calculate_interaction_zscores.R 55 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452
  1. suppressMessages({
  2. library("ggplot2")
  3. library("plotly")
  4. library("htmlwidgets")
  5. library("dplyr")
  6. library("rlang")
  7. library("ggthemes")
  8. library("data.table")
  9. library("gridExtra")
  10. library("future")
  11. library("furrr")
  12. library("purrr")
  13. })
  14. # These parallelization libraries are very noisy
  15. suppressPackageStartupMessages({
  16. library("future")
  17. library("furrr")
  18. library("purrr")
  19. })
  20. options(warn = 2)
  21. # Constants for configuration
  22. plot_width <- 14
  23. plot_height <- 9
  24. base_size <- 14
  25. parse_arguments <- function() {
  26. args <- if (interactive()) {
  27. c(
  28. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/20240116_jhartman2_DoxoHLD",
  29. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/apps/r/SGD_features.tab",
  30. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/easy/20240116_jhartman2_DoxoHLD/results_std.txt",
  31. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/20240822_jhartman2_DoxoHLD/exp1",
  32. "Experiment 1: Doxo versus HLD",
  33. 3,
  34. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/20240822_jhartman2_DoxoHLD/exp2",
  35. "Experiment 2: HLD versus Doxo",
  36. 3
  37. )
  38. } else {
  39. commandArgs(trailingOnly = TRUE)
  40. }
  41. out_dir <- normalizePath(args[1], mustWork = FALSE)
  42. sgd_gene_list <- normalizePath(args[2], mustWork = FALSE)
  43. easy_results_file <- normalizePath(args[3], mustWork = FALSE)
  44. # The remaining arguments should be in groups of 3
  45. exp_args <- args[-(1:3)]
  46. if (length(exp_args) %% 3 != 0) {
  47. stop("Experiment arguments should be in groups of 3: path, name, sd.")
  48. }
  49. # Extract the experiments into a list
  50. experiments <- list()
  51. for (i in seq(1, length(exp_args), by = 3)) {
  52. exp_name <- exp_args[i + 1]
  53. experiments[[exp_name]] <- list(
  54. path = normalizePath(exp_args[i], mustWork = FALSE),
  55. sd = as.numeric(exp_args[i + 2])
  56. )
  57. }
  58. # Extract the trailing number from each path
  59. trailing_numbers <- sapply(experiments, function(x) {
  60. path <- x$path
  61. nums <- gsub("[^0-9]", "", basename(path))
  62. as.integer(nums)
  63. })
  64. # Sort the experiments based on the trailing numbers
  65. sorted_experiments <- experiments[order(trailing_numbers)]
  66. list(
  67. out_dir = out_dir,
  68. sgd_gene_list = sgd_gene_list,
  69. easy_results_file = easy_results_file,
  70. experiments = sorted_experiments
  71. )
  72. }
  73. args <- parse_arguments()
  74. # Should we keep output in exp dirs or combine in the study output dir?
  75. # dir.create(file.path(args$out_dir, "zscores"), showWarnings = FALSE)
  76. # dir.create(file.path(args$out_dir, "zscores", "qc"), showWarnings = FALSE)
  77. theme_publication <- function(base_size = 14, base_family = "sans", legend_position = "bottom") {
  78. theme_foundation <- ggthemes::theme_foundation(base_size = base_size, base_family = base_family)
  79. theme_foundation %+replace%
  80. theme(
  81. plot.title = element_text(face = "bold", size = rel(1.6), hjust = 0.5),
  82. text = element_text(),
  83. panel.background = element_blank(),
  84. plot.background = element_blank(),
  85. panel.border = element_blank(),
  86. axis.title = element_text(face = "bold", size = rel(1.4)),
  87. axis.title.y = element_text(angle = 90, vjust = 2),
  88. # axis.title.x = element_text(vjust = -0.2), # TODO this causes errors
  89. axis.text = element_text(size = rel(1.2)),
  90. axis.line = element_line(colour = "black"),
  91. # axis.ticks = element_line(),
  92. panel.grid.major = element_line(colour = "#f0f0f0"),
  93. panel.grid.minor = element_blank(),
  94. legend.key = element_rect(colour = NA),
  95. legend.position = legend_position,
  96. legend.direction = ifelse(legend_position == "right", "vertical", "horizontal"),
  97. # legend.key.size = unit(0.5, "cm"),
  98. legend.spacing = unit(0, "cm"),
  99. legend.title = element_text(face = "italic", size = rel(1.3)),
  100. legend.text = element_text(size = rel(1.2)),
  101. plot.margin = unit(c(10, 5, 5, 5), "mm")
  102. # strip.background = element_rect(colour = "#f0f0f0", fill = "#f0f0f0"),
  103. # strip.text = element_text(face = "bold")
  104. )
  105. }
  106. scale_fill_publication <- function(...) {
  107. discrete_scale("fill", "Publication", manual_pal(values = c(
  108. "#386cb0", "#fdb462", "#7fc97f", "#ef3b2c", "#662506",
  109. "#a6cee3", "#fb9a99", "#984ea3", "#ffff33"
  110. )), ...)
  111. }
  112. scale_colour_publication <- function(...) {
  113. discrete_scale("colour", "Publication", manual_pal(values = c(
  114. "#386cb0", "#fdb462", "#7fc97f", "#ef3b2c", "#662506",
  115. "#a6cee3", "#fb9a99", "#984ea3", "#ffff33"
  116. )), ...)
