calculate_interaction_zscores.R 54 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484
  1. suppressMessages({
  2. library("ggplot2")
  3. library("plotly")
  4. library("htmlwidgets")
  5. library("dplyr")
  6. library("rlang")
  7. library("ggthemes")
  8. library("data.table")
  9. library("future")
  10. library("furrr")
  11. library("purrr")
  12. })
  13. # These parallelization libraries are very noisy
  14. suppressPackageStartupMessages({
  15. library("future")
  16. library("furrr")
  17. library("purrr")
  18. })
  19. options(warn = 2)
  20. # Constants for configuration
  21. plot_width <- 14
  22. plot_height <- 9
  23. base_size <- 14
  24. parse_arguments <- function() {
  25. args <- if (interactive()) {
  26. c(
  27. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/20240116_jhartman2_DoxoHLD",
  28. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/apps/r/SGD_features.tab",
  29. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/easy/20240116_jhartman2_DoxoHLD/results_std.txt",
  30. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/20240822_jhartman2_DoxoHLD/exp1",
  31. "Experiment 1: Doxo versus HLD",
  32. 3,
  33. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/20240822_jhartman2_DoxoHLD/exp2",
  34. "Experiment 2: HLD versus Doxo",
  35. 3
  36. )
  37. } else {
  38. commandArgs(trailingOnly = TRUE)
  39. }
  40. out_dir <- normalizePath(args[1], mustWork = FALSE)
  41. sgd_gene_list <- normalizePath(args[2], mustWork = FALSE)
  42. easy_results_file <- normalizePath(args[3], mustWork = FALSE)
  43. # The remaining arguments should be in groups of 3
  44. exp_args <- args[-(1:3)]
  45. if (length(exp_args) %% 3 != 0) {
  46. stop("Experiment arguments should be in groups of 3: path, name, sd.")
  47. }
  48. # Extract the experiments into a list
  49. experiments <- list()
  50. for (i in seq(1, length(exp_args), by = 3)) {
  51. exp_name <- exp_args[i + 1]
  52. experiments[[exp_name]] <- list(
  53. path = normalizePath(exp_args[i], mustWork = FALSE),
  54. sd = as.numeric(exp_args[i + 2])
  55. )
  56. }
  57. # Extract the trailing number from each path
  58. trailing_numbers <- sapply(experiments, function(x) {
  59. path <- x$path
  60. nums <- gsub("[^0-9]", "", basename(path))
  61. as.integer(nums)
  62. })
  63. # Sort the experiments based on the trailing numbers
  64. sorted_experiments <- experiments[order(trailing_numbers)]
  65. list(
  66. out_dir = out_dir,
  67. sgd_gene_list = sgd_gene_list,
  68. easy_results_file = easy_results_file,
  69. experiments = sorted_experiments
  70. )
  71. }
  72. args <- parse_arguments()
  73. # Should we keep output in exp dirs or combine in the study output dir?
  74. # dir.create(file.path(args$out_dir, "zscores"), showWarnings = FALSE)
  75. # dir.create(file.path(args$out_dir, "zscores", "qc"), showWarnings = FALSE)
  76. theme_publication <- function(base_size = 14, base_family = "sans", legend_position = "bottom") {
  77. theme_foundation <- ggthemes::theme_foundation(base_size = base_size, base_family = base_family)
  78. theme_foundation %+replace%
  79. theme(
  80. plot.title = element_text(face = "bold", size = rel(1.6), hjust = 0.5),
  81. text = element_text(),
  82. panel.background = element_blank(),
  83. plot.background = element_blank(),
  84. panel.border = element_blank(),
  85. axis.title = element_text(face = "bold", size = rel(1.4)),
  86. axis.title.y = element_text(angle = 90, vjust = 2),
  87. # axis.title.x = element_text(vjust = -0.2), # TODO this causes errors
  88. axis.text = element_text(size = rel(1.2)),
  89. axis.line = element_line(colour = "black"),
  90. # axis.ticks = element_line(),
  91. panel.grid.major = element_line(colour = "#f0f0f0"),
  92. panel.grid.minor = element_blank(),
  93. legend.key = element_rect(colour = NA),
  94. legend.position = legend_position,
  95. legend.direction = ifelse(legend_position == "right", "vertical", "horizontal"),
  96. # legend.key.size = unit(0.5, "cm"),
  97. legend.spacing = unit(0, "cm"),
  98. legend.title = element_text(face = "italic", size = rel(1.3)),
  99. legend.text = element_text(size = rel(1.2)),
  100. plot.margin = unit(c(10, 5, 5, 5), "mm"),
  101. # strip.background = element_rect(colour = "#f0f0f0", fill = "#f0f0f0"),
  102. # strip.text = element_text(face = "bold")
  103. )
  104. }
  105. scale_fill_publication <- function(...) {
  106. discrete_scale("fill", "Publication", manual_pal(values = c(
  107. "#386cb0", "#fdb462", "#7fc97f", "#ef3b2c", "#662506",
  108. "#a6cee3", "#fb9a99", "#984ea3", "#ffff33"
  109. )), ...)
  110. }
  111. scale_colour_publication <- function(...) {
  112. discrete_scale("colour", "Publication", manual_pal(values = c(
  113. "#386cb0", "#fdb462", "#7fc97f", "#ef3b2c", "#662506",
  114. "#a6cee3", "#fb9a99", "#984ea3", "#ffff33"
  115. )), ...)
  116. }
  117. # Load the initial dataframe from the easy_results_file
  118. load_and_filter_data <- function(easy_results_file, sd = 3) {
  119. df <- read.delim(easy_results_file, skip = 2, as.is = TRUE, row.names = 1, strip.white = TRUE)
  120. df <- df %>%
  121. filter(!(.[[1]] %in% c("", "Scan"))) %>%
  122. filter(!is.na(ORF) & ORF != "" & !Gene %in% c("BLANK", "Blank", "blank") & Drug != "BMH21") %>%
  123. # Rename columns
  124. rename(L = l, num = Num., AUC = AUC96, scan = Scan, last_bg = LstBackgrd, first_bg = X1stBackgrd) %>%
  125. mutate(
  126. across(c(Col, Row, num, L, K, r, scan, AUC, last_bg, first_bg), as.numeric),
  127. delta_bg = last_bg - first_bg,
  128. delta_bg_tolerance = mean(delta_bg, na.rm = TRUE) + (sd * sd(delta_bg, na.rm = TRUE)),
