calculate_interaction_zscores.R 60 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621
  1. suppressMessages({
  2. library("ggplot2")
  3. library("plotly")
  4. library("htmlwidgets")
  5. library("htmltools")
  6. library("dplyr")
  7. library("rlang")
  8. library("ggthemes")
  9. library("data.table")
  10. library("gridExtra")
  11. library("future")
  12. library("furrr")
  13. library("purrr")
  14. })
  15. # These parallelization libraries are very noisy
  16. suppressPackageStartupMessages({
  17. library("future")
  18. library("furrr")
  19. library("purrr")
  20. })
  21. options(warn = 2)
  22. # Constants for configuration
  23. plot_width <- 14
  24. plot_height <- 9
  25. base_size <- 14
  26. parse_arguments <- function() {
  27. args <- if (interactive()) {
  28. c(
  29. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/20240116_jhartman2_DoxoHLD",
  30. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/apps/r/SGD_features.tab",
  31. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/easy/20240116_jhartman2_DoxoHLD/results_std.txt",
  32. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/20240822_jhartman2_DoxoHLD/exp1",
  33. "Experiment 1: Doxo versus HLD",
  34. 3,
  35. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/20240822_jhartman2_DoxoHLD/exp2",
  36. "Experiment 2: HLD versus Doxo",
  37. 3
  38. )
  39. } else {
  40. commandArgs(trailingOnly = TRUE)
  41. }
  42. out_dir <- normalizePath(args[1], mustWork = FALSE)
  43. sgd_gene_list <- normalizePath(args[2], mustWork = FALSE)
  44. easy_results_file <- normalizePath(args[3], mustWork = FALSE)
  45. # The remaining arguments should be in groups of 3
  46. exp_args <- args[-(1:3)]
  47. if (length(exp_args) %% 3 != 0) {
  48. stop("Experiment arguments should be in groups of 3: path, name, sd.")
  49. }
  50. # Extract the experiments into a list
  51. experiments <- list()
  52. for (i in seq(1, length(exp_args), by = 3)) {
  53. exp_name <- exp_args[i + 1]
  54. experiments[[exp_name]] <- list(
  55. path = normalizePath(exp_args[i], mustWork = FALSE),
  56. sd = as.numeric(exp_args[i + 2])
  57. )
  58. }
  59. # Extract the trailing number from each path
  60. trailing_numbers <- sapply(experiments, function(x) {
  61. path <- x$path
  62. nums <- gsub("[^0-9]", "", basename(path))
  63. as.integer(nums)
  64. })
  65. # Sort the experiments based on the trailing numbers
  66. sorted_experiments <- experiments[order(trailing_numbers)]
  67. list(
  68. out_dir = out_dir,
  69. sgd_gene_list = sgd_gene_list,
  70. easy_results_file = easy_results_file,
  71. experiments = sorted_experiments
  72. )
  73. }
  74. args <- parse_arguments()
  75. # Should we keep output in exp dirs or combine in the study output dir?
  76. # dir.create(file.path(args$out_dir, "zscores"), showWarnings = FALSE)
  77. # dir.create(file.path(args$out_dir, "zscores", "qc"), showWarnings = FALSE)
  78. theme_publication <- function(base_size = 14, base_family = "sans", legend_position = NULL) {
  79. # Ensure that legend_position has a valid value or default to "none"
  80. legend_position <- if (is.null(legend_position) || length(legend_position) == 0) "none" else legend_position
  81. theme_foundation <- ggthemes::theme_foundation(base_size = base_size, base_family = base_family)
  82. theme_foundation %+replace%
  83. theme(
  84. plot.title = element_text(face = "bold", size = rel(1.6), hjust = 0.5),
  85. text = element_text(),
  86. panel.background = element_blank(),
  87. plot.background = element_blank(),
  88. panel.border = element_blank(),
  89. axis.title = element_text(face = "bold", size = rel(1.4)),
  90. axis.title.y = element_text(angle = 90, vjust = 2),
  91. axis.text = element_text(size = rel(1.2)),
  92. axis.line = element_line(colour = "black"),
  93. panel.grid.major = element_line(colour = "#f0f0f0"),
  94. panel.grid.minor = element_blank(),
  95. legend.key = element_rect(colour = NA),
  96. legend.position = legend_position,
  97. legend.direction =
  98. if (legend_position == "right") {
  99. "vertical"
  100. } else if (legend_position == "bottom") {
  101. "horizontal"
  102. } else {
  103. NULL # No legend direction if position is "none" or other values
  104. },
  105. legend.spacing = unit(0, "cm"),
  106. legend.title = element_text(face = "italic", size = rel(1.3)),
  107. legend.text = element_text(size = rel(1.2)),
  108. plot.margin = unit(c(10, 5, 5, 5), "mm")
  109. )
  110. }
  111. scale_fill_publication <- function(...) {
  112. discrete_scale("fill", "Publication", manual_pal(values = c(
  113. "#386cb0", "#fdb462", "#7fc97f", "#ef3b2c", "#662506",
  114. "#a6cee3", "#fb9a99", "#984ea3", "#ffff33"
  115. )), ...)
  116. }
  117. scale_colour_publication <- function(...) {
  118. discrete_scale("colour", "Publication", manual_pal(values = c(
  119. "#386cb0", "#fdb462", "#7fc97f", "#ef3b2c", "#662506",
  120. "#a6cee3", "#fb9a99", "#984ea3", "#ffff33"
  121. )), ...)
  122. }
  123. # Load the initial dataframe from the easy_results_file
  124. load_and_filter_data <- function(easy_results_file, sd = 3) {
  125. df <- read.delim(easy_results_file, skip = 2, as.is = TRUE, row.names = 1, strip.white = TRUE)
  126. df <- df %>%
  127. filter(!(.[[1]] %in% c("", "Scan"))) %>%
  128. filter(!is.na(ORF) & ORF != "" & !Gene %in% c("BLANK", "Blank", "blank") & Drug != "BMH21") %>%
  129. # Rename columns
  130. rename(L = l, num = Num., AUC = AUC96, scan = Scan, last_bg = LstBackgrd, first_bg = X1stBackgrd) %>%
  131. mutate(
  132. across(c(Col, Row, num, L, K, r, scan, AUC, last_bg, first_bg), as.numeric),
  133. delta_bg = last_bg - first_bg,
  134. delta_bg_tolerance = mean(delta_bg, na.rm = TRUE) + (sd * sd(delta_bg, na.rm = TRUE)),
  135. NG = if_else(L == 0 & !is.na(L), 1, 0),
  136. DB = if_else(delta_bg >= delta_bg_tolerance, 1, 0),
  137. SM = 0,
  138. OrfRep = if_else(ORF == "YDL227C", "YDL227C", OrfRep), # should these be hardcoded?
  139. conc_num = as.numeric(gsub("[^0-9\\.]", "", Conc)),
  140. conc_num_factor = as.numeric(as.factor(conc_num)) - 1, # for legacy purposes
  141. conc_num_factor_factor = as.factor(conc_num)
  142. )
  143. return(df)
  144. }
  145. update_gene_names <- function(df, sgd_gene_list) {
  146. genes <- read.delim(file = sgd_gene_list, quote = "", header = FALSE,
  147. colClasses = c(rep("NULL", 3), rep("character", 2), rep("NULL", 11)))
  148. gene_map <- setNames(genes$V5, genes$V4) # ORF to GeneName mapping
  149. df <- df %>%
  150. mutate(
  151. mapped_genes = gene_map[ORF],
  152. Gene = if_else(is.na(mapped_genes) | OrfRep == "YDL227C", Gene, mapped_genes),
  153. Gene = if_else(Gene == "" | Gene == "OCT1", OrfRep, Gene) # Handle invalid names
  154. )
  155. return(df)
  156. }
  157. calculate_summary_stats <- function(df, variables, group_vars) {
  158. summary_stats <- df %>%
  159. group_by(across(all_of(group_vars))) %>%
  160. summarise(
  161. N = n(),
  162. across(all_of(variables),
  163. list(
  164. mean = ~ mean(.x, na.rm = TRUE),
  165. median = ~ median(.x, na.rm = TRUE),
  166. max = ~ ifelse(all(is.na(.x)), NA, max(.x, na.rm = TRUE)),
  167. min = ~ ifelse(all(is.na(.x)), NA, min(.x, na.rm = TRUE)),
  168. sd = ~ sd(.x, na.rm = TRUE),
  169. se = ~ sd(.x, na.rm = TRUE) / sqrt(n() - 1)
  170. ),
  171. .names = "{.fn}_{.col}"
  172. ),
  173. .groups = "drop"
  174. )
  175. # Create a cleaned version of df that doesn't overlap with summary_stats
  176. df_cleaned <- df %>%
  177. select(-any_of(setdiff(intersect(names(df), names(summary_stats)), group_vars)))
  178. df_joined <- left_join(df_cleaned, summary_stats, by = group_vars)
  179. return(list(summary_stats = summary_stats, df_with_stats = df_joined))
  180. }
  181. calculate_interaction_scores <- function(df, df_bg, group_vars, overlap_threshold = 2) {
  182. max_conc <- max(as.numeric(df$conc_num_factor), na.rm = TRUE)
  183. total_conc_num <- length(unique(df$conc_num))
  184. # Calculate WT statistics from df_bg
  185. wt_stats <- df_bg %>%
  186. filter(conc_num == 0) %>%
  187. summarise(
  188. WT_L = mean(mean_L, na.rm = TRUE),
