sd = as.numeric(exp_args[i + 2])
  54. )
  55. }
  56. # Extract the trailing number from each path
  57. trailing_numbers <- sapply(experiments, function(x) {
  58. path <- x$path
  59. nums <- gsub("[^0-9]", "", basename(path))
  60. as.integer(nums)
  61. })
  62. # Sort the experiments based on the trailing numbers
  63. sorted_experiments <- experiments[order(trailing_numbers)]
  64. list(
  65. out_dir = out_dir,
  66. sgd_gene_list = sgd_gene_list,
  67. easy_results_file = easy_results_file,
  68. experiments = sorted_experiments
  69. )
  70. }
  71. args <- parse_arguments()
  72. # Should we keep output in exp dirs or combine in the study output dir?
  73. # dir.create(file.path(args$out_dir, "zscores"), showWarnings = FALSE)
  74. # dir.create(file.path(args$out_dir, "zscores", "qc"), showWarnings = FALSE)
  75. theme_publication <- function(base_size = 14, base_family = "sans", legend_position = NULL) {
  76. # Ensure that legend_position has a valid value or default to "none"
  77. legend_position <- if (is.null(legend_position) || length(legend_position) == 0) "none" else legend_position
  78. theme_foundation <- ggthemes::theme_foundation(base_size = base_size, base_family = base_family)
  79. theme_foundation %+replace%
  80. theme(
  81. plot.title = element_text(face = "bold", size = rel(1.6), hjust = 0.5),
  82. text = element_text(),
  83. panel.background = element_blank(),
  84. plot.background = element_blank(),
  85. panel.border = element_blank(),
  86. axis.title = element_text(face = "bold", size = rel(1.4)),
  87. axis.title.y = element_text(angle = 90, vjust = 2),
  88. axis.text = element_text(size = rel(1.2)),
  89. axis.line = element_line(colour = "black"),
  90. panel.grid.major = element_line(colour = "#f0f0f0"),
  91. panel.grid.minor = element_blank(),
  92. legend.key = element_rect(colour = NA),
  93. legend.position = legend_position,
  94. legend.direction =
  95. if (legend_position == "right") {
  96. "vertical"
  97. } else if (legend_position == "bottom") {
  98. "horizontal"
  99. } else {
  100. NULL # No legend direction if position is "none" or other values
  101. },
  102. legend.spacing = unit(0, "cm"),
  103. legend.title = element_text(face = "italic", size = rel(1.3)),
  104. legend.text = element_text(size = rel(1.2)),
  105. plot.margin = unit(c(10, 5, 5, 5), "mm")
  106. )
  107. }
  108. scale_fill_publication <- function(...) {
  109. discrete_scale("fill", "Publication", manual_pal(values = c(
  110. "#386cb0", "#fdb462", "#7fc97f", "#ef3b2c", "#662506",
  111. "#a6cee3", "#fb9a99", "#984ea3", "#ffff33"
  112. )), ...)
  113. }
  114. scale_colour_publication <- function(...) {
  115. discrete_scale("colour", "Publication", manual_pal(values = c(
  116. "#386cb0", "#fdb462", "#7fc97f", "#ef3b2c", "#662506",
  117. "#a6cee3", "#fb9a99", "#984ea3", "#ffff33"
  118. )), ...)
  119. }
  120. # Load the initial dataframe from the easy_results_file
  121. load_and_filter_data <- function(easy_results_file, sd = 3) {
  122. df <- read.delim(easy_results_file, skip = 2, as.is = TRUE, row.names = 1, strip.white = TRUE)
  123. df <- df %>%
  124. filter(!(.[[1]] %in% c("", "Scan"))) %>%
  125. filter(!is.na(ORF) & ORF != "" & !Gene %in% c("BLANK", "Blank", "blank") & Drug != "BMH21") %>%
  126. # Rename columns
  127. rename(L = l, num = Num., AUC = AUC96, scan = Scan, last_bg = LstBackgrd, first_bg = X1stBackgrd) %>%
  128. mutate(
  129. across(c(Col, Row, num, L, K, r, scan, AUC, last_bg, first_bg), as.numeric),
  130. delta_bg = last_bg - first_bg,
  131. delta_bg_tolerance = mean(delta_bg, na.rm = TRUE) + (sd * sd(delta_bg, na.rm = TRUE)),
  132. NG = if_else(L == 0 & !is.na(L), 1, 0),
  133. DB = if_else(delta_bg >= delta_bg_tolerance, 1, 0),
  134. SM = 0,
  135. OrfRep = if_else(ORF == "YDL227C", "YDL227C", OrfRep), # should these be hardcoded?
  136. conc_num = as.numeric(gsub("[^0-9\\.]", "", Conc)),
  137. conc_num_factor = as.numeric(as.factor(conc_num)) - 1, # for legacy purposes
  138. conc_num_factor_factor = as.factor(conc_num)
  139. )
  140. return(df)
  141. }
  142. update_gene_names <- function(df, sgd_gene_list) {
  143. genes <- read.delim(file = sgd_gene_list, quote = "", header = FALSE,
  144. colClasses = c(rep("NULL", 3), rep("character", 2), rep("NULL", 11)))
  145. gene_map <- setNames(genes$V5, genes$V4) # ORF to GeneName mapping
  146. df <- df %>%
  147. mutate(
  148. mapped_genes = gene_map[ORF],
  149. Gene = if_else(is.na(mapped_genes) | OrfRep == "YDL227C", Gene, mapped_genes),
  150. Gene = if_else(Gene == "" | Gene == "OCT1", OrfRep, Gene) # Handle invalid names
  151. )
  152. return(df)
  153. }
  154. calculate_summary_stats <- function(df, variables, group_vars) {
  155. summary_stats <- df %>%
  156. group_by(across(all_of(group_vars))) %>%
  157. summarise(
  158. N = n(),
  159. across(all_of(variables),
  160. list(
  161. mean = ~ mean(.x, na.rm = TRUE),
  162. median = ~ median(.x, na.rm = TRUE),
  163. max = ~ ifelse(all(is.na(.x)), NA, max(.x, na.rm = TRUE)),
  164. min = ~ ifelse(all(is.na(.x)), NA, min(.x, na.rm = TRUE)),
  165. sd = ~ sd(.x, na.rm = TRUE),
  166. se = ~ sd(.x, na.rm = TRUE) / sqrt(n() - 1)
  167. ),
  168. .names = "{.fn}_{.col}"
  169. ),
  170. .groups = "drop"
  171. )
  172. # Create a cleaned version of df that doesn't overlap with summary_stats
  173. df_cleaned <- df %>%
  174. select(-any_of(setdiff(intersect(names(df), names(summary_stats)), group_vars)))
  175. df_joined <- left_join(df_cleaned, summary_stats, by = group_vars)
  176. return(list(summary_stats = summary_stats, df_with_stats = df_joined))
  177. }
  178. calculate_interaction_scores <- function(df, df_bg, group_vars, overlap_threshold = 2) {
  179. max_conc <- max(as.numeric(df$conc_num_factor), na.rm = TRUE)
  180. total_conc_num <- length(unique(df$conc_num))
  181. # Calculate WT statistics from df_bg
  182. wt_stats <- df_bg %>%
  183. filter(conc_num == 0) %>%
  184. summarise(
  185. WT_L = mean(mean_L, na.rm = TRUE),
  186. WT_sd_L = mean(sd_L, na.rm = TRUE),
  187. WT_K = mean(mean_K, na.rm = TRUE),
  188. WT_sd_K = mean(sd_K, na.rm = TRUE),
  189. WT_r = mean(mean_r, na.rm = TRUE),
  190. WT_sd_r = mean(sd_r, na.rm = TRUE),
  191. WT_AUC = mean(mean_AUC, na.rm = TRUE),
  192. WT_sd_AUC = mean(sd_AUC, na.rm = TRUE)
  193. )
  194. # Add WT statistics to df
  195. df <- df %>%
  196. mutate(
  197. WT_L = wt_stats$WT_L,
  198. WT_sd_L = wt_stats$WT_sd_L,
  199. WT_K = wt_stats$WT_K,
  200. WT_sd_K = wt_stats$WT_sd_K,
  201. WT_r = wt_stats$WT_r,
  202. WT_sd_r = wt_stats$WT_sd_r,
  203. WT_AUC = wt_stats$WT_AUC,
  204. WT_sd_AUC = wt_stats$WT_sd_AUC
  205. )
  206. # Compute mean values at zero concentration
  207. mean_L_zero_df <- df %>%
  208. filter(conc_num == 0) %>%
  209. group_by(across(all_of(group_vars))) %>%
  210. summarise(
  211. mean_L_zero = mean(mean_L, na.rm = TRUE),
  212. mean_K_zero = mean(mean_K, na.rm = TRUE),
  213. mean_r_zero = mean(mean_r, na.rm = TRUE),
  214. mean_AUC_zero = mean(mean_AUC, na.rm = TRUE),
  215. .groups = "drop"
  216. )
  217. # Join mean_L_zero_df to df
  218. df <- df %>%
  219. left_join(mean_L_zero_df, by = group_vars)
  220. # Calculate Raw Shifts and Z Shifts
  221. df <- df %>%
  222. mutate(
  223. Raw_Shift_L = mean_L_zero - WT_L,
  224. Raw_Shift_K = mean_K_zero - WT_K,
  225. Raw_Shift_r = mean_r_zero - WT_r,
  226. Raw_Shift_AUC = mean_AUC_zero - WT_AUC,
  227. Z_Shift_L = Raw_Shift_L / WT_sd_L,
  228. Z_Shift_K = Raw_Shift_K / WT_sd_K,
  229. Z_Shift_r = Raw_Shift_r / WT_sd_r,
  230. Z_Shift_AUC = Raw_Shift_AUC / WT_sd_AUC
  231. )
  232. calculations <- df %>%
  233. group_by(across(all_of(group_vars))) %>%
  234. mutate(
  235. NG_sum = sum(NG, na.rm = TRUE),
  236. DB_sum = sum(DB, na.rm = TRUE),
  237. SM_sum = sum(SM, na.rm = TRUE),
  238. num_non_removed_concs = total_conc_num - sum(DB, na.rm = TRUE) - 1,
  239. # Expected values
  240. Exp_L = WT_L + Raw_Shift_L,
  241. Exp_K = WT_K + Raw_Shift_K,
  242. Exp_r = WT_r + Raw_Shift_r,
  243. Exp_AUC = WT_AUC + Raw_Shift_AUC,
  244. # Deltas
