calculate_interaction_zscores.R 55 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432
  1. suppressMessages({
  2. library("ggplot2")
  3. library("plotly")
  4. library("htmlwidgets")
  5. library("dplyr")
  6. library("rlang")
  7. library("ggthemes")
  8. library("data.table")
  9. library("gridExtra")
  10. library("future")
  11. library("furrr")
  12. library("purrr")
  13. })
  14. # These parallelization libraries are very noisy
  15. suppressPackageStartupMessages({
  16. library("future")
  17. library("furrr")
  18. library("purrr")
  19. })
  20. options(warn = 2)
  21. # Constants for configuration
  22. plot_width <- 14
  23. plot_height <- 9
  24. base_size <- 14
  25. parse_arguments <- function() {
  26. args <- if (interactive()) {
  27. c(
  28. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/20240116_jhartman2_DoxoHLD",
  29. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/apps/r/SGD_features.tab",
  30. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/easy/20240116_jhartman2_DoxoHLD/results_std.txt",
  31. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/20240822_jhartman2_DoxoHLD/exp1",
  32. "Experiment 1: Doxo versus HLD",
  33. 3,
  34. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/20240822_jhartman2_DoxoHLD/exp2",
  35. "Experiment 2: HLD versus Doxo",
  36. 3
  37. )
  38. } else {
  39. commandArgs(trailingOnly = TRUE)
  40. }
  41. out_dir <- normalizePath(args[1], mustWork = FALSE)
  42. sgd_gene_list <- normalizePath(args[2], mustWork = FALSE)
  43. easy_results_file <- normalizePath(args[3], mustWork = FALSE)
  44. # The remaining arguments should be in groups of 3
  45. exp_args <- args[-(1:3)]
  46. if (length(exp_args) %% 3 != 0) {
  47. stop("Experiment arguments should be in groups of 3: path, name, sd.")
  48. }
  49. # Extract the experiments into a list
  50. experiments <- list()
  51. for (i in seq(1, length(exp_args), by = 3)) {
  52. exp_name <- exp_args[i + 1]
  53. experiments[[exp_name]] <- list(
  54. path = normalizePath(exp_args[i], mustWork = FALSE),
  55. sd = as.numeric(exp_args[i + 2])
  56. )
  57. }
  58. # Extract the trailing number from each path
  59. trailing_numbers <- sapply(experiments, function(x) {
  60. path <- x$path
  61. nums <- gsub("[^0-9]", "", basename(path))
  62. as.integer(nums)
  63. })
  64. # Sort the experiments based on the trailing numbers
  65. sorted_experiments <- experiments[order(trailing_numbers)]
  66. list(
  67. out_dir = out_dir,
  68. sgd_gene_list = sgd_gene_list,
  69. easy_results_file = easy_results_file,
  70. experiments = sorted_experiments
  71. )
  72. }
  73. args <- parse_arguments()
  74. # Should we keep output in exp dirs or combine in the study output dir?
  75. # dir.create(file.path(args$out_dir, "zscores"), showWarnings = FALSE)
  76. # dir.create(file.path(args$out_dir, "zscores", "qc"), showWarnings = FALSE)
  77. theme_publication <- function(base_size = 14, base_family = "sans", legend_position = "bottom") {
  78. theme_foundation <- ggthemes::theme_foundation(base_size = base_size, base_family = base_family)
  79. theme_foundation %+replace%
  80. theme(
  81. plot.title = element_text(face = "bold", size = rel(1.6), hjust = 0.5),
  82. text = element_text(),
  83. panel.background = element_blank(),
  84. plot.background = element_blank(),
  85. panel.border = element_blank(),
  86. axis.title = element_text(face = "bold", size = rel(1.4)),
  87. axis.title.y = element_text(angle = 90, vjust = 2),
  88. # axis.title.x = element_text(vjust = -0.2), # TODO this causes errors
  89. axis.text = element_text(size = rel(1.2)),
  90. axis.line = element_line(colour = "black"),
  91. # axis.ticks = element_line(),
  92. panel.grid.major = element_line(colour = "#f0f0f0"),
  93. panel.grid.minor = element_blank(),
  94. legend.key = element_rect(colour = NA),
  95. legend.position = legend_position,
  96. legend.direction = ifelse(legend_position == "right", "vertical", "horizontal"),
  97. # legend.key.size = unit(0.5, "cm"),
  98. legend.spacing = unit(0, "cm"),
  99. legend.title = element_text(face = "italic", size = rel(1.3)),
  100. legend.text = element_text(size = rel(1.2)),
  101. plot.margin = unit(c(10, 5, 5, 5), "mm")
  102. # strip.background = element_rect(colour = "#f0f0f0", fill = "#f0f0f0"),
  103. # strip.text = element_text(face = "bold")
  104. )
  105. }
  106. scale_fill_publication <- function(...) {
  107. discrete_scale("fill", "Publication", manual_pal(values = c(
  108. "#386cb0", "#fdb462", "#7fc97f", "#ef3b2c", "#662506",
  109. "#a6cee3", "#fb9a99", "#984ea3", "#ffff33"
  110. )), ...)
  111. }
  112. scale_colour_publication <- function(...) {
  113. discrete_scale("colour", "Publication", manual_pal(values = c(
  114. "#386cb0", "#fdb462", "#7fc97f", "#ef3b2c", "#662506",
  115. "#a6cee3", "#fb9a99", "#984ea3", "#ffff33"
  116. )), ...)
  117. }
  118. # Load the initial dataframe from the easy_results_file
  119. load_and_filter_data <- function(easy_results_file, sd = 3) {
  120. df <- read.delim(easy_results_file, skip = 2, as.is = TRUE, row.names = 1, strip.white = TRUE)
  121. df <- df %>%
  122. filter(!(.[[1]] %in% c("", "Scan"))) %>%
  123. filter(!is.na(ORF) & ORF != "" & !Gene %in% c("BLANK", "Blank", "blank") & Drug != "BMH21") %>%
  124. # Rename columns
  125. rename(L = l, num = Num., AUC = AUC96, scan = Scan, last_bg = LstBackgrd, first_bg = X1stBackgrd) %>%
  126. mutate(
  127. across(c(Col, Row, num, L, K, r, scan, AUC, last_bg, first_bg), as.numeric),
  128. delta_bg = last_bg - first_bg,
  129. delta_bg_tolerance = mean(delta_bg, na.rm = TRUE) + (sd * sd(delta_bg, na.rm = TRUE)),