  189. WT_sd_L = mean(sd_L, na.rm = TRUE),
  190. WT_K = mean(mean_K, na.rm = TRUE),
  191. WT_sd_K = mean(sd_K, na.rm = TRUE),
  192. WT_r = mean(mean_r, na.rm = TRUE),
  193. WT_sd_r = mean(sd_r, na.rm = TRUE),
  194. WT_AUC = mean(mean_AUC, na.rm = TRUE),
  195. WT_sd_AUC = mean(sd_AUC, na.rm = TRUE)
  196. )
  197. # Add WT statistics to df
  198. df <- df %>%
  199. mutate(
  200. WT_L = wt_stats$WT_L,
  201. WT_sd_L = wt_stats$WT_sd_L,
  202. WT_K = wt_stats$WT_K,
  203. WT_sd_K = wt_stats$WT_sd_K,
  204. WT_r = wt_stats$WT_r,
  205. WT_sd_r = wt_stats$WT_sd_r,
  206. WT_AUC = wt_stats$WT_AUC,
  207. WT_sd_AUC = wt_stats$WT_sd_AUC
  208. )
  209. # Compute mean values at zero concentration
  210. mean_L_zero_df <- df %>%
  211. filter(conc_num == 0) %>%
  212. group_by(across(all_of(group_vars))) %>%
  213. summarise(
  214. mean_L_zero = mean(mean_L, na.rm = TRUE),
  215. mean_K_zero = mean(mean_K, na.rm = TRUE),
  216. mean_r_zero = mean(mean_r, na.rm = TRUE),
  217. mean_AUC_zero = mean(mean_AUC, na.rm = TRUE),
  218. .groups = "drop"
  219. )
  220. # Join mean_L_zero_df to df
  221. df <- df %>%
  222. left_join(mean_L_zero_df, by = group_vars)
  223. # Calculate Raw Shifts and Z Shifts
  224. df <- df %>%
  225. mutate(
  226. Raw_Shift_L = mean_L_zero - WT_L,
  227. Raw_Shift_K = mean_K_zero - WT_K,
  228. Raw_Shift_r = mean_r_zero - WT_r,
  229. Raw_Shift_AUC = mean_AUC_zero - WT_AUC,
  230. Z_Shift_L = Raw_Shift_L / WT_sd_L,
  231. Z_Shift_K = Raw_Shift_K / WT_sd_K,
  232. Z_Shift_r = Raw_Shift_r / WT_sd_r,
  233. Z_Shift_AUC = Raw_Shift_AUC / WT_sd_AUC
  234. )
  235. calculations <- df %>%
  236. group_by(across(all_of(group_vars))) %>%
  237. mutate(
  238. NG_sum = sum(NG, na.rm = TRUE),
  239. DB_sum = sum(DB, na.rm = TRUE),
  240. SM_sum = sum(SM, na.rm = TRUE),
  241. num_non_removed_concs = total_conc_num - sum(DB, na.rm = TRUE) - 1,
  242. # Expected values
  243. Exp_L = WT_L + Raw_Shift_L,
  244. Exp_K = WT_K + Raw_Shift_K,
  245. Exp_r = WT_r + Raw_Shift_r,
  246. Exp_AUC = WT_AUC + Raw_Shift_AUC,
  247. # Deltas
  248. Delta_L = mean_L - Exp_L,
  249. Delta_K = mean_K - Exp_K,
  250. Delta_r = mean_r - Exp_r,
  251. Delta_AUC = mean_AUC - Exp_AUC,
  252. # Adjust deltas for NG and SM
  253. Delta_L = if_else(NG == 1, mean_L - WT_L, Delta_L),
  254. Delta_K = if_else(NG == 1, mean_K - WT_K, Delta_K),
  255. Delta_r = if_else(NG == 1, mean_r - WT_r, Delta_r),
  256. Delta_AUC = if_else(NG == 1, mean_AUC - WT_AUC, Delta_AUC),
  257. Delta_L = if_else(SM == 1, mean_L - WT_L, Delta_L),
  258. # Calculate Z-scores
  259. Zscore_L = Delta_L / WT_sd_L,
  260. Zscore_K = Delta_K / WT_sd_K,
  261. Zscore_r = Delta_r / WT_sd_r,
  262. Zscore_AUC = Delta_AUC / WT_sd_AUC
  263. ) %>%
  264. group_modify(~ {
  265. # Perform linear models only if there are enough unique conc_num_factor levels
  266. if (length(unique(.x$conc_num_factor)) > 1) {
  267. # Filter and calculate each lm() separately with individual checks for NAs
  268. lm_L <- if (!all(is.na(.x$Delta_L))) tryCatch(lm(Delta_L ~ conc_num_factor, data = .x), error = function(e) NULL) else NULL
  269. lm_K <- if (!all(is.na(.x$Delta_K))) tryCatch(lm(Delta_K ~ conc_num_factor, data = .x), error = function(e) NULL) else NULL
  270. lm_r <- if (!all(is.na(.x$Delta_r))) tryCatch(lm(Delta_r ~ conc_num_factor, data = .x), error = function(e) NULL) else NULL
  271. lm_AUC <- if (!all(is.na(.x$Delta_AUC))) tryCatch(lm(Delta_AUC ~ conc_num_factor, data = .x), error = function(e) NULL) else NULL
  272. # Mutate results for each lm if it was successfully calculated, suppress warnings for perfect fits
  273. .x %>%
  274. mutate(
  275. lm_intercept_L = if (!is.null(lm_L)) coef(lm_L)[1] else NA,
  276. lm_slope_L = if (!is.null(lm_L)) coef(lm_L)[2] else NA,
  277. R_Squared_L = if (!is.null(lm_L)) suppressWarnings(summary(lm_L)$r.squared) else NA,
  278. lm_Score_L = if (!is.null(lm_L)) max_conc * coef(lm_L)[2] + coef(lm_L)[1] else NA,
  279. lm_intercept_K = if (!is.null(lm_K)) coef(lm_K)[1] else NA,
  280. lm_slope_K = if (!is.null(lm_K)) coef(lm_K)[2] else NA,
  281. R_Squared_K = if (!is.null(lm_K)) suppressWarnings(summary(lm_K)$r.squared) else NA,
  282. lm_Score_K = if (!is.null(lm_K)) max_conc * coef(lm_K)[2] + coef(lm_K)[1] else NA,
  283. lm_intercept_r = if (!is.null(lm_r)) coef(lm_r)[1] else NA,
  284. lm_slope_r = if (!is.null(lm_r)) coef(lm_r)[2] else NA,
  285. R_Squared_r = if (!is.null(lm_r)) suppressWarnings(summary(lm_r)$r.squared) else NA,
  286. lm_Score_r = if (!is.null(lm_r)) max_conc * coef(lm_r)[2] + coef(lm_r)[1] else NA,
  287. lm_intercept_AUC = if (!is.null(lm_AUC)) coef(lm_AUC)[1] else NA,
  288. lm_slope_AUC = if (!is.null(lm_AUC)) coef(lm_AUC)[2] else NA,
  289. R_Squared_AUC = if (!is.null(lm_AUC)) suppressWarnings(summary(lm_AUC)$r.squared) else NA,
  290. lm_Score_AUC = if (!is.null(lm_AUC)) max_conc * coef(lm_AUC)[2] + coef(lm_AUC)[1] else NA
  291. )
  292. } else {
  293. # If not enough conc_num_factor levels, set lm-related values to NA
  294. .x %>%
  295. mutate(
  296. lm_intercept_L = NA, lm_slope_L = NA, R_Squared_L = NA, lm_Score_L = NA,
  297. lm_intercept_K = NA, lm_slope_K = NA, R_Squared_K = NA, lm_Score_K = NA,
  298. lm_intercept_r = NA, lm_slope_r = NA, R_Squared_r = NA, lm_Score_r = NA,
  299. lm_intercept_AUC = NA, lm_slope_AUC = NA, R_Squared_AUC = NA, lm_Score_AUC = NA
  300. )
  301. }
  302. }) %>%
  303. ungroup()
  304. # For interaction plot error bars
  305. delta_means <- calculations %>%
  306. group_by(across(all_of(group_vars))) %>%
  307. summarise(
  308. mean_Delta_L = mean(Delta_L, na.rm = TRUE),
  309. mean_Delta_K = mean(Delta_K, na.rm = TRUE),
  310. mean_Delta_r = mean(Delta_r, na.rm = TRUE),
  311. mean_Delta_AUC = mean(Delta_AUC, na.rm = TRUE),
  312. sd_Delta_L = sd(Delta_L, na.rm = TRUE),
  313. sd_Delta_K = sd(Delta_K, na.rm = TRUE),
  314. sd_Delta_r = sd(Delta_r, na.rm = TRUE),
  315. sd_Delta_AUC = sd(Delta_AUC, na.rm = TRUE),
  316. .groups = "drop"
  317. )
  318. calculations <- calculations %>%
  319. left_join(delta_means, by = group_vars)
  320. # Summary statistics for lm scores
  321. lm_means_sds <- calculations %>%
  322. summarise(
  323. lm_mean_L = mean(lm_Score_L, na.rm = TRUE),
  324. lm_sd_L = sd(lm_Score_L, na.rm = TRUE),
  325. lm_mean_K = mean(lm_Score_K, na.rm = TRUE),
  326. lm_sd_K = sd(lm_Score_K, na.rm = TRUE),
  327. lm_mean_r = mean(lm_Score_r, na.rm = TRUE),
  328. lm_sd_r = sd(lm_Score_r, na.rm = TRUE),
  329. lm_mean_AUC = mean(lm_Score_AUC, na.rm = TRUE),
  330. lm_sd_AUC = sd(lm_Score_AUC, na.rm = TRUE),
  331. .groups = "drop"
  332. )
  333. # Add lm score means and standard deviations to calculations
  334. calculations <- calculations %>%
  335. mutate(
  336. lm_mean_L = lm_means_sds$lm_mean_L,
  337. lm_sd_L = lm_means_sds$lm_sd_L,
  338. lm_mean_K = lm_means_sds$lm_mean_K,
  339. lm_sd_K = lm_means_sds$lm_sd_K,
  340. lm_mean_r = lm_means_sds$lm_mean_r,
  341. lm_sd_r = lm_means_sds$lm_sd_r,
  342. lm_mean_AUC = lm_means_sds$lm_mean_AUC,
  343. lm_sd_AUC = lm_means_sds$lm_sd_AUC
  344. )
  345. # Calculate Z-lm scores
  346. calculations <- calculations %>%
  347. mutate(
  348. Z_lm_L = (lm_Score_L - lm_mean_L) / lm_sd_L,
  349. Z_lm_K = (lm_Score_K - lm_mean_K) / lm_sd_K,
  350. Z_lm_r = (lm_Score_r - lm_mean_r) / lm_sd_r,
  351. Z_lm_AUC = (lm_Score_AUC - lm_mean_AUC) / lm_sd_AUC
  352. )
  353. # Build summary stats (interactions)
  354. interactions <- calculations %>%
  355. group_by(across(all_of(group_vars))) %>%
  356. summarise(
  357. Avg_Zscore_L = sum(Zscore_L, na.rm = TRUE) / first(num_non_removed_concs),
  358. Avg_Zscore_K = sum(Zscore_K, na.rm = TRUE) / first(num_non_removed_concs),
  359. Avg_Zscore_r = sum(Zscore_r, na.rm = TRUE) / (total_conc_num - 1),
  360. Avg_Zscore_AUC = sum(Zscore_AUC, na.rm = TRUE) / (total_conc_num - 1),
  361. # Interaction Z-scores
  362. Z_lm_L = first(Z_lm_L),
  363. Z_lm_K = first(Z_lm_K),
  364. Z_lm_r = first(Z_lm_r),
  365. Z_lm_AUC = first(Z_lm_AUC),
  366. # Raw Shifts
  367. Raw_Shift_L = first(Raw_Shift_L),