  245. Delta_L = mean_L - Exp_L,
  246. Delta_K = mean_K - Exp_K,
  247. Delta_r = mean_r - Exp_r,
  248. Delta_AUC = mean_AUC - Exp_AUC,
  249. # Adjust deltas for NG and SM
  250. Delta_L = if_else(NG == 1, mean_L - WT_L, Delta_L),
  251. Delta_K = if_else(NG == 1, mean_K - WT_K, Delta_K),
  252. Delta_r = if_else(NG == 1, mean_r - WT_r, Delta_r),
  253. Delta_AUC = if_else(NG == 1, mean_AUC - WT_AUC, Delta_AUC),
  254. Delta_L = if_else(SM == 1, mean_L - WT_L, Delta_L),
  255. # Calculate Z-scores
  256. Zscore_L = Delta_L / WT_sd_L,
  257. Zscore_K = Delta_K / WT_sd_K,
  258. Zscore_r = Delta_r / WT_sd_r,
  259. Zscore_AUC = Delta_AUC / WT_sd_AUC
  260. ) %>%
  261. group_modify(~ {
  262. # Perform linear models only if there are enough unique conc_num_factor levels
  263. if (length(unique(.x$conc_num_factor)) > 1) {
  264. # Filter and calculate each lm() separately with individual checks for NAs
  265. lm_L <- if (!all(is.na(.x$Delta_L))) tryCatch(lm(Delta_L ~ conc_num_factor, data = .x), error = function(e) NULL) else NULL
  266. lm_K <- if (!all(is.na(.x$Delta_K))) tryCatch(lm(Delta_K ~ conc_num_factor, data = .x), error = function(e) NULL) else NULL
  267. lm_r <- if (!all(is.na(.x$Delta_r))) tryCatch(lm(Delta_r ~ conc_num_factor, data = .x), error = function(e) NULL) else NULL
  268. lm_AUC <- if (!all(is.na(.x$Delta_AUC))) tryCatch(lm(Delta_AUC ~ conc_num_factor, data = .x), error = function(e) NULL) else NULL
  269. # Mutate results for each lm if it was successfully calculated, suppress warnings for perfect fits
  270. .x %>%
  271. mutate(
  272. lm_intercept_L = if (!is.null(lm_L)) coef(lm_L)[1] else NA,
  273. lm_slope_L = if (!is.null(lm_L)) coef(lm_L)[2] else NA,
  274. R_Squared_L = if (!is.null(lm_L)) suppressWarnings(summary(lm_L)$r.squared) else NA,
  275. lm_Score_L = if (!is.null(lm_L)) max_conc * coef(lm_L)[2] + coef(lm_L)[1] else NA,
  276. lm_intercept_K = if (!is.null(lm_K)) coef(lm_K)[1] else NA,
  277. lm_slope_K = if (!is.null(lm_K)) coef(lm_K)[2] else NA,
  278. R_Squared_K = if (!is.null(lm_K)) suppressWarnings(summary(lm_K)$r.squared) else NA,
  279. lm_Score_K = if (!is.null(lm_K)) max_conc * coef(lm_K)[2] + coef(lm_K)[1] else NA,
  280. lm_intercept_r = if (!is.null(lm_r)) coef(lm_r)[1] else NA,
  281. lm_slope_r = if (!is.null(lm_r)) coef(lm_r)[2] else NA,
  282. R_Squared_r = if (!is.null(lm_r)) suppressWarnings(summary(lm_r)$r.squared) else NA,
  283. lm_Score_r = if (!is.null(lm_r)) max_conc * coef(lm_r)[2] + coef(lm_r)[1] else NA,
  284. lm_intercept_AUC = if (!is.null(lm_AUC)) coef(lm_AUC)[1] else NA,
  285. lm_slope_AUC = if (!is.null(lm_AUC)) coef(lm_AUC)[2] else NA,
  286. R_Squared_AUC = if (!is.null(lm_AUC)) suppressWarnings(summary(lm_AUC)$r.squared) else NA,
  287. lm_Score_AUC = if (!is.null(lm_AUC)) max_conc * coef(lm_AUC)[2] + coef(lm_AUC)[1] else NA
  288. )
  289. } else {
  290. # If not enough conc_num_factor levels, set lm-related values to NA
  291. .x %>%
  292. mutate(
  293. lm_intercept_L = NA, lm_slope_L = NA, R_Squared_L = NA, lm_Score_L = NA,
  294. lm_intercept_K = NA, lm_slope_K = NA, R_Squared_K = NA, lm_Score_K = NA,
  295. lm_intercept_r = NA, lm_slope_r = NA, R_Squared_r = NA, lm_Score_r = NA,
  296. lm_intercept_AUC = NA, lm_slope_AUC = NA, R_Squared_AUC = NA, lm_Score_AUC = NA
  297. )
  298. }
  299. }) %>%
  300. ungroup()
  301. # For interaction plot error bars
  302. delta_means_sds <- calculations %>%
  303. group_by(across(all_of(group_vars))) %>%
  304. summarise(
  305. mean_Delta_L = mean(Delta_L, na.rm = TRUE),
  306. mean_Delta_K = mean(Delta_K, na.rm = TRUE),
  307. mean_Delta_r = mean(Delta_r, na.rm = TRUE),
  308. mean_Delta_AUC = mean(Delta_AUC, na.rm = TRUE),
  309. sd_Delta_L = sd(Delta_L, na.rm = TRUE),
  310. sd_Delta_K = sd(Delta_K, na.rm = TRUE),
  311. sd_Delta_r = sd(Delta_r, na.rm = TRUE),
  312. sd_Delta_AUC = sd(Delta_AUC, na.rm = TRUE),
  313. .groups = "drop"
  314. )
  315. calculations <- calculations %>%
  316. left_join(delta_means_sds, by = group_vars)
  317. # Summary statistics for lm scores
  318. lm_means_sds <- calculations %>%
  319. summarise(
  320. lm_mean_L = mean(lm_Score_L, na.rm = TRUE),
  321. lm_sd_L = sd(lm_Score_L, na.rm = TRUE),
  322. lm_mean_K = mean(lm_Score_K, na.rm = TRUE),
  323. lm_sd_K = sd(lm_Score_K, na.rm = TRUE),
  324. lm_mean_r = mean(lm_Score_r, na.rm = TRUE),
  325. lm_sd_r = sd(lm_Score_r, na.rm = TRUE),
  326. lm_mean_AUC = mean(lm_Score_AUC, na.rm = TRUE),
  327. lm_sd_AUC = sd(lm_Score_AUC, na.rm = TRUE),
  328. .groups = "drop"
  329. )
  330. # Add lm score means and standard deviations to calculations
  331. calculations <- calculations %>%
  332. mutate(
  333. lm_mean_L = lm_means_sds$lm_mean_L,
  334. lm_sd_L = lm_means_sds$lm_sd_L,
  335. lm_mean_K = lm_means_sds$lm_mean_K,
  336. lm_sd_K = lm_means_sds$lm_sd_K,
  337. lm_mean_r = lm_means_sds$lm_mean_r,
  338. lm_sd_r = lm_means_sds$lm_sd_r,
  339. lm_mean_AUC = lm_means_sds$lm_mean_AUC,
  340. lm_sd_AUC = lm_means_sds$lm_sd_AUC
  341. )
  342. # Calculate Z-lm scores
  343. calculations <- calculations %>%
  344. mutate(
  345. Z_lm_L = (lm_Score_L - lm_mean_L) / lm_sd_L,
  346. Z_lm_K = (lm_Score_K - lm_mean_K) / lm_sd_K,
  347. Z_lm_r = (lm_Score_r - lm_mean_r) / lm_sd_r,
  348. Z_lm_AUC = (lm_Score_AUC - lm_mean_AUC) / lm_sd_AUC
  349. )
  350. # Build summary stats (interactions)
  351. interactions <- calculations %>%
  352. group_by(across(all_of(group_vars))) %>%
  353. summarise(
  354. Avg_Zscore_L = sum(Zscore_L, na.rm = TRUE) / first(num_non_removed_concs),
  355. Avg_Zscore_K = sum(Zscore_K, na.rm = TRUE) / first(num_non_removed_concs),
  356. Avg_Zscore_r = sum(Zscore_r, na.rm = TRUE) / (total_conc_num - 1),
  357. Avg_Zscore_AUC = sum(Zscore_AUC, na.rm = TRUE) / (total_conc_num - 1),
  358. # Interaction Z-scores
  359. Z_lm_L = first(Z_lm_L),
  360. Z_lm_K = first(Z_lm_K),
  361. Z_lm_r = first(Z_lm_r),
  362. Z_lm_AUC = first(Z_lm_AUC),
  363. # Raw Shifts
  364. Raw_Shift_L = first(Raw_Shift_L),
  365. Raw_Shift_K = first(Raw_Shift_K),
  366. Raw_Shift_r = first(Raw_Shift_r),
  367. Raw_Shift_AUC = first(Raw_Shift_AUC),
  368. # Z Shifts
  369. Z_Shift_L = first(Z_Shift_L),
  370. Z_Shift_K = first(Z_Shift_K),
  371. Z_Shift_r = first(Z_Shift_r),
  372. Z_Shift_AUC = first(Z_Shift_AUC),
  373. # R Squared values
  374. R_Squared_L = first(R_Squared_L),
  375. R_Squared_K = first(R_Squared_K),
  376. R_Squared_r = first(R_Squared_r),
  377. R_Squared_AUC = first(R_Squared_AUC),
  378. # NG, DB, SM values
  379. NG = first(NG),
  380. DB = first(DB),
  381. SM = first(SM),
  382. .groups = "drop"
  383. )
  384. # Add overlap threshold categories based on Z-lm and Avg-Z scores
  385. interactions <- interactions %>%
  386. filter(!is.na(Z_lm_L) | !is.na(Avg_Zscore_L)) %>%
  387. mutate(
  388. Overlap = case_when(
  389. Z_lm_L >= overlap_threshold & Avg_Zscore_L >= overlap_threshold ~ "Deletion Enhancer Both",
  390. Z_lm_L <= -overlap_threshold & Avg_Zscore_L <= -overlap_threshold ~ "Deletion Suppressor Both",
  391. Z_lm_L >= overlap_threshold & Avg_Zscore_L <= overlap_threshold ~ "Deletion Enhancer lm only",
  392. Z_lm_L <= overlap_threshold & Avg_Zscore_L >= overlap_threshold ~ "Deletion Enhancer Avg Zscore only",
  393. Z_lm_L <= -overlap_threshold & Avg_Zscore_L >= -overlap_threshold ~ "Deletion Suppressor lm only",
  394. Z_lm_L >= -overlap_threshold & Avg_Zscore_L <= -overlap_threshold ~ "Deletion Suppressor Avg Zscore only",
  395. Z_lm_L >= overlap_threshold & Avg_Zscore_L <= -overlap_threshold ~ "Deletion Enhancer lm, Deletion Suppressor Avg Zscore",
  396. Z_lm_L <= -overlap_threshold & Avg_Zscore_L >= overlap_threshold ~ "Deletion Suppressor lm, Deletion Enhancer Avg Zscore",
  397. TRUE ~ "No Effect"
  398. ),
  399. # For correlations
  400. lm_R_squared_L = if (!all(is.na(Z_lm_L)) && !all(is.na(Avg_Zscore_L))) summary(lm(Z_lm_L ~ Avg_Zscore_L))$r.squared else NA,
  401. lm_R_squared_K = if (!all(is.na(Z_lm_K)) && !all(is.na(Avg_Zscore_K))) summary(lm(Z_lm_K ~ Avg_Zscore_K))$r.squared else NA,