  129. NG = if_else(L == 0 & !is.na(L), 1, 0),
  130. DB = if_else(delta_bg >= delta_bg_tolerance, 1, 0),
  131. SM = 0,
  132. OrfRep = if_else(ORF == "YDL227C", "YDL227C", OrfRep), # should these be hardcoded?
  133. conc_num = as.numeric(gsub("[^0-9\\.]", "", Conc)),
  134. conc_num_factor = factor(as.numeric(factor(conc_num)) - 1),
  135. conc_num_factor_num = as.numeric(conc_num_factor)
  136. )
  137. return(df)
  138. }
  139. # Update Gene names using the SGD gene list
  140. update_gene_names <- function(df, sgd_gene_list) {
  141. # Load SGD gene list
  142. genes <- read.delim(file = sgd_gene_list,
  143. quote = "", header = FALSE,
  144. colClasses = c(rep("NULL", 3), rep("character", 2), rep("NULL", 11)))
  145. # Create a named vector for mapping ORF to GeneName
  146. gene_map <- setNames(genes$V5, genes$V4)
  147. # Vectorized match to find the GeneName from gene_map
  148. mapped_genes <- gene_map[df$ORF]
  149. # Replace NAs in mapped_genes with original Gene names (preserves existing Gene names if ORF is not found)
  150. updated_genes <- ifelse(is.na(mapped_genes) | df$OrfRep == "YDL227C", df$Gene, mapped_genes)
  151. # Ensure Gene is not left blank or incorrectly updated to "OCT1"
  152. df <- df %>%
  153. mutate(Gene = ifelse(updated_genes == "" | updated_genes == "OCT1", OrfRep, updated_genes))
  154. return(df)
  155. }
  156. calculate_summary_stats <- function(df, variables, group_vars) {
  157. summary_stats <- df %>%
  158. group_by(across(all_of(group_vars))) %>%
  159. summarise(
  160. N = n(),
  161. across(all_of(variables),
  162. list(
  163. mean = ~mean(., na.rm = TRUE),
  164. median = ~median(., na.rm = TRUE),
  165. max = ~ifelse(all(is.na(.)), NA, max(., na.rm = TRUE)),
  166. min = ~ifelse(all(is.na(.)), NA, min(., na.rm = TRUE)),
  167. sd = ~sd(., na.rm = TRUE),
  168. se = ~sd(., na.rm = TRUE) / sqrt(N - 1) # Bessel's correction
  169. ),
  170. .names = "{.fn}_{.col}"
  171. ),
  172. .groups = "drop"
  173. )
  174. # Create a cleaned version of df that doesn't overlap with summary_stats
  175. cleaned_df <- df %>%
  176. select(-any_of(setdiff(intersect(names(df), names(summary_stats)), group_vars)))
  177. df_joined <- left_join(cleaned_df, summary_stats, by = group_vars)
  178. return(list(summary_stats = summary_stats, df_with_stats = df_joined))
  179. }
  180. calculate_interaction_scores <- function(df, max_conc, bg_stats,
  181. group_vars = c("OrfRep", "Gene", "num")) {
  182. # Calculate total concentration variables
  183. total_conc_num <- length(unique(df$conc_num))
  184. calculations <- df %>%
  185. group_by(across(all_of(group_vars))) %>%
  186. mutate(
  187. NG = sum(NG, na.rm = TRUE),
  188. DB = sum(DB, na.rm = TRUE),
  189. SM = sum(SM, na.rm = TRUE),
  190. num_non_removed_concs = total_conc_num - sum(DB, na.rm = TRUE) - 1,
  191. # Calculate raw data
  192. Raw_Shift_L = first(mean_L) - bg_stats$mean_L,
  193. Raw_Shift_K = first(mean_K) - bg_stats$mean_K,
  194. Raw_Shift_r = first(mean_r) - bg_stats$mean_r,
  195. Raw_Shift_AUC = first(mean_AUC) - bg_stats$mean_AUC,
  196. Z_Shift_L = first(Raw_Shift_L) / bg_stats$sd_L,
  197. Z_Shift_K = first(Raw_Shift_K) / bg_stats$sd_K,
  198. Z_Shift_r = first(Raw_Shift_r) / bg_stats$sd_r,
  199. Z_Shift_AUC = first(Raw_Shift_AUC) / bg_stats$sd_AUC,
  200. Exp_L = WT_L + Raw_Shift_L,
  201. Exp_K = WT_K + Raw_Shift_K,
  202. Exp_r = WT_r + Raw_Shift_r,
  203. Exp_AUC = WT_AUC + Raw_Shift_AUC,
  204. Delta_L = mean_L - Exp_L,
  205. Delta_K = mean_K - Exp_K,
  206. Delta_r = mean_r - Exp_r,
  207. Delta_AUC = mean_AUC - Exp_AUC,
  208. Delta_L = if_else(NG == 1, mean_L - WT_L, Delta_L),
  209. Delta_K = if_else(NG == 1, mean_K - WT_K, Delta_K),
  210. Delta_r = if_else(NG == 1, mean_r - WT_r, Delta_r),
  211. Delta_AUC = if_else(NG == 1, mean_AUC - WT_AUC, Delta_AUC),
  212. Delta_L = if_else(SM == 1, mean_L - WT_L, Delta_L),
  213. # Calculate Z-scores
  214. Zscore_L = Delta_L / WT_sd_L,
  215. Zscore_K = Delta_K / WT_sd_K,
  216. Zscore_r = Delta_r / WT_sd_r,
  217. Zscore_AUC = Delta_AUC / WT_sd_AUC,
  218. # Fit linear models and store in list-columns
  219. gene_lm_L = list(lm(Delta_L ~ conc_num_factor_num, data = pick(everything()))),
  220. gene_lm_K = list(lm(Delta_K ~ conc_num_factor_num, data = pick(everything()))),
  221. gene_lm_r = list(lm(Delta_r ~ conc_num_factor_num, data = pick(everything()))),
  222. gene_lm_AUC = list(lm(Delta_AUC ~ conc_num_factor_num, data = pick(everything()))),
  223. # Extract coefficients using purrr::map_dbl
  224. lm_intercept_L = map_dbl(gene_lm_L, ~ coef(.x)[1]),
  225. lm_slope_L = map_dbl(gene_lm_L, ~ coef(.x)[2]),
  226. lm_intercept_K = map_dbl(gene_lm_K, ~ coef(.x)[1]),
  227. lm_slope_K = map_dbl(gene_lm_K, ~ coef(.x)[2]),
  228. lm_intercept_r = map_dbl(gene_lm_r, ~ coef(.x)[1]),
  229. lm_slope_r = map_dbl(gene_lm_r, ~ coef(.x)[2]),
  230. lm_intercept_AUC = map_dbl(gene_lm_AUC, ~ coef(.x)[1]),
  231. lm_slope_AUC = map_dbl(gene_lm_AUC, ~ coef(.x)[2]),
  232. # Calculate lm_Score_* based on coefficients
  233. lm_Score_L = max_conc * lm_slope_L + lm_intercept_L,
  234. lm_Score_K = max_conc * lm_slope_K + lm_intercept_K,
  235. lm_Score_r = max_conc * lm_slope_r + lm_intercept_r,
  236. lm_Score_AUC = max_conc * lm_slope_AUC + lm_intercept_AUC,
  237. # Calculate R-squared values
  238. R_Squared_L = map_dbl(gene_lm_L, ~ summary(.x)$r.squared),
  239. R_Squared_K = map_dbl(gene_lm_K, ~ summary(.x)$r.squared),
  240. R_Squared_r = map_dbl(gene_lm_r, ~ summary(.x)$r.squared),
  241. R_Squared_AUC = map_dbl(gene_lm_AUC, ~ summary(.x)$r.squared)
  242. ) %>%
  243. ungroup()
  244. # Calculate overall mean and SD for lm_Score_* variables
  245. lm_means_sds <- calculations %>%
  246. summarise(
  247. lm_mean_L = mean(lm_Score_L, na.rm = TRUE),
  248. lm_sd_L = sd(lm_Score_L, na.rm = TRUE),
  249. lm_mean_K = mean(lm_Score_K, na.rm = TRUE),
  250. lm_sd_K = sd(lm_Score_K, na.rm = TRUE),
  251. lm_mean_r = mean(lm_Score_r, na.rm = TRUE),
  252. lm_sd_r = sd(lm_Score_r, na.rm = TRUE),
  253. lm_mean_AUC = mean(lm_Score_AUC, na.rm = TRUE),
  254. lm_sd_AUC = sd(lm_Score_AUC, na.rm = TRUE)
  255. )
  256. calculations <- calculations %>%
  257. mutate(
  258. Z_lm_L = (lm_Score_L - lm_means_sds$lm_mean_L) / lm_means_sds$lm_sd_L,
  259. Z_lm_K = (lm_Score_K - lm_means_sds$lm_mean_K) / lm_means_sds$lm_sd_K,
  260. Z_lm_r = (lm_Score_r - lm_means_sds$lm_mean_r) / lm_means_sds$lm_sd_r,
  261. Z_lm_AUC = (lm_Score_AUC - lm_means_sds$lm_mean_AUC) / lm_means_sds$lm_sd_AUC
  262. )
  263. # Summarize some of the stats
  264. interactions <- calculations %>%
  265. group_by(across(all_of(group_vars))) %>%
  266. mutate(
  267. # Calculate raw shifts
  268. Raw_Shift_L = first(Raw_Shift_L),
  269. Raw_Shift_K = first(Raw_Shift_K),
  270. Raw_Shift_r = first(Raw_Shift_r),
  271. Raw_Shift_AUC = first(Raw_Shift_AUC),
  272. # Calculate Z-shifts
  273. Z_Shift_L = first(Z_Shift_L),
  274. Z_Shift_K = first(Z_Shift_K),
  275. Z_Shift_r = first(Z_Shift_r),
  276. Z_Shift_AUC = first(Z_Shift_AUC),
  277. # Sum Z-scores
  278. Sum_Z_Score_L = sum(Zscore_L),
  279. Sum_Z_Score_K = sum(Zscore_K),
  280. Sum_Z_Score_r = sum(Zscore_r),
  281. Sum_Z_Score_AUC = sum(Zscore_AUC),
  282. # Calculate Average Z-scores
  283. Avg_Zscore_L = Sum_Z_Score_L / num_non_removed_concs,
  284. Avg_Zscore_K = Sum_Z_Score_K / num_non_removed_concs,
  285. Avg_Zscore_r = Sum_Z_Score_r / (total_conc_num - 1),
  286. Avg_Zscore_AUC = Sum_Z_Score_AUC / (total_conc_num - 1)
  287. ) %>%
  288. arrange(desc(Z_lm_L), desc(NG)) %>%
  289. ungroup()
  290. # Declare column order for output
  291. calculations <- calculations %>%
  292. select(
  293. "OrfRep", "Gene", "num", "conc_num", "conc_num_factor", "N",