  368. Raw_Shift_K = first(Raw_Shift_K),
  369. Raw_Shift_r = first(Raw_Shift_r),
  370. Raw_Shift_AUC = first(Raw_Shift_AUC),
  371. # Z Shifts
  372. Z_Shift_L = first(Z_Shift_L),
  373. Z_Shift_K = first(Z_Shift_K),
  374. Z_Shift_r = first(Z_Shift_r),
  375. Z_Shift_AUC = first(Z_Shift_AUC),
  376. # R Squared values
  377. R_Squared_L = first(R_Squared_L),
  378. R_Squared_K = first(R_Squared_K),
  379. R_Squared_r = first(R_Squared_r),
  380. R_Squared_AUC = first(R_Squared_AUC),
  381. # NG, DB, SM values
  382. NG = first(NG),
  383. DB = first(DB),
  384. SM = first(SM),
  385. .groups = "drop"
  386. )
  387. # Add overlap threshold categories based on Z-lm and Avg-Z scores
  388. interactions <- interactions %>%
  389. filter(!is.na(Z_lm_L)) %>%
  390. mutate(
  391. Overlap = case_when(
  392. Z_lm_L >= overlap_threshold & Avg_Zscore_L >= overlap_threshold ~ "Deletion Enhancer Both",
  393. Z_lm_L <= -overlap_threshold & Avg_Zscore_L <= -overlap_threshold ~ "Deletion Suppressor Both",
  394. Z_lm_L >= overlap_threshold & Avg_Zscore_L <= overlap_threshold ~ "Deletion Enhancer lm only",
  395. Z_lm_L <= overlap_threshold & Avg_Zscore_L >= overlap_threshold ~ "Deletion Enhancer Avg Zscore only",
  396. Z_lm_L <= -overlap_threshold & Avg_Zscore_L >= -overlap_threshold ~ "Deletion Suppressor lm only",
  397. Z_lm_L >= -overlap_threshold & Avg_Zscore_L <= -overlap_threshold ~ "Deletion Suppressor Avg Zscore only",
  398. Z_lm_L >= overlap_threshold & Avg_Zscore_L <= -overlap_threshold ~ "Deletion Enhancer lm, Deletion Suppressor Avg Zscore",
  399. Z_lm_L <= -overlap_threshold & Avg_Zscore_L >= overlap_threshold ~ "Deletion Suppressor lm, Deletion Enhancer Avg Zscore",
  400. TRUE ~ "No Effect"
  401. ),
  402. # For correlations
  403. lm_R_squared_L = if (!all(is.na(Z_lm_L)) && !all(is.na(Avg_Zscore_L))) summary(lm(Z_lm_L ~ Avg_Zscore_L))$r.squared else NA,
  404. lm_R_squared_K = if (!all(is.na(Z_lm_K)) && !all(is.na(Avg_Zscore_K))) summary(lm(Z_lm_K ~ Avg_Zscore_K))$r.squared else NA,
  405. lm_R_squared_r = if (!all(is.na(Z_lm_r)) && !all(is.na(Avg_Zscore_r))) summary(lm(Z_lm_r ~ Avg_Zscore_r))$r.squared else NA,
  406. lm_R_squared_AUC = if (!all(is.na(Z_lm_AUC)) && !all(is.na(Avg_Zscore_AUC))) summary(lm(Z_lm_AUC ~ Avg_Zscore_AUC))$r.squared else NA
  407. )
  408. # Creating the final calculations and interactions dataframes with only required columns for csv output
  409. calculations_df <- calculations %>%
  410. select(
  411. all_of(group_vars),
  412. conc_num, conc_num_factor, conc_num_factor_factor, N,
  413. mean_L, median_L, sd_L, se_L,
  414. mean_K, median_K, sd_K, se_K,
  415. mean_r, median_r, sd_r, se_r,
  416. mean_AUC, median_AUC, sd_AUC, se_AUC,
  417. Raw_Shift_L, Raw_Shift_K, Raw_Shift_r, Raw_Shift_AUC,
  418. Z_Shift_L, Z_Shift_K, Z_Shift_r, Z_Shift_AUC,
  419. WT_L, WT_K, WT_r, WT_AUC,
  420. WT_sd_L, WT_sd_K, WT_sd_r, WT_sd_AUC,
  421. Exp_L, Exp_K, Exp_r, Exp_AUC,
  422. Delta_L, Delta_K, Delta_r, Delta_AUC,
  423. mean_Delta_L, mean_Delta_K, mean_Delta_r, mean_Delta_AUC,
  424. Zscore_L, Zscore_K, Zscore_r, Zscore_AUC
  425. )
  426. interactions_df <- interactions %>%
  427. select(
  428. all_of(group_vars),
  429. NG, DB, SM,
  430. Avg_Zscore_L, Avg_Zscore_K, Avg_Zscore_r, Avg_Zscore_AUC,
  431. Z_lm_L, Z_lm_K, Z_lm_r, Z_lm_AUC,
  432. Raw_Shift_L, Raw_Shift_K, Raw_Shift_r, Raw_Shift_AUC,
  433. Z_Shift_L, Z_Shift_K, Z_Shift_r, Z_Shift_AUC,
  434. lm_R_squared_L, lm_R_squared_K, lm_R_squared_r, lm_R_squared_AUC,
  435. Overlap
  436. )
  437. # Join calculations and interactions to avoid dimension mismatch
  438. calculations_no_overlap <- calculations %>%
  439. select(-any_of(c("DB", "NG", "SM",
  440. "Raw_Shift_L", "Raw_Shift_K", "Raw_Shift_r", "Raw_Shift_AUC",
  441. "Z_Shift_L", "Z_Shift_K", "Z_Shift_r", "Z_Shift_AUC",
  442. "Z_lm_L", "Z_lm_K", "Z_lm_r", "Z_lm_AUC")))
  443. full_data <- calculations_no_overlap %>%
  444. left_join(interactions_df, by = group_vars)
  445. # Return final dataframes
  446. return(list(
  447. calculations = calculations_df,
  448. interactions = interactions_df,
  449. full_data = full_data
  450. ))
  451. }
  452. generate_and_save_plots <- function(out_dir, filename, plot_configs) {
  453. message("Generating ", filename, ".pdf and ", filename, ".html")
  454. # Check if we're dealing with multiple plot groups
  455. plot_groups <- if ("plots" %in% names(plot_configs)) {
  456. list(plot_configs) # Single group
  457. } else {
  458. plot_configs # Multiple groups
  459. }
  460. # Open the PDF device once for all plots
  461. pdf(file.path(out_dir, paste0(filename, ".pdf")), width = 16, height = 9)
  462. # Loop through each plot group
  463. for (group in plot_groups) {
  464. static_plots <- list()
  465. plotly_plots <- list()
  466. # Retrieve grid layout if it exists, otherwise skip
  467. grid_layout <- group$grid_layout
  468. plots <- group$plots
  469. # Only handle grid layout if it exists
  470. if (!is.null(grid_layout)) {
  471. # Set grid_ncol to 1 if not specified
  472. if (is.null(grid_layout$ncol)) {
  473. grid_layout$ncol <- 1
  474. }
  475. # If ncol is set but nrow is not, calculate nrow dynamically based on num_plots
  476. if (!is.null(grid_layout$ncol) && is.null(grid_layout$nrow)) {
  477. num_plots <- length(plots)
  478. nrow <- ceiling(num_plots / grid_layout$ncol)
  479. message("No nrow provided, automatically using nrow = ", nrow)
  480. grid_layout$nrow <- nrow
  481. }
  482. }
  483. for (i in seq_along(plots)) {
  484. config <- plots[[i]]
  485. df <- config$df
  486. # Filter points outside of y-limits if specified
  487. if (!is.null(config$ylim_vals)) {
  488. out_of_bounds_df <- df %>%
  489. filter(
  490. is.na(.data[[config$y_var]]) |
  491. .data[[config$y_var]] < config$ylim_vals[1] |
  492. .data[[config$y_var]] > config$ylim_vals[2]
  493. )
  494. # Print rows being filtered out
  495. if (nrow(out_of_bounds_df) > 0) {
  496. message("# of filtered rows outside y-limits (for plotting): ", nrow(out_of_bounds_df))
  497. # print(out_of_bounds_df)
  498. }
  499. # Filter the valid data for plotting
  500. df <- df %>%
  501. filter(
  502. !is.na(.data[[config$y_var]]) &
  503. .data[[config$y_var]] >= config$ylim_vals[1] &
  504. .data[[config$y_var]] <= config$ylim_vals[2]
  505. )
  506. }
  507. # Set up aes mapping based on plot type
  508. aes_mapping <- if (config$plot_type == "bar") {
  509. if (!is.null(config$color_var)) {
  510. aes(x = .data[[config$x_var]], fill = .data[[config$color_var]], color = .data[[config$color_var]])
  511. } else {
  512. aes(x = .data[[config$x_var]])
  513. }
  514. } else if (config$plot_type == "density") {
  515. if (!is.null(config$color_var)) {
  516. aes(x = .data[[config$x_var]], color = .data[[config$color_var]])
  517. } else {
  518. aes(x = .data[[config$x_var]])
  519. }
  520. } else {
  521. if (!is.null(config$y_var) && !is.null(config$color_var)) {
  522. aes(x = .data[[config$x_var]], y = .data[[config$y_var]], color = .data[[config$color_var]])
  523. } else if (!is.null(config$y_var)) {
  524. aes(x = .data[[config$x_var]], y = .data[[config$y_var]])
  525. } else {
  526. aes(x = .data[[config$x_var]])
  527. }
  528. }
  529. plot <- ggplot(df, aes_mapping) + theme_publication(legend_position = config$legend_position)
  530. # Add appropriate plot layer based on plot type
  531. plot <- switch(config$plot_type,
  532. "scatter" = generate_scatter_plot(plot, config),
  533. "box" = generate_boxplot(plot, config),
  534. "density" = plot + geom_density(),
  535. "bar" = plot + geom_bar(),
  536. plot # default (unused)
  537. )
  538. # Add labels and title
  539. if (!is.null(config$title)) plot <- plot + ggtitle(config$title)
  540. if (!is.null(config$x_label)) plot <- plot + xlab(config$x_label)
  541. if (!is.null(config$y_label)) plot <- plot + ylab(config$y_label)
  542. if (!is.null(config$coord_cartesian)) plot <- plot + coord_cartesian(ylim = config$coord_cartesian)
  543. # Add annotations if specified
  544. if (!is.null(config$annotations)) {