  130. NG = if_else(L == 0 & !is.na(L), 1, 0),
  131. DB = if_else(delta_bg >= delta_bg_tolerance, 1, 0),
  132. SM = 0,
  133. OrfRep = if_else(ORF == "YDL227C", "YDL227C", OrfRep), # should these be hardcoded?
  134. conc_num = as.numeric(gsub("[^0-9\\.]", "", Conc)),
  135. conc_num_factor = as.numeric(as.factor(conc_num)) - 1, # for legacy purposes
  136. conc_num_factor_factor = factor(conc_num)
  137. )
  138. return(df)
  139. }
  140. # Update Gene names using the SGD gene list
  141. update_gene_names <- function(df, sgd_gene_list) {
  142. # Load SGD gene list
  143. genes <- read.delim(file = sgd_gene_list,
  144. quote = "", header = FALSE,
  145. colClasses = c(rep("NULL", 3), rep("character", 2), rep("NULL", 11)))
  146. # Create a named vector for mapping ORF to GeneName
  147. gene_map <- setNames(genes$V5, genes$V4)
  148. # Vectorized match to find the GeneName from gene_map
  149. mapped_genes <- gene_map[df$ORF]
  150. # Replace NAs in mapped_genes with original Gene names (preserves existing Gene names if ORF is not found)
  151. updated_genes <- ifelse(is.na(mapped_genes) | df$OrfRep == "YDL227C", df$Gene, mapped_genes)
  152. # Ensure Gene is not left blank or incorrectly updated to "OCT1"
  153. df <- df %>%
  154. mutate(Gene = ifelse(updated_genes == "" | updated_genes == "OCT1", OrfRep, updated_genes))
  155. return(df)
  156. }
  157. calculate_summary_stats <- function(df, variables, group_vars) {
  158. summary_stats <- df %>%
  159. group_by(across(all_of(group_vars))) %>%
  160. summarise(
  161. N = n(),
  162. across(all_of(variables),
  163. list(
  164. mean = ~ mean(.x, na.rm = TRUE),
  165. median = ~ median(.x, na.rm = TRUE),
  166. max = ~ ifelse(all(is.na(.x)), NA, max(.x, na.rm = TRUE)),
  167. min = ~ ifelse(all(is.na(.x)), NA, min(.x, na.rm = TRUE)),
  168. sd = ~ sd(.x, na.rm = TRUE),
  169. se = ~ sd(.x, na.rm = TRUE) / sqrt(n() - 1)
  170. ),
  171. .names = "{.fn}_{.col}"
  172. ),
  173. .groups = "drop"
  174. )
  175. # Create a cleaned version of df that doesn't overlap with summary_stats
  176. cleaned_df <- df %>%
  177. select(-any_of(setdiff(intersect(names(df), names(summary_stats)), group_vars)))
  178. df_joined <- left_join(cleaned_df, summary_stats, by = group_vars)
  179. return(list(summary_stats = summary_stats, df_with_stats = df_joined))
  180. }
  181. calculate_interaction_scores <- function(df, max_conc, bg_stats,
  182. group_vars = c("OrfRep", "Gene", "num")) {
  183. # Calculate total concentration variables
  184. total_conc_num <- length(unique(df$conc_num))
  185. calculations <- df %>%
  186. group_by(across(all_of(group_vars))) %>%
  187. mutate(
  188. NG = sum(NG, na.rm = TRUE),
  189. DB = sum(DB, na.rm = TRUE),
  190. SM = sum(SM, na.rm = TRUE),
  191. num_non_removed_concs = total_conc_num - sum(DB, na.rm = TRUE) - 1,
  192. # Calculate raw data
  193. Raw_Shift_L = first(mean_L) - bg_stats$mean_L,
  194. Raw_Shift_K = first(mean_K) - bg_stats$mean_K,
  195. Raw_Shift_r = first(mean_r) - bg_stats$mean_r,
  196. Raw_Shift_AUC = first(mean_AUC) - bg_stats$mean_AUC,
  197. Z_Shift_L = first(Raw_Shift_L) / bg_stats$sd_L,
  198. Z_Shift_K = first(Raw_Shift_K) / bg_stats$sd_K,
  199. Z_Shift_r = first(Raw_Shift_r) / bg_stats$sd_r,
  200. Z_Shift_AUC = first(Raw_Shift_AUC) / bg_stats$sd_AUC,
  201. Exp_L = WT_L + Raw_Shift_L,
  202. Exp_K = WT_K + Raw_Shift_K,
  203. Exp_r = WT_r + Raw_Shift_r,
  204. Exp_AUC = WT_AUC + Raw_Shift_AUC,
  205. Delta_L = mean_L - Exp_L,
  206. Delta_K = mean_K - Exp_K,
  207. Delta_r = mean_r - Exp_r,
  208. Delta_AUC = mean_AUC - Exp_AUC,
  209. Delta_L = if_else(NG == 1, mean_L - WT_L, Delta_L),
  210. Delta_K = if_else(NG == 1, mean_K - WT_K, Delta_K),
  211. Delta_r = if_else(NG == 1, mean_r - WT_r, Delta_r),
  212. Delta_AUC = if_else(NG == 1, mean_AUC - WT_AUC, Delta_AUC),
  213. Delta_L = if_else(SM == 1, mean_L - WT_L, Delta_L),
  214. # Calculate Z-scores
  215. Zscore_L = Delta_L / WT_sd_L,
  216. Zscore_K = Delta_K / WT_sd_K,
  217. Zscore_r = Delta_r / WT_sd_r,
  218. Zscore_AUC = Delta_AUC / WT_sd_AUC,
  219. # Fit linear models and store in list-columns
  220. gene_lm_L = list(lm(Delta_L ~ conc_num_factor, data = pick(everything()))),
  221. gene_lm_K = list(lm(Delta_K ~ conc_num_factor, data = pick(everything()))),
  222. gene_lm_r = list(lm(Delta_r ~ conc_num_factor, data = pick(everything()))),
  223. gene_lm_AUC = list(lm(Delta_AUC ~ conc_num_factor, data = pick(everything()))),
  224. # Extract coefficients using purrr::map_dbl
  225. lm_intercept_L = map_dbl(gene_lm_L, ~ coef(.x)[1]),
  226. lm_slope_L = map_dbl(gene_lm_L, ~ coef(.x)[2]),
  227. lm_intercept_K = map_dbl(gene_lm_K, ~ coef(.x)[1]),
  228. lm_slope_K = map_dbl(gene_lm_K, ~ coef(.x)[2]),
  229. lm_intercept_r = map_dbl(gene_lm_r, ~ coef(.x)[1]),
  230. lm_slope_r = map_dbl(gene_lm_r, ~ coef(.x)[2]),
  231. lm_intercept_AUC = map_dbl(gene_lm_AUC, ~ coef(.x)[1]),
  232. lm_slope_AUC = map_dbl(gene_lm_AUC, ~ coef(.x)[2]),
  233. # Calculate lm_Score_* based on coefficients
  234. lm_Score_L = max_conc * lm_slope_L + lm_intercept_L,
  235. lm_Score_K = max_conc * lm_slope_K + lm_intercept_K,
  236. lm_Score_r = max_conc * lm_slope_r + lm_intercept_r,
  237. lm_Score_AUC = max_conc * lm_slope_AUC + lm_intercept_AUC,
  238. # Calculate R-squared values
  239. R_Squared_L = map_dbl(gene_lm_L, ~ summary(.x)$r.squared),
  240. R_Squared_K = map_dbl(gene_lm_K, ~ summary(.x)$r.squared),
  241. R_Squared_r = map_dbl(gene_lm_r, ~ summary(.x)$r.squared),
  242. R_Squared_AUC = map_dbl(gene_lm_AUC, ~ summary(.x)$r.squared)
  243. ) %>%
  244. ungroup()
  245. # Calculate overall mean and SD for lm_Score_* variables
  246. lm_means_sds <- calculations %>%
  247. summarise(
  248. lm_mean_L = mean(lm_Score_L, na.rm = TRUE),
  249. lm_sd_L = sd(lm_Score_L, na.rm = TRUE),
  250. lm_mean_K = mean(lm_Score_K, na.rm = TRUE),
  251. lm_sd_K = sd(lm_Score_K, na.rm = TRUE),
  252. lm_mean_r = mean(lm_Score_r, na.rm = TRUE),
  253. lm_sd_r = sd(lm_Score_r, na.rm = TRUE),
  254. lm_mean_AUC = mean(lm_Score_AUC, na.rm = TRUE),
  255. lm_sd_AUC = sd(lm_Score_AUC, na.rm = TRUE)
  256. )
  257. calculations <- calculations %>%
  258. mutate(
  259. Z_lm_L = (lm_Score_L - lm_means_sds$lm_mean_L) / lm_means_sds$lm_sd_L,
  260. Z_lm_K = (lm_Score_K - lm_means_sds$lm_mean_K) / lm_means_sds$lm_sd_K,
  261. Z_lm_r = (lm_Score_r - lm_means_sds$lm_mean_r) / lm_means_sds$lm_sd_r,
  262. Z_lm_AUC = (lm_Score_AUC - lm_means_sds$lm_mean_AUC) / lm_means_sds$lm_sd_AUC
  263. )
  264. # Summarize some of the stats
  265. interactions <- calculations %>%
  266. group_by(across(all_of(group_vars))) %>%
  267. mutate(
  268. # Calculate raw shifts
  269. Raw_Shift_L = first(Raw_Shift_L),
  270. Raw_Shift_K = first(Raw_Shift_K),
  271. Raw_Shift_r = first(Raw_Shift_r),
  272. Raw_Shift_AUC = first(Raw_Shift_AUC),
  273. # Calculate Z-shifts
  274. Z_Shift_L = first(Z_Shift_L),
  275. Z_Shift_K = first(Z_Shift_K),
  276. Z_Shift_r = first(Z_Shift_r),
  277. Z_Shift_AUC = first(Z_Shift_AUC),
  278. # Sum Z-scores
  279. Sum_Z_Score_L = sum(Zscore_L),
  280. Sum_Z_Score_K = sum(Zscore_K),
  281. Sum_Z_Score_r = sum(Zscore_r),
  282. Sum_Z_Score_AUC = sum(Zscore_AUC),
  283. # Calculate Average Z-scores
  284. Avg_Zscore_L = Sum_Z_Score_L / num_non_removed_concs,
  285. Avg_Zscore_K = Sum_Z_Score_K / num_non_removed_concs,
  286. Avg_Zscore_r = Sum_Z_Score_r / (total_conc_num - 1),
  287. Avg_Zscore_AUC = Sum_Z_Score_AUC / (total_conc_num - 1)
  288. ) %>%
  289. arrange(desc(Z_lm_L), desc(NG)) %>%
  290. ungroup()
  291. # Declare column order for output
  292. calculations <- calculations %>%
  293. select(
  294. "OrfRep", "Gene", "num", "N",
  295. "conc_num", "conc_num_factor", "conc_num_factor_factor",
  296. "mean_L", "mean_K", "mean_r", "mean_AUC",