  294. "mean_L", "mean_K", "mean_r", "mean_AUC",
  295. "median_L", "median_K", "median_r", "median_AUC",
  296. "sd_L", "sd_K", "sd_r", "sd_AUC",
  297. "se_L", "se_K", "se_r", "se_AUC",
  298. "Raw_Shift_L", "Raw_Shift_K", "Raw_Shift_r", "Raw_Shift_AUC",
  299. "Z_Shift_L", "Z_Shift_K", "Z_Shift_r", "Z_Shift_AUC",
  300. "WT_L", "WT_K", "WT_r", "WT_AUC",
  301. "WT_sd_L", "WT_sd_K", "WT_sd_r", "WT_sd_AUC",
  302. "Exp_L", "Exp_K", "Exp_r", "Exp_AUC",
  303. "Delta_L", "Delta_K", "Delta_r", "Delta_AUC",
  304. "Zscore_L", "Zscore_K", "Zscore_r", "Zscore_AUC",
  305. "NG", "SM", "DB")
  306. interactions <- interactions %>%
  307. select(
  308. "OrfRep", "Gene", "conc_num", "conc_num_factor", "num", "NG", "DB", "SM",
  309. "Raw_Shift_L", "Raw_Shift_K", "Raw_Shift_r", "Raw_Shift_AUC",
  310. "Z_Shift_L", "Z_Shift_K", "Z_Shift_r", "Z_Shift_AUC",
  311. "Sum_Z_Score_L", "Sum_Z_Score_K", "Sum_Z_Score_r", "Sum_Z_Score_AUC",
  312. "Avg_Zscore_L", "Avg_Zscore_K", "Avg_Zscore_r", "Avg_Zscore_AUC",
  313. "lm_Score_L", "lm_Score_K", "lm_Score_r", "lm_Score_AUC",
  314. "R_Squared_L", "R_Squared_K", "R_Squared_r", "R_Squared_AUC",
  315. "Z_lm_L", "Z_lm_K", "Z_lm_r", "Z_lm_AUC")
  316. cleaned_df <- df %>%
  317. select(-any_of(
  318. setdiff(intersect(names(df), names(interactions)),
  319. c("OrfRep", "Gene", "num", "conc_num", "conc_num_factor"))))
  320. interactions_joined <- left_join(cleaned_df, interactions, by = c("OrfRep", "Gene", "num", "conc_num", "conc_num_factor"))
  321. return(list(
  322. calculations = calculations,
  323. interactions = interactions,
  324. interactions_joined = interactions_joined))
  325. }
  326. generate_and_save_plots <- function(out_dir, filename, plot_configs, grid_layout = NULL) {
  327. message("Generating ", filename, ".pdf and ", filename, ".html")
  328. # Prepare lists to collect plots
  329. static_plots <- list()
  330. plotly_plots <- list()
  331. for (i in seq_along(plot_configs)) {
  332. config <- plot_configs[[i]]
  333. df <- config$df
  334. # Create the base plot
  335. aes_mapping <- if (config$plot_type == "bar") {
  336. if (!is.null(config$color_var)) {
  337. aes(x = .data[[config$x_var]], fill = as.factor(.data[[config$color_var]]), color = as.factor(.data[[config$color_var]]))
  338. } else {
  339. aes(x = .data[[config$x_var]])
  340. }
  341. } else if (config$plot_type == "density") {
  342. if (!is.null(config$color_var)) {
  343. aes(x = .data[[config$x_var]], color = as.factor(.data[[config$color_var]]))
  344. } else {
  345. aes(x = .data[[config$x_var]])
  346. }
  347. } else {
  348. if (!is.null(config$color_var)) {
  349. aes(x = .data[[config$x_var]], y = .data[[config$y_var]], color = as.factor(.data[[config$color_var]]))
  350. } else {
  351. aes(x = .data[[config$x_var]], y = .data[[config$y_var]])
  352. }
  353. }
  354. plot <- ggplot(df, aes_mapping)
  355. # Apply theme_publication with legend_position from config
  356. legend_position <- if (!is.null(config$legend_position)) config$legend_position else "bottom"
  357. plot <- plot + theme_publication(legend_position = legend_position)
  358. # Use appropriate helper function based on plot type
  359. plot <- switch(config$plot_type,
  360. "scatter" = generate_scatter_plot(plot, config),
  361. "box" = generate_box_plot(plot, config),
  362. "density" = plot + geom_density(),
  363. "bar" = plot + geom_bar(),
  364. plot # default case if no type matches
  365. )
  366. # Add title and labels
  367. if (!is.null(config$title)) {
  368. plot <- plot + ggtitle(config$title)
  369. }
  370. if (!is.null(config$x_label)) {
  371. plot <- plot + xlab(config$x_label)
  372. }
  373. if (!is.null(config$y_label)) {
  374. plot <- plot + ylab(config$y_label)
  375. }
  376. # Add cartesian coordinates if specified
  377. if (!is.null(config$coord_cartesian)) {
  378. plot <- plot + coord_cartesian(ylim = config$coord_cartesian)
  379. }
  380. # Apply scale_color_discrete(guide = FALSE) when color_var is NULL
  381. if (is.null(config$color_var)) {
  382. plot <- plot + scale_color_discrete(guide = "none")
  383. }
  384. # Add interactive tooltips for plotly
  385. tooltip_vars <- c()
  386. if (config$plot_type == "scatter") {
  387. if (!is.null(config$delta_bg_point) && config$delta_bg_point) {
  388. tooltip_vars <- c(tooltip_vars, "OrfRep", "Gene", "delta_bg")
  389. } else if (!is.null(config$gene_point) && config$gene_point) {
  390. tooltip_vars <- c(tooltip_vars, "OrfRep", "Gene")
  391. } else if (!is.null(config$y_var) && !is.null(config$x_var)) {
  392. tooltip_vars <- c(config$x_var, config$y_var)
  393. }
  394. }
  395. # Convert to plotly object and suppress warnings here
  396. plotly_plot <- suppressWarnings({
  397. if (length(tooltip_vars) > 0) {
  398. ggplotly(plot, tooltip = tooltip_vars)
  399. } else {
  400. ggplotly(plot, tooltip = "none")
  401. }
  402. })
  403. # Adjust legend position if specified
  404. if (!is.null(config$legend_position) && config$legend_position == "bottom") {
  405. plotly_plot <- plotly_plot %>% layout(legend = list(orientation = "h"))
  406. }
  407. # Add plots to lists
  408. static_plots[[i]] <- plot
  409. plotly_plots[[i]] <- plotly_plot
  410. }
  411. # Save static PDF plot(s)
  412. pdf(file.path(out_dir, paste0(filename, ".pdf")), width = 14, height = 9)
  413. lapply(static_plots, print)
  414. dev.off()
  415. # Combine and save interactive HTML plot(s)
  416. combined_plot <- subplot(
  417. plotly_plots,
  418. nrows = if (!is.null(grid_layout) && !is.null(grid_layout$nrow)) {
  419. grid_layout$nrow
  420. } else {
  421. # Calculate nrow based on the length of plotly_plots
  422. ceiling(length(plotly_plots) / ifelse(!is.null(grid_layout) && !is.null(grid_layout$ncol), grid_layout$ncol, 1))
  423. },
  424. margin = 0.05
  425. )
  426. # Save combined html plot(s)
  427. saveWidget(combined_plot, file = file.path(out_dir, paste0(filename, ".html")), selfcontained = TRUE)
  428. }
  429. generate_scatter_plot <- function(plot, config) {
  430. # Define the points
  431. shape <- if (!is.null(config$shape)) config$shape else 3
  432. size <- if (!is.null(config$size)) config$size else 1.5
  433. position <-
  434. if (!is.null(config$position) && config$position == "jitter") {
  435. position_jitter(width = 0.1, height = 0)
  436. } else {
  437. "identity"
  438. }
  439. plot <- plot + geom_point(
  440. shape = shape,
  441. size = size,
  442. position = position
  443. )
  444. if (!is.null(config$cyan_points) && config$cyan_points) {
  445. plot <- plot + geom_point(
  446. aes(x = .data[[config$x_var]], y = .data[[config$y_var]]),
  447. color = "cyan",
  448. shape = 3,
  449. size = 0.5
  450. )
  451. }
  452. # Add Smooth Line if specified
  453. if (!is.null(config$smooth) && config$smooth) {
  454. smooth_color <- if (!is.null(config$smooth_color)) config$smooth_color else "blue"
  455. if (!is.null(config$lm_line)) {
  456. plot <- plot +
  457. geom_abline(
  458. intercept = config$lm_line$intercept,
  459. slope = config$lm_line$slope,
  460. color = smooth_color
  461. )
  462. } else {
  463. plot <- plot +
  464. geom_smooth(
  465. method = "lm",
  466. se = FALSE,
  467. color = smooth_color
  468. )
  469. }
  470. }
  471. # Add SD Bands if specified
  472. if (!is.null(config$sd_band)) {
  473. plot <- plot +
  474. annotate(
  475. "rect",
  476. xmin = -Inf, xmax = Inf,
  477. ymin = config$sd_band, ymax = Inf,
  478. fill = ifelse(!is.null(config$fill_positive), config$fill_positive, "#542788"),
  479. alpha = ifelse(!is.null(config$alpha_positive), config$alpha_positive, 0.3)
  480. ) +
  481. annotate(
  482. "rect",
  483. xmin = -Inf, xmax = Inf,
  484. ymin = -config$sd_band, ymax = -Inf,