  545. for (annotation in config$annotations) {
  546. plot <- plot +
  547. annotate(
  548. "text",
  549. x = ifelse(is.null(annotation$x), 0, annotation$x),
  550. y = ifelse(is.null(annotation$y), Inf, annotation$y),
  551. label = annotation$label,
  552. hjust = ifelse(is.null(annotation$hjust), 0.5, annotation$hjust),
  553. vjust = ifelse(is.null(annotation$vjust), 1, annotation$vjust),
  554. size = ifelse(is.null(annotation$size), 3, annotation$size),
  555. color = ifelse(is.null(annotation$color), "black", annotation$color)
  556. )
  557. }
  558. }
  559. # Add error bars if specified
  560. if (!is.null(config$error_bar) && config$error_bar) {
  561. y_mean_col <- paste0("mean_", config$y_var)
  562. y_sd_col <- paste0("sd_", config$y_var)
  563. # If color_var is provided and no fixed error bar color is set, use aes() to map color dynamically
  564. if (!is.null(config$color_var) && is.null(config$error_bar_params$color)) {
  565. plot <- plot + geom_errorbar(
  566. aes(
  567. x = .data[[config$x_var]],
  568. ymin = .data[[y_mean_col]] - .data[[y_sd_col]],
  569. ymax = .data[[y_mean_col]] + .data[[y_sd_col]],
  570. color = .data[[config$color_var]] # Dynamic color from the data
  571. )
  572. )
  573. } else {
  574. # If a fixed error bar color is set, use it outside aes
  575. plot <- plot + geom_errorbar(
  576. aes(
  577. x = .data[[config$x_var]],
  578. ymin = .data[[y_mean_col]] - .data[[y_sd_col]],
  579. ymax = .data[[y_mean_col]] + .data[[y_sd_col]]
  580. ),
  581. color = config$error_bar_params$color # Fixed color
  582. )
  583. }
  584. }
  585. # Convert ggplot to plotly for interactive version
  586. # plotly_plot <- suppressWarnings(plotly::ggplotly(plot))
  587. # Store both static and interactive versions
  588. static_plots[[i]] <- plot
  589. # plotly_plots[[i]] <- plotly_plot
  590. }
  591. # Print the plots in the current group to the PDF
  592. if (is.null(grid_layout)) {
  593. # Print each plot individually on separate pages if no grid layout is specified
  594. for (plot in static_plots) {
  595. print(plot)
  596. }
  597. } else {
  598. # Arrange plots in grid layout on a single page
  599. grid.arrange(
  600. grobs = static_plots,
  601. ncol = grid_layout$ncol,
  602. nrow = grid_layout$nrow
  603. )
  604. }
  605. }
  606. # Close the PDF device after all plots are done
  607. dev.off()
  608. # Save HTML file with interactive plots if needed
  609. out_html_file <- file.path(out_dir, paste0(filename, ".html"))
  610. message("Saving combined HTML file: ", out_html_file)
  611. htmltools::save_html(
  612. htmltools::tagList(plotly_plots),
  613. file = out_html_file
  614. )
  615. }
  616. generate_scatter_plot <- function(plot, config) {
  617. # Define the points
  618. shape <- if (!is.null(config$shape)) config$shape else 3
  619. size <- if (!is.null(config$size)) config$size else 1.5
  620. position <-
  621. if (!is.null(config$position) && config$position == "jitter") {
  622. position_jitter(width = 0.4, height = 0.1)
  623. } else {
  624. "identity"
  625. }
  626. plot <- plot + geom_point(
  627. shape = shape,
  628. size = size,
  629. position = position
  630. )
  631. if (!is.null(config$cyan_points) && config$cyan_points) {
  632. plot <- plot + geom_point(
  633. aes(x = .data[[config$x_var]], y = .data[[config$y_var]]),
  634. color = "cyan",
  635. shape = 3,
  636. size = 0.5
  637. )
  638. }
  639. # Add Smooth Line if specified
  640. if (!is.null(config$smooth) && config$smooth) {
  641. smooth_color <- if (!is.null(config$smooth_color)) config$smooth_color else "blue"
  642. if (!is.null(config$lm_line)) {
  643. plot <- plot +
  644. geom_abline(
  645. intercept = config$lm_line$intercept,
  646. slope = config$lm_line$slope,
  647. color = smooth_color
  648. )
  649. } else {
  650. plot <- plot +
  651. geom_smooth(
  652. method = "lm",
  653. se = FALSE,
  654. color = smooth_color
  655. )
  656. }
  657. }
  658. # Add SD Bands if specified
  659. if (!is.null(config$sd_band)) {
  660. plot <- plot +
  661. annotate(
  662. "rect",
  663. xmin = -Inf, xmax = Inf,
  664. ymin = config$sd_band, ymax = Inf,
  665. fill = ifelse(!is.null(config$fill_positive), config$fill_positive, "#542788"),
  666. alpha = ifelse(!is.null(config$alpha_positive), config$alpha_positive, 0.3)
  667. ) +
  668. annotate(
  669. "rect",
  670. xmin = -Inf, xmax = Inf,
  671. ymin = -config$sd_band, ymax = -Inf,
  672. fill = ifelse(!is.null(config$fill_negative), config$fill_negative, "orange"),
  673. alpha = ifelse(!is.null(config$alpha_negative), config$alpha_negative, 0.3)
  674. ) +
  675. geom_hline(
  676. yintercept = c(-config$sd_band, config$sd_band),
  677. color = ifelse(!is.null(config$hl_color), config$hl_color, "gray")
  678. )
  679. }
  680. # Add Rectangles if specified
  681. if (!is.null(config$rectangles)) {
  682. for (rect in config$rectangles) {
  683. plot <- plot + annotate(
  684. "rect",
  685. xmin = rect$xmin,
  686. xmax = rect$xmax,
  687. ymin = rect$ymin,
  688. ymax = rect$ymax,
  689. fill = ifelse(is.null(rect$fill), NA, rect$fill),
  690. color = ifelse(is.null(rect$color), "black", rect$color),
  691. alpha = ifelse(is.null(rect$alpha), 0.1, rect$alpha)
  692. )
  693. }
  694. }
  695. # Customize X-axis if specified
  696. if (!is.null(config$x_breaks) && !is.null(config$x_labels) && !is.null(config$x_label)) {
  697. # Check if x_var is factor or character (for discrete x-axis)
  698. if (is.factor(plot$data[[config$x_var]]) || is.character(plot$data[[config$x_var]])) {
  699. plot <- plot +
  700. scale_x_discrete(
  701. name = config$x_label,
  702. breaks = config$x_breaks,
  703. labels = config$x_labels
  704. )
  705. } else {
  706. plot <- plot +
  707. scale_x_continuous(
  708. name = config$x_label,
  709. breaks = config$x_breaks,
  710. labels = config$x_labels
  711. )
  712. }
  713. }
  714. # Set Y-axis limits if specified
  715. if (!is.null(config$ylim_vals)) {
  716. plot <- plot + scale_y_continuous(limits = config$ylim_vals)
  717. }
  718. return(plot)
  719. }
  720. generate_boxplot <- function(plot, config) {
  721. # Convert x_var to a factor within aes mapping
  722. plot <- plot + geom_boxplot(aes(x = factor(.data[[config$x_var]])))
  723. # Customize X-axis if specified
  724. if (!is.null(config$x_breaks) && !is.null(config$x_labels) && !is.null(config$x_label)) {
  725. # Check if x_var is factor or character (for discrete x-axis)
  726. if (is.factor(plot$data[[config$x_var]]) || is.character(plot$data[[config$x_var]])) {
  727. plot <- plot +
  728. scale_x_discrete(
  729. name = config$x_label,
  730. breaks = config$x_breaks,
  731. labels = config$x_labels
  732. )
  733. } else {
  734. plot <- plot +
  735. scale_x_continuous(
  736. name = config$x_label,
  737. breaks = config$x_breaks,
  738. labels = config$x_labels
  739. )
  740. }
  741. }
  742. return(plot)
  743. }
  744. generate_plate_analysis_plot_configs <- function(variables, df_before = NULL, df_after = NULL,
  745. plot_type = "scatter", stages = c("before", "after")) {
  746. plot_configs <- list()
  747. for (var in variables) {
  748. for (stage in stages) {
  749. df_plot <- if (stage == "before") df_before else df_after
  750. # Check for non-finite values in the y-variable
  751. df_plot_filtered <- df_plot %>% filter(is.finite(!!sym(var)))
  752. # Adjust settings based on plot_type
  753. plot_config <- list(
  754. df = df_plot_filtered,
  755. x_var = "scan",
  756. y_var = var,
  757. plot_type = plot_type,
  758. title = paste("Plate analysis by Drug Conc for", var, stage, "quality control"),
  759. color_var = "conc_num_factor_factor",
  760. size = 0.2,
  761. error_bar = (plot_type == "scatter"),
  762. legend_position = "bottom"
  763. )
  764. # Add config to plots list
  765. plot_configs <- append(plot_configs, list(plot_config))
  766. }
  767. }
  768. return(list(plots = plot_configs))
  769. }
  770. generate_interaction_plot_configs <- function(df, type) {
  771. # Define the y-limits for the plots
  772. limits_map <- list(
  773. L = c(0, 130),
