calculate_interaction_zscores.R 47 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211
  1. suppressMessages({
  2. library(ggplot2)
  3. library(plotly)
  4. library(htmlwidgets)
  5. library(dplyr)
  6. library(ggthemes)
  7. library(data.table)
  8. library(unix)
  9. })
  10. options(warn = 2)
  11. options(width = 10000)
  12. # Set the memory limit to 30GB (30 * 1024 * 1024 * 1024 bytes)
  13. soft_limit <- 30 * 1024 * 1024 * 1024
  14. hard_limit <- 30 * 1024 * 1024 * 1024
  15. rlimit_as(soft_limit, hard_limit)
  16. # Constants for configuration
  17. plot_width <- 14
  18. plot_height <- 9
  19. base_size <- 14
  20. parse_arguments <- function() {
  21. args <- if (interactive()) {
  22. c(
  23. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/20240116_jhartman2_DoxoHLD",
  24. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/apps/r/SGD_features.tab",
  25. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/easy/20240116_jhartman2_DoxoHLD/results_std.txt",
  26. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/20240822_jhartman2_DoxoHLD/exp1",
  27. "Experiment 1: Doxo versus HLD",
  28. 3,
  29. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/20240822_jhartman2_DoxoHLD/exp2",
  30. "Experiment 2: HLD versus Doxo",
  31. 3
  32. )
  33. } else {
  34. commandArgs(trailingOnly = TRUE)
  35. }
  36. # Extract paths, names, and standard deviations
  37. paths <- args[seq(4, length(args), by = 3)]
  38. names <- args[seq(5, length(args), by = 3)]
  39. sds <- as.numeric(args[seq(6, length(args), by = 3)])
  40. # Normalize paths
  41. normalized_paths <- normalizePath(paths, mustWork = FALSE)
  42. # Create named list of experiments
  43. experiments <- list()
  44. for (i in seq_along(paths)) {
  45. experiments[[names[i]]] <- list(
  46. path = normalized_paths[i],
  47. sd = sds[i]
  48. )
  49. }
  50. list(
  51. out_dir = normalizePath(args[1], mustWork = FALSE),
  52. sgd_gene_list = normalizePath(args[2], mustWork = FALSE),
  53. easy_results_file = normalizePath(args[3], mustWork = FALSE),
  54. experiments = experiments
  55. )
  56. }
  57. args <- parse_arguments()
  58. # Should we keep output in exp dirs or combine in the study output dir?
  59. # dir.create(file.path(args$out_dir, "zscores"), showWarnings = FALSE)
  60. # dir.create(file.path(args$out_dir, "zscores", "qc"), showWarnings = FALSE)
  61. # Define themes and scales
  62. theme_publication <- function(base_size = 14, base_family = "sans", legend_position = "bottom") {
  63. theme_foundation <- ggplot2::theme_grey(base_size = base_size, base_family = base_family)
  64. theme_foundation %+replace%
  65. theme(
  66. plot.title = element_text(face = "bold", size = rel(1.2), hjust = 0.5),
  67. text = element_text(),
  68. panel.background = element_rect(colour = NA),
  69. plot.background = element_rect(colour = NA),
  70. panel.border = element_rect(colour = NA),
  71. axis.title = element_text(face = "bold", size = rel(1)),
  72. axis.title.y = element_text(angle = 90, vjust = 2),
  73. axis.title.x = element_text(vjust = -0.2),
  74. axis.line = element_line(colour = "black"),
  75. panel.grid.major = element_line(colour = "#f0f0f0"),
  76. panel.grid.minor = element_blank(),
  77. legend.key = element_rect(colour = NA),
  78. legend.position = legend_position,
  79. legend.direction = ifelse(legend_position == "right", "vertical", "horizontal"),
  80. plot.margin = unit(c(10, 5, 5, 5), "mm"),
  81. strip.background = element_rect(colour = "#f0f0f0", fill = "#f0f0f0"),
  82. strip.text = element_text(face = "bold")
  83. )
  84. }
  85. scale_fill_publication <- function(...) {
  86. discrete_scale("fill", "Publication", manual_pal(values = c(
  87. "#386cb0", "#fdb462", "#7fc97f", "#ef3b2c", "#662506",
  88. "#a6cee3", "#fb9a99", "#984ea3", "#ffff33"
  89. )), ...)
  90. }
  91. scale_colour_publication <- function(...) {
  92. discrete_scale("colour", "Publication", manual_pal(values = c(
  93. "#386cb0", "#fdb462", "#7fc97f", "#ef3b2c", "#662506",
  94. "#a6cee3", "#fb9a99", "#984ea3", "#ffff33"
  95. )), ...)
  96. }
  97. # Load the initial dataframe from the easy_results_file
  98. load_and_process_data <- function(easy_results_file, sd = 3) {
  99. df <- read.delim(easy_results_file, skip = 2, as.is = TRUE, row.names = 1, strip.white = TRUE)
  100. df <- df %>%
  101. filter(!(.[[1]] %in% c("", "Scan"))) %>%
  102. filter(!is.na(ORF) & ORF != "" & !Gene %in% c("BLANK", "Blank", "blank") & Drug != "BMH21") %>%
  103. # Rename columns
  104. rename(L = l, num = Num., AUC = AUC96, scan = Scan, last_bg = LstBackgrd, first_bg = X1stBackgrd) %>%
  105. mutate(
  106. across(c(Col, Row, num, L, K, r, scan, AUC, last_bg, first_bg), as.numeric),
  107. delta_bg = last_bg - first_bg,
  108. delta_bg_tolerance = mean(delta_bg, na.rm = TRUE) + (sd * sd(delta_bg, na.rm = TRUE)),