  485. fill = ifelse(!is.null(config$fill_negative), config$fill_negative, "orange"),
  486. alpha = ifelse(!is.null(config$alpha_negative), config$alpha_negative, 0.3)
  487. ) +
  488. geom_hline(
  489. yintercept = c(-config$sd_band, config$sd_band),
  490. color = ifelse(!is.null(config$hl_color), config$hl_color, "gray")
  491. )
  492. }
  493. # Add Rectangles if specified
  494. if (!is.null(config$rectangles)) {
  495. for (rect in config$rectangles) {
  496. plot <- plot + annotate(
  497. "rect",
  498. xmin = rect$xmin,
  499. xmax = rect$xmax,
  500. ymin = rect$ymin,
  501. ymax = rect$ymax,
  502. fill = ifelse(is.null(rect$fill), NA, rect$fill),
  503. color = ifelse(is.null(rect$color), "black", rect$color),
  504. alpha = ifelse(is.null(rect$alpha), 0.1, rect$alpha)
  505. )
  506. }
  507. }
  508. # Add error bars if specified
  509. if (!is.null(config$error_bar) && config$error_bar && !is.null(config$y_var)) {
  510. y_mean_col <- paste0("mean_", config$y_var)
  511. y_sd_col <- paste0("sd_", config$y_var)
  512. plot <- plot +
  513. geom_errorbar(
  514. aes(
  515. ymin = !!sym(y_mean_col) - !!sym(y_sd_col),
  516. ymax = !!sym(y_mean_col) + !!sym(y_sd_col)
  517. ),
  518. alpha = 0.3,
  519. linewidth = 0.5
  520. )
  521. }
  522. # Customize X-axis if specified
  523. if (!is.null(config$x_breaks) && !is.null(config$x_labels) && !is.null(config$x_label)) {
  524. plot <- plot +
  525. scale_x_discrete(
  526. name = config$x_label,
  527. breaks = config$x_breaks,
  528. labels = config$x_labels
  529. )
  530. }
  531. # Set Y-axis limits if specified
  532. if (!is.null(config$ylim_vals)) {
  533. plot <- plot + scale_y_continuous(limits = config$ylim_vals)
  534. }
  535. # Add annotations if specified
  536. if (!is.null(config$annotations)) {
  537. for (annotation in config$annotations) {
  538. plot <- plot +
  539. annotate(
  540. "text",
  541. x = annotation$x,
  542. y = annotation$y,
  543. label = annotation$label,
  544. hjust = ifelse(is.null(annotation$hjust), 0.5, annotation$hjust),
  545. vjust = ifelse(is.null(annotation$vjust), 0.5, annotation$vjust),
  546. size = ifelse(is.null(annotation$size), 6, annotation$size),
  547. color = ifelse(is.null(annotation$color), "black", annotation$color)
  548. )
  549. }
  550. }
  551. return(plot)
  552. }
  553. generate_box_plot <- function(plot, config) {
  554. plot <- plot + geom_boxplot()
  555. if (!is.null(config$x_breaks) && !is.null(config$x_labels) && !is.null(config$x_label)) {
  556. plot <- plot + scale_x_discrete(
  557. name = config$x_label,
  558. breaks = config$x_breaks,
  559. labels = config$x_labels
  560. )
  561. }
  562. return(plot)
  563. }
  564. generate_plate_analysis_plot_configs <- function(variables, stages = c("before", "after"),
  565. df_before = NULL, df_after = NULL, plot_type = "scatter") {
  566. plots <- list()
  567. for (var in variables) {
  568. for (stage in stages) {
  569. df_plot <- if (stage == "before") df_before else df_after
  570. # Check for non-finite values in the y-variable
  571. df_plot_filtered <- df_plot %>%
  572. filter(is.finite(!!sym(var)))
  573. # Count removed rows
  574. removed_rows <- nrow(df_plot) - nrow(df_plot_filtered)
  575. if (removed_rows > 0) {
  576. message(sprintf("Removed %d non-finite values for variable %s during stage %s", removed_rows, var, stage))
  577. }
  578. # Adjust settings based on plot_type
  579. if (plot_type == "scatter") {
  580. error_bar <- TRUE
  581. position <- "jitter"
  582. } else if (plot_type == "box") {
  583. error_bar <- FALSE
  584. position <- NULL
  585. }
  586. config <- list(
  587. df = df_plot,
  588. x_var = "scan",
  589. y_var = var,
  590. plot_type = plot_type,
  591. title = paste("Plate analysis by Drug Conc for", var, stage, "quality control"),
  592. error_bar = error_bar,
  593. color_var = "conc_num",
  594. position = position,
  595. size = 0.2
  596. )
  597. plots <- append(plots, list(config))
  598. }
  599. }
  600. return(plots)
  601. }
  602. generate_interaction_plot_configs <- function(df, limits_map = NULL) {
  603. # Default limits_map if not provided
  604. if (is.null(limits_map)) {
  605. limits_map <- list(
  606. L = c(-65, 65),
  607. K = c(-65, 65),
  608. r = c(-0.65, 0.65),
  609. AUC = c(-6500, 6500)
  610. )
  611. }
  612. # Filter data
  613. df_filtered <- df
  614. for (var in names(limits_map)) {
  615. df_filtered <- df_filtered %>%
  616. filter(!is.na(!!sym(var)) &
  617. !!sym(var) >= limits_map[[var]][1] &
  618. !!sym(var) <= limits_map[[var]][2])
  619. }
  620. configs <- list()
  621. for (var in names(limits_map)) {
  622. y_range <- limits_map[[var]]
  623. # Calculate annotation positions
  624. y_min <- min(y_range)
  625. y_max <- max(y_range)
  626. y_span <- y_max - y_min
  627. annotation_positions <- list(
  628. ZShift = y_max - 0.1 * y_span,
  629. lm_ZScore = y_max - 0.2 * y_span,
  630. NG = y_min + 0.2 * y_span,
  631. DB = y_min + 0.1 * y_span,
  632. SM = y_min + 0.05 * y_span
  633. )
  634. # Prepare linear model line
  635. lm_line <- list(
  636. intercept = df_filtered[[paste0("lm_intercept_", var)]],
  637. slope = df_filtered[[paste0("lm_slope_", var)]]
  638. )
  639. # Calculate x-axis position for annotations
  640. num_levels <- length(levels(df_filtered$conc_num_factor))
  641. x_pos <- (1 + num_levels) / 2
  642. # Generate annotations
  643. annotations <- lapply(names(annotation_positions), function(annotation_name) {
  644. label <- switch(annotation_name,
  645. ZShift = paste("ZShift =", round(df_filtered[[paste0("Z_Shift_", var)]], 2)),
  646. lm_ZScore = paste("lm ZScore =", round(df_filtered[[paste0("Z_lm_", var)]], 2)),
  647. NG = paste("NG =", df_filtered$NG),
  648. DB = paste("DB =", df_filtered$DB),
  649. SM = paste("SM =", df_filtered$SM),
  650. NULL
  651. )
  652. if (!is.null(label)) {
  653. list(x = x_pos, y = annotation_positions[[annotation_name]], label = label)
  654. } else {
  655. NULL
  656. }
  657. })
  658. annotations <- Filter(Negate(is.null), annotations)
  659. # Shared plot settings
  660. plot_settings <- list(
  661. df = df_filtered,
  662. x_var = "conc_num_factor",
  663. y_var = var,
  664. ylim_vals = y_range,
  665. annotations = annotations,
  666. lm_line = lm_line,
  667. x_breaks = levels(df_filtered$conc_num_factor),
  668. x_labels = levels(df_filtered$conc_num_factor),
  669. x_label = unique(df_filtered$Drug[1]),
  670. coord_cartesian = y_range,
  671. )
  672. # Scatter plot config
  673. configs[[length(configs) + 1]] <- modifyList(plot_settings, list(
  674. plot_type = "scatter",
  675. title = sprintf("%s %s", df_filtered$OrfRep[1], df_filtered$Gene[1]),
  676. error_bar = TRUE,
  677. position = "jitter",
  678. size = 1
  679. ))
  680. # Box plot config
  681. configs[[length(configs) + 1]] <- modifyList(plot_settings, list(
  682. plot_type = "box",
  683. title = sprintf("%s %s (box plot)", df_filtered$OrfRep[1], df_filtered$Gene[1]),
  684. error_bar = FALSE
  685. ))
  686. }
  687. return(configs)
  688. }
  689. generate_rank_plot_configs <- function(df, variables, is_lm = FALSE, adjust = FALSE, overlap_color = FALSE) {
  690. sd_bands <- c(1, 2, 3)
  691. avg_zscore_cols <- paste0("Avg_Zscore_", variables)
  692. z_lm_cols <- paste0("Z_lm_", variables)
  693. rank_avg_zscore_cols <- paste0("Rank_", variables)
  694. rank_z_lm_cols <- paste0("Rank_lm_", variables)
  695. configs <- list()
  696. if (adjust) {
  697. message("Replacing NA with 0.001 for Avg_Zscore_ and Z_lm_ columns for ranks")
  698. df <- df %>%
  699. mutate(
  700. across(all_of(avg_zscore_cols), ~ifelse(is.na(.), 0.001, .)),
  701. across(all_of(z_lm_cols), ~ifelse(is.na(.), 0.001, .))