  774. K = c(-20, 160),
  775. r = c(0, 1),
  776. AUC = c(0, 12500)
  777. )
  778. stats_plot_configs <- list()
  779. stats_boxplot_configs <- list()
  780. delta_plot_configs <- list()
  781. # Overall statistics plots
  782. OrfRep <- first(df$OrfRep) # this should correspond to the reference strain
  783. for (plot_type in c("scatter", "box")) {
  784. for (var in names(limits_map)) {
  785. y_limits <- limits_map[[var]]
  786. y_span <- y_limits[2] - y_limits[1]
  787. # Common plot configuration
  788. plot_config <- list(
  789. df = df,
  790. plot_type = plot_type,
  791. x_var = "conc_num_factor_factor",
  792. y_var = var,
  793. shape = 16,
  794. x_label = unique(df$Drug)[1],
  795. coord_cartesian = y_limits,
  796. x_breaks = unique(df$conc_num_factor_factor),
  797. x_labels = as.character(unique(df$conc_num))
  798. )
  799. # Add specific configurations for scatter and box plots
  800. if (plot_type == "scatter") {
  801. plot_config$title <- sprintf("%s Scatter RF for %s with SD", OrfRep, var)
  802. plot_config$error_bar <- TRUE
  803. plot_config$error_bar_params <- list(
  804. color = "red",
  805. center_point = TRUE
  806. )
  807. plot_config$position <- "jitter"
  808. annotations <- list(
  809. list(x = 0.25, y = y_limits[1] + 0.1 * y_span, label = " NG:"),
  810. list(x = 0.25, y = y_limits[1] + 0.05 * y_span, label = " DB:"),
  811. list(x = 0.25, y = y_limits[1], label = " SM:")
  812. )
  813. # Loop over unique x values and add NG, DB, SM values at calculated y positions
  814. for (x_val in unique(df$conc_num_factor_factor)) {
  815. current_df <- df %>% filter(.data[[plot_config$x_var]] == x_val)
  816. annotations <- append(annotations, list(
  817. list(x = x_val, y = y_limits[1] + 0.1 * y_span, label = first(current_df$NG, default = 0)),
  818. list(x = x_val, y = y_limits[1] + 0.05 * y_span, label = first(current_df$DB, default = 0)),
  819. list(x = x_val, y = y_limits[1], label = first(current_df$SM, default = 0))
  820. ))
  821. }
  822. plot_config$annotations <- annotations
  823. stats_plot_configs <- append(stats_plot_configs, list(plot_config))
  824. } else if (plot_type == "box") {
  825. plot_config$title <- sprintf("%s Boxplot RF for %s with SD", OrfRep, var)
  826. plot_config$position <- "dodge" # Boxplots don't need jitter, use dodge instead
  827. # Append to boxplot configurations
  828. stats_boxplot_configs <- append(stats_boxplot_configs, list(plot_config))
  829. }
  830. }
  831. }
  832. # Delta interaction plots
  833. if (type == "reference") {
  834. group_vars <- c("OrfRep", "Gene", "num")
  835. } else if (type == "deletion") {
  836. group_vars <- c("OrfRep", "Gene")
  837. }
  838. delta_limits_map <- list(
  839. L = c(-60, 60),
  840. K = c(-60, 60),
  841. r = c(-0.6, 0.6),
  842. AUC = c(-6000, 6000)
  843. )
  844. grouped_data <- df %>%
  845. group_by(across(all_of(group_vars))) %>%
  846. group_split()
  847. for (group_data in grouped_data) {
  848. OrfRep <- first(group_data$OrfRep)
  849. Gene <- first(group_data$Gene)
  850. num <- if ("num" %in% names(group_data)) first(group_data$num) else ""
  851. if (type == "reference") {
  852. OrfRepTitle <- paste(OrfRep, Gene, num, sep = "_")
  853. } else if (type == "deletion") {
  854. OrfRepTitle <- OrfRep
  855. }
  856. for (var in names(delta_limits_map)) {
  857. y_limits <- delta_limits_map[[var]]
  858. y_span <- y_limits[2] - y_limits[1]
  859. # Error bars
  860. WT_sd_value <- first(group_data[[paste0("WT_sd_", var)]], default = 0)
  861. # Z_Shift and lm values
  862. Z_Shift_value <- round(first(group_data[[paste0("Z_Shift_", var)]], default = 0), 2)
  863. Z_lm_value <- round(first(group_data[[paste0("Z_lm_", var)]], default = 0), 2)
  864. R_squared_value <- round(first(group_data[[paste0("R_Squared_", var)]], default = 0), 2)
  865. # NG, DB, SM values
  866. NG_value <- first(group_data$NG, default = 0)
  867. DB_value <- first(group_data$DB, default = 0)
  868. SM_value <- first(group_data$SM, default = 0)
  869. # Use the pre-calculated lm intercept and slope from the dataframe
  870. lm_intercept_col <- paste0("lm_intercept_", var)
  871. lm_slope_col <- paste0("lm_slope_", var)
  872. lm_intercept_value <- first(group_data[[lm_intercept_col]], default = 0)
  873. lm_slope_value <- first(group_data[[lm_slope_col]], default = 0)
  874. plot_config <- list(
  875. df = group_data,
  876. plot_type = "scatter",
  877. x_var = "conc_num_factor_factor",
  878. y_var = paste0("Delta_", var),
  879. x_label = unique(group_data$Drug)[1],
  880. title = paste(OrfRepTitle, Gene, num, sep = " "),
  881. coord_cartesian = y_limits,
  882. annotations = list(
  883. list(x = 1, y = y_limits[2] - 0.2 * y_span, label = paste("ZShift =", Z_Shift_value)),
  884. list(x = 1, y = y_limits[2] - 0.3 * y_span, label = paste("lm ZScore =", Z_lm_value)),
  885. list(x = 1, y = y_limits[2] - 0.4 * y_span, label = paste("R-squared =", R_squared_value)),
  886. list(x = 1, y = y_limits[1] + 0.2 * y_span, label = paste("NG =", NG_value)),
  887. list(x = 1, y = y_limits[1] + 0.1 * y_span, label = paste("DB =", DB_value)),
  888. list(x = 1, y = y_limits[1], label = paste("SM =", SM_value))
  889. ),
  890. error_bar = TRUE,
  891. error_bar_params = list(
  892. ymin = 0 - (2 * WT_sd_value),
  893. ymax = 0 + (2 * WT_sd_value),
  894. color = "black"
  895. ),
  896. smooth = TRUE,
  897. x_breaks = unique(group_data$conc_num_factor_factor),
  898. x_labels = as.character(unique(group_data$conc_num)),
  899. ylim_vals = y_limits,
  900. y_filter = FALSE,
  901. lm_line = list(
  902. intercept = lm_intercept_value,
  903. slope = lm_slope_value
  904. )
  905. )
  906. delta_plot_configs <- append(delta_plot_configs, list(plot_config))
  907. }
  908. }
  909. # Return plot configs
  910. return(list(
  911. list(grid_layout = list(ncol = 2), plots = stats_plot_configs),
  912. list(grid_layout = list(ncol = 2), plots = stats_boxplot_configs),
  913. list(grid_layout = list(ncol = 4), plots = delta_plot_configs) # nrow calculated dynamically
  914. ))
  915. }
  916. generate_rank_plot_configs <- function(df, is_lm = FALSE, adjust = FALSE, overlap_color = FALSE) {
  917. sd_bands <- c(1, 2, 3)
  918. plot_configs <- list()
  919. variables <- c("L", "K")
  920. # Adjust (if necessary) and rank columns
  921. for (variable in variables) {
  922. if (adjust) {
  923. df[[paste0("Avg_Zscore_", variable)]] <- ifelse(is.na(df[[paste0("Avg_Zscore_", variable)]]), 0.001, df[[paste0("Avg_Zscore_", variable)]])
  924. df[[paste0("Z_lm_", variable)]] <- ifelse(is.na(df[[paste0("Z_lm_", variable)]]), 0.001, df[[paste0("Z_lm_", variable)]])
  925. }
  926. df[[paste0("Rank_", variable)]] <- rank(df[[paste0("Avg_Zscore_", variable)]], na.last = "keep")
  927. df[[paste0("Rank_lm_", variable)]] <- rank(df[[paste0("Z_lm_", variable)]], na.last = "keep")
  928. }
  929. # Helper function to create a plot configuration
  930. create_plot_config <- function(variable, rank_var, zscore_var, y_label, sd_band, with_annotations = TRUE) {
  931. num_enhancers <- sum(df[[zscore_var]] >= sd_band, na.rm = TRUE)
  932. num_suppressors <- sum(df[[zscore_var]] <= -sd_band, na.rm = TRUE)
  933. # Default plot config
  934. plot_config <- list(
  935. df = df,
  936. x_var = rank_var,
  937. y_var = zscore_var,
  938. plot_type = "scatter",
  939. title = paste(y_label, "vs. Rank for", variable, "above", sd_band),
  940. sd_band = sd_band,
  941. fill_positive = "#542788",
  942. fill_negative = "orange",
  943. alpha_positive = 0.3,
  944. alpha_negative = 0.3,
  945. annotations = NULL,
  946. shape = 3,
  947. size = 0.1,
  948. y_label = y_label,
  949. x_label = "Rank",
  950. legend_position = "none"
  951. )
  952. if (with_annotations) {
  953. # Add specific annotations for plots with annotations
  954. plot_config$annotations <- list(
  955. list(
  956. x = median(df[[rank_var]], na.rm = TRUE),
  957. y = max(df[[zscore_var]], na.rm = TRUE) * 0.9,
  958. label = paste("Deletion Enhancers =", num_enhancers)
  959. ),
  960. list(
  961. x = median(df[[rank_var]], na.rm = TRUE),