  402. lm_R_squared_r = if (!all(is.na(Z_lm_r)) && !all(is.na(Avg_Zscore_r))) summary(lm(Z_lm_r ~ Avg_Zscore_r))$r.squared else NA,
  403. lm_R_squared_AUC = if (!all(is.na(Z_lm_AUC)) && !all(is.na(Avg_Zscore_AUC))) summary(lm(Z_lm_AUC ~ Avg_Zscore_AUC))$r.squared else NA
  404. )
  405. # Creating the final calculations and interactions dataframes with only required columns for csv output
  406. calculations_df <- calculations %>%
  407. select(
  408. all_of(group_vars),
  409. conc_num, conc_num_factor, conc_num_factor_factor, N,
  410. mean_L, median_L, sd_L, se_L,
  411. mean_K, median_K, sd_K, se_K,
  412. mean_r, median_r, sd_r, se_r,
  413. mean_AUC, median_AUC, sd_AUC, se_AUC,
  414. Raw_Shift_L, Raw_Shift_K, Raw_Shift_r, Raw_Shift_AUC,
  415. Z_Shift_L, Z_Shift_K, Z_Shift_r, Z_Shift_AUC,
  416. WT_L, WT_K, WT_r, WT_AUC,
  417. WT_sd_L, WT_sd_K, WT_sd_r, WT_sd_AUC,
  418. Exp_L, Exp_K, Exp_r, Exp_AUC,
  419. Delta_L, Delta_K, Delta_r, Delta_AUC,
  420. mean_Delta_L, mean_Delta_K, mean_Delta_r, mean_Delta_AUC,
  421. Zscore_L, Zscore_K, Zscore_r, Zscore_AUC
  422. )
  423. interactions_df <- interactions %>%
  424. select(
  425. all_of(group_vars),
  426. NG, DB, SM,
  427. Avg_Zscore_L, Avg_Zscore_K, Avg_Zscore_r, Avg_Zscore_AUC,
  428. Z_lm_L, Z_lm_K, Z_lm_r, Z_lm_AUC,
  429. Raw_Shift_L, Raw_Shift_K, Raw_Shift_r, Raw_Shift_AUC,
  430. Z_Shift_L, Z_Shift_K, Z_Shift_r, Z_Shift_AUC,
  431. lm_R_squared_L, lm_R_squared_K, lm_R_squared_r, lm_R_squared_AUC,
  432. Overlap
  433. )
  434. # Join calculations and interactions to avoid dimension mismatch
  435. calculations_no_overlap <- calculations %>%
  436. select(-any_of(c("DB", "NG", "SM",
  437. "Raw_Shift_L", "Raw_Shift_K", "Raw_Shift_r", "Raw_Shift_AUC",
  438. "Z_Shift_L", "Z_Shift_K", "Z_Shift_r", "Z_Shift_AUC",
  439. "Z_lm_L", "Z_lm_K", "Z_lm_r", "Z_lm_AUC")))
  440. full_data <- calculations_no_overlap %>%
  441. left_join(interactions_df, by = group_vars)
  442. # Return final dataframes
  443. return(list(
  444. calculations = calculations_df,
  445. interactions = interactions_df,
  446. full_data = full_data
  447. ))
  448. }
  449. generate_and_save_plots <- function(out_dir, filename, plot_configs, page_width = 12, page_height = 8) {
  450. message("Generating ", filename, ".pdf and ", filename, ".html")
  451. # Check if we're dealing with multiple plot groups
  452. plot_groups <- if ("plots" %in% names(plot_configs)) {
  453. list(plot_configs) # Single group
  454. } else {
  455. plot_configs # Multiple groups
  456. }
  457. # Open the PDF device once for all plots
  458. pdf(file.path(out_dir, paste0(filename, ".pdf")), width = page_width, height = page_height)
  459. # Loop through each plot group
  460. for (group in plot_groups) {
  461. static_plots <- list()
  462. plotly_plots <- list()
  463. # Retrieve grid layout if it exists, otherwise skip
  464. grid_layout <- group$grid_layout
  465. plots <- group$plots
  466. # Only handle grid layout if it exists
  467. if (!is.null(grid_layout)) {
  468. # Set grid_ncol to 1 if not specified
  469. if (is.null(grid_layout$ncol)) {
  470. grid_layout$ncol <- 1
  471. }
  472. # If ncol is set but nrow is not, calculate nrow dynamically based on num_plots
  473. if (!is.null(grid_layout$ncol) && is.null(grid_layout$nrow)) {
  474. num_plots <- length(plots)
  475. nrow <- ceiling(num_plots / grid_layout$ncol)
  476. message("No nrow provided, automatically using nrow = ", nrow)
  477. grid_layout$nrow <- nrow
  478. }
  479. # Fill missing spots with nullGrob() if necessary
  480. total_spots <- grid_layout$nrow * grid_layout$ncol
  481. num_plots <- length(plots)
  482. if (num_plots < total_spots) {
  483. message("Filling ", total_spots - num_plots, " empty spots with nullGrob()")
  484. plots <- c(plots, replicate(total_spots - num_plots, nullGrob(), simplify = FALSE))
  485. }
  486. }
  487. for (i in seq_along(plots)) {
  488. config <- plots[[i]]
  489. df <- config$df
  490. # Filter points outside of y-limits if specified
  491. if (!is.null(config$ylim_vals)) {
  492. out_of_bounds_df <- df %>%
  493. filter(
  494. is.na(.data[[config$y_var]]) |
  495. .data[[config$y_var]] < config$ylim_vals[1] |
  496. .data[[config$y_var]] > config$ylim_vals[2]
  497. )
  498. # Print rows being filtered out
  499. if (nrow(out_of_bounds_df) > 0) {
  500. message("# of filtered rows outside y-limits (for plotting): ", nrow(out_of_bounds_df))
  501. # print(out_of_bounds_df)
  502. }
  503. # Filter the valid data for plotting
  504. df <- df %>%
  505. filter(
  506. !is.na(.data[[config$y_var]]) &
  507. .data[[config$y_var]] >= config$ylim_vals[1] &
  508. .data[[config$y_var]] <= config$ylim_vals[2]
  509. )
  510. }
  511. # Set up aes mapping based on plot type
  512. aes_mapping <- if (config$plot_type == "bar") {
  513. if (!is.null(config$color_var)) {
  514. aes(x = .data[[config$x_var]], fill = .data[[config$color_var]], color = .data[[config$color_var]])
  515. } else {
  516. aes(x = .data[[config$x_var]])
  517. }
  518. } else if (config$plot_type == "density") {
  519. if (!is.null(config$color_var)) {
  520. aes(x = .data[[config$x_var]], color = .data[[config$color_var]])
  521. } else {
  522. aes(x = .data[[config$x_var]])
  523. }
  524. } else {
  525. if (!is.null(config$y_var) && !is.null(config$color_var)) {
  526. aes(x = .data[[config$x_var]], y = .data[[config$y_var]], color = .data[[config$color_var]])
  527. } else if (!is.null(config$y_var)) {
  528. aes(x = .data[[config$x_var]], y = .data[[config$y_var]])
  529. } else {
  530. aes(x = .data[[config$x_var]])
  531. }
  532. }
  533. plot <- ggplot(df, aes_mapping) + theme_publication(legend_position = config$legend_position)
  534. # Add appropriate plot layer or helper function based on plot type
  535. plot <- switch(config$plot_type,
  536. "scatter" = generate_scatter_plot(plot, config),
  537. "box" = generate_boxplot(plot, config),
  538. "density" = plot + geom_density(),
  539. "bar" = plot + geom_bar(),
  540. plot # default (unused)
  541. )
  542. # Add labels and title
  543. if (!is.null(config$title)) {
  544. plot <- plot + ggtitle(config$title)
  545. if (!is.null(config$title_size)) {
  546. plot <- plot + theme(plot.title = element_text(size = config$title_size))
  547. }
  548. }
  549. if (!is.null(config$x_label)) plot <- plot + xlab(config$x_label)
  550. if (!is.null(config$y_label)) plot <- plot + ylab(config$y_label)
  551. if (!is.null(config$coord_cartesian)) plot <- plot + coord_cartesian(ylim = config$coord_cartesian)
  552. # Add annotations if specified
  553. if (!is.null(config$annotations)) {
  554. for (annotation in config$annotations) {
  555. plot <- plot +
  556. annotate(
  557. "text",
  558. x = ifelse(is.null(annotation$x), 0, annotation$x),
  559. y = ifelse(is.null(annotation$y), Inf, annotation$y),
  560. label = annotation$label,
  561. hjust = ifelse(is.null(annotation$hjust), 0.5, annotation$hjust),
  562. vjust = ifelse(is.null(annotation$vjust), 1, annotation$vjust),
  563. size = ifelse(is.null(annotation$size), 3, annotation$size),
  564. color = ifelse(is.null(annotation$color), "black", annotation$color)
  565. )
  566. }
  567. }
  568. # Add error bars if specified
  569. if (!is.null(config$error_bar) && config$error_bar) {
  570. # Check if custom columns are provided for y_mean and y_sd, or use the defaults
  571. y_mean_col <- if (!is.null(config$error_bar_params$y_mean_col)) {
  572. config$error_bar_params$y_mean_col
  573. } else {
  574. paste0("mean_", config$y_var)
  575. }
  576. y_sd_col <- if (!is.null(config$error_bar_params$y_sd_col)) {
  577. config$error_bar_params$y_sd_col
  578. } else {
  579. paste0("sd_", config$y_var)
  580. }
  581. # Use rlang to handle custom error bar calculations
  582. if (!is.null(config$error_bar_params$custom_error_bar)) {
  583. custom_ymin_expr <- rlang::parse_expr(config$error_bar_params$custom_error_bar$ymin)
  584. custom_ymax_expr <- rlang::parse_expr(config$error_bar_params$custom_error_bar$ymax)
  585. plot <- plot + geom_errorbar(
  586. aes(
  587. x = .data[[config$x_var]],
  588. ymin = !!custom_ymin_expr,