  109. NG = if_else(L == 0 & !is.na(L), 1, 0),
  110. DB = if_else(delta_bg >= delta_bg_tolerance, 1, 0),
  111. SM = 0,
  112. OrfRep = if_else(ORF == "YDL227C", "YDL227C", OrfRep), # should these be hardcoded?
  113. conc_num = as.numeric(gsub("[^0-9\\.]", "", Conc)),
  114. conc_num_factor = as.numeric(as.factor(conc_num)) - 1
  115. )
  116. return(df)
  117. }
  118. # Update Gene names using the SGD gene list
  119. update_gene_names <- function(df, sgd_gene_list) {
  120. # Load SGD gene list
  121. genes <- read.delim(file = sgd_gene_list,
  122. quote = "", header = FALSE,
  123. colClasses = c(rep("NULL", 3), rep("character", 2), rep("NULL", 11)))
  124. # Create a named vector for mapping ORF to GeneName
  125. gene_map <- setNames(genes$V5, genes$V4)
  126. # Vectorized match to find the GeneName from gene_map
  127. mapped_genes <- gene_map[df$ORF]
  128. # Replace NAs in mapped_genes with original Gene names (preserves existing Gene names if ORF is not found)
  129. updated_genes <- ifelse(is.na(mapped_genes) | df$OrfRep == "YDL227C", df$Gene, mapped_genes)
  130. # Ensure Gene is not left blank or incorrectly updated to "OCT1"
  131. df <- df %>%
  132. mutate(Gene = ifelse(updated_genes == "" | updated_genes == "OCT1", OrfRep, updated_genes))
  133. return(df)
  134. }
  135. # Calculate summary statistics for all variables
  136. calculate_summary_stats <- function(df, variables, group_vars = c("OrfRep", "conc_num", "conc_num_factor")) {
  137. # Summarize the variables within the grouped data
  138. summary_stats <- df %>%
  139. group_by(across(all_of(group_vars))) %>%
  140. summarise(
  141. N = sum(!is.na(L)),
  142. across(all_of(variables), list(
  143. mean = ~mean(., na.rm = TRUE),
  144. median = ~median(., na.rm = TRUE),
  145. max = ~ ifelse(all(is.na(.)), NA, max(., na.rm = TRUE)),
  146. min = ~ ifelse(all(is.na(.)), NA, min(., na.rm = TRUE)),
  147. sd = ~sd(., na.rm = TRUE),
  148. se = ~ ifelse(all(is.na(.)), NA, sd(., na.rm = TRUE) / sqrt(sum(!is.na(.)) - 1))
  149. ), .names = "{.fn}_{.col}")
  150. )
  151. # print(summary_stats)
  152. # Prevent .x and .y suffix issues by renaming columns
  153. df_cleaned <- df %>%
  154. select(-any_of(setdiff(names(summary_stats), group_vars))) # Avoid duplicate columns in the final join
  155. # Join the stats back to the original dataframe
  156. df_with_stats <- left_join(df_cleaned, summary_stats, by = group_vars)
  157. return(list(summary_stats = summary_stats, df_with_stats = df_with_stats))
  158. }
  159. calculate_interaction_scores <- function(df, max_conc, variables, group_vars = c("OrfRep", "Gene", "num")) {
  160. # Calculate total concentration variables
  161. total_conc_num <- length(unique(df$conc_num))
  162. # Pull the background means and standard deviations from zero concentration
  163. bg_means <- list(
  164. L = df %>% filter(conc_num_factor == 0) %>% pull(mean_L) %>% first(),
  165. K = df %>% filter(conc_num_factor == 0) %>% pull(mean_K) %>% first(),
  166. r = df %>% filter(conc_num_factor == 0) %>% pull(mean_r) %>% first(),
  167. AUC = df %>% filter(conc_num_factor == 0) %>% pull(mean_AUC) %>% first()
  168. )
  169. bg_sd <- list(
  170. L = df %>% filter(conc_num_factor == 0) %>% pull(sd_L) %>% first(),
  171. K = df %>% filter(conc_num_factor == 0) %>% pull(sd_K) %>% first(),
  172. r = df %>% filter(conc_num_factor == 0) %>% pull(sd_r) %>% first(),
  173. AUC = df %>% filter(conc_num_factor == 0) %>% pull(sd_AUC) %>% first()
  174. )
  175. stats <- df %>%
  176. group_by(OrfRep, Gene, num, conc_num, conc_num_factor) %>%
  177. summarise(
  178. N = sum(!is.na(L)),
  179. NG = sum(NG, na.rm = TRUE),
  180. DB = sum(DB, na.rm = TRUE),
  181. SM = sum(SM, na.rm = TRUE),
  182. across(all_of(variables), list(
  183. mean = ~mean(., na.rm = TRUE),
  184. median = ~median(., na.rm = TRUE),
  185. max = ~ifelse(all(is.na(.)), NA, max(., na.rm = TRUE)),
  186. min = ~ifelse(all(is.na(.)), NA, min(., na.rm = TRUE)),
  187. sd = ~sd(., na.rm = TRUE),
  188. se = ~ifelse(sum(!is.na(.)) > 1, sd(., na.rm = TRUE) / sqrt(sum(!is.na(.)) - 1), NA)
  189. ), .names = "{.fn}_{.col}")
  190. )
  191. stats <- df %>%
  192. group_by(OrfRep, Gene, num) %>%
  193. mutate(
  194. WT_L = mean_L,
  195. WT_K = mean_K,
  196. WT_r = mean_r,
  197. WT_AUC = mean_AUC,
  198. WT_sd_L = sd_L,
  199. WT_sd_K = sd_K,
  200. WT_sd_r = sd_r,
  201. WT_sd_AUC = sd_AUC
  202. )
  203. stats <- stats %>%
  204. mutate(
  205. Raw_Shift_L = first(mean_L) - bg_means$L,
  206. Raw_Shift_K = first(mean_K) - bg_means$K,
  207. Raw_Shift_r = first(mean_r) - bg_means$r,
  208. Raw_Shift_AUC = first(mean_AUC) - bg_means$AUC,
  209. Z_Shift_L = first(Raw_Shift_L) / bg_sd$L,
  210. Z_Shift_K = first(Raw_Shift_K) / bg_sd$K,
  211. Z_Shift_r = first(Raw_Shift_r) / bg_sd$r,
  212. Z_Shift_AUC = first(Raw_Shift_AUC) / bg_sd$AUC
  213. )
  214. stats <- stats %>%
  215. mutate(
  216. Exp_L = WT_L + Raw_Shift_L,
  217. Exp_K = WT_K + Raw_Shift_K,
  218. Exp_r = WT_r + Raw_Shift_r,
  219. Exp_AUC = WT_AUC + Raw_Shift_AUC,
  220. Delta_L = mean_L - Exp_L,
  221. Delta_K = mean_K - Exp_K,
  222. Delta_r = mean_r - Exp_r,
  223. Delta_AUC = mean_AUC - Exp_AUC
  224. )
  225. stats <- stats %>%
  226. mutate(
  227. Delta_L = if_else(NG == 1, mean_L - WT_L, Delta_L),
  228. Delta_K = if_else(NG == 1, mean_K - WT_K, Delta_K),
  229. Delta_r = if_else(NG == 1, mean_r - WT_r, Delta_r),
  230. Delta_AUC = if_else(NG == 1, mean_AUC - WT_AUC, Delta_AUC),
  231. Delta_L = if_else(SM == 1, mean_L - WT_L, Delta_L)
  232. )
  233. stats <- stats %>%
  234. mutate(
  235. Zscore_L = Delta_L / WT_sd_L,
  236. Zscore_K = Delta_K / WT_sd_K,
  237. Zscore_r = Delta_r / WT_sd_r,
  238. Zscore_AUC = Delta_AUC / WT_sd_AUC
  239. )
  240. # Calculate linear models
  241. lm_L <- lm(Delta_L ~ conc_num_factor, data = stats)
  242. lm_K <- lm(Delta_K ~ conc_num_factor, data = stats)
  243. lm_r <- lm(Delta_r ~ conc_num_factor, data = stats)
  244. lm_AUC <- lm(Delta_AUC ~ conc_num_factor, data = stats)
  245. interactions <- stats %>%
  246. transmute(
  247. OrfRep = first(OrfRep),
  248. Gene = first(Gene),
  249. Raw_Shift_L = first(Raw_Shift_L),
  250. Raw_Shift_K = first(Raw_Shift_K),
  251. Raw_Shift_r = first(Raw_Shift_r),
  252. Raw_Shift_AUC = first(Raw_Shift_AUC),
  253. Z_Shift_L = first(Z_Shift_L),
  254. Z_Shift_K = first(Z_Shift_K),
  255. Z_Shift_r = first(Z_Shift_r),
  256. Z_Shift_AUC = first(Z_Shift_AUC),
  257. Sum_Zscore_L = sum(Zscore_L, na.rm = TRUE),