  962. y = min(df[[zscore_var]], na.rm = TRUE) * 0.9,
  963. label = paste("Deletion Suppressors =", num_suppressors)
  964. )
  965. )
  966. }
  967. return(plot_config)
  968. }
  969. # Generate plots for each variable
  970. for (variable in variables) {
  971. rank_var <- if (is_lm) paste0("Rank_lm_", variable) else paste0("Rank_", variable)
  972. zscore_var <- if (is_lm) paste0("Z_lm_", variable) else paste0("Avg_Zscore_", variable)
  973. y_label <- if (is_lm) paste("Int Z score", variable) else paste("Avg Z score", variable)
  974. # Loop through SD bands
  975. for (sd_band in sd_bands) {
  976. # Create plot with annotations
  977. plot_configs[[length(plot_configs) + 1]] <- create_plot_config(variable, rank_var, zscore_var, y_label, sd_band, with_annotations = TRUE)
  978. # Create plot without annotations
  979. plot_configs[[length(plot_configs) + 1]] <- create_plot_config(variable, rank_var, zscore_var, y_label, sd_band, with_annotations = FALSE)
  980. }
  981. }
  982. # Calculate dynamic grid layout based on the number of plots
  983. grid_ncol <- 3
  984. num_plots <- length(plot_configs)
  985. grid_nrow <- ceiling(num_plots / grid_ncol) # Automatically calculate the number of rows
  986. return(list(grid_layout = list(ncol = grid_ncol, nrow = grid_nrow), plots = plot_configs))
  987. }
  988. generate_correlation_plot_configs <- function(df, correlation_stats) {
  989. # Define relationships for different-variable correlations
  990. relationships <- list(
  991. list(x = "L", y = "K"),
  992. list(x = "L", y = "r"),
  993. list(x = "L", y = "AUC"),
  994. list(x = "K", y = "r"),
  995. list(x = "K", y = "AUC"),
  996. list(x = "r", y = "AUC")
  997. )
  998. plot_configs <- list()
  999. # Iterate over the option to highlight cyan points (TRUE/FALSE)
  1000. highlight_cyan_options <- c(FALSE, TRUE)
  1001. for (highlight_cyan in highlight_cyan_options) {
  1002. for (rel in relationships) {
  1003. # Extract relevant variable names for Z_lm values
  1004. x_var <- paste0("Z_lm_", rel$x)
  1005. y_var <- paste0("Z_lm_", rel$y)
  1006. # Access the correlation statistics from the correlation_stats list
  1007. relationship_name <- paste0(rel$x, "_vs_", rel$y) # Example: L_vs_K
  1008. stats <- correlation_stats[[relationship_name]]
  1009. intercept <- stats$intercept
  1010. slope <- stats$slope
  1011. r_squared <- stats$r_squared
  1012. # Generate the label for the plot
  1013. plot_label <- paste("Interaction", rel$x, "vs.", rel$y)
  1014. # Construct plot config
  1015. plot_config <- list(
  1016. df = df,
  1017. x_var = x_var,
  1018. y_var = y_var,
  1019. plot_type = "scatter",
  1020. title = plot_label,
  1021. annotations = list(
  1022. list(
  1023. x = mean(df[[x_var]], na.rm = TRUE),
  1024. y = mean(df[[y_var]], na.rm = TRUE),
  1025. label = paste("R-squared =", round(r_squared, 3))
  1026. )
  1027. ),
  1028. smooth = TRUE,
  1029. smooth_color = "tomato3",
  1030. lm_line = list(
  1031. intercept = intercept,
  1032. slope = slope
  1033. ),
  1034. shape = 3,
  1035. size = 0.5,
  1036. color_var = "Overlap",
  1037. cyan_points = highlight_cyan # Include cyan points or not based on the loop
  1038. )
  1039. plot_configs <- append(plot_configs, list(plot_config))
  1040. }
  1041. }
  1042. return(list(plots = plot_configs))
  1043. }
  1044. main <- function() {
  1045. lapply(names(args$experiments), function(exp_name) {
  1046. exp <- args$experiments[[exp_name]]
  1047. exp_path <- exp$path
  1048. exp_sd <- exp$sd
  1049. out_dir <- file.path(exp_path, "zscores")
  1050. out_dir_qc <- file.path(exp_path, "zscores", "qc")
  1051. dir.create(out_dir, recursive = TRUE, showWarnings = FALSE)
  1052. dir.create(out_dir_qc, recursive = TRUE, showWarnings = FALSE)
  1053. # Each list of plots corresponds to a separate file
  1054. message("Loading and filtering data for experiment: ", exp_name)
  1055. df <- load_and_filter_data(args$easy_results_file, sd = exp_sd) %>%
  1056. update_gene_names(args$sgd_gene_list) %>%
  1057. as_tibble()
  1058. l_vs_k_plot_configs <- list(
  1059. plots = list(
  1060. list(
  1061. df = df,
  1062. x_var = "L",
  1063. y_var = "K",
  1064. plot_type = "scatter",
  1065. tooltip_vars = c("OrfRep", "Gene", "delta_bg"),
  1066. title = "Raw L vs K before quality control",
  1067. color_var = "conc_num_factor_factor",
  1068. error_bar = FALSE,
  1069. legend_position = "right"
  1070. )
  1071. )
  1072. )
  1073. message("Calculating summary statistics before quality control")
  1074. df_stats <- calculate_summary_stats(
  1075. df = df,
  1076. variables = c("L", "K", "r", "AUC", "delta_bg"),
  1077. group_vars = c("conc_num"))$df_with_stats
  1078. frequency_delta_bg_plot_configs <- list(
  1079. plots = list(
  1080. list(
  1081. df = df_stats,
  1082. x_var = "delta_bg",
  1083. y_var = NULL,
  1084. plot_type = "density",
  1085. title = "Density plot for Delta Background by [Drug] (All Data)",
  1086. color_var = "conc_num_factor_factor",
  1087. x_label = "Delta Background",
  1088. y_label = "Density",
  1089. error_bar = FALSE,
  1090. legend_position = "right"
  1091. ),
  1092. list(
  1093. df = df_stats,
  1094. x_var = "delta_bg",
  1095. y_var = NULL,
  1096. plot_type = "bar",
  1097. title = "Bar plot for Delta Background by [Drug] (All Data)",
  1098. color_var = "conc_num_factor_factor",
  1099. x_label = "Delta Background",
  1100. y_label = "Count",
  1101. error_bar = FALSE,
  1102. legend_position = "right"
  1103. )
  1104. )
  1105. )
  1106. message("Filtering rows above delta background tolerance for plotting")
  1107. df_above_tolerance <- df %>% filter(DB == 1)
  1108. above_threshold_plot_configs <- list(
  1109. plots = list(
  1110. list(
  1111. df = df_above_tolerance,
  1112. x_var = "L",
  1113. y_var = "K",
  1114. plot_type = "scatter",
  1115. tooltip_vars = c("OrfRep", "Gene", "delta_bg"),
  1116. title = paste("Raw L vs K for strains above Delta Background threshold of",
  1117. round(df_above_tolerance$delta_bg_tolerance[[1]], 3), "or above"),
  1118. color_var = "conc_num_factor_factor",
  1119. position = "jitter",
  1120. annotations = list(
  1121. list(
  1122. x = median(df_above_tolerance$L, na.rm = TRUE) / 2,
  1123. y = median(df_above_tolerance$K, na.rm = TRUE) / 2,
  1124. label = paste("# strains above Delta Background tolerance =", nrow(df_above_tolerance))
  1125. )
  1126. ),
  1127. error_bar = FALSE,
  1128. legend_position = "right"
  1129. )
  1130. )
  1131. )
  1132. message("Setting rows above delta background tolerance to NA")
  1133. df_na <- df %>% mutate(across(all_of(c("L", "K", "r", "AUC", "delta_bg")), ~ ifelse(DB == 1, NA, .))) # formerly X
  1134. message("Calculating summary statistics across all strains")
  1135. ss <- calculate_summary_stats(
  1136. df = df_na,
  1137. variables = c("L", "K", "r", "AUC", "delta_bg"),
  1138. group_vars = c("conc_num"))
  1139. df_na_ss <- ss$summary_stats
  1140. df_na_stats <- ss$df_with_stats # formerly X_stats_ALL
  1141. write.csv(df_na_ss, file = file.path(out_dir, "summary_stats_all_strains.csv"), row.names = FALSE)
  1142. # This can help bypass missing values ggplot warnings during testing
  1143. df_na_stats_filtered <- df_na_stats %>% filter(if_all(all_of(c("L", "K", "r", "AUC", "delta_bg")), is.finite))
  1144. message("Calculating summary statistics excluding zero values")
  1145. df_no_zeros <- df_na %>% filter(L > 0) # formerly X_noZero
  1146. df_no_zeros_stats <- calculate_summary_stats(
  1147. df = df_no_zeros,
  1148. variables = c("L", "K", "r", "AUC", "delta_bg"),
  1149. group_vars = c("conc_num")
  1150. )$df_with_stats
  1151. message("Filtering by 2SD of K")
  1152. df_na_within_2sd_k <- df_na_stats %>%
  1153. filter(K >= (mean_K - 2 * sd_K) & K <= (mean_K + 2 * sd_K))
  1154. df_na_outside_2sd_k <- df_na_stats %>%
  1155. filter(K < (mean_K - 2 * sd_K) | K > (mean_K + 2 * sd_K))
  1156. message("Calculating summary statistics for L within 2SD of K")
  1157. # TODO We're omitting the original z_max calculation, not sure if needed?