  297. "median_L", "median_K", "median_r", "median_AUC",
  298. "sd_L", "sd_K", "sd_r", "sd_AUC",
  299. "se_L", "se_K", "se_r", "se_AUC",
  300. "Raw_Shift_L", "Raw_Shift_K", "Raw_Shift_r", "Raw_Shift_AUC",
  301. "Z_Shift_L", "Z_Shift_K", "Z_Shift_r", "Z_Shift_AUC",
  302. "WT_L", "WT_K", "WT_r", "WT_AUC",
  303. "WT_sd_L", "WT_sd_K", "WT_sd_r", "WT_sd_AUC",
  304. "Exp_L", "Exp_K", "Exp_r", "Exp_AUC",
  305. "Delta_L", "Delta_K", "Delta_r", "Delta_AUC",
  306. "Zscore_L", "Zscore_K", "Zscore_r", "Zscore_AUC",
  307. "NG", "SM", "DB"
  308. )
  309. interactions <- interactions %>%
  310. select(
  311. "OrfRep", "Gene", "num", "NG", "DB", "SM",
  312. "conc_num", "conc_num_factor", "conc_num_factor_factor",
  313. "Raw_Shift_L", "Raw_Shift_K", "Raw_Shift_r", "Raw_Shift_AUC",
  314. "Z_Shift_L", "Z_Shift_K", "Z_Shift_r", "Z_Shift_AUC",
  315. "Sum_Z_Score_L", "Sum_Z_Score_K", "Sum_Z_Score_r", "Sum_Z_Score_AUC",
  316. "Avg_Zscore_L", "Avg_Zscore_K", "Avg_Zscore_r", "Avg_Zscore_AUC",
  317. "lm_Score_L", "lm_Score_K", "lm_Score_r", "lm_Score_AUC",
  318. "R_Squared_L", "R_Squared_K", "R_Squared_r", "R_Squared_AUC",
  319. "Z_lm_L", "Z_lm_K", "Z_lm_r", "Z_lm_AUC"
  320. )
  321. # Clean the original dataframe by removing overlapping columns
  322. cleaned_df <- df %>%
  323. select(-any_of(
  324. setdiff(intersect(names(df), names(calculations)),
  325. c("OrfRep", "Gene", "num", "conc_num", "conc_num_factor", "conc_num_factor_factor"))))
  326. # Join the original dataframe with calculations
  327. df_with_calculations <- left_join(cleaned_df, calculations,
  328. by = c("OrfRep", "Gene", "num", "conc_num", "conc_num_factor", "conc_num_factor_factor"))
  329. # Remove overlapping columns between df_with_calculations and interactions
  330. df_with_calculations_clean <- df_with_calculations %>%
  331. select(-any_of(
  332. setdiff(intersect(names(df_with_calculations), names(interactions)),
  333. c("OrfRep", "Gene", "num", "conc_num", "conc_num_factor"))))
  334. # Join with interactions to create the full dataset
  335. full_data <- left_join(df_with_calculations_clean, interactions,
  336. by = c("OrfRep", "Gene", "num", "conc_num", "conc_num_factor", "conc_num_factor_factor"))
  337. return(list(
  338. calculations = calculations,
  339. interactions = interactions,
  340. full_data = full_data
  341. ))
  342. }
  343. generate_and_save_plots <- function(out_dir, filename, plot_configs) {
  344. message("Generating ", filename, ".pdf and ", filename, ".html")
  345. grid_nrow <- ifelse(is.null(plot_configs$grid_layout$nrow), 1, plot_configs$grid_layout$nrow)
  346. grid_ncol <- ifelse(is.null(plot_configs$grid_layout$ncol), length(plot_configs$plots), plot_configs$grid_layout$ncol)
  347. static_plots <- list()
  348. plotly_plots <- list()
  349. for (i in seq_along(plot_configs$plots)) {
  350. config <- plot_configs$plots[[i]]
  351. df <- config$df
  352. # Define aes_mapping and handle color_var defaulting
  353. aes_mapping <- if (config$plot_type == "bar") {
  354. aes(x = .data[[config$x_var]], fill = ifelse(!is.null(config$color_var), .data[[config$color_var]], "black"),
  355. color = ifelse(!is.null(config$color_var), .data[[config$color_var]], "black"))
  356. } else if (config$plot_type == "density") {
  357. aes(x = .data[[config$x_var]], color = ifelse(!is.null(config$color_var), .data[[config$color_var]], "black"))
  358. } else {
  359. aes(x = .data[[config$x_var]], y = .data[[config$y_var]], color = ifelse(!is.null(config$color_var), .data[[config$color_var]], "black"))
  360. }
  361. # Apply theme_publication with legend_position
  362. plot <- ggplot(df, aes_mapping) + theme_publication(legend_position = config$legend_position)
  363. # Apply appropriate plot function
  364. plot <- switch(config$plot_type,
  365. "scatter" = generate_scatter_plot(plot, config),
  366. "box" = generate_box_plot(plot, config),
  367. "density" = plot + geom_density(),
  368. "bar" = plot + geom_bar(),
  369. plot # default case
  370. )
  371. # Add titles and labels
  372. if (!is.null(config$title)) plot <- plot + ggtitle(config$title)
  373. if (!is.null(config$x_label)) plot <- plot + xlab(config$x_label)
  374. if (!is.null(config$y_label)) plot <- plot + ylab(config$y_label)
  375. if (!is.null(config$coord_cartesian)) plot <- plot + coord_cartesian(ylim = config$coord_cartesian)
  376. # Add interactive tooltips for plotly
  377. tooltip_vars <- ifelse(!is.null(config$tooltip_vars), config$tooltip_vars, "none")
  378. plotly_plot <- suppressWarnings(plotly::ggplotly(plot, tooltip = tooltip_vars))
  379. # Adjust legend position in plotly
  380. if (!is.null(config$legend_position) && config$legend_position == "bottom") {
  381. plotly_plot <- plotly_plot %>% layout(legend = list(orientation = "h"))
  382. }
  383. # Add static and interactive plots to lists
  384. static_plots[[i]] <- plot
  385. plotly_plots[[i]] <- plotly_plot
  386. }
  387. # Save static PDF plots
  388. pdf(file.path(out_dir, paste0(filename, ".pdf")), width = 16, height = 9)
  389. grid.arrange(grobs = static_plots, ncol = grid_ncol, nrow = grid_nrow)
  390. dev.off()
  391. # Save combined interactive HTML plots
  392. combined_plot <- plotly::subplot(plotly_plots, nrows = grid_nrow, ncols = grid_ncol, margin = 0.05)
  393. html_file <- file.path(out_dir, paste0(filename, ".html"))
  394. saveWidget(combined_plot, file = html_file, selfcontained = TRUE)
  395. }
  396. generate_scatter_plot <- function(plot, config) {
  397. # Define the points
  398. shape <- if (!is.null(config$shape)) config$shape else 3
  399. size <- if (!is.null(config$size)) config$size else 1.5
  400. position <-
  401. if (!is.null(config$position) && config$position == "jitter") {
  402. position_jitter(width = 0.1, height = 0)
  403. } else {
  404. "identity"
  405. }
  406. plot <- plot + geom_point(
  407. shape = shape,
  408. size = size,
  409. position = position
  410. )
  411. if (!is.null(config$cyan_points) && config$cyan_points) {
  412. plot <- plot + geom_point(
  413. aes(x = .data[[config$x_var]], y = .data[[config$y_var]]),
  414. color = "cyan",
  415. shape = 3,
  416. size = 0.5
  417. )
  418. }
  419. # Add Smooth Line if specified
  420. if (!is.null(config$smooth) && config$smooth) {
  421. smooth_color <- if (!is.null(config$smooth_color)) config$smooth_color else "blue"
  422. if (!is.null(config$lm_line)) {
  423. plot <- plot +
  424. geom_abline(
  425. intercept = config$lm_line$intercept,
  426. slope = config$lm_line$slope,
  427. color = smooth_color
  428. )
  429. } else {
  430. plot <- plot +
  431. geom_smooth(
  432. method = "lm",
  433. se = FALSE,
  434. color = smooth_color
  435. )
  436. }
  437. }
  438. # Add SD Bands if specified
  439. if (!is.null(config$sd_band)) {
  440. plot <- plot +
  441. annotate(
  442. "rect",
  443. xmin = -Inf, xmax = Inf,
  444. ymin = config$sd_band, ymax = Inf,
  445. fill = ifelse(!is.null(config$fill_positive), config$fill_positive, "#542788"),
  446. alpha = ifelse(!is.null(config$alpha_positive), config$alpha_positive, 0.3)
  447. ) +
  448. annotate(
  449. "rect",
  450. xmin = -Inf, xmax = Inf,
  451. ymin = -config$sd_band, ymax = -Inf,
  452. fill = ifelse(!is.null(config$fill_negative), config$fill_negative, "orange"),
  453. alpha = ifelse(!is.null(config$alpha_negative), config$alpha_negative, 0.3)
  454. ) +
  455. geom_hline(
  456. yintercept = c(-config$sd_band, config$sd_band),
  457. color = ifelse(!is.null(config$hl_color), config$hl_color, "gray")
  458. )
  459. }
  460. # Add Rectangles if specified
  461. if (!is.null(config$rectangles)) {
  462. for (rect in config$rectangles) {
  463. plot <- plot + annotate(
  464. "rect",
  465. xmin = rect$xmin,
  466. xmax = rect$xmax,
  467. ymin = rect$ymin,