  258. Sum_Zscore_K = sum(Zscore_K, na.rm = TRUE),
  259. Sum_Zscore_r = sum(Zscore_r, na.rm = TRUE),
  260. Sum_Zscore_AUC = sum(Zscore_AUC, na.rm = TRUE),
  261. lm_Score_L = max_conc * coef(lm_L)[2] + coef(lm_L)[1],
  262. lm_Score_K = max_conc * coef(lm_K)[2] + coef(lm_K)[1],
  263. lm_Score_r = max_conc * coef(lm_r)[2] + coef(lm_r)[1],
  264. lm_Score_AUC = max_conc * coef(lm_AUC)[2] + coef(lm_AUC)[1],
  265. R_Squared_L = summary(lm_L)$r.squared,
  266. R_Squared_K = summary(lm_K)$r.squared,
  267. R_Squared_r = summary(lm_r)$r.squared,
  268. R_Squared_AUC = summary(lm_AUC)$r.squared,
  269. NG = sum(NG, na.rm = TRUE),
  270. DB = sum(DB, na.rm = TRUE),
  271. SM = sum(SM, na.rm = TRUE)
  272. )
  273. num_non_removed_concs <- total_conc_num - sum(stats$DB, na.rm = TRUE) - 1
  274. interactions <- interactions %>%
  275. mutate(
  276. Avg_Zscore_L = Sum_Zscore_L / num_non_removed_concs,
  277. Avg_Zscore_K = Sum_Zscore_K / num_non_removed_concs,
  278. Avg_Zscore_r = Sum_Zscore_r / (total_conc_num - 1),
  279. Avg_Zscore_AUC = Sum_Zscore_AUC / (total_conc_num - 1),
  280. Z_lm_L = (lm_Score_L - mean(lm_Score_L, na.rm = TRUE)) / sd(lm_Score_L, na.rm = TRUE),
  281. Z_lm_K = (lm_Score_K - mean(lm_Score_K, na.rm = TRUE)) / sd(lm_Score_K, na.rm = TRUE),
  282. Z_lm_r = (lm_Score_r - mean(lm_Score_r, na.rm = TRUE)) / sd(lm_Score_r, na.rm = TRUE),
  283. Z_lm_AUC = (lm_Score_AUC - mean(lm_Score_AUC, na.rm = TRUE)) / sd(lm_Score_AUC, na.rm = TRUE)
  284. ) %>%
  285. arrange(desc(Z_lm_L)) %>%
  286. arrange(desc(NG))
  287. # Declare column order for output
  288. calculations <- stats %>%
  289. select(
  290. "OrfRep", "Gene", "conc_num", "conc_num_factor", "N",
  291. "mean_L", "mean_K", "mean_r", "mean_AUC",
  292. "median_L", "median_K", "median_r", "median_AUC",
  293. "sd_L", "sd_K", "sd_r", "sd_AUC",
  294. "se_L", "se_K", "se_r", "se_AUC",
  295. "Raw_Shift_L", "Raw_Shift_K", "Raw_Shift_r", "Raw_Shift_AUC",
  296. "Z_Shift_L", "Z_Shift_K", "Z_Shift_r", "Z_Shift_AUC",
  297. "WT_L", "WT_K", "WT_r", "WT_AUC",
  298. "WT_sd_L", "WT_sd_K", "WT_sd_r", "WT_sd_AUC",
  299. "Exp_L", "Exp_K", "Exp_r", "Exp_AUC",
  300. "Delta_L", "Delta_K", "Delta_r", "Delta_AUC",
  301. "Zscore_L", "Zscore_K", "Zscore_r", "Zscore_AUC",
  302. "NG", "SM", "DB")
  303. df <- df %>% select(-any_of(setdiff(names(calculations), c("OrfRep", "Gene", "num", "conc_num", "conc_num_factor"))))
  304. df <- left_join(df, calculations, by = c("OrfRep", "Gene", "num", "conc_num", "conc_num_factor"))
  305. # df <- df %>% select(-any_of(setdiff(names(interactions), group_vars)))
  306. # df <- left_join(df, interactions, by = group_vars)
  307. return(list(calculations = calculations, interactions = interactions, joined = df))
  308. }
  309. generate_and_save_plots <- function(output_dir, file_name, plot_configs, grid_layout = NULL) {
  310. message("Generating html and pdf plots for: ", file_name)
  311. plots <- lapply(plot_configs, function(config) {
  312. df <- config$df
  313. # print(df %>% select(any_of(c("OrfRep", "Plate", "scan", "Col", "Row", "num", "OrfRep", "conc_num", "conc_num_factor",
  314. # "delta_bg_tolerance", "delta_bg", "Gene", "L", "K", "r", "AUC", "NG", "DB"))), n = 5)
  315. # Plots are testy about missing aesthetics, so handle them here
  316. aes_mapping <-
  317. if (is.null(config$color_var)) {
  318. if (is.null(config$y_var)) {
  319. aes(x = !!sym(config$x_var))
  320. } else {
  321. aes(x = !!sym(config$x_var), y = !!sym(config$y_var))
  322. }
  323. } else {
  324. if (is.null(config$y_var)) {
  325. aes(x = !!sym(config$x_var), color = as.factor(!!sym(config$color_var)))
  326. } else {
  327. aes(x = !!sym(config$x_var), y = !!sym(config$y_var), color = as.factor(!!sym(config$color_var)))
  328. }
  329. }
  330. # Start building the plot
  331. plot <- ggplot(df, aes_mapping)
  332. # Use appropriate helper function based on plot type
  333. plot <- switch(config$plot_type,
  334. "scatter" = generate_scatter_plot(plot, config),
  335. "rank" = generate_rank_plot(plot, config),
  336. "correlation" = generate_correlation_plot(plot, config),
  337. "box" = generate_box_plot(plot, config),
  338. "density" = plot + geom_density(),
  339. "bar" = plot + geom_bar(),
  340. plot # default case if no type matches
  341. )
  342. return(plot)
  343. })
  344. # PDF saving logic
  345. pdf(file.path(output_dir, paste0(file_name, ".pdf")), width = 14, height = 9)
  346. lapply(plots, print)
  347. dev.off()
  348. # HTML saving logic
  349. plotly_plots <- lapply(plots, function(plot) {
  350. config <- plot$config
  351. if (!is.null(config$legend_position) && config$legend_position == "bottom") {
  352. suppressWarnings(ggplotly(plot, tooltip = "text") %>% layout(legend = list(orientation = "h")))
  353. } else {
  354. ggplotly(plot, tooltip = "text")
  355. }
  356. })
  357. combined_plot <- subplot(plotly_plots, nrows = grid_layout$nrow %||% length(plots), margin = 0.05)
  358. saveWidget(combined_plot, file = file.path(output_dir, paste0(file_name, ".html")), selfcontained = TRUE)
  359. }
  360. generate_scatter_plot <- function(plot, config, interactive = FALSE) {
  361. # Add the interactive `text` aesthetic if `interactive` is TRUE
  362. if (interactive) {
  363. plot <- if (!is.null(config$delta_bg_point) && config$delta_bg_point) {
  364. plot + geom_point(aes(text = paste("ORF:", OrfRep, "Gene:", Gene, "delta_bg:", delta_bg)),
  365. shape = config$shape %||% 3, size = config$size %||% 0.2)
  366. } else if (!is.null(config$gene_point) && config$gene_point) {
  367. plot + geom_point(aes(text = paste("ORF:", OrfRep, "Gene:", Gene)),
  368. shape = config$shape %||% 3, size = config$size %||% 0.2, position = "jitter")
  369. } else {
  370. plot + geom_point(shape = config$shape %||% 3, size = config$size %||% 0.2)
  371. }
  372. } else {
  373. # For non-interactive plots, just add `geom_point`
  374. plot <- plot + geom_point(shape = config$shape %||% 3, size = config$size %||% 0.2,
  375. position = if (!is.null(config$position) && config$position == "jitter") "jitter" else "identity")
  376. }
  377. # Add smooth line if specified
  378. if (!is.null(config$add_smooth) && config$add_smooth) {
  379. plot <- if (!is.null(config$lm_line)) {
  380. plot + geom_abline(intercept = config$lm_line$intercept, slope = config$lm_line$slope)
  381. } else {
  382. plot + geom_smooth(method = "lm", se = FALSE)
  383. }
  384. }
  385. # Add error bars if specified