  1158. ss <- calculate_summary_stats(df_na_within_2sd_k, "L",
  1159. group_vars = c("conc_num"))$summary_stats
  1160. write.csv(ss,
  1161. file = file.path(out_dir_qc, "max_observed_L_vals_for_spots_within_2SD_K.csv"),
  1162. row.names = FALSE)
  1163. message("Calculating summary statistics for L outside 2SD of K")
  1164. ss <- calculate_summary_stats(df_na_outside_2sd_k, "L", group_vars = c("conc_num"))
  1165. df_na_l_outside_2sd_k_stats <- ss$df_with_stats
  1166. write.csv(ss$summary_stats,
  1167. file = file.path(out_dir, "max_observed_L_vals_for_spots_outside_2SD_K.csv"),
  1168. row.names = FALSE)
  1169. plate_analysis_plot_configs <- generate_plate_analysis_plot_configs(
  1170. variables = c("L", "K", "r", "AUC", "delta_bg"),
  1171. df_before = df_stats,
  1172. df_after = df_na_stats_filtered
  1173. )
  1174. plate_analysis_boxplot_configs <- generate_plate_analysis_plot_configs(
  1175. variables = c("L", "K", "r", "AUC", "delta_bg"),
  1176. df_before = df_stats,
  1177. df_after = df_na_stats_filtered,
  1178. plot_type = "box"
  1179. )
  1180. plate_analysis_no_zeros_plot_configs <- generate_plate_analysis_plot_configs(
  1181. variables = c("L", "K", "r", "AUC", "delta_bg"),
  1182. stages = c("after"), # Only after QC
  1183. df_after = df_no_zeros_stats
  1184. )
  1185. plate_analysis_no_zeros_boxplot_configs <- generate_plate_analysis_plot_configs(
  1186. variables = c("L", "K", "r", "AUC", "delta_bg"),
  1187. stages = c("after"), # Only after QC
  1188. df_after = df_no_zeros_stats,
  1189. plot_type = "box"
  1190. )
  1191. l_outside_2sd_k_plot_configs <- list(
  1192. plots = list(
  1193. list(
  1194. df = df_na_l_outside_2sd_k_stats,
  1195. x_var = "L",
  1196. y_var = "K",
  1197. plot_type = "scatter",
  1198. title = "Raw L vs K for strains falling outside 2SD of the K mean at each Conc",
  1199. color_var = "conc_num_factor_factor",
  1200. position = "jitter",
  1201. tooltip_vars = c("OrfRep", "Gene", "delta_bg"),
  1202. annotations = list(
  1203. list(
  1204. x = median(df_na_l_outside_2sd_k_stats$L, na.rm = TRUE) / 2,
  1205. y = median(df_na_l_outside_2sd_k_stats$K, na.rm = TRUE) / 2,
  1206. label = paste("Total strains:", nrow(df_na_l_outside_2sd_k_stats))
  1207. )
  1208. ),
  1209. error_bar = FALSE,
  1210. legend_position = "right"
  1211. )
  1212. )
  1213. )
  1214. delta_bg_outside_2sd_k_plot_configs <- list(
  1215. plots = list(
  1216. list(
  1217. df = df_na_l_outside_2sd_k_stats,
  1218. x_var = "delta_bg",
  1219. x_label = "Delta Background",
  1220. y_var = "K",
  1221. plot_type = "scatter",
  1222. title = "Delta Background vs K for strains falling outside 2SD of the K mean at each Conc",
  1223. color_var = "conc_num_factor_factor",
  1224. position = "jitter",
  1225. tooltip_vars = c("OrfRep", "Gene", "delta_bg"),
  1226. annotations = list(
  1227. list(
  1228. x = 0.05,
  1229. y = 0.95,
  1230. hjust = 0,
  1231. vjust = 1,
  1232. label = paste("Total strains:", nrow(df_na_l_outside_2sd_k_stats)),
  1233. size = 5
  1234. )
  1235. ),
  1236. error_bar = FALSE,
  1237. legend_position = "right"
  1238. )
  1239. )
  1240. )
  1241. message("Generating quality control plots in parallel")
  1242. # future::plan(future::multicore, workers = parallel::detectCores())
  1243. future::plan(future::multisession, workers = 3) # generate 3 plots in parallel
  1244. plot_configs <- list(
  1245. list(out_dir = out_dir_qc, filename = "L_vs_K_before_quality_control",
  1246. plot_configs = l_vs_k_plot_configs),
  1247. list(out_dir = out_dir_qc, filename = "frequency_delta_background",
  1248. plot_configs = frequency_delta_bg_plot_configs),
  1249. list(out_dir = out_dir_qc, filename = "L_vs_K_above_threshold",
  1250. plot_configs = above_threshold_plot_configs),
  1251. list(out_dir = out_dir_qc, filename = "plate_analysis",
  1252. plot_configs = plate_analysis_plot_configs),
  1253. list(out_dir = out_dir_qc, filename = "plate_analysis_boxplots",
  1254. plot_configs = plate_analysis_boxplot_configs),
  1255. list(out_dir = out_dir_qc, filename = "plate_analysis_no_zeros",
  1256. plot_configs = plate_analysis_no_zeros_plot_configs),
  1257. list(out_dir = out_dir_qc, filename = "plate_analysis_no_zeros_boxplots",
  1258. plot_configs = plate_analysis_no_zeros_boxplot_configs),
  1259. list(out_dir = out_dir_qc, filename = "L_vs_K_for_strains_2SD_outside_mean_K",
  1260. plot_configs = l_outside_2sd_k_plot_configs),
  1261. list(out_dir = out_dir_qc, filename = "delta_background_vs_K_for_strains_2SD_outside_mean_K",
  1262. plot_configs = delta_bg_outside_2sd_k_plot_configs)
  1263. )
  1264. # furrr::future_map(plot_configs, function(config) {
  1265. # generate_and_save_plots(config$out_dir, config$filename, config$plot_configs)
  1266. # }, .options = furrr_options(seed = TRUE))
  1267. bg_strains <- c("YDL227C")
  1268. lapply(bg_strains, function(strain) {
  1269. message("Processing background strain: ", strain)
  1270. # Handle missing data by setting zero values to NA
  1271. # and then removing any rows with NA in L col
  1272. df_bg <- df_na %>%
  1273. filter(OrfRep == strain) %>%
  1274. mutate(
  1275. L = if_else(L == 0, NA, L),
  1276. K = if_else(K == 0, NA, K),
  1277. r = if_else(r == 0, NA, r),
  1278. AUC = if_else(AUC == 0, NA, AUC)
  1279. ) %>%
  1280. filter(!is.na(L))
  1281. message("Calculating background strain summary statistics")
  1282. ss_bg <- calculate_summary_stats(df_bg, c("L", "K", "r", "AUC", "delta_bg"),
  1283. group_vars = c("OrfRep", "Drug", "conc_num", "conc_num_factor_factor"))
  1284. summary_stats_bg <- ss_bg$summary_stats
  1285. df_bg_stats <- ss_bg$df_with_stats
  1286. write.csv(
  1287. summary_stats_bg,
  1288. file = file.path(out_dir, paste0("summary_stats_background_strain_", strain, ".csv")),
  1289. row.names = FALSE)
  1290. message("Setting missing reference values to the highest theoretical value at each drug conc for L")
  1291. df_reference <- df_na_stats %>% # formerly X2_RF
  1292. filter(OrfRep == strain) %>%
  1293. filter(!is.na(L)) %>%
  1294. group_by(OrfRep, Drug, conc_num) %>%
  1295. mutate(
  1296. max_l_theoretical = max(max_L, na.rm = TRUE),
  1297. L = ifelse(L == 0 & !is.na(L) & conc_num > 0, max_l_theoretical, L),
  1298. SM = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, 1, 0),
  1299. L = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, max_l_theoretical, L)) %>%
  1300. ungroup()
  1301. message("Calculating reference strain summary statistics")
  1302. df_reference_stats <- calculate_summary_stats(
  1303. df = df_reference,
  1304. variables = c("L", "K", "r", "AUC"),
  1305. group_vars = c("OrfRep", "Gene", "Drug", "num", "conc_num", "conc_num_factor_factor")
  1306. )$df_with_stats
  1307. message("Calculating reference strain interaction scores")
  1308. results <- calculate_interaction_scores(df_reference_stats, df_bg_stats, group_vars = c("OrfRep", "Gene", "Drug", "num"))
  1309. df_calculations_reference <- results$calculations
  1310. df_interactions_reference <- results$interactions