  468. ymax = rect$ymax,
  469. fill = ifelse(is.null(rect$fill), NA, rect$fill),
  470. color = ifelse(is.null(rect$color), "black", rect$color),
  471. alpha = ifelse(is.null(rect$alpha), 0.1, rect$alpha)
  472. )
  473. }
  474. }
  475. # Add error bars if specified
  476. if (!is.null(config$error_bar) && config$error_bar && !is.null(config$y_var)) {
  477. y_mean_col <- paste0("mean_", config$y_var)
  478. y_sd_col <- paste0("sd_", config$y_var)
  479. plot <- plot +
  480. geom_errorbar(
  481. aes(
  482. ymin = !!sym(y_mean_col) - !!sym(y_sd_col),
  483. ymax = !!sym(y_mean_col) + !!sym(y_sd_col)
  484. ),
  485. alpha = 0.3,
  486. linewidth = 0.5
  487. )
  488. }
  489. # Customize X-axis if specified
  490. if (!is.null(config$x_breaks) && !is.null(config$x_labels) && !is.null(config$x_label)) {
  491. plot <- plot +
  492. scale_x_discrete(
  493. name = config$x_label,
  494. breaks = config$x_breaks,
  495. labels = config$x_labels
  496. )
  497. }
  498. # Set Y-axis limits if specified
  499. if (!is.null(config$ylim_vals)) {
  500. plot <- plot + scale_y_continuous(limits = config$ylim_vals)
  501. }
  502. # Add annotations if specified
  503. if (!is.null(config$annotations)) {
  504. for (annotation in config$annotations) {
  505. plot <- plot +
  506. annotate(
  507. "text",
  508. x = annotation$x,
  509. y = annotation$y,
  510. label = annotation$label,
  511. hjust = ifelse(is.null(annotation$hjust), 0.5, annotation$hjust),
  512. vjust = ifelse(is.null(annotation$vjust), 0.5, annotation$vjust),
  513. size = ifelse(is.null(annotation$size), 6, annotation$size),
  514. color = ifelse(is.null(annotation$color), "black", annotation$color)
  515. )
  516. }
  517. }
  518. return(plot)
  519. }
  520. generate_box_plot <- function(plot, config) {
  521. # Convert x_var to a factor within aes mapping
  522. plot <- plot + geom_boxplot(aes(x = factor(.data[[config$x_var]])))
  523. # Apply scale_x_discrete for breaks, labels, and axis label if provided
  524. if (!is.null(config$x_breaks) && !is.null(config$x_labels) && !is.null(config$x_label)) {
  525. plot <- plot + scale_x_discrete(
  526. name = config$x_label,
  527. breaks = config$x_breaks,
  528. labels = config$x_labels
  529. )
  530. }
  531. return(plot)
  532. }
  533. generate_plate_analysis_plot_configs <- function(variables, df_before = NULL, df_after = NULL,
  534. plot_type = "scatter", stages = c("before", "after")) {
  535. plots <- list()
  536. for (var in variables) {
  537. for (stage in stages) {
  538. df_plot <- if (stage == "before") df_before else df_after
  539. # Check for non-finite values in the y-variable
  540. df_plot_filtered <- df_plot %>% filter(is.finite(!!sym(var)))
  541. # Adjust settings based on plot_type
  542. config <- list(
  543. df = df_plot_filtered,
  544. x_var = "scan",
  545. y_var = var,
  546. plot_type = plot_type,
  547. title = paste("Plate analysis by Drug Conc for", var, stage, "quality control"),
  548. color_var = "conc_num_factor_factor",
  549. position = if (plot_type == "scatter") "jitter" else NULL,
  550. size = 0.2,
  551. error_bar = (plot_type == "scatter")
  552. )
  553. # Add config to plots list
  554. plots <- append(plots, list(config))
  555. }
  556. }
  557. return(list(grid_layout = list(ncol = 1, nrow = length(plots)), plots = plots))
  558. }
  559. generate_interaction_plot_configs <- function(df, limits_map = NULL, plot_type = "reference") {
  560. if (is.null(limits_map)) {
  561. limits_map <- list(
  562. L = c(0, 130),
  563. K = c(-20, 160),
  564. r = c(0, 1),
  565. AUC = c(0, 12500),
  566. Delta_L = c(-60, 60),
  567. Delta_K = c(-60, 60),
  568. Delta_r = c(-0.6, 0.6),
  569. Delta_AUC = c(-6000, 6000)
  570. )
  571. }
  572. group_vars <- if (plot_type == "reference") c("OrfRep", "Gene", "num") else c("OrfRep", "Gene")
  573. df_filtered <- df %>%
  574. mutate(OrfRepCombined = if (plot_type == "reference") paste(OrfRep, Gene, num, sep = "_") else paste(OrfRep, Gene, sep = "_"))
  575. plots <- list()
  576. # Generate plots for overall variables (L, K, r, AUC)
  577. for (var in c("L", "K", "r", "AUC")) {
  578. y_limits <- limits_map[[var]]
  579. config <- list(
  580. df = df_filtered,
  581. plot_type = "scatter",
  582. x_var = "conc_num_factor_factor",
  583. y_var = var,
  584. x_label = unique(df_filtered$Drug)[1],
  585. title = sprintf("Scatter RF for %s with SD", var),
  586. coord_cartesian = y_limits,
  587. error_bar = TRUE,
  588. x_breaks = unique(df_filtered$conc_num_factor_factor),
  589. x_labels = as.character(unique(df_filtered$conc_num)),
  590. grid_layout = list(ncol = 2, nrow = 2),
  591. position = "jitter",
  592. smooth = TRUE
  593. )
  594. plots <- append(plots, list(config))
  595. }
  596. # Generate Delta comparison plots
  597. unique_groups <- df_filtered %>% select(all_of(group_vars)) %>% distinct()
  598. for (i in seq_len(nrow(unique_groups))) {
  599. group <- unique_groups[i, ]
  600. group_data <- df_filtered %>% semi_join(group, by = group_vars)
  601. OrfRep <- as.character(group$OrfRep)
  602. Gene <- if ("Gene" %in% names(group)) as.character(group$Gene) else ""
  603. num <- if ("num" %in% names(group)) as.character(group$num) else ""
  604. for (var in c("Delta_L", "Delta_K", "Delta_r", "Delta_AUC")) {
  605. y_limits <- limits_map[[var]]
  606. y_span <- y_limits[2] - y_limits[1]
  607. # Error bars
  608. WT_sd_var <- paste0("WT_sd_", sub("Delta_", "", var))
  609. WT_sd_value <- group_data[[WT_sd_var]][1]
  610. error_bar_ymin <- 0 - (2 * WT_sd_value)
  611. error_bar_ymax <- 0 + (2 * WT_sd_value)
  612. # Annotations
  613. Z_Shift_value <- round(group_data[[paste0("Z_Shift_", sub("Delta_", "", var))]][1], 2)
  614. Z_lm_value <- round(group_data[[paste0("Z_lm_", sub("Delta_", "", var))]][1], 2)
  615. NG_value <- group_data$NG[1]
  616. DB_value <- group_data$DB[1]
  617. SM_value <- group_data$SM[1]
  618. annotations <- list(
  619. list(x = 1, y = y_limits[2] - 0.2 * y_span, label = paste("ZShift =", Z_Shift_value)),
  620. list(x = 1, y = y_limits[2] - 0.3 * y_span, label = paste("lm ZScore =", Z_lm_value)),
  621. list(x = 1, y = y_limits[1] + 0.2 * y_span, label = paste("NG =", NG_value)),
  622. list(x = 1, y = y_limits[1] + 0.1 * y_span, label = paste("DB =", DB_value)),
  623. list(x = 1, y = y_limits[1], label = paste("SM =", SM_value))
  624. )
  625. config <- list(
  626. df = group_data,
  627. plot_type = "scatter",
  628. x_var = "conc_num_factor_factor",
  629. y_var = var,
  630. x_label = unique(group_data$Drug)[1],
  631. title = paste(OrfRep, Gene, sep = " "),
  632. coord_cartesian = y_limits,
  633. annotations = annotations,
  634. error_bar = TRUE,
  635. error_bar_params = list(
  636. ymin = error_bar_ymin,
  637. ymax = error_bar_ymax
  638. ),
  639. smooth = TRUE,
  640. x_breaks = unique(group_data$conc_num_factor_factor),
  641. x_labels = as.character(unique(group_data$conc_num)),
  642. ylim_vals = y_limits,
  643. grid_layout = list(ncol = 4, nrow = 3)
  644. )
  645. plots <- append(plots, list(config))
  646. }
  647. }
  648. return(list(grid_layout = list(ncol = 2, nrow = 2), plots = plots))
  649. }
  650. generate_rank_plot_configs <- function(df, variables, is_lm = FALSE, adjust = FALSE, overlap_color = FALSE) {
  651. sd_bands <- c(1, 2, 3)
  652. avg_zscore_cols <- paste0("Avg_Zscore_", variables)
  653. z_lm_cols <- paste0("Z_lm_", variables)
  654. rank_avg_zscore_cols <- paste0("Rank_", variables)
  655. rank_z_lm_cols <- paste0("Rank_lm_", variables)
  656. configs <- list()
  657. # Adjust values if necessary
  658. if (adjust) {
  659. df <- df %>%
  660. mutate(
  661. across(all_of(avg_zscore_cols), ~ifelse(is.na(.), 0.001, .)),
  662. across(all_of(z_lm_cols), ~ifelse(is.na(.), 0.001, .))