  386. if (!is.null(config$error_bar) && config$error_bar) {
  387. y_mean_col <- paste0("mean_", config$y_var)
  388. y_sd_col <- paste0("sd_", config$y_var)
  389. plot <- plot + geom_errorbar(aes(
  390. ymin = !!sym(y_mean_col) - !!sym(y_sd_col),
  391. ymax = !!sym(y_mean_col) + !!sym(y_sd_col)
  392. ), alpha = 0.3)
  393. }
  394. # Add x-axis customization if specified
  395. if (!is.null(config$x_breaks) && !is.null(config$x_labels) && !is.null(config$x_label)) {
  396. plot <- plot + scale_x_continuous(
  397. name = config$x_label,
  398. breaks = config$x_breaks,
  399. labels = config$x_labels)
  400. }
  401. # Add y-axis limits if specified
  402. if (!is.null(config$ylim_vals)) {
  403. plot <- plot + scale_y_continuous(limits = config$ylim_vals)
  404. }
  405. # Add Cartesian coordinates customization if specified
  406. if (!is.null(config$coord_cartesian)) {
  407. plot <- plot + coord_cartesian(ylim = config$coord_cartesian)
  408. }
  409. return(plot)
  410. }
  411. generate_rank_plot <- function(plot, config) {
  412. plot <- plot + geom_point(size = config$size %||% 0.1, shape = config$shape %||% 3)
  413. if (!is.null(config$sd_band)) {
  414. for (i in seq_len(config$sd_band)) {
  415. plot <- plot +
  416. annotate("rect", xmin = -Inf, xmax = Inf, ymin = i, ymax = Inf, fill = "#542788", alpha = 0.3) +
  417. annotate("rect", xmin = -Inf, xmax = Inf, ymin = -i, ymax = -Inf, fill = "orange", alpha = 0.3) +
  418. geom_hline(yintercept = c(-i, i), color = "gray")
  419. }
  420. }
  421. if (!is.null(config$enhancer_label)) {
  422. plot <- plot + annotate("text", x = config$enhancer_label$x, y = config$enhancer_label$y, label = config$enhancer_label$label)
  423. }
  424. if (!is.null(config$suppressor_label)) {
  425. plot <- plot + annotate("text", x = config$suppressor_label$x, y = config$suppressor_label$y, label = config$suppressor_label$label)
  426. }
  427. return(plot)
  428. }
  429. generate_correlation_plot <- function(plot, config) {
  430. plot <- plot + geom_point(shape = config$shape %||% 3, color = "gray70") +
  431. geom_abline(intercept = config$lm_line$intercept, slope = config$lm_line$slope, color = "tomato3") +
  432. annotate("text", x = config$annotate_position$x, y = config$annotate_position$y, label = config$correlation_text)
  433. if (!is.null(config$rect)) {
  434. plot <- plot + geom_rect(aes(xmin = config$rect$xmin, xmax = config$rect$xmax, ymin = config$rect$ymin, ymax = config$rect$ymax),
  435. color = "grey20", size = 0.25, alpha = 0.1, fill = NA, inherit.aes = FALSE)
  436. }
  437. return(plot)
  438. }
  439. generate_box_plot <- function(plot, config) {
  440. plot <- plot + geom_boxplot()
  441. if (!is.null(config$x_breaks) && !is.null(config$x_labels) && !is.null(config$x_label)) {
  442. plot <- plot + scale_x_discrete(
  443. name = config$x_label,
  444. breaks = config$x_breaks,
  445. labels = config$x_labels
  446. )
  447. }
  448. if (!is.null(config$coord_cartesian)) {
  449. plot <- plot + coord_cartesian(ylim = config$coord_cartesian)
  450. }
  451. return(plot)
  452. }
  453. generate_interaction_plot_configs <- function(df, variables) {
  454. configs <- list()
  455. # Define common y-limits and other attributes for each variable dynamically
  456. limits_map <- list(L = c(-65, 65), K = c(-65, 65), r = c(-0.65, 0.65), AUC = c(-6500, 6500))
  457. # Define annotation positions based on the variable being plotted
  458. annotation_positions <- list(
  459. L = list(Z_Shift_L = 45, lm_ZScore = 25, NG = -25, DB = -35, SM = -45),
  460. K = list(Z_Shift_K = 45, lm_ZScore = 25, NG = -25, DB = -35, SM = -45),
  461. r = list(Z_Shift_r = 0.45, lm_ZScore = 0.25, NG = -0.25, DB = -0.35, SM = -0.45),
  462. AUC = list(Z_Shift_AUC = 4500, lm_ZScore = 2500, NG = -2500, DB = -3500, SM = -4500)
  463. )
  464. # Define which annotations to include for each plot
  465. annotation_labels <- list(
  466. ZShift = function(df, var) {
  467. val <- df[[paste0("Z_Shift_", var)]]
  468. if (is.numeric(val)) {
  469. paste("ZShift =", round(val, 2))
  470. } else {
  471. paste("ZShift =", val)
  472. }
  473. },
  474. lm_ZScore = function(df, var) {
  475. val <- df[[paste0("Z_lm_", var)]]
  476. if (is.numeric(val)) {
  477. paste("lm ZScore =", round(val, 2))
  478. } else {
  479. paste("lm ZScore =", val)
  480. }
  481. },
  482. NG = function(df, var) paste("NG =", df$NG),
  483. DB = function(df, var) paste("DB =", df$DB),
  484. SM = function(df, var) paste("SM =", df$SM)
  485. )
  486. for (variable in variables) {
  487. # Dynamically generate the names of the columns
  488. var_info <- list(
  489. ylim = limits_map[[variable]],
  490. lm_model = df[[paste0("lm_", variable)]][[1]],
  491. sd_col = paste0("WT_sd_", variable),
  492. delta_var = paste0("Delta_", variable)
  493. )
  494. # Extract the precomputed linear model coefficients
  495. lm_line <- list(
  496. intercept = coef(var_info$lm_model)[1],
  497. slope = coef(var_info$lm_model)[2]
  498. )
  499. # Dynamically create annotations based on variable
  500. # Dynamically create annotations based on variable
  501. annotations <- lapply(names(annotation_positions[[variable]]), function(annotation_name) {
  502. y_pos <- annotation_positions[[variable]][[annotation_name]]
  503. # Check if the annotation_name exists in annotation_labels
  504. if (!is.null(annotation_labels[[annotation_name]])) {
  505. label <- annotation_labels[[annotation_name]](df, variable)
  506. list(x = 1, y = y_pos, label = label)
  507. } else {
  508. message(paste("Warning: No annotation function found for", annotation_name))
  509. NULL
  510. }
  511. })
  512. # Filter out any NULL annotations
  513. annotations <- Filter(Negate(is.null), annotations)
  514. # Add scatter plot configuration for this variable
  515. configs[[length(configs) + 1]] <- list(
  516. df = df,
  517. x_var = "conc_num_factor",
  518. y_var = variable,
  519. plot_type = "scatter",
  520. title = sprintf("%s %s", df$OrfRep[1], df$Gene[1]),
  521. ylim_vals = var_info$ylim,
  522. annotations = annotations,
  523. lm_line = lm_line, # Precomputed linear model
  524. error_bar = TRUE,
  525. x_breaks = unique(df$conc_num_factor),
  526. x_labels = unique(as.character(df$conc_num)),
  527. x_label = unique(df$Drug[1]),
  528. position = "jitter",
  529. coord_cartesian = c(0, max(var_info$ylim)) # You can customize this per plot as needed
  530. )