  702. )
  703. }
  704. message("Calculating ranks for Avg_Zscore and Z_lm columns")
  705. rank_col_mapping <- setNames(rank_avg_zscore_cols, avg_zscore_cols)
  706. df_ranked <- df %>%
  707. mutate(across(all_of(avg_zscore_cols), ~rank(., na.last = "keep"), .names = "{rank_col_mapping[.col]}"))
  708. rank_lm_col_mapping <- setNames(rank_z_lm_cols, z_lm_cols)
  709. df_ranked <- df_ranked %>%
  710. mutate(across(all_of(z_lm_cols), ~rank(., na.last = "keep"), .names = "{rank_lm_col_mapping[.col]}"))
  711. # SD-based plots for L and K
  712. for (variable in c("L", "K")) {
  713. if (is_lm) {
  714. rank_var <- paste0("Rank_lm_", variable)
  715. zscore_var <- paste0("Z_lm_", variable)
  716. y_label <- paste("Int Z score", variable)
  717. } else {
  718. rank_var <- paste0("Rank_", variable)
  719. zscore_var <- paste0("Avg_Zscore_", variable)
  720. y_label <- paste("Avg Z score", variable)
  721. }
  722. for (sd_band in sd_bands) {
  723. num_enhancers <- sum(df_ranked[[zscore_var]] >= sd_band, na.rm = TRUE)
  724. num_suppressors <- sum(df_ranked[[zscore_var]] <= -sd_band, na.rm = TRUE)
  725. # Annotated plot configuration
  726. configs[[length(configs) + 1]] <- list(
  727. df = df_ranked,
  728. x_var = rank_var,
  729. y_var = zscore_var,
  730. plot_type = "scatter",
  731. title = paste(y_label, "vs. Rank for", variable, "above", sd_band, "SD"),
  732. sd_band = sd_band,
  733. fill_positive = "#542788",
  734. fill_negative = "orange",
  735. alpha_positive = 0.3,
  736. alpha_negative = 0.3,
  737. annotations = list(
  738. list(
  739. x = median(df_ranked[[rank_var]], na.rm = TRUE),
  740. y = 10,
  741. label = paste("Deletion Enhancers =", num_enhancers),
  742. hjust = 0.5,
  743. vjust = 1
  744. ),
  745. list(
  746. x = median(df_ranked[[rank_var]], na.rm = TRUE),
  747. y = -10,
  748. label = paste("Deletion Suppressors =", num_suppressors),
  749. hjust = 0.5,
  750. vjust = 0
  751. )
  752. ),
  753. shape = 3,
  754. size = 0.1,
  755. y_label = y_label,
  756. x_label = "Rank",
  757. legend_position = "none"
  758. )
  759. # Non-Annotated Plot Configuration
  760. configs[[length(configs) + 1]] <- list(
  761. df = df_ranked,
  762. x_var = rank_var,
  763. y_var = zscore_var,
  764. plot_type = "scatter",
  765. title = paste(y_label, "vs. Rank for", variable, "above", sd_band, "SD No Annotations"),
  766. sd_band = sd_band,
  767. fill_positive = "#542788",
  768. fill_negative = "orange",
  769. alpha_positive = 0.3,
  770. alpha_negative = 0.3,
  771. annotations = NULL,
  772. shape = 3,
  773. size = 0.1,
  774. y_label = y_label,
  775. x_label = "Rank",
  776. legend_position = "none"
  777. )
  778. }
  779. }
  780. # Avg ZScore and Rank Avg ZScore Plots for r, L, K, and AUC
  781. for (variable in variables) {
  782. for (plot_type in c("Avg Zscore vs lm", "Rank Avg Zscore vs lm")) {
  783. title <- paste(plot_type, variable)
  784. # Define specific variables based on plot type
  785. if (plot_type == "Avg Zscore vs lm") {
  786. x_var <- paste0("Avg_Zscore_", variable)
  787. y_var <- paste0("Z_lm_", variable)
  788. rectangles <- list(
  789. list(xmin = -2, xmax = 2, ymin = -2, ymax = 2,
  790. fill = NA, color = "grey20", alpha = 0.1
  791. )
  792. )
  793. } else if (plot_type == "Rank Avg Zscore vs lm") {
  794. x_var <- paste0("Rank_", variable)
  795. y_var <- paste0("Rank_lm_", variable)
  796. rectangles <- NULL
  797. }
  798. # Fit the linear model
  799. lm_model <- lm(as.formula(paste(y_var, "~", x_var)), data = df_ranked)
  800. # Extract intercept and slope from the model coefficients
  801. intercept <- coef(lm_model)[1]
  802. slope <- coef(lm_model)[2]
  803. configs[[length(configs) + 1]] <- list(
  804. df = df_ranked,
  805. x_var = x_var,
  806. y_var = y_var,
  807. plot_type = "scatter",
  808. title = title,
  809. annotations = list(
  810. list(
  811. x = median(df_ranked[[rank_var]], na.rm = TRUE),
  812. y = 10,
  813. label = paste("Deletion Enhancers =", num_enhancers),
  814. hjust = 0.5,
  815. vjust = 1
  816. ),
  817. list(
  818. x = median(df_ranked[[rank_var]], na.rm = TRUE),
  819. y = -10,
  820. label = paste("Deletion Suppressors =", num_suppressors),
  821. hjust = 0.5,
  822. vjust = 0
  823. )
  824. ),
  825. shape = 3,
  826. size = 0.25,
  827. smooth = TRUE,
  828. smooth_color = "black",
  829. lm_line = list(intercept = intercept, slope = slope),
  830. legend_position = "right",
  831. color_var = if (overlap_color) "Overlap" else NULL,
  832. x_label = x_var,
  833. y_label = y_var,
  834. rectangles = rectangles
  835. )
  836. }
  837. }
  838. return(configs)
  839. }
  840. generate_correlation_plot_configs <- function(df) {
  841. # Define relationships for plotting
  842. relationships <- list(
  843. list(x = "Z_lm_L", y = "Z_lm_K", label = "Interaction L vs. Interaction K"),
  844. list(x = "Z_lm_L", y = "Z_lm_r", label = "Interaction L vs. Interaction r"),
  845. list(x = "Z_lm_L", y = "Z_lm_AUC", label = "Interaction L vs. Interaction AUC"),
  846. list(x = "Z_lm_K", y = "Z_lm_r", label = "Interaction K vs. Interaction r"),
  847. list(x = "Z_lm_K", y = "Z_lm_AUC", label = "Interaction K vs. Interaction AUC"),
  848. list(x = "Z_lm_r", y = "Z_lm_AUC", label = "Interaction r vs. Interaction AUC")
  849. )
  850. configs <- list()
  851. for (rel in relationships) {
  852. # Fit linear model
  853. lm_model <- lm(as.formula(paste(rel$y, "~", rel$x)), data = df)
  854. lm_summary <- summary(lm_model)
  855. # Construct plot configuration
  856. config <- list(
  857. df = df,
  858. x_var = rel$x,
  859. y_var = rel$y,
  860. plot_type = "scatter",
  861. title = rel$label,
  862. x_label = paste("z-score", gsub("Z_lm_", "", rel$x)),
  863. y_label = paste("z-score", gsub("Z_lm_", "", rel$y)),
  864. annotations = list(
  865. list(
  866. x = Inf,
  867. y = Inf,
  868. label = paste("R-squared =", round(lm_summary$r.squared, 3)),
  869. hjust = 1.1,
  870. vjust = 2,
  871. size = 4,
  872. color = "black"
  873. )
  874. ),
  875. smooth = TRUE,
  876. smooth_color = "tomato3",
  877. lm_line = list(intercept = coef(lm_model)[1], slope = coef(lm_model)[2]),
  878. legend_position = "right",
  879. shape = 3,
  880. size = 0.5,
  881. color_var = "Overlap",
  882. rectangles = list(
  883. list(
  884. xmin = -2, xmax = 2, ymin = -2, ymax = 2,
  885. fill = NA, color = "grey20", alpha = 0.1
  886. )
  887. ),
  888. cyan_points = TRUE
  889. )
  890. configs[[length(configs) + 1]] <- config
  891. }
  892. return(configs)
  893. }
  894. main <- function() {
  895. lapply(names(args$experiments), function(exp_name) {
  896. exp <- args$experiments[[exp_name]]
  897. exp_path <- exp$path
  898. exp_sd <- exp$sd
  899. out_dir <- file.path(exp_path, "zscores")
  900. out_dir_qc <- file.path(exp_path, "zscores", "qc")
  901. dir.create(out_dir, recursive = TRUE, showWarnings = FALSE)
  902. dir.create(out_dir_qc, recursive = TRUE, showWarnings = FALSE)