  663. )
  664. }
  665. # Calculate rank columns for Avg_Zscore and Z_lm columns
  666. df_ranked <- df %>%
  667. mutate(across(all_of(avg_zscore_cols), ~rank(., na.last = "keep"), .names = paste0("Rank_", avg_zscore_cols))) %>%
  668. mutate(across(all_of(z_lm_cols), ~rank(., na.last = "keep"), .names = paste0("Rank_lm_", z_lm_cols)))
  669. # Generate plots for SD-based L and K variables
  670. for (variable in c("L", "K")) {
  671. rank_var <- if (is_lm) paste0("Rank_lm_", variable) else paste0("Rank_", variable)
  672. zscore_var <- if (is_lm) paste0("Z_lm_", variable) else paste0("Avg_Zscore_", variable)
  673. y_label <- if (is_lm) paste("Int Z score", variable) else paste("Avg Z score", variable)
  674. for (sd_band in sd_bands) {
  675. num_enhancers <- sum(df_ranked[[zscore_var]] >= sd_band, na.rm = TRUE)
  676. num_suppressors <- sum(df_ranked[[zscore_var]] <= -sd_band, na.rm = TRUE)
  677. # Plot with annotations
  678. configs[[length(configs) + 1]] <- list(
  679. df = df_ranked,
  680. x_var = rank_var,
  681. y_var = zscore_var,
  682. plot_type = "scatter",
  683. title = paste(y_label, "vs. Rank for", variable, "above", sd_band, "SD"),
  684. sd_band = sd_band,
  685. fill_positive = "#542788",
  686. fill_negative = "orange",
  687. alpha_positive = 0.3,
  688. alpha_negative = 0.3,
  689. annotations = list(
  690. list(
  691. x = median(df_ranked[[rank_var]], na.rm = TRUE),
  692. y = max(df_ranked[[zscore_var]], na.rm = TRUE) * 0.9,
  693. label = paste("Deletion Enhancers =", num_enhancers)
  694. ),
  695. list(
  696. x = median(df_ranked[[rank_var]], na.rm = TRUE),
  697. y = min(df_ranked[[zscore_var]], na.rm = TRUE) * 0.9,
  698. label = paste("Deletion Suppressors =", num_suppressors)
  699. )
  700. ),
  701. shape = 3,
  702. size = 0.1,
  703. y_label = y_label,
  704. x_label = "Rank",
  705. legend_position = "none"
  706. )
  707. # Plot without annotations
  708. configs[[length(configs) + 1]] <- list(
  709. df = df_ranked,
  710. x_var = rank_var,
  711. y_var = zscore_var,
  712. plot_type = "scatter",
  713. title = paste(y_label, "vs. Rank for", variable, "above", sd_band, "SD No Annotations"),
  714. sd_band = sd_band,
  715. fill_positive = "#542788",
  716. fill_negative = "orange",
  717. alpha_positive = 0.3,
  718. alpha_negative = 0.3,
  719. annotations = NULL,
  720. shape = 3,
  721. size = 0.1,
  722. y_label = y_label,
  723. x_label = "Rank",
  724. legend_position = "none"
  725. )
  726. }
  727. }
  728. # Generate Avg ZScore and Rank Avg ZScore plots for each variable
  729. for (variable in variables) {
  730. for (plot_type in c("Avg Zscore vs lm", "Rank Avg Zscore vs lm")) {
  731. title <- paste(plot_type, variable)
  732. # Define specific variables based on plot type
  733. x_var <- if (plot_type == "Avg Zscore vs lm") paste0("Avg_Zscore_", variable) else paste0("Rank_", variable)
  734. y_var <- if (plot_type == "Avg Zscore vs lm") paste0("Z_lm_", variable) else paste0("Rank_lm_", variable)
  735. # Fit the linear model
  736. lm_model <- lm(as.formula(paste(y_var, "~", x_var)), data = df_ranked)
  737. intercept <- coef(lm_model)[1]
  738. slope <- coef(lm_model)[2]
  739. r_squared <- summary(lm_model)$r.squared
  740. annotations <- list(
  741. list(
  742. x = mean(range(df_ranked[[x_var]], na.rm = TRUE)),
  743. y = mean(range(df_ranked[[y_var]], na.rm = TRUE)),
  744. label = paste("R-squared =", round(r_squared, 2)),
  745. hjust = 0.5,
  746. vjust = 1,
  747. size = 5
  748. )
  749. )
  750. rectangles <- if (plot_type == "Avg Zscore vs lm") {
  751. list(list(xmin = -2, xmax = 2, ymin = -2, ymax = 2, fill = NA, color = "grey20", alpha = 0.1))
  752. } else {
  753. NULL
  754. }
  755. configs[[length(configs) + 1]] <- list(
  756. df = df_ranked,
  757. x_var = x_var,
  758. y_var = y_var,
  759. plot_type = "scatter",
  760. title = title,
  761. annotations = annotations,
  762. shape = 3,
  763. size = 0.25,
  764. smooth = TRUE,
  765. smooth_color = "black",
  766. lm_line = list(intercept = intercept, slope = slope),
  767. legend_position = "right",
  768. color_var = if (overlap_color) "Overlap" else NULL,
  769. x_label = x_var,
  770. y_label = y_var,
  771. rectangles = rectangles
  772. )
  773. }
  774. }
  775. return(list(grid_layout = list(ncol = 3, nrow = 2), plots = configs))
  776. }
  777. generate_correlation_plot_configs <- function(df, highlight_cyan = FALSE) {
  778. relationships <- list(
  779. list(x = "Z_lm_L", y = "Z_lm_K", label = "Interaction L vs. Interaction K"),
  780. list(x = "Z_lm_L", y = "Z_lm_r", label = "Interaction L vs. Interaction r"),
  781. list(x = "Z_lm_L", y = "Z_lm_AUC", label = "Interaction L vs. Interaction AUC"),
  782. list(x = "Z_lm_K", y = "Z_lm_r", label = "Interaction K vs. Interaction r"),
  783. list(x = "Z_lm_K", y = "Z_lm_AUC", label = "Interaction K vs. Interaction AUC"),
  784. list(x = "Z_lm_r", y = "Z_lm_AUC", label = "Interaction r vs. Interaction AUC")
  785. )
  786. plots <- list()
  787. for (rel in relationships) {
  788. lm_model <- lm(as.formula(paste(rel$y, "~", rel$x)), data = df)
  789. r_squared <- summary(lm_model)$r.squared
  790. config <- list(
  791. df = df,
  792. x_var = rel$x,
  793. y_var = rel$y,
  794. plot_type = "scatter",
  795. title = rel$label,
  796. annotations = list(
  797. list(x = mean(df[[rel$x]], na.rm = TRUE),
  798. y = mean(df[[rel$y]], na.rm = TRUE),
  799. label = paste("R-squared =", round(r_squared, 3)))
  800. ),
  801. smooth = TRUE,
  802. smooth_color = "tomato3",
  803. lm_line = list(intercept = coef(lm_model)[1], slope = coef(lm_model)[2]),
  804. shape = 3,
  805. size = 0.5,
  806. color_var = "Overlap",
  807. cyan_points = highlight_cyan
  808. )
  809. plots <- append(plots, list(config))
  810. }
  811. return(list(grid_layout = list(ncol = 3, nrow = 2), plots = plots))
  812. }
  813. main <- function() {
  814. lapply(names(args$experiments), function(exp_name) {
  815. exp <- args$experiments[[exp_name]]
  816. exp_path <- exp$path
  817. exp_sd <- exp$sd
  818. out_dir <- file.path(exp_path, "zscores")
  819. out_dir_qc <- file.path(exp_path, "zscores", "qc")
  820. dir.create(out_dir, recursive = TRUE, showWarnings = FALSE)
  821. dir.create(out_dir_qc, recursive = TRUE, showWarnings = FALSE)
  822. summary_vars <- c("L", "K", "r", "AUC", "delta_bg") # fields to filter and calculate summary stats across
  823. interaction_vars <- c("L", "K", "r", "AUC") # fields to calculate interaction z-scores
  824. message("Loading and filtering data for experiment: ", exp_name)
  825. df <- load_and_filter_data(args$easy_results_file, sd = exp_sd) %>%
  826. update_gene_names(args$sgd_gene_list) %>%
  827. as_tibble()
  828. # Filter rows above delta background tolerance
  829. df_above_tolerance <- df %>% filter(DB == 1)
  830. df_na <- df %>% mutate(across(all_of(summary_vars), ~ ifelse(DB == 1, NA, .))) # formerly X
  831. df_no_zeros <- df_na %>% filter(L > 0) # formerly X_noZero
  832. # Save some constants
  833. max_conc <- max(df$conc_num_factor)
  834. l_half_median <- (median(df_above_tolerance$L, na.rm = TRUE)) / 2
  835. k_half_median <- (median(df_above_tolerance$K, na.rm = TRUE)) / 2