  531. # Add box plot configuration for this variable
  532. configs[[length(configs) + 1]] <- list(
  533. df = df,
  534. x_var = "conc_num_factor",
  535. y_var = variable,
  536. plot_type = "box",
  537. title = sprintf("%s %s (Boxplot)", df$OrfRep[1], df$Gene[1]),
  538. ylim_vals = var_info$ylim,
  539. annotations = annotations,
  540. error_bar = FALSE,
  541. x_breaks = unique(df$conc_num_factor),
  542. x_labels = unique(as.character(df$conc_num)),
  543. x_label = unique(df$Drug[1]),
  544. coord_cartesian = c(0, max(var_info$ylim)) # Customize this as needed
  545. )
  546. }
  547. return(configs)
  548. }
  549. # Adjust missing values and calculate ranks
  550. adjust_missing_and_rank <- function(df, variables) {
  551. # Adjust missing values in Avg_Zscore and Z_lm columns, and apply rank to the specified variables
  552. df <- df %>%
  553. mutate(across(all_of(variables), list(
  554. Avg_Zscore = ~ if_else(is.na(get(paste0("Avg_Zscore_", cur_column()))), 0.001, get(paste0("Avg_Zscore_", cur_column()))),
  555. Z_lm = ~ if_else(is.na(get(paste0("Z_lm_", cur_column()))), 0.001, get(paste0("Z_lm_", cur_column()))),
  556. Rank = ~ rank(get(paste0("Avg_Zscore_", cur_column()))),
  557. Rank_lm = ~ rank(get(paste0("Z_lm_", cur_column())))
  558. ), .names = "{fn}_{col}"))
  559. return(df)
  560. }
  561. generate_rank_plot_configs <- function(df, rank_var, zscore_var, var, is_lm = FALSE) {
  562. configs <- list()
  563. # Adjust titles for _lm plots if is_lm is TRUE
  564. plot_title_prefix <- if (is_lm) "Interaction Z score vs. Rank for" else "Average Z score vs. Rank for"
  565. # Annotated version (with text)
  566. for (sd_band in c(1, 2, 3)) {
  567. configs[[length(configs) + 1]] <- list(
  568. df = df,
  569. x_var = rank_var,
  570. y_var = zscore_var,
  571. plot_type = "rank",
  572. title = paste(plot_title_prefix, var, "above", sd_band, "SD"),
  573. sd_band = sd_band,
  574. enhancer_label = list(
  575. x = nrow(df) / 2, y = 10,
  576. label = paste("Deletion Enhancers =", nrow(df[df[[zscore_var]] >= sd_band, ]))
  577. ),
  578. suppressor_label = list(
  579. x = nrow(df) / 2, y = -10,
  580. label = paste("Deletion Suppressors =", nrow(df[df[[zscore_var]] <= -sd_band, ]))
  581. ),
  582. shape = 3,
  583. size = 0.1
  584. )
  585. }
  586. # Non-annotated version (_notext)
  587. for (sd_band in c(1, 2, 3)) {
  588. configs[[length(configs) + 1]] <- list(
  589. df = df,
  590. x_var = rank_var,
  591. y_var = zscore_var,
  592. plot_type = "rank",
  593. title = paste(plot_title_prefix, var, "above", sd_band, "SD"),
  594. sd_band = sd_band,
  595. enhancer_label = NULL, # No annotations for _notext
  596. suppressor_label = NULL, # No annotations for _notext
  597. shape = 3,
  598. size = 0.1,
  599. position = "jitter"
  600. )
  601. }
  602. return(configs)
  603. }
  604. generate_correlation_plot_configs <- function(df, variables) {
  605. configs <- list()
  606. for (variable in variables) {
  607. z_lm_var <- paste0("Z_lm_", variable)
  608. avg_zscore_var <- paste0("Avg_Zscore_", variable)
  609. lm_r_squared_col <- paste0("lm_R_squared_", variable)
  610. configs[[length(configs) + 1]] <- list(
  611. df = df,
  612. x_var = avg_zscore_var,
  613. y_var = z_lm_var,
  614. plot_type = "correlation",
  615. title = paste("Avg Zscore vs lm", variable),
  616. color_var = "Overlap",
  617. correlation_text = paste("R-squared =", round(df[[lm_r_squared_col]][1], 2)),
  618. shape = 3,
  619. geom_smooth = TRUE,
  620. rect = list(xmin = -2, xmax = 2, ymin = -2, ymax = 2), # To add the geom_rect layer
  621. annotate_position = list(x = 0, y = 0), # Position for the R-squared text
  622. legend_position = "right"
  623. )
  624. }
  625. return(configs)
  626. }
  627. main <- function() {
  628. lapply(names(args$experiments), function(exp_name) {
  629. exp <- args$experiments[[exp_name]]
  630. exp_path <- exp$path
  631. exp_sd <- exp$sd
  632. out_dir <- file.path(exp_path, "zscores")
  633. out_dir_qc <- file.path(exp_path, "zscores", "qc")
  634. dir.create(out_dir, recursive = TRUE, showWarnings = FALSE)
  635. dir.create(out_dir_qc, recursive = TRUE, showWarnings = FALSE)
  636. summary_vars <- c("L", "K", "r", "AUC", "delta_bg") # fields to filter and calculate summary stats across
  637. group_vars <- c("OrfRep", "conc_num", "conc_num_factor") # default fields to group by
  638. orf_group_vars <- c("OrfRep", "Gene", "num")
  639. print_vars <- c("OrfRep", "Plate", "scan", "Col", "Row", "num", "OrfRep", "conc_num", "conc_num_factor",
  640. "delta_bg_tolerance", "delta_bg", "Gene", "L", "K", "r", "AUC", "NG", "DB")
  641. message("Loading and filtering data")
  642. df <- load_and_process_data(args$easy_results_file, sd = exp_sd)
  643. df <- update_gene_names(df, args$sgd_gene_list)
  644. df <- as_tibble(df)
  645. # Filter rows that are above tolerance for quality control plots
  646. df_above_tolerance <- df %>% filter(DB == 1)
  647. # Set L, r, K, AUC (and delta_bg?) to NA for rows that are above tolerance
  648. df_na <- df %>% mutate(across(all_of(summary_vars), ~ ifelse(DB == 1, NA, .)))
  649. # Remove rows with 0 values in L
  650. df_no_zeros <- df_na %>% filter(L > 0)
  651. # Save some constants
  652. max_conc <- max(df$conc_num_factor)
  653. l_half_median <- (median(df_above_tolerance$L, na.rm = TRUE)) / 2
  654. k_half_median <- (median(df_above_tolerance$K, na.rm = TRUE)) / 2
  655. message("Calculating summary statistics before quality control")
  656. ss <- calculate_summary_stats(df, summary_vars, group_vars = group_vars)
  657. # df_ss <- ss$summary_stats
  658. df_stats <- ss$df_with_stats
  659. df_filtered_stats <- df_stats %>%
  660. {
  661. non_finite_rows <- filter(., if_any(c(L), ~ !is.finite(.)))
  662. if (nrow(non_finite_rows) > 0) {
  663. message("Filtering out the following non-finite rows:")
  664. print(non_finite_rows %>% select(any_of(print_vars)), n = 200)
  665. }
  666. filter(., if_all(c(L), is.finite))
  667. }
  668. message("Calculating summary statistics after quality control")
  669. ss <- calculate_summary_stats(df_na, summary_vars, group_vars = group_vars)
  670. df_na_ss <- ss$summary_stats
  671. df_na_stats <- ss$df_with_stats
  672. write.csv(df_na_ss, file = file.path(out_dir, "summary_stats_all_strains.csv"), row.names = FALSE)
  673. # Filter out non-finite rows for plotting
  674. df_na_filtered_stats <- df_na_stats %>%
  675. {
  676. non_finite_rows <- filter(., if_any(c(L), ~ !is.finite(.)))