  589. ymax = !!custom_ymax_expr
  590. ),
  591. color = config$error_bar_params$color,
  592. linewidth = 0.1
  593. )
  594. } else {
  595. # If no custom error bar formula, use the default or dynamic ones
  596. if (!is.null(config$color_var) && is.null(config$error_bar_params$color)) {
  597. plot <- plot + geom_errorbar(
  598. aes(
  599. x = .data[[config$x_var]],
  600. ymin = .data[[y_mean_col]] - .data[[y_sd_col]],
  601. ymax = .data[[y_mean_col]] + .data[[y_sd_col]],
  602. color = .data[[config$color_var]]
  603. ),
  604. linewidth = 0.1
  605. )
  606. } else {
  607. plot <- plot + geom_errorbar(
  608. aes(
  609. x = .data[[config$x_var]],
  610. ymin = .data[[y_mean_col]] - .data[[y_sd_col]],
  611. ymax = .data[[y_mean_col]] + .data[[y_sd_col]]
  612. ),
  613. color = config$error_bar_params$color,
  614. linewidth = 0.1
  615. )
  616. }
  617. }
  618. # Add the center point if the option is provided
  619. if (!is.null(config$error_bar_params$mean_point) && config$error_bar_params$mean_point) {
  620. plot <- plot + geom_point(
  621. aes(
  622. x = .data[[config$x_var]],
  623. y = .data[[y_mean_col]]
  624. ),
  625. color = config$error_bar_params$color,
  626. shape = 16
  627. )
  628. }
  629. }
  630. # Convert ggplot to plotly for interactive version
  631. plotly_plot <- suppressWarnings(plotly::ggplotly(plot))
  632. # Store both static and interactive versions
  633. static_plots[[i]] <- plot
  634. plotly_plots[[i]] <- plotly_plot
  635. }
  636. # Print the plots in the current group to the PDF
  637. if (is.null(grid_layout)) {
  638. # Print each plot individually on separate pages if no grid layout is specified
  639. for (plot in static_plots) {
  640. print(plot)
  641. }
  642. } else {
  643. # Arrange plots in grid layout on a single page
  644. grid.arrange(
  645. grobs = static_plots,
  646. ncol = grid_layout$ncol,
  647. nrow = grid_layout$nrow
  648. )
  649. }
  650. }
  651. # Close the PDF device after all plots are done
  652. dev.off()
  653. # Save HTML file with interactive plots if needed
  654. out_html_file <- file.path(out_dir, paste0(filename, ".html"))
  655. message("Saving combined HTML file: ", out_html_file)
  656. htmltools::save_html(
  657. htmltools::tagList(plotly_plots),
  658. file = out_html_file
  659. )
  660. }
  661. generate_scatter_plot <- function(plot, config) {
  662. # Define the points
  663. shape <- if (!is.null(config$shape)) config$shape else 3
  664. size <- if (!is.null(config$size)) config$size else 1.5
  665. position <-
  666. if (!is.null(config$position) && config$position == "jitter") {
  667. position_jitter(width = 0.4, height = 0.1)
  668. } else {
  669. "identity"
  670. }
  671. plot <- plot + geom_point(
  672. shape = shape,
  673. size = size,
  674. position = position
  675. )
  676. if (!is.null(config$cyan_points) && config$cyan_points) {
  677. plot <- plot + geom_point(
  678. aes(x = .data[[config$x_var]], y = .data[[config$y_var]]),
  679. color = "cyan",
  680. shape = 3,
  681. size = 0.5
  682. )
  683. }
  684. if (!is.null(config$gray_points) && config$gray_points) {
  685. plot <- plot + geom_point(shape = 3, color = "gray70", size = 1)
  686. }
  687. # Add Smooth Line if specified
  688. if (!is.null(config$smooth) && config$smooth) {
  689. smooth_color <- if (!is.null(config$smooth_color)) config$smooth_color else "blue"
  690. if (!is.null(config$lm_line)) {
  691. plot <- plot +
  692. geom_abline(
  693. intercept = config$lm_line$intercept,
  694. slope = config$lm_line$slope,
  695. color = smooth_color
  696. )
  697. }
  698. # For now I want to try and hardcode it
  699. # else {
  700. # plot <- plot +
  701. # geom_smooth(
  702. # method = "lm",
  703. # se = FALSE,
  704. # color = smooth_color
  705. # )
  706. # }
  707. }
  708. # Add SD Bands if specified
  709. if (!is.null(config$sd_band)) {
  710. plot <- plot +
  711. annotate(
  712. "rect",
  713. xmin = -Inf, xmax = Inf,
  714. ymin = config$sd_band, ymax = Inf,
  715. fill = ifelse(!is.null(config$fill_positive), config$fill_positive, "#542788"),
  716. alpha = ifelse(!is.null(config$alpha_positive), config$alpha_positive, 0.3)
  717. ) +
  718. annotate(
  719. "rect",
  720. xmin = -Inf, xmax = Inf,
  721. ymin = -config$sd_band, ymax = -Inf,
  722. fill = ifelse(!is.null(config$fill_negative), config$fill_negative, "orange"),
  723. alpha = ifelse(!is.null(config$alpha_negative), config$alpha_negative, 0.3)
  724. ) +
  725. geom_hline(
  726. yintercept = c(-config$sd_band, config$sd_band),
  727. color = ifelse(!is.null(config$hl_color), config$hl_color, "gray")
  728. )
  729. }
  730. # Add Rectangles if specified
  731. if (!is.null(config$rectangles)) {
  732. for (rect in config$rectangles) {
  733. plot <- plot + annotate(
  734. "rect",
  735. xmin = rect$xmin,
  736. xmax = rect$xmax,
  737. ymin = rect$ymin,
  738. ymax = rect$ymax,
  739. fill = ifelse(is.null(rect$fill), NA, rect$fill),
  740. color = ifelse(is.null(rect$color), "black", rect$color),
  741. alpha = ifelse(is.null(rect$alpha), 0.1, rect$alpha)
  742. )
  743. }
  744. }
  745. # Customize X-axis if specified
  746. if (!is.null(config$x_breaks) && !is.null(config$x_labels) && !is.null(config$x_label)) {
  747. # Check if x_var is factor or character (for discrete x-axis)
  748. if (is.factor(plot$data[[config$x_var]]) || is.character(plot$data[[config$x_var]])) {
  749. plot <- plot +
  750. scale_x_discrete(
  751. name = config$x_label,
  752. breaks = config$x_breaks,
  753. labels = config$x_labels
  754. )
  755. } else {
  756. plot <- plot +
  757. scale_x_continuous(
  758. name = config$x_label,
  759. breaks = config$x_breaks,
  760. labels = config$x_labels
  761. )
  762. }
  763. }
  764. # Set Y-axis limits if specified
  765. if (!is.null(config$ylim_vals)) {
  766. plot <- plot + scale_y_continuous(limits = config$ylim_vals)
  767. }
  768. return(plot)
  769. }
  770. generate_boxplot <- function(plot, config) {
  771. # Convert x_var to a factor within aes mapping
  772. plot <- plot + geom_boxplot(aes(x = factor(.data[[config$x_var]])))
  773. # Customize X-axis if specified
  774. if (!is.null(config$x_breaks) && !is.null(config$x_labels) && !is.null(config$x_label)) {
  775. # Check if x_var is factor or character (for discrete x-axis)
  776. if (is.factor(plot$data[[config$x_var]]) || is.character(plot$data[[config$x_var]])) {
  777. plot <- plot +
  778. scale_x_discrete(
  779. name = config$x_label,
  780. breaks = config$x_breaks,
  781. labels = config$x_labels
  782. )
  783. } else {
  784. plot <- plot +
  785. scale_x_continuous(
  786. name = config$x_label,
  787. breaks = config$x_breaks,
  788. labels = config$x_labels
  789. )
  790. }
  791. }
  792. return(plot)
  793. }
  794. generate_plate_analysis_plot_configs <- function(variables, df_before = NULL, df_after = NULL,
  795. plot_type = "scatter", stages = c("before", "after")) {
  796. plot_configs <- list()
  797. for (var in variables) {
  798. for (stage in stages) {
  799. df_plot <- if (stage == "before") df_before else df_after
  800. # Check for non-finite values in the y-variable
  801. df_plot_filtered <- df_plot %>% filter(is.finite(!!sym(var)))
  802. # Adjust settings based on plot_type
  803. plot_config <- list(
  804. df = df_plot_filtered,
  805. x_var = "scan",
  806. y_var = var,
  807. plot_type = plot_type,
  808. title = paste("Plate analysis by Drug Conc for", var, stage, "quality control"),
  809. color_var = "conc_num_factor_factor",
  810. size = 0.2,
  811. error_bar = (plot_type == "scatter"),
  812. legend_position = "bottom"
  813. )
  814. # Add config to plots list
  815. plot_configs <- append(plot_configs, list(plot_config))
  816. }
  817. }
  818. return(list(plots = plot_configs))
  819. }
  820. generate_interaction_plot_configs <- function(df_summary, df_interaction, type) {
  821. # Define the y-limits for the plots
  822. limits_map <- list(
  823. L = c(0, 130),
  824. K = c(-20, 160),
  825. r = c(0, 1),
  826. AUC = c(0, 12500)
  827. )