  836. message("Calculating summary statistics before quality control")
  837. df_stats <- calculate_summary_stats(
  838. df = df,
  839. variables = summary_vars,
  840. group_vars = c("conc_num", "conc_num_factor", "conc_num_factor_factor"))$df_with_stats
  841. message("Calculating summary statistics after quality control")
  842. ss <- calculate_summary_stats(
  843. df = df_na,
  844. variables = summary_vars,
  845. group_vars = c("conc_num", "conc_num_factor", "conc_num_factor_factor"))
  846. df_na_ss <- ss$summary_stats
  847. df_na_stats <- ss$df_with_stats
  848. write.csv(df_na_ss, file = file.path(out_dir, "summary_stats_all_strains.csv"), row.names = FALSE)
  849. # For plotting (ggplot warns on NAs)
  850. df_na_stats_filtered <- df_na_stats %>% filter(if_all(all_of(summary_vars), is.finite))
  851. df_na_stats <- df_na_stats %>%
  852. mutate(
  853. WT_L = mean_L,
  854. WT_K = mean_K,
  855. WT_r = mean_r,
  856. WT_AUC = mean_AUC,
  857. WT_sd_L = sd_L,
  858. WT_sd_K = sd_K,
  859. WT_sd_r = sd_r,
  860. WT_sd_AUC = sd_AUC
  861. )
  862. # Pull the background means and standard deviations from zero concentration for interactions
  863. bg_stats <- df_na_stats %>%
  864. filter(conc_num == 0) %>%
  865. summarise(
  866. mean_L = first(mean_L),
  867. mean_K = first(mean_K),
  868. mean_r = first(mean_r),
  869. mean_AUC = first(mean_AUC),
  870. sd_L = first(sd_L),
  871. sd_K = first(sd_K),
  872. sd_r = first(sd_r),
  873. sd_AUC = first(sd_AUC)
  874. )
  875. message("Calculating summary statistics after quality control excluding zero values")
  876. df_no_zeros_stats <- calculate_summary_stats(
  877. df = df_no_zeros,
  878. variables = summary_vars,
  879. group_vars = c("conc_num", "conc_num_factor", "conc_num_factor_factor")
  880. )$df_with_stats
  881. message("Filtering by 2SD of K")
  882. df_na_within_2sd_k <- df_na_stats %>%
  883. filter(K >= (mean_K - 2 * sd_K) & K <= (mean_K + 2 * sd_K))
  884. df_na_outside_2sd_k <- df_na_stats %>%
  885. filter(K < (mean_K - 2 * sd_K) | K > (mean_K + 2 * sd_K))
  886. message("Calculating summary statistics for L within 2SD of K")
  887. # TODO We're omitting the original z_max calculation, not sure if needed?
  888. ss <- calculate_summary_stats(df_na_within_2sd_k, "L", group_vars = c("conc_num", "conc_num_factor", "conc_num_factor_factor"))$summary_stats
  889. write.csv(ss,
  890. file = file.path(out_dir_qc, "max_observed_L_vals_for_spots_within_2sd_K.csv"),
  891. row.names = FALSE)
  892. message("Calculating summary statistics for L outside 2SD of K")
  893. ss <- calculate_summary_stats(df_na_outside_2sd_k, "L", group_vars = c("conc_num", "conc_num_factor", "conc_num_factor_factor"))
  894. df_na_l_outside_2sd_k_stats <- ss$df_with_stats
  895. write.csv(ss$summary_stats,
  896. file = file.path(out_dir, "max_observed_L_vals_for_spots_outside_2sd_K.csv"),
  897. row.names = FALSE)
  898. # Each plots list corresponds to a file
  899. l_vs_k_plot_configs <- list(
  900. grid_layout = list(ncol = 1, nrow = 1),
  901. plots = list(
  902. list(
  903. df = df,
  904. x_var = "L",
  905. y_var = "K",
  906. plot_type = "scatter",
  907. tooltip_vars = c("OrfRep", "Gene", "delta_bg"),
  908. title = "Raw L vs K before quality control",
  909. color_var = "conc_num_factor_factor",
  910. error_bar = FALSE,
  911. legend_position = "right"
  912. )
  913. )
  914. )
  915. frequency_delta_bg_plot_configs <- list(
  916. grid_layout = list(ncol = 1, nrow = 1),
  917. plots = list(
  918. list(
  919. df = df_stats,
  920. x_var = "delta_bg",
  921. y_var = NULL,
  922. plot_type = "density",
  923. title = "Density plot for Delta Background by [Drug] (All Data)",
  924. color_var = "conc_num_factor_factor",
  925. x_label = "Delta Background",
  926. y_label = "Density",
  927. error_bar = FALSE,
  928. legend_position = "right"
  929. ),
  930. list(
  931. df = df_stats,
  932. x_var = "delta_bg",
  933. y_var = NULL,
  934. plot_type = "bar",
  935. title = "Bar plot for Delta Background by [Drug] (All Data)",
  936. color_var = "conc_num_factor_factor",
  937. x_label = "Delta Background",
  938. y_label = "Count",
  939. error_bar = FALSE,
  940. legend_position = "right"
  941. )
  942. )
  943. )
  944. above_threshold_plot_configs <- list(
  945. grid_layout = list(ncol = 1, nrow = 1),
  946. plots = list(
  947. list(
  948. df = df_above_tolerance,
  949. x_var = "L",
  950. y_var = "K",
  951. plot_type = "scatter",
  952. tooltip_vars = c("OrfRep", "Gene", "delta_bg"),
  953. title = paste("Raw L vs K for strains above Delta Background threshold of",
  954. round(df_above_tolerance$delta_bg_tolerance[[1]], 3), "or above"),
  955. color_var = "conc_num_factor_factor",
  956. position = "jitter",
  957. annotations = list(
  958. list(
  959. x = l_half_median,
  960. y = k_half_median,
  961. label = paste("# strains above Delta Background tolerance =", nrow(df_above_tolerance))
  962. )
  963. ),
  964. error_bar = FALSE,
  965. legend_position = "right"
  966. )
  967. )
  968. )
  969. plate_analysis_plot_configs <- generate_plate_analysis_plot_configs(
  970. variables = summary_vars,
  971. df_before = df_stats,
  972. df_after = df_na_stats_filtered
  973. )
  974. plate_analysis_boxplot_configs <- generate_plate_analysis_plot_configs(
  975. variables = summary_vars,
  976. df_before = df_stats,
  977. df_after = df_na_stats_filtered,
  978. plot_type = "box"
  979. )
  980. plate_analysis_no_zeros_plot_configs <- generate_plate_analysis_plot_configs(
  981. variables = summary_vars,
  982. stages = c("after"), # Only after QC
  983. df_after = df_no_zeros_stats
  984. )
  985. plate_analysis_no_zeros_boxplot_configs <- generate_plate_analysis_plot_configs(
  986. variables = summary_vars,
  987. stages = c("after"), # Only after QC
  988. df_after = df_no_zeros_stats,
  989. plot_type = "box"
  990. )
  991. l_outside_2sd_k_plot_configs <- list(
  992. grid_layout = list(ncol = 1, nrow = 1), # Ensures it's compatible with generate_and_save_plots
  993. plots = list(
  994. list(
  995. df = df_na_l_outside_2sd_k_stats,
  996. x_var = "L",
  997. y_var = "K",
  998. plot_type = "scatter",
  999. title = "Raw L vs K for strains falling outside 2SD of the K mean at each Conc",
  1000. color_var = "conc_num_factor_factor",
  1001. position = "jitter", # Apply jitter for better visibility
  1002. tooltip_vars = c("OrfRep", "Gene", "delta_bg"),
  1003. annotations = list(
  1004. list(
  1005. x = mean(df_na_l_outside_2sd_k_stats$L, na.rm = TRUE),
  1006. y = mean(df_na_l_outside_2sd_k_stats$K, na.rm = TRUE),
  1007. label = paste("Total strains:", nrow(df_na_l_outside_2sd_k_stats))
  1008. )
  1009. ),
  1010. error_bar = FALSE, # No error bars for this plot
  1011. legend_position = "right"
  1012. )
  1013. )
  1014. )
  1015. delta_bg_outside_2sd_k_plot_configs <- list(
  1016. grid_layout = list(ncol = 1, nrow = 1), # Ensures it's compatible with generate_and_save_plots
  1017. plots = list(
  1018. list(
  1019. df = df_na_l_outside_2sd_k_stats,
  1020. x_var = "delta_bg",
  1021. y_var = "K",
  1022. plot_type = "scatter",
  1023. title = "Delta Background vs K for strains falling outside 2SD of the K mean at each Conc",