  677. if (nrow(non_finite_rows) > 0) {
  678. message("Removed the following non-finite rows:")
  679. print(non_finite_rows %>% select(any_of(print_vars)), n = 200)
  680. }
  681. filter(., if_all(c(L), is.finite))
  682. }
  683. message("Calculating summary statistics after quality control excluding zero values")
  684. ss <- calculate_summary_stats(df_no_zeros, summary_vars, group_vars = group_vars)
  685. df_no_zeros_stats <- ss$df_with_stats
  686. df_no_zeros_filtered_stats <- df_no_zeros_stats %>%
  687. {
  688. non_finite_rows <- filter(., if_any(c(L), ~ !is.finite(.)))
  689. if (nrow(non_finite_rows) > 0) {
  690. message("Removed the following non-finite rows:")
  691. print(non_finite_rows %>% select(any_of(print_vars)), n = 200)
  692. }
  693. filter(., if_all(c(L), is.finite))
  694. }
  695. message("Filtering by 2SD of K")
  696. df_na_within_2sd_k <- df_na_stats %>%
  697. filter(K >= (mean_K - 2 * sd_K) & K <= (mean_K + 2 * sd_K))
  698. df_na_outside_2sd_k <- df_na_stats %>%
  699. filter(K < (mean_K - 2 * sd_K) | K > (mean_K + 2 * sd_K))
  700. message("Calculating summary statistics for L within 2SD of K")
  701. # TODO We're omitting the original z_max calculation, not sure if needed?
  702. ss <- calculate_summary_stats(df_na_within_2sd_k, "L", group_vars = c("conc_num", "conc_num_factor"))
  703. l_within_2sd_k_ss <- ss$summary_stats
  704. df_na_l_within_2sd_k_stats <- ss$df_with_stats
  705. write.csv(l_within_2sd_k_ss,
  706. file = file.path(out_dir_qc, "max_observed_L_vals_for_spots_within_2sd_K.csv"), row.names = FALSE)
  707. message("Calculating summary statistics for L outside 2SD of K")
  708. ss <- calculate_summary_stats(df_na_outside_2sd_k, "L", group_vars = c("conc_num", "conc_num_factor"))
  709. l_outside_2sd_k_ss <- ss$summary_stats
  710. df_na_l_outside_2sd_k_stats <- ss$df_with_stats
  711. write.csv(l_outside_2sd_k_ss,
  712. file = file.path(out_dir, "max_observed_L_vals_for_spots_outside_2sd_K.csv"), row.names = FALSE)
  713. # Each plots list corresponds to a file
  714. message("Generating quality control plot configurations")
  715. l_vs_k_plots <- list(
  716. list(
  717. df = df,
  718. x_var = "L",
  719. y_var = "K",
  720. plot_type = "scatter",
  721. delta_bg_point = TRUE,
  722. title = "Raw L vs K before quality control",
  723. color_var = "conc_num",
  724. error_bar = FALSE,
  725. legend_position = "right"
  726. )
  727. )
  728. frequency_delta_bg_plots <- list(
  729. list(
  730. df = df_filtered_stats,
  731. x_var = "delta_bg",
  732. y_var = NULL,
  733. plot_type = "density",
  734. title = "Plate analysis by Drug Conc for Delta Background before quality control",
  735. color_var = "conc_num",
  736. x_label = "Delta Background",
  737. y_label = "Density",
  738. error_bar = FALSE,
  739. legend_position = "right"),
  740. list(
  741. df = df_filtered_stats,
  742. x_var = "delta_bg",
  743. y_var = NULL,
  744. plot_type = "bar",
  745. title = "Plate analysis by Drug Conc for Delta Background before quality control",
  746. color_var = "conc_num",
  747. x_label = "Delta Background",
  748. y_label = "Count",
  749. error_bar = FALSE,
  750. legend_position = "right")
  751. )
  752. above_threshold_plots <- list(
  753. list(
  754. df = df_above_tolerance,
  755. x_var = "L",
  756. y_var = "K",
  757. plot_type = "scatter",
  758. delta_bg_point = TRUE,
  759. title = paste("Raw L vs K for strains above Delta Background threshold of",
  760. df_above_tolerance$delta_bg_tolerance[[1]], "or above"),
  761. color_var = "conc_num",
  762. position = "jitter",
  763. annotations = list(
  764. x = l_half_median,
  765. y = k_half_median,
  766. label = paste("# strains above Delta Background tolerance =", nrow(df_above_tolerance))
  767. ),
  768. error_bar = FALSE,
  769. legend_position = "right"
  770. )
  771. )
  772. plate_analysis_plots <- list()
  773. for (var in summary_vars) {
  774. for (stage in c("before", "after")) {
  775. if (stage == "before") {
  776. df_plot <- df_filtered_stats
  777. } else {
  778. df_plot <- df_na_filtered_stats
  779. }
  780. config <- list(
  781. df = df_plot,
  782. x_var = "scan",
  783. y_var = var,
  784. plot_type = "scatter",
  785. title = paste("Plate analysis by Drug Conc for", var, stage, "quality control"),
  786. error_bar = TRUE,
  787. color_var = "conc_num",
  788. position = "jitter")
  789. plate_analysis_plots <- append(plate_analysis_plots, list(config))
  790. }
  791. }
  792. plate_analysis_boxplots <- list()
  793. for (var in summary_vars) {
  794. for (stage in c("before", "after")) {
  795. if (stage == "before") {
  796. df_plot <- df_filtered_stats
  797. } else {
  798. df_plot <- df_na_filtered_stats
  799. }
  800. config <- list(
  801. df = df_plot,
  802. x_var = "scan",
  803. y_var = var,
  804. plot_type = "box",
  805. title = paste("Plate analysis by Drug Conc for", var, stage, "quality control"),
  806. error_bar = FALSE,
  807. color_var = "conc_num")
  808. plate_analysis_boxplots <- append(plate_analysis_boxplots, list(config))
  809. }
  810. }
  811. plate_analysis_no_zeros_plots <- list()
  812. for (var in summary_vars) {
  813. config <- list(
  814. df = df_no_zeros_filtered_stats,
  815. x_var = "scan",
  816. y_var = var,
  817. plot_type = "scatter",
  818. title = paste("Plate analysis by Drug Conc for", var, "after quality control"),
  819. error_bar = TRUE,
  820. color_var = "conc_num",
  821. position = "jitter")
  822. plate_analysis_no_zeros_plots <- append(plate_analysis_no_zeros_plots, list(config))
  823. }
  824. plate_analysis_no_zeros_boxplots <- list()
  825. for (var in summary_vars) {
  826. config <- list(
  827. df = df_no_zeros_filtered_stats,
  828. x_var = "scan",
  829. y_var = var,
  830. plot_type = "box",
  831. title = paste("Plate analysis by Drug Conc for", var, "after quality control"),
  832. error_bar = FALSE,
  833. color_var = "conc_num"
  834. )
  835. plate_analysis_no_zeros_boxplots <- append(plate_analysis_no_zeros_boxplots, list(config))
  836. }
  837. l_outside_2sd_k_plots <- list(
  838. list(
  839. df = df_na_l_outside_2sd_k_stats,
  840. x_var = "L",
  841. y_var = "K",
  842. plot_type = "scatter",
  843. delta_bg_point = TRUE,