  828. stats_plot_configs <- list()
  829. stats_boxplot_configs <- list()
  830. delta_plot_configs <- list()
  831. # Overall statistics plots
  832. OrfRep <- first(df_summary$OrfRep) # this should correspond to the reference strain
  833. for (plot_type in c("scatter", "box")) {
  834. for (var in names(limits_map)) {
  835. y_limits <- limits_map[[var]]
  836. y_span <- y_limits[2] - y_limits[1]
  837. # Common plot configuration
  838. plot_config <- list(
  839. df = df_summary,
  840. plot_type = plot_type,
  841. x_var = "conc_num_factor_factor",
  842. y_var = var,
  843. shape = 16,
  844. x_label = paste0("[", unique(df_summary$Drug)[1], "]"),
  845. coord_cartesian = y_limits,
  846. x_breaks = unique(df_summary$conc_num_factor_factor),
  847. x_labels = as.character(unique(df_summary$conc_num))
  848. )
  849. # Add specific configurations for scatter and box plots
  850. if (plot_type == "scatter") {
  851. plot_config$title <- sprintf("%s Scatter RF for %s with SD", OrfRep, var)
  852. plot_config$error_bar <- TRUE
  853. plot_config$error_bar_params <- list(
  854. color = "red",
  855. mean_point = TRUE,
  856. y_mean_col = paste0("mean_mean_", var),
  857. y_sd_col = paste0("mean_sd_", var)
  858. )
  859. plot_config$position <- "jitter"
  860. # Cannot figure out how to place these properly for discrete x-axis so let's be hacky
  861. annotations <- list(
  862. list(x = 0.25, y = y_limits[1] + 0.08 * y_span, label = " NG =", size = 4),
  863. list(x = 0.25, y = y_limits[1] + 0.04 * y_span, label = " DB =", size = 4),
  864. list(x = 0.25, y = y_limits[1], label = " SM =", size = 4)
  865. )
  866. for (x_val in unique(df_summary$conc_num_factor_factor)) {
  867. current_df <- df_summary %>% filter(.data[[plot_config$x_var]] == x_val)
  868. annotations <- append(annotations, list(
  869. list(x = x_val, y = y_limits[1] + 0.08 * y_span, label = first(current_df$NG, default = 0), size = 4),
  870. list(x = x_val, y = y_limits[1] + 0.04 * y_span, label = first(current_df$DB, default = 0), size = 4),
  871. list(x = x_val, y = y_limits[1], label = first(current_df$SM, default = 0), size = 4)
  872. ))
  873. }
  874. plot_config$annotations <- annotations
  875. stats_plot_configs <- append(stats_plot_configs, list(plot_config))
  876. } else if (plot_type == "box") {
  877. plot_config$title <- sprintf("%s Box RF for %s with SD", OrfRep, var)
  878. plot_config$position <- "dodge"
  879. stats_boxplot_configs <- append(stats_boxplot_configs, list(plot_config))
  880. }
  881. }
  882. }
  883. # Delta interaction plots
  884. if (type == "reference") {
  885. group_vars <- c("OrfRep", "Gene", "num")
  886. } else if (type == "deletion") {
  887. group_vars <- c("OrfRep", "Gene")
  888. }
  889. delta_limits_map <- list(
  890. L = c(-60, 60),
  891. K = c(-60, 60),
  892. r = c(-0.6, 0.6),
  893. AUC = c(-6000, 6000)
  894. )
  895. grouped_data <- df_interaction %>%
  896. group_by(across(all_of(group_vars))) %>%
  897. group_split()
  898. for (group_data in grouped_data) {
  899. OrfRep <- first(group_data$OrfRep)
  900. Gene <- first(group_data$Gene)
  901. num <- if ("num" %in% names(group_data)) first(group_data$num) else ""
  902. if (type == "reference") {
  903. OrfRepTitle <- paste(OrfRep, Gene, num, sep = "_")
  904. } else if (type == "deletion") {
  905. OrfRepTitle <- OrfRep
  906. }
  907. for (var in names(delta_limits_map)) {
  908. y_limits <- delta_limits_map[[var]]
  909. y_span <- y_limits[2] - y_limits[1]
  910. WT_sd_value <- first(group_data[[paste0("WT_sd_", var)]], default = 0)
  911. Z_Shift_value <- round(first(group_data[[paste0("Z_Shift_", var)]], default = 0), 2)
  912. Z_lm_value <- round(first(group_data[[paste0("Z_lm_", var)]], default = 0), 2)
  913. R_squared_value <- round(first(group_data[[paste0("R_Squared_", var)]], default = 0), 2)
  914. NG_value <- first(group_data$NG, default = 0)
  915. DB_value <- first(group_data$DB, default = 0)
  916. SM_value <- first(group_data$SM, default = 0)
  917. lm_intercept_col <- paste0("lm_intercept_", var)
  918. lm_slope_col <- paste0("lm_slope_", var)
  919. lm_intercept_value <- first(group_data[[lm_intercept_col]], default = 0)
  920. lm_slope_value <- first(group_data[[lm_slope_col]], default = 0)
  921. plot_config <- list(
  922. df = group_data,
  923. plot_type = "scatter",
  924. x_var = "conc_num_factor_factor",
  925. y_var = paste0("Delta_", var),
  926. x_label = paste0("[", unique(df_summary$Drug)[1], "]"),
  927. shape = 16,
  928. title = paste(OrfRepTitle, Gene, sep = " "),
  929. title_size = rel(1.3),
  930. coord_cartesian = y_limits,
  931. annotations = list(
  932. list(x = 1, y = y_limits[2] - 0.1 * y_span, label = paste(" ZShift =", round(Z_Shift_value, 2))),
  933. list(x = 1, y = y_limits[2] - 0.2 * y_span, label = paste(" lm ZScore =", round(Z_lm_value, 2))),
  934. list(x = 1, y = y_limits[2] - 0.3 * y_span, label = paste(" R-squared =", round(R_squared_value, 2))),
  935. list(x = 1, y = y_limits[1] + 0.1 * y_span, label = paste("NG =", NG_value)),
  936. list(x = 1, y = y_limits[1] + 0.05 * y_span, label = paste("DB =", DB_value)),
  937. list(x = 1, y = y_limits[1], label = paste("SM =", SM_value))
  938. ),
  939. error_bar = TRUE,
  940. error_bar_params = list(
  941. custom_error_bar = list(
  942. ymin = paste0("0 - 2 * WT_sd_", var),
  943. ymax = paste0("0 + 2 * WT_sd_", var)
  944. ),
  945. color = "gray"
  946. ),
  947. x_breaks = unique(group_data$conc_num_factor_factor),
  948. x_labels = as.character(unique(group_data$conc_num)),
  949. ylim_vals = y_limits,
  950. y_filter = FALSE,
  951. smooth = TRUE,
  952. lm_line = list(
  953. intercept = lm_intercept_value,
  954. slope = lm_slope_value,
  955. color = "blue"
  956. )
  957. )
  958. delta_plot_configs <- append(delta_plot_configs, list(plot_config))
  959. }
  960. }
  961. # Group delta plots in chunks of 12
  962. chunk_size <- 12
  963. delta_plot_chunks <- split(delta_plot_configs, ceiling(seq_along(delta_plot_configs) / chunk_size))
  964. return(c(
  965. list(list(grid_layout = list(ncol = 2), plots = stats_plot_configs)),
  966. list(list(grid_layout = list(ncol = 2), plots = stats_boxplot_configs)),
  967. lapply(delta_plot_chunks, function(chunk) list(grid_layout = list(ncol = 4), plots = chunk))
  968. ))
  969. }
  970. generate_rank_plot_configs <- function(df, is_lm = FALSE, adjust = FALSE, overlap_color = FALSE) {
  971. sd_bands <- c(1, 2, 3)
  972. plot_configs <- list()
  973. variables <- c("L", "K")
  974. # Adjust (if necessary) and rank columns
  975. for (variable in variables) {
  976. if (adjust) {
  977. df[[paste0("Avg_Zscore_", variable)]] <- ifelse(is.na(df[[paste0("Avg_Zscore_", variable)]]), 0.001, df[[paste0("Avg_Zscore_", variable)]])
  978. df[[paste0("Z_lm_", variable)]] <- ifelse(is.na(df[[paste0("Z_lm_", variable)]]), 0.001, df[[paste0("Z_lm_", variable)]])
  979. }
  980. df[[paste0("Rank_", variable)]] <- rank(df[[paste0("Avg_Zscore_", variable)]], na.last = "keep")
  981. df[[paste0("Rank_lm_", variable)]] <- rank(df[[paste0("Z_lm_", variable)]], na.last = "keep")
  982. }
  983. # Helper function to create a plot configuration
  984. create_plot_config <- function(variable, rank_var, zscore_var, y_label, sd_band, with_annotations = TRUE) {
  985. num_enhancers <- sum(df[[zscore_var]] >= sd_band, na.rm = TRUE)
  986. num_suppressors <- sum(df[[zscore_var]] <= -sd_band, na.rm = TRUE)
  987. # Default plot config
  988. plot_config <- list(
  989. df = df,
  990. x_var = rank_var,
  991. y_var = zscore_var,
  992. x_label = "Rank",
  993. plot_type = "scatter",
  994. title = paste(y_label, "vs. Rank for", variable, "above", sd_band),
  995. sd_band = sd_band,
  996. fill_positive = "#542788",
  997. fill_negative = "orange",
  998. alpha_positive = 0.3,
  999. alpha_negative = 0.3,
  1000. shape = 3,
  1001. size = 0.1,
  1002. y_label = y_label,
  1003. x_label = "Rank",
  1004. legend_position = "none"
  1005. )
  1006. if (with_annotations) {
  1007. # Add specific annotations for plots with annotations
  1008. plot_config$annotations <- list(