  903. summary_vars <- c("L", "K", "r", "AUC", "delta_bg") # fields to filter and calculate summary stats across
  904. interaction_vars <- c("L", "K", "r", "AUC") # fields to calculate interaction z-scores
  905. print_vars <- c("OrfRep", "Plate", "scan", "Col", "Row", "num", "OrfRep", "conc_num", "conc_num_factor",
  906. "delta_bg_tolerance", "delta_bg", "Gene", "L", "K", "r", "AUC", "NG", "DB")
  907. message("Loading and filtering data for experiment: ", exp_name)
  908. df <- load_and_filter_data(args$easy_results_file, sd = exp_sd) %>%
  909. update_gene_names(args$sgd_gene_list) %>%
  910. as_tibble()
  911. # Filter rows above delta background tolerance
  912. df_above_tolerance <- df %>% filter(DB == 1)
  913. df_na <- df %>% mutate(across(all_of(summary_vars), ~ ifelse(DB == 1, NA, .))) # formerly X
  914. df_no_zeros <- df_na %>% filter(L > 0) # formerly X_noZero
  915. # Save some constants
  916. max_conc <- max(df$conc_num_factor_num)
  917. l_half_median <- (median(df_above_tolerance$L, na.rm = TRUE)) / 2
  918. k_half_median <- (median(df_above_tolerance$K, na.rm = TRUE)) / 2
  919. message("Calculating summary statistics before quality control")
  920. df_stats <- calculate_summary_stats(
  921. df = df,
  922. variables = summary_vars,
  923. group_vars = c("conc_num", "conc_num_factor"))$df_with_stats
  924. message("Calculating summary statistics after quality control")
  925. ss <- calculate_summary_stats(
  926. df = df_na,
  927. variables = summary_vars,
  928. group_vars = c("conc_num", "conc_num_factor"))
  929. df_na_ss <- ss$summary_stats
  930. df_na_stats <- ss$df_with_stats
  931. write.csv(df_na_ss, file = file.path(out_dir, "summary_stats_all_strains.csv"), row.names = FALSE)
  932. # For plotting (ggplot warns on NAs)
  933. df_na_stats_filtered <- df_na_stats %>% filter(if_all(all_of(summary_vars), is.finite))
  934. df_na_stats <- df_na_stats %>%
  935. mutate(
  936. WT_L = mean_L,
  937. WT_K = mean_K,
  938. WT_r = mean_r,
  939. WT_AUC = mean_AUC,
  940. WT_sd_L = sd_L,
  941. WT_sd_K = sd_K,
  942. WT_sd_r = sd_r,
  943. WT_sd_AUC = sd_AUC
  944. )
  945. # Pull the background means and standard deviations from zero concentration for interactions
  946. bg_stats <- df_na_stats %>%
  947. filter(conc_num == 0) %>%
  948. summarise(
  949. mean_L = first(mean_L),
  950. mean_K = first(mean_K),
  951. mean_r = first(mean_r),
  952. mean_AUC = first(mean_AUC),
  953. sd_L = first(sd_L),
  954. sd_K = first(sd_K),
  955. sd_r = first(sd_r),
  956. sd_AUC = first(sd_AUC)
  957. )
  958. message("Calculating summary statistics after quality control excluding zero values")
  959. df_no_zeros_stats <- calculate_summary_stats(
  960. df = df_no_zeros,
  961. variables = summary_vars,
  962. group_vars = c("conc_num", "conc_num_factor")
  963. )$df_with_stats
  964. message("Filtering by 2SD of K")
  965. df_na_within_2sd_k <- df_na_stats %>%
  966. filter(K >= (mean_K - 2 * sd_K) & K <= (mean_K + 2 * sd_K))
  967. df_na_outside_2sd_k <- df_na_stats %>%
  968. filter(K < (mean_K - 2 * sd_K) | K > (mean_K + 2 * sd_K))
  969. message("Calculating summary statistics for L within 2SD of K")
  970. # TODO We're omitting the original z_max calculation, not sure if needed?
  971. ss <- calculate_summary_stats(df_na_within_2sd_k, "L", group_vars = c("conc_num", "conc_num_factor"))$summary_stats
  972. write.csv(ss,
  973. file = file.path(out_dir_qc, "max_observed_L_vals_for_spots_within_2sd_K.csv"),
  974. row.names = FALSE)
  975. message("Calculating summary statistics for L outside 2SD of K")
  976. ss <- calculate_summary_stats(df_na_outside_2sd_k, "L", group_vars = c("conc_num", "conc_num_factor"))
  977. df_na_l_outside_2sd_k_stats <- ss$df_with_stats
  978. write.csv(ss$summary_stats,
  979. file = file.path(out_dir, "max_observed_L_vals_for_spots_outside_2sd_K.csv"),
  980. row.names = FALSE)
  981. # Each plots list corresponds to a file
  982. l_vs_k_plot_configs <- list(
  983. list(
  984. df = df,
  985. x_var = "L",
  986. y_var = "K",
  987. plot_type = "scatter",
  988. delta_bg_point = TRUE,
  989. title = "Raw L vs K before quality control",
  990. color_var = "conc_num",
  991. error_bar = FALSE,
  992. legend_position = "right"
  993. )
  994. )
  995. frequency_delta_bg_plot_configs <- list(
  996. list(
  997. df = df_stats,
  998. x_var = "delta_bg",
  999. y_var = NULL,
  1000. plot_type = "density",
  1001. title = "Density plot for Delta Background by [Drug] (All Data)",
  1002. color_var = "conc_num",
  1003. x_label = "Delta Background",
  1004. y_label = "Density",
  1005. error_bar = FALSE,
  1006. legend_position = "right"),
  1007. list(
  1008. df = df_stats,
  1009. x_var = "delta_bg",
  1010. y_var = NULL,
  1011. plot_type = "bar",
  1012. title = "Bar plot for Delta Background by [Drug] (All Data)",
  1013. color_var = "conc_num",
  1014. x_label = "Delta Background",
  1015. y_label = "Count",
  1016. error_bar = FALSE,
  1017. legend_position = "right")
  1018. )
  1019. above_threshold_plot_configs <- list(
  1020. list(
  1021. df = df_above_tolerance,
  1022. x_var = "L",
  1023. y_var = "K",
  1024. plot_type = "scatter",
  1025. delta_bg_point = TRUE,
  1026. title = paste("Raw L vs K for strains above Delta Background threshold of",
  1027. round(df_above_tolerance$delta_bg_tolerance[[1]], 3), "or above"),
  1028. color_var = "conc_num",
  1029. position = "jitter",
  1030. annotations = list(
  1031. list(
  1032. x = l_half_median,
  1033. y = k_half_median,
  1034. label = paste("# strains above Delta Background tolerance =", nrow(df_above_tolerance))
  1035. )
  1036. ),
  1037. error_bar = FALSE,
  1038. legend_position = "right"
  1039. )
  1040. )
  1041. plate_analysis_plot_configs <- generate_plate_analysis_plot_configs(
  1042. variables = summary_vars,
  1043. df_before = df_stats,
  1044. df_after = df_na_stats_filtered
  1045. )
  1046. plate_analysis_boxplot_configs <- generate_plate_analysis_plot_configs(
  1047. variables = summary_vars,
  1048. df_before = df_stats,
  1049. df_after = df_na_stats_filtered,
  1050. plot_type = "box"
  1051. )
  1052. plate_analysis_no_zeros_plot_configs <- generate_plate_analysis_plot_configs(
  1053. variables = summary_vars,
  1054. stages = c("after"), # Only after QC
  1055. df_after = df_no_zeros_stats
  1056. )
  1057. plate_analysis_no_zeros_boxplot_configs <- generate_plate_analysis_plot_configs(
  1058. variables = summary_vars,
  1059. stages = c("after"), # Only after QC
  1060. df_after = df_no_zeros_stats,
  1061. plot_type = "box"
  1062. )
  1063. l_outside_2sd_k_plot_configs <- list(
  1064. list(
  1065. df = df_na_l_outside_2sd_k_stats,
  1066. x_var = "L",
  1067. y_var = "K",
  1068. plot_type = "scatter",
  1069. delta_bg_point = TRUE,
  1070. title = "Raw L vs K for strains falling outside 2SD of the K mean at each Conc",
  1071. color_var = "conc_num",