  844. title = "Raw L vs K for strains falling outside 2SD of the K mean at each Conc",
  845. color_var = "conc_num",
  846. position = "jitter",
  847. legend_position = "right"
  848. )
  849. )
  850. delta_bg_outside_2sd_k_plots <- list(
  851. list(
  852. df = df_na_l_outside_2sd_k_stats,
  853. x_var = "delta_bg",
  854. y_var = "K",
  855. plot_type = "scatter",
  856. gene_point = TRUE,
  857. title = "Delta Background vs K for strains falling outside 2SD of the K mean at each Conc",
  858. color_var = "conc_num",
  859. position = "jitter",
  860. legend_position = "right"
  861. )
  862. )
  863. message("Generating quality control plots")
  864. generate_and_save_plots(out_dir_qc, "L_vs_K_before_quality_control", l_vs_k_plots)
  865. generate_and_save_plots(out_dir_qc, "frequency_delta_background", frequency_delta_bg_plots)
  866. generate_and_save_plots(out_dir_qc, "L_vs_K_above_threshold", above_threshold_plots)
  867. generate_and_save_plots(out_dir_qc, "plate_analysis", plate_analysis_plots)
  868. generate_and_save_plots(out_dir_qc, "plate_analysis_boxplots", plate_analysis_boxplots)
  869. generate_and_save_plots(out_dir_qc, "plate_analysis_no_zeros", plate_analysis_no_zeros_plots)
  870. generate_and_save_plots(out_dir_qc, "plate_analysis_no_zeros_boxplots", plate_analysis_no_zeros_boxplots)
  871. generate_and_save_plots(out_dir_qc, "L_vs_K_for_strains_2SD_outside_mean_K", l_outside_2sd_k_plots)
  872. generate_and_save_plots(out_dir_qc, "delta_background_vs_K_for_strains_2sd_outside_mean_K", delta_bg_outside_2sd_k_plots)
  873. # Clean up
  874. rm(df, df_above_tolerance, df_no_zeros, df_no_zeros_stats, df_no_zeros_filtered_stats, ss)
  875. gc()
  876. # TODO: Originally this filtered L NA's
  877. # Let's try to avoid for now since stats have already been calculated
  878. # Process background strains
  879. bg_strains <- c("YDL227C")
  880. lapply(bg_strains, function(strain) {
  881. message("Processing background strain: ", strain)
  882. # Handle missing data by setting zero values to NA
  883. # and then removing any rows with NA in L col
  884. df_bg <- df_na %>%
  885. filter(OrfRep == strain) %>%
  886. mutate(
  887. L = if_else(L == 0, NA, L),
  888. K = if_else(K == 0, NA, K),
  889. r = if_else(r == 0, NA, r),
  890. AUC = if_else(AUC == 0, NA, AUC)
  891. ) %>%
  892. filter(!is.na(L))
  893. # Recalculate summary statistics for the background strain
  894. message("Calculating summary statistics for background strain")
  895. ss_bg <- calculate_summary_stats(df_bg, summary_vars, group_vars = group_vars)
  896. summary_stats_bg <- ss_bg$summary_stats
  897. # df_bg_stats <- ss_bg$df_with_stats
  898. write.csv(summary_stats_bg,
  899. file = file.path(out_dir, paste0("SummaryStats_BackgroundStrains_", strain, ".csv")),
  900. row.names = FALSE)
  901. # Filter reference and deletion strains
  902. # Formerly X2_RF (reference strains)
  903. df_reference <- df_na_stats %>%
  904. filter(OrfRep == strain) %>%
  905. mutate(SM = 0)
  906. # Formerly X2 (deletion strains)
  907. df_deletion <- df_na_stats %>%
  908. filter(OrfRep != strain) %>%
  909. mutate(SM = 0)
  910. # Set the missing values to the highest theoretical value at each drug conc for L
  911. # Leave other values as 0 for the max/min
  912. reference_strain <- df_reference %>%
  913. group_by(conc_num) %>%
  914. mutate(
  915. max_l_theoretical = max(max_L, na.rm = TRUE),
  916. L = ifelse(L == 0 & !is.na(L) & conc_num > 0, max_l_theoretical, L),
  917. SM = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, 1, SM),
  918. L = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, max_l_theoretical, L)) %>%
  919. ungroup()
  920. # Ditto for deletion strains
  921. deletion_strains <- df_deletion %>%
  922. group_by(conc_num) %>%
  923. mutate(
  924. max_l_theoretical = max(max_L, na.rm = TRUE),
  925. L = ifelse(L == 0 & !is.na(L) & conc_num > 0, max_l_theoretical, L),
  926. SM = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, 1, SM),
  927. L = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, max_l_theoretical, L)) %>%
  928. ungroup()
  929. # Calculate interactions
  930. interaction_vars <- c("L", "K", "r", "AUC")
  931. message("Calculating interaction scores")
  932. # print("Reference strain:")
  933. # print(head(reference_strain))
  934. reference_results <- calculate_interaction_scores(reference_strain, max_conc, interaction_vars, group_vars = orf_group_vars)
  935. # print("Deletion strains:")
  936. # print(head(deletion_strains))
  937. deletion_results <- calculate_interaction_scores(deletion_strains, max_conc, interaction_vars, group_vars = orf_group_vars)
  938. zscores_calculations_reference <- reference_results$calculations
  939. zscores_interactions_reference <- reference_results$interactions
  940. zscores_joined_reference <- reference_results$joined
  941. zscores_calculations <- deletion_results$calculations
  942. zscores_interactions <- deletion_results$interactions
  943. zscores_joined <- deletion_results$joined
  944. # Writing Z-Scores to file
  945. write.csv(zscores_calculations_reference, file = file.path(out_dir, "RF_ZScores_Calculations.csv"), row.names = FALSE)
  946. write.csv(zscores_calculations, file = file.path(out_dir, "ZScores_Calculations.csv"), row.names = FALSE)
  947. write.csv(zscores_interactions_reference, file = file.path(out_dir, "RF_ZScores_Interaction.csv"), row.names = FALSE)
  948. write.csv(zscores_interactions, file = file.path(out_dir, "ZScores_Interaction.csv"), row.names = FALSE)
  949. # Create interaction plots
  950. message("Generating interaction plot configurations")
  951. reference_plot_configs <- generate_interaction_plot_configs(zscores_joined_reference, interaction_vars)
  952. deletion_plot_configs <- generate_interaction_plot_configs(zscores_joined, interaction_vars)
  953. message("Generating interaction plots")
  954. generate_and_save_plots(out_dir, "RF_interactionPlots", reference_plot_configs, grid_layout = list(ncol = 4, nrow = 3))
  955. generate_and_save_plots(out_dir, "InteractionPlots", deletion_plot_configs, grid_layout = list(ncol = 4, nrow = 3))
  956. # Define conditions for enhancers and suppressors
  957. # TODO Add to study config file?