  1009. list(
  1010. x = nrow(df) / 2,
  1011. y = 10,
  1012. label = paste("Deletion Enhancers =", num_enhancers)
  1013. ),
  1014. list(
  1015. x = nrow(df) / 2,
  1016. y = -10,
  1017. label = paste("Deletion Suppressors =", num_suppressors)
  1018. )
  1019. )
  1020. }
  1021. return(plot_config)
  1022. }
  1023. # Generate plots for each variable
  1024. for (variable in variables) {
  1025. rank_var <- if (is_lm) paste0("Rank_lm_", variable) else paste0("Rank_", variable)
  1026. zscore_var <- if (is_lm) paste0("Z_lm_", variable) else paste0("Avg_Zscore_", variable)
  1027. y_label <- if (is_lm) paste("Int Z score", variable) else paste("Avg Z score", variable)
  1028. # Loop through SD bands
  1029. for (sd_band in sd_bands) {
  1030. # Create plot with annotations
  1031. plot_configs[[length(plot_configs) + 1]] <- create_plot_config(variable, rank_var, zscore_var, y_label, sd_band, with_annotations = TRUE)
  1032. # Create plot without annotations
  1033. plot_configs[[length(plot_configs) + 1]] <- create_plot_config(variable, rank_var, zscore_var, y_label, sd_band, with_annotations = FALSE)
  1034. }
  1035. }
  1036. return(list(grid_layout = list(ncol = 3), plots = plot_configs))
  1037. }
  1038. generate_correlation_plot_configs <- function(df) {
  1039. # Define relationships for different-variable correlations
  1040. relationships <- list(
  1041. list(x = "L", y = "K"),
  1042. list(x = "L", y = "r"),
  1043. list(x = "L", y = "AUC"),
  1044. list(x = "K", y = "r"),
  1045. list(x = "K", y = "AUC"),
  1046. list(x = "r", y = "AUC")
  1047. )
  1048. plot_configs <- list()
  1049. # Iterate over the option to highlight cyan points (TRUE/FALSE)
  1050. highlight_cyan_options <- c(FALSE, TRUE)
  1051. for (highlight_cyan in highlight_cyan_options) {
  1052. for (rel in relationships) {
  1053. # Extract relevant variable names for Z_lm values
  1054. x_var <- paste0("Z_lm_", rel$x)
  1055. y_var <- paste0("Z_lm_", rel$y)
  1056. # Access the correlation statistics from the correlation_stats list
  1057. relationship_name <- paste0(rel$x, "_vs_", rel$y) # Example: L_vs_K
  1058. stats <- correlation_stats[[relationship_name]]
  1059. intercept <- stats$intercept
  1060. slope <- stats$slope
  1061. r_squared <- stats$r_squared
  1062. # Generate the label for the plot
  1063. plot_label <- paste("Interaction", rel$x, "vs.", rel$y)
  1064. # Construct plot config
  1065. plot_config <- list(
  1066. df = df,
  1067. x_var = x_var,
  1068. y_var = y_var,
  1069. plot_type = "scatter",
  1070. title = plot_label,
  1071. annotations = list(
  1072. list(
  1073. x = mean(df[[x_var]], na.rm = TRUE),
  1074. y = mean(df[[y_var]], na.rm = TRUE),
  1075. label = paste("R-squared =", round(r_squared, 3))
  1076. )
  1077. ),
  1078. smooth = TRUE,
  1079. smooth_color = "tomato3",
  1080. lm_line = list(
  1081. intercept = intercept,
  1082. slope = slope
  1083. ),
  1084. shape = 3,
  1085. size = 0.5,
  1086. color_var = "Overlap",
  1087. cyan_points = highlight_cyan, # include cyan points or not based on the loop
  1088. gray_points = TRUE
  1089. )
  1090. plot_configs <- append(plot_configs, list(plot_config))
  1091. }
  1092. }
  1093. return(list(plots = plot_configs))
  1094. }
  1095. main <- function() {
  1096. lapply(names(args$experiments), function(exp_name) {
  1097. exp <- args$experiments[[exp_name]]
  1098. exp_path <- exp$path
  1099. exp_sd <- exp$sd
  1100. out_dir <- file.path(exp_path, "zscores")
  1101. out_dir_qc <- file.path(exp_path, "zscores", "qc")
  1102. dir.create(out_dir, recursive = TRUE, showWarnings = FALSE)
  1103. dir.create(out_dir_qc, recursive = TRUE, showWarnings = FALSE)
  1104. # Each list of plots corresponds to a separate file
  1105. message("Loading and filtering data for experiment: ", exp_name)
  1106. df <- load_and_filter_data(args$easy_results_file, sd = exp_sd) %>%
  1107. update_gene_names(args$sgd_gene_list) %>%
  1108. as_tibble()
  1109. l_vs_k_plot_configs <- list(
  1110. plots = list(
  1111. list(
  1112. df = df,
  1113. x_var = "L",
  1114. y_var = "K",
  1115. plot_type = "scatter",
  1116. tooltip_vars = c("OrfRep", "Gene", "delta_bg"),
  1117. title = "Raw L vs K before quality control",
  1118. color_var = "conc_num_factor_factor",
  1119. error_bar = FALSE,
  1120. legend_position = "right"
  1121. )
  1122. )
  1123. )
  1124. message("Calculating summary statistics before quality control")
  1125. df_stats <- calculate_summary_stats( # formerly X_stats_ALL
  1126. df = df,
  1127. variables = c("L", "K", "r", "AUC", "delta_bg"),
  1128. group_vars = c("conc_num", "conc_num_factor_factor"))$df_with_stats
  1129. frequency_delta_bg_plot_configs <- list(
  1130. plots = list(
  1131. list(
  1132. df = df_stats,
  1133. x_var = "delta_bg",
  1134. y_var = NULL,
  1135. plot_type = "density",
  1136. title = "Density plot for Delta Background by [Drug] (All Data)",
  1137. color_var = "conc_num_factor_factor",
  1138. x_label = "Delta Background",
  1139. y_label = "Density",
  1140. error_bar = FALSE,
  1141. legend_position = "right"
  1142. ),
  1143. list(
  1144. df = df_stats,
  1145. x_var = "delta_bg",
  1146. y_var = NULL,
  1147. plot_type = "bar",
  1148. title = "Bar plot for Delta Background by [Drug] (All Data)",
  1149. color_var = "conc_num_factor_factor",
  1150. x_label = "Delta Background",
  1151. y_label = "Count",
  1152. error_bar = FALSE,
  1153. legend_position = "right"
  1154. )
  1155. )
  1156. )
  1157. message("Filtering rows above delta background tolerance for plotting")
  1158. df_above_tolerance <- df %>% filter(DB == 1)
  1159. above_threshold_plot_configs <- list(
  1160. plots = list(
  1161. list(
  1162. df = df_above_tolerance,
  1163. x_var = "L",
  1164. y_var = "K",
  1165. plot_type = "scatter",
  1166. tooltip_vars = c("OrfRep", "Gene", "delta_bg"),
  1167. title = paste("Raw L vs K for strains above Delta Background threshold of",
  1168. round(df_above_tolerance$delta_bg_tolerance[[1]], 3), "or above"),
  1169. color_var = "conc_num_factor_factor",
  1170. position = "jitter",
  1171. annotations = list(
  1172. list(
  1173. x = median(df_above_tolerance$L, na.rm = TRUE) / 2,
  1174. y = median(df_above_tolerance$K, na.rm = TRUE) / 2,
  1175. label = paste("# strains above Delta Background tolerance =", nrow(df_above_tolerance))
  1176. )
  1177. ),
  1178. error_bar = FALSE,
  1179. legend_position = "right"
  1180. )
  1181. )
  1182. )
  1183. message("Setting rows above delta background tolerance to NA")
  1184. df_na <- df %>% mutate(across(all_of(c("L", "K", "r", "AUC", "delta_bg")), ~ ifelse(DB == 1, NA, .))) # formerly X
  1185. message("Calculating summary statistics across all strains")
  1186. ss <- calculate_summary_stats(
  1187. df = df_na,
  1188. variables = c("L", "K", "r", "AUC", "delta_bg"),
  1189. group_vars = c("conc_num", "conc_num_factor_factor"))
  1190. df_na_ss <- ss$summary_stats
  1191. df_na_stats <- ss$df_with_stats # formerly X_stats_ALL
  1192. write.csv(df_na_ss, file = file.path(out_dir, "summary_stats_all_strains.csv"), row.names = FALSE)
  1193. # This can help bypass missing values ggplot warnings during testing
  1194. df_na_stats_filtered <- df_na_stats %>% filter(if_all(all_of(c("L", "K", "r", "AUC", "delta_bg")), is.finite))
  1195. message("Calculating summary statistics excluding zero values")
  1196. df_no_zeros <- df_na %>% filter(L > 0) # formerly X_noZero
  1197. df_no_zeros_stats <- calculate_summary_stats(
  1198. df = df_no_zeros,
  1199. variables = c("L", "K", "r", "AUC", "delta_bg"),
  1200. group_vars = c("conc_num", "conc_num_factor_factor")
  1201. )$df_with_stats
  1202. message("Filtering by 2SD of K")
  1203. df_na_within_2sd_k <- df_na_stats %>%
  1204. filter(K >= (mean_K - 2 * sd_K) & K <= (mean_K + 2 * sd_K))
  1205. df_na_outside_2sd_k <- df_na_stats %>%
  1206. filter(K < (mean_K - 2 * sd_K) | K > (mean_K + 2 * sd_K))
  1207. message("Calculating summary statistics for L within 2SD of K")
  1208. # TODO We're omitting the original z_max calculation, not sure if needed?