  1072. position = "jitter",
  1073. legend_position = "right"
  1074. )
  1075. )
  1076. delta_bg_outside_2sd_k_plot_configs <- list(
  1077. list(
  1078. df = df_na_l_outside_2sd_k_stats,
  1079. x_var = "delta_bg",
  1080. y_var = "K",
  1081. plot_type = "scatter",
  1082. gene_point = TRUE,
  1083. title = "Delta Background vs K for strains falling outside 2SD of the K mean at each Conc",
  1084. color_var = "conc_num",
  1085. position = "jitter",
  1086. legend_position = "right"
  1087. )
  1088. )
  1089. message("Generating quality control plots in parallel")
  1090. # future::plan(future::multicore, workers = parallel::detectCores())
  1091. future::plan(future::multisession, workers = 3) # generate 3 plots in parallel
  1092. plot_configs <- list(
  1093. list(out_dir = out_dir_qc, filename = "L_vs_K_before_quality_control",
  1094. plot_configs = l_vs_k_plot_configs),
  1095. list(out_dir = out_dir_qc, filename = "frequency_delta_background",
  1096. plot_configs = frequency_delta_bg_plot_configs),
  1097. list(out_dir = out_dir_qc, filename = "L_vs_K_above_threshold",
  1098. plot_configs = above_threshold_plot_configs),
  1099. list(out_dir = out_dir_qc, filename = "plate_analysis",
  1100. plot_configs = plate_analysis_plot_configs),
  1101. list(out_dir = out_dir_qc, filename = "plate_analysis_boxplots",
  1102. plot_configs = plate_analysis_boxplot_configs),
  1103. list(out_dir = out_dir_qc, filename = "plate_analysis_no_zeros",
  1104. plot_configs = plate_analysis_no_zeros_plot_configs),
  1105. list(out_dir = out_dir_qc, filename = "plate_analysis_no_zeros_boxplots",
  1106. plot_configs = plate_analysis_no_zeros_boxplot_configs),
  1107. list(out_dir = out_dir_qc, filename = "L_vs_K_for_strains_2SD_outside_mean_K",
  1108. plot_configs = l_outside_2sd_k_plot_configs),
  1109. list(out_dir = out_dir_qc, filename = "delta_background_vs_K_for_strains_2sd_outside_mean_K",
  1110. plot_configs = delta_bg_outside_2sd_k_plot_configs)
  1111. )
  1112. # Generating quality control plots in parallel
  1113. furrr::future_map(plot_configs, function(config) {
  1114. generate_and_save_plots(config$out_dir, config$filename, config$plot_configs)
  1115. }, .options = furrr_options(seed = TRUE))
  1116. # Process background strains
  1117. bg_strains <- c("YDL227C")
  1118. lapply(bg_strains, function(strain) {
  1119. message("Processing background strain: ", strain)
  1120. # Handle missing data by setting zero values to NA
  1121. # and then removing any rows with NA in L col
  1122. df_bg <- df_na %>%
  1123. filter(OrfRep == strain) %>%
  1124. mutate(
  1125. L = if_else(L == 0, NA, L),
  1126. K = if_else(K == 0, NA, K),
  1127. r = if_else(r == 0, NA, r),
  1128. AUC = if_else(AUC == 0, NA, AUC)
  1129. ) %>%
  1130. filter(!is.na(L))
  1131. # Recalculate summary statistics for the background strain
  1132. message("Calculating summary statistics for background strain")
  1133. ss_bg <- calculate_summary_stats(df_bg, summary_vars, group_vars = c("OrfRep", "conc_num", "conc_num_factor"))
  1134. summary_stats_bg <- ss_bg$summary_stats
  1135. write.csv(summary_stats_bg,
  1136. file = file.path(out_dir, paste0("summary_stats_background_strain_", strain, ".csv")),
  1137. row.names = FALSE)
  1138. # Set the missing values to the highest theoretical value at each drug conc for L
  1139. # Leave other values as 0 for the max/min
  1140. df_reference <- df_na_stats %>% # formerly X2_RF
  1141. filter(OrfRep == strain) %>%
  1142. filter(!is.na(L)) %>%
  1143. group_by(conc_num, conc_num_factor) %>%
  1144. mutate(
  1145. max_l_theoretical = max(max_L, na.rm = TRUE),
  1146. L = ifelse(L == 0 & !is.na(L) & conc_num > 0, max_l_theoretical, L),
  1147. SM = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, 1, 0),
  1148. L = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, max_l_theoretical, L)) %>%
  1149. ungroup()
  1150. # Ditto for deletion strains
  1151. df_deletion <- df_na_stats %>% # formerly X2
  1152. filter(OrfRep != strain) %>%
  1153. filter(!is.na(L)) %>%
  1154. mutate(SM = 0) %>%
  1155. group_by(conc_num, conc_num_factor) %>%
  1156. mutate(
  1157. max_l_theoretical = max(max_L, na.rm = TRUE),
  1158. L = ifelse(L == 0 & !is.na(L) & conc_num > 0, max_l_theoretical, L),
  1159. SM = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, 1, SM),
  1160. L = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, max_l_theoretical, L)) %>%
  1161. ungroup()
  1162. message("Calculating reference strain interaction scores")
  1163. df_reference_stats <- calculate_summary_stats(
  1164. df = df_reference,
  1165. variables = interaction_vars,
  1166. group_vars = c("OrfRep", "Gene", "num", "conc_num", "conc_num_factor")
  1167. )$df_with_stats
  1168. reference_results <- calculate_interaction_scores(df_reference_stats, max_conc, bg_stats, group_vars = c("OrfRep", "Gene", "num"))
  1169. zscore_calculations_reference <- reference_results$calculations
  1170. zscore_interactions_reference <- reference_results$interactions
  1171. zscore_interactions_reference_joined <- reference_results$interactions_joined
  1172. message("Calculating deletion strain(s) interactions scores")
  1173. df_deletion_stats <- calculate_summary_stats(
  1174. df = df_deletion,
  1175. variables = interaction_vars,
  1176. group_vars = c("OrfRep", "Gene", "conc_num", "conc_num_factor")
  1177. )$df_with_stats
  1178. deletion_results <- calculate_interaction_scores(df_deletion_stats, max_conc, bg_stats, group_vars = c("OrfRep"))
  1179. zscore_calculations <- deletion_results$calculations
  1180. zscore_interactions <- deletion_results$interactions
  1181. zscore_interactions_joined <- deletion_results$interactions_joined
  1182. # Writing Z-Scores to file
  1183. write.csv(zscore_calculations_reference, file = file.path(out_dir, "zscore_calculations_reference.csv"), row.names = FALSE)
  1184. write.csv(zscore_calculations, file = file.path(out_dir, "zscore_calculations.csv"), row.names = FALSE)
  1185. write.csv(zscore_interactions_reference, file = file.path(out_dir, "zscore_interactions_reference.csv"), row.names = FALSE)
  1186. write.csv(zscore_interactions, file = file.path(out_dir, "zscore_interactions.csv"), row.names = FALSE)
  1187. # Create interaction plots
  1188. message("Generating reference interaction plots")
  1189. reference_plot_configs <- generate_interaction_plot_configs(zscore_interactions_reference_joined)
  1190. generate_and_save_plots(out_dir, "interaction_plots_reference", reference_plot_configs, grid_layout = list(ncol = 4, nrow = 3))
  1191. message("Generating deletion interaction plots")
  1192. deletion_plot_configs <- generate_interaction_plot_configs(zscore_interactions_joined)
  1193. generate_and_save_plots(out_dir, "interaction_plots", deletion_plot_configs, grid_layout = list(ncol = 4, nrow = 3))
  1194. # Define conditions for enhancers and suppressors
  1195. # TODO Add to study config?