  958. threshold <- 2
  959. enhancer_condition_L <- zscores_interactions$Avg_Zscore_L >= threshold
  960. suppressor_condition_L <- zscores_interactions$Avg_Zscore_L <= -threshold
  961. enhancer_condition_K <- zscores_interactions$Avg_Zscore_K >= threshold
  962. suppressor_condition_K <- zscores_interactions$Avg_Zscore_K <= -threshold
  963. # Subset data
  964. enhancers_L <- zscores_interactions[enhancer_condition_L, ]
  965. suppressors_L <- zscores_interactions[suppressor_condition_L, ]
  966. enhancers_K <- zscores_interactions[enhancer_condition_K, ]
  967. suppressors_K <- zscores_interactions[suppressor_condition_K, ]
  968. # Save enhancers and suppressors
  969. message("Writing enhancer/suppressor csv files")
  970. write.csv(enhancers_L, file = file.path(out_dir, "ZScores_Interaction_Deletion_Enhancers_L.csv"), row.names = FALSE)
  971. write.csv(suppressors_L, file = file.path(out_dir, "ZScores_Interaction_Deletion_Suppressors_L.csv"), row.names = FALSE)
  972. write.csv(enhancers_K, file = file.path(out_dir, "ZScores_Interaction_Deletion_Enhancers_K.csv"), row.names = FALSE)
  973. write.csv(suppressors_K, file = file.path(out_dir, "ZScores_Interaction_Deletion_Suppressors_K.csv"), row.names = FALSE)
  974. # Combine conditions for enhancers and suppressors
  975. enhancers_and_suppressors_L <- zscores_interactions[enhancer_condition_L | suppressor_condition_L, ]
  976. enhancers_and_suppressors_K <- zscores_interactions[enhancer_condition_K | suppressor_condition_K, ]
  977. # Save combined enhancers and suppressors
  978. write.csv(enhancers_and_suppressors_L,
  979. file = file.path(out_dir, "ZScores_Interaction_Deletion_Enhancers_and_Suppressors_L.csv"), row.names = FALSE)
  980. write.csv(enhancers_and_suppressors_K,
  981. file = file.path(out_dir, "ZScores_Interaction_Deletion_Enhancers_and_Suppressors_K.csv"), row.names = FALSE)
  982. # Handle linear model based enhancers and suppressors
  983. lm_threshold <- 2
  984. enhancers_lm_L <- zscores_interactions[zscores_interactions$Z_lm_L >= lm_threshold, ]
  985. suppressors_lm_L <- zscores_interactions[zscores_interactions$Z_lm_L <= -lm_threshold, ]
  986. enhancers_lm_K <- zscores_interactions[zscores_interactions$Z_lm_K >= lm_threshold, ]
  987. suppressors_lm_K <- zscores_interactions[zscores_interactions$Z_lm_K <= -lm_threshold, ]
  988. # Save linear model based enhancers and suppressors
  989. message("Writing linear model enhancer/suppressor csv files")
  990. write.csv(enhancers_lm_L,
  991. file = file.path(out_dir, "ZScores_Interaction_Deletion_Enhancers_L_lm.csv"), row.names = FALSE)
  992. write.csv(suppressors_lm_L,
  993. file = file.path(out_dir, "ZScores_Interaction_Deletion_Suppressors_L_lm.csv"), row.names = FALSE)
  994. write.csv(enhancers_lm_K,
  995. file = file.path(out_dir, "ZScores_Interaction_Deletion_Enhancers_K_lm.csv"), row.names = FALSE)
  996. write.csv(suppressors_lm_K,
  997. file = file.path(out_dir, "ZScores_Interaction_Deletion_Suppressors_K_lm.csv"), row.names = FALSE)
  998. # TODO needs explanation
  999. zscores_interactions_adjusted <- adjust_missing_and_rank(zscores_interactions)
  1000. rank_plot_configs <- c(
  1001. generate_rank_plot_configs(zscores_interactions_adjusted, "Rank_L", "Avg_Zscore_L", "L"),
  1002. generate_rank_plot_configs(zscores_interactions_adjusted, "Rank_K", "Avg_Zscore_K", "K")
  1003. )
  1004. generate_and_save_plots(output_dir = out_dir, file_name = "RankPlots",
  1005. plot_configs = rank_plot_configs, grid_layout = list(ncol = 3, nrow = 2))
  1006. rank_lm_plot_config <- c(
  1007. generate_rank_plot_configs(zscores_interactions_adjusted, "Rank_lm_L", "Z_lm_L", "L", is_lm = TRUE),
  1008. generate_rank_plot_configs(zscores_interactions_adjusted, "Rank_lm_K", "Z_lm_K", "K", is_lm = TRUE)
  1009. )
  1010. generate_and_save_plots(output_dir = out_dir, file_name = "RankPlots_lm",
  1011. plot_configs = rank_lm_plot_config, grid_layout = list(ncol = 3, nrow = 2))
  1012. # Formerly X_NArm
  1013. zscores_interactions_filtered <- zscores_interactions %>%
  1014. group_by(across(all_of(orf_group_vars))) %>%
  1015. filter(!is.na(Z_lm_L) | !is.na(Avg_Zscore_L))
  1016. # Final filtered correlation calculations and plots
  1017. lm_results <- zscores_interactions_filtered %>%
  1018. summarise(
  1019. lm_R_squared_L = if (n() > 1) summary(lm(Z_lm_L ~ Avg_Zscore_L))$r.squared else NA,
  1020. lm_R_squared_K = if (n() > 1) summary(lm(Z_lm_K ~ Avg_Zscore_K))$r.squared else NA,
  1021. lm_R_squared_r = if (n() > 1) summary(lm(Z_lm_r ~ Avg_Zscore_r))$r.squared else NA,
  1022. lm_R_squared_AUC = if (n() > 1) summary(lm(Z_lm_AUC ~ Avg_Zscore_AUC))$r.squared else NA
  1023. )
  1024. zscores_interactions_filtered <- zscores_interactions_filtered %>%
  1025. left_join(lm_results, by = orf_group_vars) %>%
  1026. mutate(
  1027. Overlap = case_when(
  1028. Z_lm_L >= 2 & Avg_Zscore_L >= 2 ~ "Deletion Enhancer Both",
  1029. Z_lm_L <= -2 & Avg_Zscore_L <= -2 ~ "Deletion Suppressor Both",
  1030. Z_lm_L >= 2 & Avg_Zscore_L <= 2 ~ "Deletion Enhancer lm only",
  1031. Z_lm_L <= -2 & Avg_Zscore_L >= -2 ~ "Deletion Suppressor lm only",
  1032. Z_lm_L >= 2 & Avg_Zscore_L <= -2 ~ "Deletion Enhancer lm, Deletion Suppressor Avg Z score",
  1033. Z_lm_L <= -2 & Avg_Zscore_L >= 2 ~ "Deletion Suppressor lm, Deletion Enhancer Avg Z score",
  1034. TRUE ~ "No Effect"
  1035. )
  1036. ) %>%
  1037. ungroup()
  1038. rank_plot_configs <- c(
  1039. generate_rank_plot_configs(zscores_interactions_filtered, "Rank_L", "Avg_Zscore_L", "L"),
  1040. generate_rank_plot_configs(zscores_interactions_filtered, "Rank_K", "Avg_Zscore_K", "K")
  1041. )
  1042. generate_and_save_plots(output_dir = out_dir, file_name = "RankPlots",
  1043. plot_configs = rank_plot_configs, grid_layout = list(ncol = 3, nrow = 2))
  1044. rank_lm_plot_configs <- c(
  1045. generate_rank_plot_configs(zscores_interactions_filtered, "Rank_lm_L", "Z_lm_L", "L", is_lm = TRUE),
  1046. generate_rank_plot_configs(zscores_interactions_filtered, "Rank_lm_K", "Z_lm_K", "K", is_lm = TRUE)
  1047. )
  1048. generate_and_save_plots(output_dir = out_dir, file_name = "RankPlots_lm",
  1049. plot_configs = rank_lm_plot_configs, grid_layout = list(ncol = 3, nrow = 2))
  1050. correlation_plot_configs <- generate_correlation_plot_configs(zscores_interactions_filtered, interaction_vars)
  1051. generate_and_save_plots(output_dir = out_dir, file_name = "Avg_Zscore_vs_lm_NA_rm",
  1052. plot_configs = correlation_plot_configs, grid_layout = list(ncol = 2, nrow = 2))
  1053. })
  1054. })
  1055. }
  1056. main()