  1209. ss <- calculate_summary_stats(df_na_within_2sd_k, "L", # formerly X_stats_BY_L_within_2SD_K
  1210. group_vars = c("conc_num", "conc_num_factor_factor"))$summary_stats
  1211. write.csv(ss,
  1212. file = file.path(out_dir_qc, "max_observed_L_vals_for_spots_within_2SD_K.csv"),
  1213. row.names = FALSE)
  1214. message("Calculating summary statistics for L outside 2SD of K")
  1215. ss <- calculate_summary_stats(df_na_outside_2sd_k, "L", # formerly X_stats_BY_L_outside_2SD_K
  1216. group_vars = c("conc_num", "conc_num_factor_factor"))
  1217. df_na_l_outside_2sd_k_stats <- ss$df_with_stats
  1218. write.csv(ss$summary_stats,
  1219. file = file.path(out_dir, "max_observed_L_vals_for_spots_outside_2SD_K.csv"),
  1220. row.names = FALSE)
  1221. plate_analysis_plot_configs <- generate_plate_analysis_plot_configs(
  1222. variables = c("L", "K", "r", "AUC", "delta_bg"),
  1223. df_before = df_stats,
  1224. df_after = df_na_stats_filtered
  1225. )
  1226. plate_analysis_boxplot_configs <- generate_plate_analysis_plot_configs(
  1227. variables = c("L", "K", "r", "AUC", "delta_bg"),
  1228. df_before = df_stats,
  1229. df_after = df_na_stats_filtered,
  1230. plot_type = "box"
  1231. )
  1232. plate_analysis_no_zeros_plot_configs <- generate_plate_analysis_plot_configs(
  1233. variables = c("L", "K", "r", "AUC", "delta_bg"),
  1234. stages = c("after"), # Only after QC
  1235. df_after = df_no_zeros_stats
  1236. )
  1237. plate_analysis_no_zeros_boxplot_configs <- generate_plate_analysis_plot_configs(
  1238. variables = c("L", "K", "r", "AUC", "delta_bg"),
  1239. stages = c("after"), # Only after QC
  1240. df_after = df_no_zeros_stats,
  1241. plot_type = "box"
  1242. )
  1243. l_outside_2sd_k_plot_configs <- list(
  1244. plots = list(
  1245. list(
  1246. df = df_na_l_outside_2sd_k_stats,
  1247. x_var = "L",
  1248. y_var = "K",
  1249. plot_type = "scatter",
  1250. title = "Raw L vs K for strains falling outside 2SD of the K mean at each Conc",
  1251. color_var = "conc_num_factor_factor",
  1252. position = "jitter",
  1253. tooltip_vars = c("OrfRep", "Gene", "delta_bg"),
  1254. annotations = list(
  1255. list(
  1256. x = median(df_na_l_outside_2sd_k_stats$L, na.rm = TRUE) / 2,
  1257. y = median(df_na_l_outside_2sd_k_stats$K, na.rm = TRUE) / 2,
  1258. label = paste("Total strains:", nrow(df_na_l_outside_2sd_k_stats))
  1259. )
  1260. ),
  1261. error_bar = FALSE,
  1262. legend_position = "right"
  1263. )
  1264. )
  1265. )
  1266. delta_bg_outside_2sd_k_plot_configs <- list(
  1267. plots = list(
  1268. list(
  1269. df = df_na_l_outside_2sd_k_stats,
  1270. x_var = "delta_bg",
  1271. x_label = "Delta Background",
  1272. y_var = "K",
  1273. plot_type = "scatter",
  1274. title = "Delta Background vs K for strains falling outside 2SD of the K mean at each Conc",
  1275. color_var = "conc_num_factor_factor",
  1276. position = "jitter",
  1277. tooltip_vars = c("OrfRep", "Gene", "delta_bg"),
  1278. annotations = list(
  1279. list(
  1280. x = 0.05,
  1281. y = 0.95,
  1282. hjust = 0,
  1283. vjust = 1,
  1284. label = paste("Total strains:", nrow(df_na_l_outside_2sd_k_stats)),
  1285. size = 5
  1286. )
  1287. ),
  1288. error_bar = FALSE,
  1289. legend_position = "right"
  1290. )
  1291. )
  1292. )
  1293. message("Generating quality control plots in parallel")
  1294. # future::plan(future::multicore, workers = parallel::detectCores())
  1295. future::plan(future::multisession, workers = 3) # generate 3 plots in parallel
  1296. plot_configs <- list(
  1297. list(out_dir = out_dir_qc, filename = "L_vs_K_before_quality_control",
  1298. plot_configs = l_vs_k_plot_configs, page_width = 12, page_height = 8),
  1299. list(out_dir = out_dir_qc, filename = "frequency_delta_background",
  1300. plot_configs = frequency_delta_bg_plot_configs, page_width = 12, page_height = 8),
  1301. list(out_dir = out_dir_qc, filename = "L_vs_K_above_threshold",
  1302. plot_configs = above_threshold_plot_configs, page_width = 12, page_height = 8),
  1303. list(out_dir = out_dir_qc, filename = "plate_analysis",
  1304. plot_configs = plate_analysis_plot_configs, page_width = 14, page_height = 9),
  1305. list(out_dir = out_dir_qc, filename = "plate_analysis_boxplots",
  1306. plot_configs = plate_analysis_boxplot_configs, page_width = 18, page_height = 9),
  1307. list(out_dir = out_dir_qc, filename = "plate_analysis_no_zeros",
  1308. plot_configs = plate_analysis_no_zeros_plot_configs, page_width = 14, page_height = 9),
  1309. list(out_dir = out_dir_qc, filename = "plate_analysis_no_zeros_boxplots",
  1310. plot_configs = plate_analysis_no_zeros_boxplot_configs, page_width = 18, page_height = 9),
  1311. list(out_dir = out_dir_qc, filename = "L_vs_K_for_strains_2SD_outside_mean_K",
  1312. plot_configs = l_outside_2sd_k_plot_configs, page_width = 10, page_height = 8),
  1313. list(out_dir = out_dir_qc, filename = "delta_background_vs_K_for_strains_2SD_outside_mean_K",
  1314. plot_configs = delta_bg_outside_2sd_k_plot_configs, page_width = 10, page_height = 8)
  1315. )
  1316. # Parallelize background and quality control plot generation
  1317. # furrr::future_map(plot_configs, function(config) {
  1318. # generate_and_save_plots(config$out_dir, config$filename, config$plot_configs,
  1319. # page_width = config$page_width, page_height = config$page_height)
  1320. # }, .options = furrr_options(seed = TRUE))
  1321. # Loop over background strains
  1322. # TODO currently only tested against one strain, if we want to do multiple strains we'll
  1323. # have to rename or group the output files by dir or something so they don't get clobbered
  1324. bg_strains <- c("YDL227C")
  1325. lapply(bg_strains, function(strain) {
  1326. message("Processing background strain: ", strain)
  1327. # Handle missing data by setting zero values to NA
  1328. # and then removing any rows with NA in L col
  1329. df_bg <- df_na %>%
  1330. filter(OrfRep == strain) %>%
  1331. mutate(
  1332. L = if_else(L == 0, NA, L),
  1333. K = if_else(K == 0, NA, K),
  1334. r = if_else(r == 0, NA, r),
  1335. AUC = if_else(AUC == 0, NA, AUC)
  1336. ) %>%
  1337. filter(!is.na(L))
  1338. message("Calculating background strain summary statistics")
  1339. ss_bg <- calculate_summary_stats(df_bg, c("L", "K", "r", "AUC", "delta_bg"), # formerly X_stats_BY
  1340. group_vars = c("OrfRep", "Drug", "conc_num", "conc_num_factor_factor"))
  1341. summary_stats_bg <- ss_bg$summary_stats
  1342. df_bg_stats <- ss_bg$df_with_stats
  1343. write.csv(
  1344. summary_stats_bg,
  1345. file = file.path(out_dir, paste0("summary_stats_background_strain_", strain, ".csv")),
  1346. row.names = FALSE)
  1347. message("Setting missing reference values to the highest theoretical value at each drug conc for L")
  1348. df_reference <- df_na_stats %>% # formerly X2_RF
  1349. filter(OrfRep == strain) %>%
  1350. filter(!is.na(L)) %>%
  1351. group_by(OrfRep, Drug, conc_num, conc_num_factor_factor) %>%
  1352. mutate(
  1353. max_l_theoretical = max(max_L, na.rm = TRUE),
  1354. L = ifelse(L == 0 & !is.na(L) & conc_num > 0, max_l_theoretical, L),
  1355. SM = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, 1, 0),
  1356. L = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, max_l_theoretical, L)) %>%
  1357. ungroup()
  1358. message("Calculating reference strain summary statistics")
  1359. df_reference_summary_stats <- calculate_summary_stats( # formerly X_stats_X2_RF
  1360. df = df_reference,
  1361. variables = c("L", "K", "r", "AUC"),
  1362. group_vars = c("OrfRep", "Drug", "conc_num", "conc_num_factor_factor")
  1363. )$df_with_stats
  1364. # Summarise statistics for error bars
  1365. df_reference_summary_stats <- df_reference_summary_stats %>%
  1366. group_by(OrfRep, Drug, conc_num, conc_num_factor_factor) %>%
  1367. mutate(
  1368. mean_mean_L = first(mean_L),
  1369. mean_sd_L = first(sd_L),