  1196. threshold <- 2
  1197. enhancer_condition_L <- zscore_interactions$Avg_Zscore_L >= threshold
  1198. suppressor_condition_L <- zscore_interactions$Avg_Zscore_L <= -threshold
  1199. enhancer_condition_K <- zscore_interactions$Avg_Zscore_K >= threshold
  1200. suppressor_condition_K <- zscore_interactions$Avg_Zscore_K <= -threshold
  1201. # Subset data
  1202. enhancers_L <- zscore_interactions[enhancer_condition_L, ]
  1203. suppressors_L <- zscore_interactions[suppressor_condition_L, ]
  1204. enhancers_K <- zscore_interactions[enhancer_condition_K, ]
  1205. suppressors_K <- zscore_interactions[suppressor_condition_K, ]
  1206. # Save enhancers and suppressors
  1207. message("Writing enhancer/suppressor csv files")
  1208. write.csv(enhancers_L, file = file.path(out_dir, "zscore_interactions_deletion_enhancers_L.csv"), row.names = FALSE)
  1209. write.csv(suppressors_L, file = file.path(out_dir, "zscore_interactions_deletion_suppressors_L.csv"), row.names = FALSE)
  1210. write.csv(enhancers_K, file = file.path(out_dir, "zscore_interactions_deletion_enhancers_K.csv"), row.names = FALSE)
  1211. write.csv(suppressors_K, file = file.path(out_dir, "zscore_interactions_deletion_suppressors_K.csv"), row.names = FALSE)
  1212. # Combine conditions for enhancers and suppressors
  1213. enhancers_and_suppressors_L <- zscore_interactions[enhancer_condition_L | suppressor_condition_L, ]
  1214. enhancers_and_suppressors_K <- zscore_interactions[enhancer_condition_K | suppressor_condition_K, ]
  1215. # Save combined enhancers and suppressors
  1216. write.csv(enhancers_and_suppressors_L,
  1217. file = file.path(out_dir, "zscore_interactions_deletion_enhancers_and_suppressors_L.csv"), row.names = FALSE)
  1218. write.csv(enhancers_and_suppressors_K,
  1219. file = file.path(out_dir, "zscore_interaction_deletion_enhancers_and_suppressors_K.csv"), row.names = FALSE)
  1220. # Handle linear model based enhancers and suppressors
  1221. lm_threshold <- 2 # TODO add to study config?
  1222. enhancers_lm_L <- zscore_interactions[zscore_interactions$Z_lm_L >= lm_threshold, ]
  1223. suppressors_lm_L <- zscore_interactions[zscore_interactions$Z_lm_L <= -lm_threshold, ]
  1224. enhancers_lm_K <- zscore_interactions[zscore_interactions$Z_lm_K >= lm_threshold, ]
  1225. suppressors_lm_K <- zscore_interactions[zscore_interactions$Z_lm_K <= -lm_threshold, ]
  1226. # Save linear model based enhancers and suppressors
  1227. message("Writing linear model enhancer/suppressor csv files")
  1228. write.csv(enhancers_lm_L,
  1229. file = file.path(out_dir, "zscore_interactions_deletion_enhancers_lm_L.csv"), row.names = FALSE)
  1230. write.csv(suppressors_lm_L,
  1231. file = file.path(out_dir, "zscore_interactions_deletion_suppressors_lm_L.csv"), row.names = FALSE)
  1232. write.csv(enhancers_lm_K,
  1233. file = file.path(out_dir, "zscore_interactions_deletion_enhancers_lm_K.csv"), row.names = FALSE)
  1234. write.csv(suppressors_lm_K,
  1235. file = file.path(out_dir, "zscore_interactions_deletion_suppressors_lm_K.csv"), row.names = FALSE)
  1236. message("Generating rank plots")
  1237. rank_plot_configs <- generate_rank_plot_configs(
  1238. df = zscore_interactions_joined,
  1239. variables = interaction_vars,
  1240. is_lm = FALSE,
  1241. adjust = TRUE
  1242. )
  1243. generate_and_save_plots(out_dir = out_dir, filename = "rank_plots",
  1244. plot_configs = rank_plot_configs, grid_layout = list(ncol = 3, nrow = 2))
  1245. message("Generating ranked linear model plots")
  1246. rank_lm_plot_configs <- generate_rank_plot_configs(
  1247. df = zscore_interactions_joined,
  1248. variables = interaction_vars,
  1249. is_lm = TRUE,
  1250. adjust = TRUE
  1251. )
  1252. generate_and_save_plots(out_dir = out_dir, filename = "rank_plots_lm",
  1253. plot_configs = rank_lm_plot_configs, grid_layout = list(ncol = 3, nrow = 2))
  1254. message("Filtering and reranking plots")
  1255. interaction_threshold <- 2 # TODO add to study config?
  1256. # Formerly X_NArm
  1257. zscore_interactions_filtered <- zscore_interactions_joined %>%
  1258. filter(!is.na(Z_lm_L) & !is.na(Avg_Zscore_L)) %>%
  1259. mutate(
  1260. Overlap = case_when(
  1261. Z_lm_L >= interaction_threshold & Avg_Zscore_L >= interaction_threshold ~ "Deletion Enhancer Both",
  1262. Z_lm_L <= -interaction_threshold & Avg_Zscore_L <= -interaction_threshold ~ "Deletion Suppressor Both",
  1263. Z_lm_L >= interaction_threshold & Avg_Zscore_L <= interaction_threshold ~ "Deletion Enhancer lm only",
  1264. Z_lm_L <= interaction_threshold & Avg_Zscore_L >= interaction_threshold ~ "Deletion Enhancer Avg Zscore only",
  1265. Z_lm_L <= -interaction_threshold & Avg_Zscore_L >= -interaction_threshold ~ "Deletion Suppressor lm only",
  1266. Z_lm_L >= -interaction_threshold & Avg_Zscore_L <= -interaction_threshold ~ "Deletion Suppressor Avg Zscore only",
  1267. Z_lm_L >= interaction_threshold & Avg_Zscore_L <= -interaction_threshold ~ "Deletion Enhancer lm, Deletion Suppressor Avg Z score",
  1268. Z_lm_L <= -interaction_threshold & Avg_Zscore_L >= interaction_threshold ~ "Deletion Suppressor lm, Deletion Enhancer Avg Z score",
  1269. TRUE ~ "No Effect"
  1270. ),
  1271. lm_R_squared_L = summary(lm(Z_lm_L ~ Avg_Zscore_L))$r.squared,
  1272. lm_R_squared_K = summary(lm(Z_lm_K ~ Avg_Zscore_K))$r.squared,
  1273. lm_R_squared_r = summary(lm(Z_lm_r ~ Avg_Zscore_r))$r.squared,
  1274. lm_R_squared_AUC = summary(lm(Z_lm_AUC ~ Avg_Zscore_AUC))$r.squared
  1275. )
  1276. message("Generating filtered ranked plots")
  1277. rank_plot_filtered_configs <- generate_rank_plot_configs(
  1278. df = zscore_interactions_filtered,
  1279. variables = interaction_vars,
  1280. is_lm = FALSE,
  1281. adjust = FALSE,
  1282. overlap_color = TRUE
  1283. )
  1284. generate_and_save_plots(
  1285. out_dir = out_dir,
  1286. filename = "RankPlots_na_rm",
  1287. plot_configs = rank_plot_filtered_configs,
  1288. grid_layout = list(ncol = 3, nrow = 2))
  1289. message("Generating filtered ranked linear model plots")
  1290. rank_plot_lm_filtered_configs <- generate_rank_plot_configs(
  1291. df = zscore_interactions_filtered,
  1292. variables = interaction_vars,
  1293. is_lm = TRUE,
  1294. adjust = FALSE,
  1295. overlap_color = TRUE
  1296. )
  1297. generate_and_save_plots(
  1298. out_dir = out_dir,
  1299. filename = "rank_plots_lm_na_rm",
  1300. plot_configs = rank_plot_lm_filtered_configs,
  1301. grid_layout = list(ncol = 3, nrow = 2))
  1302. message("Generating correlation curve parameter pair plots")
  1303. correlation_plot_configs <- generate_correlation_plot_configs(zscore_interactions_filtered)
  1304. generate_and_save_plots(
  1305. out_dir = out_dir,
  1306. filename = "correlation_cpps",
  1307. plot_configs = correlation_plot_configs,
  1308. grid_layout = list(ncol = 2, nrow = 2))
  1309. })
  1310. })
  1311. }
  1312. main()