  1024. color_var = "conc_num_factor_factor",
  1025. position = "jitter", # Apply jitter for better visibility
  1026. tooltip_vars = c("OrfRep", "Gene", "delta_bg"),
  1027. annotations = list(
  1028. list(
  1029. x = mean(df_na_l_outside_2sd_k_stats$delta_bg, na.rm = TRUE),
  1030. y = mean(df_na_l_outside_2sd_k_stats$K, na.rm = TRUE),
  1031. label = paste("Total strains:", nrow(df_na_l_outside_2sd_k_stats))
  1032. )
  1033. ),
  1034. error_bar = FALSE, # No error bars for this plot
  1035. legend_position = "right"
  1036. )
  1037. )
  1038. )
  1039. message("Generating quality control plots in parallel")
  1040. generate_and_save_plots(out_dir_qc, "L_vs_K_before_quality_control", l_vs_k_plot_configs)
  1041. quit()
  1042. # # future::plan(future::multicore, workers = parallel::detectCores())
  1043. # future::plan(future::multisession, workers = 3) # generate 3 plots in parallel
  1044. # plot_configs <- list(
  1045. # list(out_dir = out_dir_qc, filename = "L_vs_K_before_quality_control",
  1046. # plot_configs = l_vs_k_plot_configs),
  1047. # list(out_dir = out_dir_qc, filename = "frequency_delta_background",
  1048. # plot_configs = frequency_delta_bg_plot_configs),
  1049. # list(out_dir = out_dir_qc, filename = "L_vs_K_above_threshold",
  1050. # plot_configs = above_threshold_plot_configs),
  1051. # list(out_dir = out_dir_qc, filename = "plate_analysis",
  1052. # plot_configs = plate_analysis_plot_configs),
  1053. # list(out_dir = out_dir_qc, filename = "plate_analysis_boxplots",
  1054. # plot_configs = plate_analysis_boxplot_configs),
  1055. # list(out_dir = out_dir_qc, filename = "plate_analysis_no_zeros",
  1056. # plot_configs = plate_analysis_no_zeros_plot_configs),
  1057. # list(out_dir = out_dir_qc, filename = "plate_analysis_no_zeros_boxplots",
  1058. # plot_configs = plate_analysis_no_zeros_boxplot_configs),
  1059. # list(out_dir = out_dir_qc, filename = "L_vs_K_for_strains_2SD_outside_mean_K",
  1060. # plot_configs = l_outside_2sd_k_plot_configs),
  1061. # list(out_dir = out_dir_qc, filename = "delta_background_vs_K_for_strains_2sd_outside_mean_K",
  1062. # plot_configs = delta_bg_outside_2sd_k_plot_configs)
  1063. # )
  1064. # # Generating quality control plots in parallel
  1065. # furrr::future_map(plot_configs, function(config) {
  1066. # generate_and_save_plots(config$out_dir, config$filename, config$plot_configs)
  1067. # }, .options = furrr_options(seed = TRUE))
  1068. # Process background strains
  1069. bg_strains <- c("YDL227C")
  1070. lapply(bg_strains, function(strain) {
  1071. message("Processing background strain: ", strain)
  1072. # Handle missing data by setting zero values to NA
  1073. # and then removing any rows with NA in L col
  1074. df_bg <- df_na %>%
  1075. filter(OrfRep == strain) %>%
  1076. mutate(
  1077. L = if_else(L == 0, NA, L),
  1078. K = if_else(K == 0, NA, K),
  1079. r = if_else(r == 0, NA, r),
  1080. AUC = if_else(AUC == 0, NA, AUC)
  1081. ) %>%
  1082. filter(!is.na(L))
  1083. # Recalculate summary statistics for the background strain
  1084. message("Calculating summary statistics for background strain")
  1085. ss_bg <- calculate_summary_stats(df_bg, summary_vars, group_vars = c("OrfRep", "conc_num", "conc_num_factor", "conc_num_factor_factor"))
  1086. summary_stats_bg <- ss_bg$summary_stats
  1087. write.csv(summary_stats_bg,
  1088. file = file.path(out_dir, paste0("summary_stats_background_strain_", strain, ".csv")),
  1089. row.names = FALSE)
  1090. # Set the missing values to the highest theoretical value at each drug conc for L
  1091. # Leave other values as 0 for the max/min
  1092. df_reference <- df_na_stats %>% # formerly X2_RF
  1093. filter(OrfRep == strain) %>%
  1094. filter(!is.na(L)) %>%
  1095. group_by(conc_num, conc_num_factor, conc_num_factor_factor) %>%
  1096. mutate(
  1097. max_l_theoretical = max(max_L, na.rm = TRUE),
  1098. L = ifelse(L == 0 & !is.na(L) & conc_num > 0, max_l_theoretical, L),
  1099. SM = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, 1, 0),
  1100. L = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, max_l_theoretical, L)) %>%
  1101. ungroup()
  1102. # Ditto for deletion strains
  1103. df_deletion <- df_na_stats %>% # formerly X2
  1104. filter(OrfRep != strain) %>%
  1105. filter(!is.na(L)) %>%
  1106. mutate(SM = 0) %>%
  1107. group_by(conc_num, conc_num_factor, conc_num_factor_factor) %>%
  1108. mutate(
  1109. max_l_theoretical = max(max_L, na.rm = TRUE),
  1110. L = ifelse(L == 0 & !is.na(L) & conc_num > 0, max_l_theoretical, L),
  1111. SM = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, 1, SM),
  1112. L = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, max_l_theoretical, L)) %>%
  1113. ungroup()
  1114. message("Calculating reference strain interaction scores")
  1115. df_reference_stats <- calculate_summary_stats(
  1116. df = df_reference,
  1117. variables = interaction_vars,
  1118. group_vars = c("OrfRep", "Gene", "num", "conc_num", "conc_num_factor", "conc_num_factor_factor")
  1119. )$df_with_stats
  1120. reference_results <- calculate_interaction_scores(df_reference_stats, max_conc, bg_stats, group_vars = c("OrfRep", "Gene", "num"))
  1121. zscore_calculations_reference <- reference_results$calculations
  1122. zscore_interactions_reference <- reference_results$interactions
  1123. zscore_interactions_reference_joined <- reference_results$full_data
  1124. message("Calculating deletion strain(s) interactions scores")
  1125. df_deletion_stats <- calculate_summary_stats(
  1126. df = df_deletion,
  1127. variables = interaction_vars,
  1128. group_vars = c("OrfRep", "Gene", "conc_num", "conc_num_factor", "conc_num_factor_factor")
  1129. )$df_with_stats
  1130. deletion_results <- calculate_interaction_scores(df_deletion_stats, max_conc, bg_stats, group_vars = c("OrfRep", "Gene"))
  1131. zscore_calculations <- deletion_results$calculations
  1132. zscore_interactions <- deletion_results$interactions
  1133. zscore_interactions_joined <- deletion_results$full_data
  1134. # Writing Z-Scores to file
  1135. write.csv(zscore_calculations_reference, file = file.path(out_dir, "zscore_calculations_reference.csv"), row.names = FALSE)
  1136. write.csv(zscore_calculations, file = file.path(out_dir, "zscore_calculations.csv"), row.names = FALSE)
  1137. write.csv(zscore_interactions_reference, file = file.path(out_dir, "zscore_interactions_reference.csv"), row.names = FALSE)
  1138. write.csv(zscore_interactions, file = file.path(out_dir, "zscore_interactions.csv"), row.names = FALSE)
  1139. # Create interaction plots
  1140. message("Generating reference interaction plots")
  1141. reference_plot_configs <- generate_interaction_plot_configs(zscore_interactions_reference_joined, plot_type = "reference")
  1142. generate_and_save_plots(out_dir, "interaction_plots_reference", reference_plot_configs)
  1143. message("Generating deletion interaction plots")
  1144. deletion_plot_configs <- generate_interaction_plot_configs(zscore_interactions_joined, plot_type = "deletion")
  1145. generate_and_save_plots(out_dir, "interaction_plots", deletion_plot_configs)
  1146. # Define conditions for enhancers and suppressors
  1147. # TODO Add to study config?