  1370. mean_mean_K = first(mean_K),
  1371. mean_sd_K = first(sd_K),
  1372. mean_mean_r = first(mean_r),
  1373. mean_sd_r = first(sd_r),
  1374. mean_mean_AUC = first(mean_AUC),
  1375. mean_sd_AUC = first(sd_AUC),
  1376. .groups = "drop"
  1377. )
  1378. message("Calculating reference strain interaction summary statistics") # formerly X_stats_interaction
  1379. df_reference_interaction_stats <- calculate_summary_stats(
  1380. df = df_reference,
  1381. variables = c("L", "K", "r", "AUC"),
  1382. group_vars = c("OrfRep", "Gene", "num", "Drug", "conc_num", "conc_num_factor_factor")
  1383. )$df_with_stats
  1384. message("Calculating reference strain interaction scores")
  1385. results <- calculate_interaction_scores(df_reference_interaction_stats,
  1386. df_bg_stats, group_vars = c("OrfRep", "Gene", "num", "Drug"))
  1387. df_reference_calculations <- results$calculations
  1388. df_reference_interactions <- results$interactions
  1389. df_reference_interactions_joined <- results$full_data
  1390. write.csv(df_reference_calculations, file = file.path(out_dir, "zscore_calculations_reference.csv"), row.names = FALSE)
  1391. write.csv(df_reference_interactions, file = file.path(out_dir, "zscore_interactions_reference.csv"), row.names = FALSE)
  1392. message("Generating reference interaction plots")
  1393. reference_plot_configs <- generate_interaction_plot_configs(df_reference_summary_stats, df_reference_interactions_joined, "reference")
  1394. generate_and_save_plots(out_dir, "interaction_plots_reference", reference_plot_configs, page_width = 16, page_height = 16)
  1395. message("Setting missing deletion values to the highest theoretical value at each drug conc for L")
  1396. df_deletion <- df_na_stats %>% # formerly X2
  1397. filter(OrfRep != strain) %>%
  1398. filter(!is.na(L)) %>%
  1399. group_by(OrfRep, Gene, conc_num) %>%
  1400. mutate(
  1401. max_l_theoretical = max(max_L, na.rm = TRUE),
  1402. L = ifelse(L == 0 & !is.na(L) & conc_num > 0, max_l_theoretical, L),
  1403. SM = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, 1, SM),
  1404. L = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, max_l_theoretical, L)) %>%
  1405. ungroup()
  1406. message("Calculating deletion strain(s) interaction summary statistics")
  1407. df_deletion_stats <- calculate_summary_stats(
  1408. df = df_deletion,
  1409. variables = c("L", "K", "r", "AUC"),
  1410. group_vars = c("OrfRep", "Gene", "Drug", "conc_num", "conc_num_factor_factor")
  1411. )$df_with_stats
  1412. message("Calculating deletion strain(s) interactions scores")
  1413. results <- calculate_interaction_scores(df_deletion_stats, df_bg_stats, group_vars = c("OrfRep", "Gene", "Drug"))
  1414. df_calculations <- results$calculations
  1415. df_interactions <- results$interactions
  1416. df_interactions_joined <- results$full_data
  1417. write.csv(df_calculations, file = file.path(out_dir, "zscore_calculations.csv"), row.names = FALSE)
  1418. write.csv(df_interactions, file = file.path(out_dir, "zscore_interactions.csv"), row.names = FALSE)
  1419. message("Generating deletion interaction plots")
  1420. deletion_plot_configs <- generate_interaction_plot_configs(df_reference_summary_stats, df_interactions_joined, "deletion")
  1421. generate_and_save_plots(out_dir, "interaction_plots", deletion_plot_configs, page_width = 16, page_height = 16)
  1422. message("Writing enhancer/suppressor csv files")
  1423. interaction_threshold <- 2 # TODO add to study config?
  1424. enhancer_condition_L <- df_interactions$Avg_Zscore_L >= interaction_threshold
  1425. suppressor_condition_L <- df_interactions$Avg_Zscore_L <= -interaction_threshold
  1426. enhancer_condition_K <- df_interactions$Avg_Zscore_K >= interaction_threshold
  1427. suppressor_condition_K <- df_interactions$Avg_Zscore_K <= -interaction_threshold
  1428. enhancers_L <- df_interactions[enhancer_condition_L, ]
  1429. suppressors_L <- df_interactions[suppressor_condition_L, ]
  1430. enhancers_K <- df_interactions[enhancer_condition_K, ]
  1431. suppressors_K <- df_interactions[suppressor_condition_K, ]
  1432. enhancers_and_suppressors_L <- df_interactions[enhancer_condition_L | suppressor_condition_L, ]
  1433. enhancers_and_suppressors_K <- df_interactions[enhancer_condition_K | suppressor_condition_K, ]
  1434. write.csv(enhancers_L, file = file.path(out_dir, "zscore_interactions_deletion_enhancers_L.csv"), row.names = FALSE)
  1435. write.csv(suppressors_L, file = file.path(out_dir, "zscore_interactions_deletion_suppressors_L.csv"), row.names = FALSE)
  1436. write.csv(enhancers_K, file = file.path(out_dir, "zscore_interactions_deletion_enhancers_K.csv"), row.names = FALSE)
  1437. write.csv(suppressors_K, file = file.path(out_dir, "zscore_interactions_deletion_suppressors_K.csv"), row.names = FALSE)
  1438. write.csv(enhancers_and_suppressors_L,
  1439. file = file.path(out_dir, "zscore_interactions_deletion_enhancers_and_suppressors_L.csv"), row.names = FALSE)
  1440. write.csv(enhancers_and_suppressors_K,
  1441. file = file.path(out_dir, "zscore_interaction_deletion_enhancers_and_suppressors_K.csv"), row.names = FALSE)
  1442. message("Writing linear model enhancer/suppressor csv files")
  1443. lm_interaction_threshold <- 2 # TODO add to study config?
  1444. enhancers_lm_L <- df_interactions[df_interactions$Z_lm_L >= lm_interaction_threshold, ]
  1445. suppressors_lm_L <- df_interactions[df_interactions$Z_lm_L <= -lm_interaction_threshold, ]
  1446. enhancers_lm_K <- df_interactions[df_interactions$Z_lm_K >= lm_interaction_threshold, ]
  1447. suppressors_lm_K <- df_interactions[df_interactions$Z_lm_K <= -lm_interaction_threshold, ]
  1448. write.csv(enhancers_lm_L, file = file.path(out_dir, "zscore_interactions_deletion_enhancers_lm_L.csv"), row.names = FALSE)
  1449. write.csv(suppressors_lm_L, file = file.path(out_dir, "zscore_interactions_deletion_suppressors_lm_L.csv"), row.names = FALSE)
  1450. write.csv(enhancers_lm_K, file = file.path(out_dir, "zscore_interactions_deletion_enhancers_lm_K.csv"), row.names = FALSE)
  1451. write.csv(suppressors_lm_K, file = file.path(out_dir, "zscore_interactions_deletion_suppressors_lm_K.csv"), row.names = FALSE)
  1452. message("Generating rank plots")
  1453. rank_plot_configs <- generate_rank_plot_configs(
  1454. df_interactions_joined,
  1455. is_lm = FALSE,
  1456. adjust = TRUE
  1457. )
  1458. generate_and_save_plots(out_dir, "rank_plots", rank_plot_configs,
  1459. page_width = 18, page_height = 12)
  1460. message("Generating ranked linear model plots")
  1461. rank_lm_plot_configs <- generate_rank_plot_configs(
  1462. df_interactions_joined,
  1463. is_lm = TRUE,
  1464. adjust = TRUE
  1465. )
  1466. generate_and_save_plots(out_dir, "rank_plots_lm", rank_lm_plot_configs,
  1467. page_width = 18, page_height = 12)
  1468. message("Generating filtered ranked plots")
  1469. rank_plot_filtered_configs <- generate_rank_plot_configs(
  1470. df_interactions_joined,
  1471. is_lm = FALSE,
  1472. adjust = FALSE,
  1473. overlap_color = TRUE
  1474. )
  1475. generate_and_save_plots(out_dir, "RankPlots_na_rm", rank_plot_filtered_configs,
  1476. page_width = 18, page_height = 12)
  1477. message("Generating filtered ranked linear model plots")
  1478. rank_plot_lm_filtered_configs <- generate_rank_plot_configs(
  1479. df_interactions_joined,
  1480. is_lm = TRUE,
  1481. adjust = FALSE,
  1482. overlap_color = TRUE
  1483. )
  1484. generate_and_save_plots(out_dir, "rank_plots_lm_na_rm", rank_plot_lm_filtered_configs,
  1485. page_width = 18, page_height = 12)
  1486. message("Generating correlation curve parameter pair plots")
  1487. correlation_plot_configs <- generate_correlation_plot_configs(
  1488. df_interactions_joined
  1489. )
  1490. generate_and_save_plots(out_dir, "correlation_cpps", correlation_plot_configs,
  1491. page_width = 10, page_height = 7)
  1492. })
  1493. })
  1494. }
  1495. main()