  1311. df_interactions_reference_joined <- results$full_data
  1312. write.csv(df_calculations_reference, file = file.path(out_dir, "zscore_calculations_reference.csv"), row.names = FALSE)
  1313. write.csv(df_interactions_reference, file = file.path(out_dir, "zscore_interactions_reference.csv"), row.names = FALSE)
  1314. message("Generating reference interaction plots")
  1315. reference_plot_configs <- generate_interaction_plot_configs(df_interactions_reference_joined, "reference")
  1316. generate_and_save_plots(out_dir, "interaction_plots_reference", reference_plot_configs)
  1317. message("Setting missing deletion values to the highest theoretical value at each drug conc for L")
  1318. df_deletion <- df_na_stats %>% # formerly X2
  1319. filter(OrfRep != strain) %>%
  1320. filter(!is.na(L)) %>%
  1321. group_by(OrfRep, Gene, conc_num) %>%
  1322. mutate(
  1323. max_l_theoretical = max(max_L, na.rm = TRUE),
  1324. L = ifelse(L == 0 & !is.na(L) & conc_num > 0, max_l_theoretical, L),
  1325. SM = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, 1, SM),
  1326. L = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, max_l_theoretical, L)) %>%
  1327. ungroup()
  1328. message("Calculating deletion strain(s) summary statistics")
  1329. df_deletion_stats <- calculate_summary_stats(
  1330. df = df_deletion,
  1331. variables = c("L", "K", "r", "AUC"),
  1332. group_vars = c("OrfRep", "Gene", "Drug", "conc_num", "conc_num_factor_factor")
  1333. )$df_with_stats
  1334. message("Calculating deletion strain(s) interactions scores")
  1335. results <- calculate_interaction_scores(df_deletion_stats, df_bg_stats, group_vars = c("OrfRep", "Gene", "Drug"))
  1336. df_calculations <- results$calculations
  1337. df_interactions <- results$interactions
  1338. df_interactions_joined <- results$full_data
  1339. write.csv(df_calculations, file = file.path(out_dir, "zscore_calculations.csv"), row.names = FALSE)
  1340. write.csv(df_interactions, file = file.path(out_dir, "zscore_interactions.csv"), row.names = FALSE)
  1341. message("Generating deletion interaction plots")
  1342. deletion_plot_configs <- generate_interaction_plot_configs(df_interactions_joined, "deletion")
  1343. generate_and_save_plots(out_dir, "interaction_plots", deletion_plot_configs)
  1344. message("Writing enhancer/suppressor csv files")
  1345. interaction_threshold <- 2 # TODO add to study config?
  1346. enhancer_condition_L <- df_interactions$Avg_Zscore_L >= interaction_threshold
  1347. suppressor_condition_L <- df_interactions$Avg_Zscore_L <= -interaction_threshold
  1348. enhancer_condition_K <- df_interactions$Avg_Zscore_K >= interaction_threshold
  1349. suppressor_condition_K <- df_interactions$Avg_Zscore_K <= -interaction_threshold
  1350. enhancers_L <- df_interactions[enhancer_condition_L, ]
  1351. suppressors_L <- df_interactions[suppressor_condition_L, ]
  1352. enhancers_K <- df_interactions[enhancer_condition_K, ]
  1353. suppressors_K <- df_interactions[suppressor_condition_K, ]
  1354. enhancers_and_suppressors_L <- df_interactions[enhancer_condition_L | suppressor_condition_L, ]
  1355. enhancers_and_suppressors_K <- df_interactions[enhancer_condition_K | suppressor_condition_K, ]
  1356. write.csv(enhancers_L, file = file.path(out_dir, "zscore_interactions_deletion_enhancers_L.csv"), row.names = FALSE)
  1357. write.csv(suppressors_L, file = file.path(out_dir, "zscore_interactions_deletion_suppressors_L.csv"), row.names = FALSE)
  1358. write.csv(enhancers_K, file = file.path(out_dir, "zscore_interactions_deletion_enhancers_K.csv"), row.names = FALSE)
  1359. write.csv(suppressors_K, file = file.path(out_dir, "zscore_interactions_deletion_suppressors_K.csv"), row.names = FALSE)
  1360. write.csv(enhancers_and_suppressors_L,
  1361. file = file.path(out_dir, "zscore_interactions_deletion_enhancers_and_suppressors_L.csv"), row.names = FALSE)
  1362. write.csv(enhancers_and_suppressors_K,
  1363. file = file.path(out_dir, "zscore_interaction_deletion_enhancers_and_suppressors_K.csv"), row.names = FALSE)
  1364. message("Writing linear model enhancer/suppressor csv files")
  1365. lm_interaction_threshold <- 2 # TODO add to study config?
  1366. enhancers_lm_L <- df_interactions[df_interactions$Z_lm_L >= lm_interaction_threshold, ]
  1367. suppressors_lm_L <- df_interactions[df_interactions$Z_lm_L <= -lm_interaction_threshold, ]
  1368. enhancers_lm_K <- df_interactions[df_interactions$Z_lm_K >= lm_interaction_threshold, ]
  1369. suppressors_lm_K <- df_interactions[df_interactions$Z_lm_K <= -lm_interaction_threshold, ]
  1370. write.csv(enhancers_lm_L, file = file.path(out_dir, "zscore_interactions_deletion_enhancers_lm_L.csv"), row.names = FALSE)
  1371. write.csv(suppressors_lm_L, file = file.path(out_dir, "zscore_interactions_deletion_suppressors_lm_L.csv"), row.names = FALSE)
  1372. write.csv(enhancers_lm_K, file = file.path(out_dir, "zscore_interactions_deletion_enhancers_lm_K.csv"), row.names = FALSE)
  1373. write.csv(suppressors_lm_K, file = file.path(out_dir, "zscore_interactions_deletion_suppressors_lm_K.csv"), row.names = FALSE)
  1374. message("Generating rank plots")
  1375. rank_plot_configs <- generate_rank_plot_configs(
  1376. df_interactions_joined,
  1377. is_lm = FALSE,
  1378. adjust = TRUE
  1379. )
  1380. generate_and_save_plots(out_dir = out_dir, filename = "rank_plots",
  1381. plot_configs = rank_plot_configs)
  1382. message("Generating ranked linear model plots")
  1383. rank_lm_plot_configs <- generate_rank_plot_configs(
  1384. df_interactions_joined,
  1385. is_lm = TRUE,
  1386. adjust = TRUE
  1387. )
  1388. generate_and_save_plots(out_dir = out_dir, filename = "rank_plots_lm",
  1389. plot_configs = rank_lm_plot_configs)
  1390. message("Generating filtered ranked plots")
  1391. rank_plot_filtered_configs <- generate_rank_plot_configs(
  1392. df_interactions_joined,
  1393. is_lm = FALSE,
  1394. adjust = FALSE,
  1395. overlap_color = TRUE
  1396. )
  1397. generate_and_save_plots(
  1398. out_dir = out_dir,
  1399. filename = "RankPlots_na_rm",
  1400. plot_configs = rank_plot_filtered_configs)
  1401. message("Generating filtered ranked linear model plots")
  1402. rank_plot_lm_filtered_configs <- generate_rank_plot_configs(
  1403. df_interactions_joined,
  1404. is_lm = TRUE,
  1405. adjust = FALSE,
  1406. overlap_color = TRUE
  1407. )
  1408. generate_and_save_plots(
  1409. out_dir = out_dir,
  1410. filename = "rank_plots_lm_na_rm",
  1411. plot_configs = rank_plot_lm_filtered_configs)
  1412. message("Generating correlation curve parameter pair plots")
  1413. correlation_plot_configs <- generate_correlation_plot_configs(
  1414. df_interactions_joined
  1415. )
  1416. generate_and_save_plots(
  1417. out_dir = out_dir,
  1418. filename = "correlation_cpps",
  1419. plot_configs = correlation_plot_configs,
  1420. )
  1421. })
  1422. })
  1423. }
  1424. main()
  1425. # For future simplification of joined dataframes
  1426. # df_joined <- left_join(cleaned_df, summary_stats, by = group_vars, suffix = c("_original", "_stats"))