  1148. threshold <- 2
  1149. enhancer_condition_L <- zscore_interactions$Avg_Zscore_L >= threshold
  1150. suppressor_condition_L <- zscore_interactions$Avg_Zscore_L <= -threshold
  1151. enhancer_condition_K <- zscore_interactions$Avg_Zscore_K >= threshold
  1152. suppressor_condition_K <- zscore_interactions$Avg_Zscore_K <= -threshold
  1153. # Subset data
  1154. enhancers_L <- zscore_interactions[enhancer_condition_L, ]
  1155. suppressors_L <- zscore_interactions[suppressor_condition_L, ]
  1156. enhancers_K <- zscore_interactions[enhancer_condition_K, ]
  1157. suppressors_K <- zscore_interactions[suppressor_condition_K, ]
  1158. # Save enhancers and suppressors
  1159. message("Writing enhancer/suppressor csv files")
  1160. write.csv(enhancers_L, file = file.path(out_dir, "zscore_interactions_deletion_enhancers_L.csv"), row.names = FALSE)
  1161. write.csv(suppressors_L, file = file.path(out_dir, "zscore_interactions_deletion_suppressors_L.csv"), row.names = FALSE)
  1162. write.csv(enhancers_K, file = file.path(out_dir, "zscore_interactions_deletion_enhancers_K.csv"), row.names = FALSE)
  1163. write.csv(suppressors_K, file = file.path(out_dir, "zscore_interactions_deletion_suppressors_K.csv"), row.names = FALSE)
  1164. # Combine conditions for enhancers and suppressors
  1165. enhancers_and_suppressors_L <- zscore_interactions[enhancer_condition_L | suppressor_condition_L, ]
  1166. enhancers_and_suppressors_K <- zscore_interactions[enhancer_condition_K | suppressor_condition_K, ]
  1167. # Save combined enhancers and suppressors
  1168. write.csv(enhancers_and_suppressors_L,
  1169. file = file.path(out_dir, "zscore_interactions_deletion_enhancers_and_suppressors_L.csv"), row.names = FALSE)
  1170. write.csv(enhancers_and_suppressors_K,
  1171. file = file.path(out_dir, "zscore_interaction_deletion_enhancers_and_suppressors_K.csv"), row.names = FALSE)
  1172. # Handle linear model based enhancers and suppressors
  1173. lm_threshold <- 2 # TODO add to study config?
  1174. enhancers_lm_L <- zscore_interactions[zscore_interactions$Z_lm_L >= lm_threshold, ]
  1175. suppressors_lm_L <- zscore_interactions[zscore_interactions$Z_lm_L <= -lm_threshold, ]
  1176. enhancers_lm_K <- zscore_interactions[zscore_interactions$Z_lm_K >= lm_threshold, ]
  1177. suppressors_lm_K <- zscore_interactions[zscore_interactions$Z_lm_K <= -lm_threshold, ]
  1178. # Save linear model based enhancers and suppressors
  1179. message("Writing linear model enhancer/suppressor csv files")
  1180. write.csv(enhancers_lm_L,
  1181. file = file.path(out_dir, "zscore_interactions_deletion_enhancers_lm_L.csv"), row.names = FALSE)
  1182. write.csv(suppressors_lm_L,
  1183. file = file.path(out_dir, "zscore_interactions_deletion_suppressors_lm_L.csv"), row.names = FALSE)
  1184. write.csv(enhancers_lm_K,
  1185. file = file.path(out_dir, "zscore_interactions_deletion_enhancers_lm_K.csv"), row.names = FALSE)
  1186. write.csv(suppressors_lm_K,
  1187. file = file.path(out_dir, "zscore_interactions_deletion_suppressors_lm_K.csv"), row.names = FALSE)
  1188. message("Generating rank plots")
  1189. rank_plot_configs <- generate_rank_plot_configs(
  1190. df = zscore_interactions_joined,
  1191. variables = interaction_vars,
  1192. is_lm = FALSE,
  1193. adjust = TRUE
  1194. )
  1195. generate_and_save_plots(out_dir = out_dir, filename = "rank_plots",
  1196. plot_configs = rank_plot_configs)
  1197. message("Generating ranked linear model plots")
  1198. rank_lm_plot_configs <- generate_rank_plot_configs(
  1199. df = zscore_interactions_joined,
  1200. variables = interaction_vars,
  1201. is_lm = TRUE,
  1202. adjust = TRUE
  1203. )
  1204. generate_and_save_plots(out_dir = out_dir, filename = "rank_plots_lm",
  1205. plot_configs = rank_lm_plot_configs)
  1206. message("Filtering and reranking plots")
  1207. interaction_threshold <- 2 # TODO add to study config?
  1208. # Formerly X_NArm
  1209. zscore_interactions_filtered <- zscore_interactions_joined %>%
  1210. filter(!is.na(Z_lm_L) & !is.na(Avg_Zscore_L)) %>%
  1211. mutate(
  1212. Overlap = case_when(
  1213. Z_lm_L >= interaction_threshold & Avg_Zscore_L >= interaction_threshold ~ "Deletion Enhancer Both",
  1214. Z_lm_L <= -interaction_threshold & Avg_Zscore_L <= -interaction_threshold ~ "Deletion Suppressor Both",
  1215. Z_lm_L >= interaction_threshold & Avg_Zscore_L <= interaction_threshold ~ "Deletion Enhancer lm only",
  1216. Z_lm_L <= interaction_threshold & Avg_Zscore_L >= interaction_threshold ~ "Deletion Enhancer Avg Zscore only",
  1217. Z_lm_L <= -interaction_threshold & Avg_Zscore_L >= -interaction_threshold ~ "Deletion Suppressor lm only",
  1218. Z_lm_L >= -interaction_threshold & Avg_Zscore_L <= -interaction_threshold ~ "Deletion Suppressor Avg Zscore only",
  1219. Z_lm_L >= interaction_threshold & Avg_Zscore_L <= -interaction_threshold ~ "Deletion Enhancer lm, Deletion Suppressor Avg Z score",
  1220. Z_lm_L <= -interaction_threshold & Avg_Zscore_L >= interaction_threshold ~ "Deletion Suppressor lm, Deletion Enhancer Avg Z score",
  1221. TRUE ~ "No Effect"
  1222. ),
  1223. lm_R_squared_L = summary(lm(Z_lm_L ~ Avg_Zscore_L))$r.squared,
  1224. lm_R_squared_K = summary(lm(Z_lm_K ~ Avg_Zscore_K))$r.squared,
  1225. lm_R_squared_r = summary(lm(Z_lm_r ~ Avg_Zscore_r))$r.squared,
  1226. lm_R_squared_AUC = summary(lm(Z_lm_AUC ~ Avg_Zscore_AUC))$r.squared
  1227. )
  1228. message("Generating filtered ranked plots")
  1229. rank_plot_filtered_configs <- generate_rank_plot_configs(
  1230. df = zscore_interactions_filtered,
  1231. variables = interaction_vars,
  1232. is_lm = FALSE,
  1233. adjust = FALSE,
  1234. overlap_color = TRUE
  1235. )
  1236. generate_and_save_plots(
  1237. out_dir = out_dir,
  1238. filename = "RankPlots_na_rm",
  1239. plot_configs = rank_plot_filtered_configs)
  1240. message("Generating filtered ranked linear model plots")
  1241. rank_plot_lm_filtered_configs <- generate_rank_plot_configs(
  1242. df = zscore_interactions_filtered,
  1243. variables = interaction_vars,
  1244. is_lm = TRUE,
  1245. adjust = FALSE,
  1246. overlap_color = TRUE
  1247. )
  1248. generate_and_save_plots(
  1249. out_dir = out_dir,
  1250. filename = "rank_plots_lm_na_rm",
  1251. plot_configs = rank_plot_lm_filtered_configs)
  1252. message("Generating correlation curve parameter pair plots")
  1253. correlation_plot_configs <- generate_correlation_plot_configs(zscore_interactions_filtered)
  1254. generate_and_save_plots(
  1255. out_dir = out_dir,
  1256. filename = "correlation_cpps",
  1257. plot_configs = correlation_plot_configs,
  1258. )
  1259. })
  1260. })
  1261. }
  1262. main()