  117. }
  118. # Load the initial dataframe from the easy_results_file
  119. load_and_filter_data <- function(easy_results_file, sd = 3) {
  120. df <- read.delim(easy_results_file, skip = 2, as.is = TRUE, row.names = 1, strip.white = TRUE)
  121. df <- df %>%
  122. filter(!(.[[1]] %in% c("", "Scan"))) %>%
  123. filter(!is.na(ORF) & ORF != "" & !Gene %in% c("BLANK", "Blank", "blank") & Drug != "BMH21") %>%
  124. # Rename columns
  125. rename(L = l, num = Num., AUC = AUC96, scan = Scan, last_bg = LstBackgrd, first_bg = X1stBackgrd) %>%
  126. mutate(
  127. across(c(Col, Row, num, L, K, r, scan, AUC, last_bg, first_bg), as.numeric),
  128. delta_bg = last_bg - first_bg,
  129. delta_bg_tolerance = mean(delta_bg, na.rm = TRUE) + (sd * sd(delta_bg, na.rm = TRUE)),
  130. NG = if_else(L == 0 & !is.na(L), 1, 0),
  131. DB = if_else(delta_bg >= delta_bg_tolerance, 1, 0),
  132. SM = 0,
  133. OrfRep = if_else(ORF == "YDL227C", "YDL227C", OrfRep), # should these be hardcoded?
  134. conc_num = as.numeric(gsub("[^0-9\\.]", "", Conc)),
  135. conc_num_factor = as.numeric(as.factor(conc_num)) - 1, # for legacy purposes
  136. conc_num_factor_factor = as.factor(conc_num)
  137. )
  138. return(df)
  139. }
  140. # Update Gene names using the SGD gene list
  141. update_gene_names <- function(df, sgd_gene_list) {
  142. # Load SGD gene list
  143. genes <- read.delim(file = sgd_gene_list,
  144. quote = "", header = FALSE,
  145. colClasses = c(rep("NULL", 3), rep("character", 2), rep("NULL", 11)))
  146. # Create a named vector for mapping ORF to GeneName
  147. gene_map <- setNames(genes$V5, genes$V4)
  148. # Vectorized match to find the GeneName from gene_map
  149. mapped_genes <- gene_map[df$ORF]
  150. # Replace NAs in mapped_genes with original Gene names (preserves existing Gene names if ORF is not found)
  151. updated_genes <- ifelse(is.na(mapped_genes) | df$OrfRep == "YDL227C", df$Gene, mapped_genes)
  152. # Ensure Gene is not left blank or incorrectly updated to "OCT1"
  153. df <- df %>%
  154. mutate(Gene = ifelse(updated_genes == "" | updated_genes == "OCT1", OrfRep, updated_genes))
  155. return(df)
  156. }
  157. calculate_summary_stats <- function(df, variables, group_vars) {
  158. summary_stats <- df %>%
  159. group_by(across(all_of(group_vars))) %>%
  160. summarise(
  161. N = n(),
  162. across(all_of(variables),
  163. list(
  164. mean = ~ mean(.x, na.rm = TRUE),
  165. median = ~ median(.x, na.rm = TRUE),
  166. max = ~ ifelse(all(is.na(.x)), NA, max(.x, na.rm = TRUE)),
  167. min = ~ ifelse(all(is.na(.x)), NA, min(.x, na.rm = TRUE)),
  168. sd = ~ sd(.x, na.rm = TRUE),
  169. se = ~ sd(.x, na.rm = TRUE) / sqrt(n() - 1)
  170. ),
  171. .names = "{.fn}_{.col}"
  172. ),
  173. .groups = "drop"
  174. )
  175. # Create a cleaned version of df that doesn't overlap with summary_stats
  176. cleaned_df <- df %>%
  177. select(-any_of(setdiff(intersect(names(df), names(summary_stats)), group_vars)))
  178. df_joined <- left_join(cleaned_df, summary_stats, by = group_vars)
  179. return(list(summary_stats = summary_stats, df_with_stats = df_joined))
  180. }
  181. calculate_interaction_scores <- function(df, max_conc, bg_stats,
  182. group_vars = c("OrfRep", "Gene", "num")) {
  183. # Calculate total concentration variables
  184. total_conc_num <- length(unique(df$conc_num))
  185. calculations <- df %>%
  186. group_by(across(all_of(group_vars))) %>%
  187. mutate(
  188. NG = sum(NG, na.rm = TRUE),
  189. DB = sum(DB, na.rm = TRUE),
  190. SM = sum(SM, na.rm = TRUE),
  191. num_non_removed_concs = total_conc_num - sum(DB, na.rm = TRUE) - 1,
  192. # Calculate raw data
  193. Raw_Shift_L = first(mean_L) - bg_stats$mean_L,
  194. Raw_Shift_K = first(mean_K) - bg_stats$mean_K,
  195. Raw_Shift_r = first(mean_r) - bg_stats$mean_r,
  196. Raw_Shift_AUC = first(mean_AUC) - bg_stats$mean_AUC,
  197. Z_Shift_L = first(Raw_Shift_L) / bg_stats$sd_L,
  198. Z_Shift_K = first(Raw_Shift_K) / bg_stats$sd_K,
  199. Z_Shift_r = first(Raw_Shift_r) / bg_stats$sd_r,
  200. Z_Shift_AUC = first(Raw_Shift_AUC) / bg_stats$sd_AUC,
  201. Exp_L = WT_L + Raw_Shift_L,
  202. Exp_K = WT_K + Raw_Shift_K,
  203. Exp_r = WT_r + Raw_Shift_r,
  204. Exp_AUC = WT_AUC + Raw_Shift_AUC,
  205. Delta_L = mean_L - Exp_L,
  206. Delta_K = mean_K - Exp_K,
  207. Delta_r = mean_r - Exp_r,
  208. Delta_AUC = mean_AUC - Exp_AUC,
  209. Delta_L = if_else(NG == 1, mean_L - WT_L, Delta_L),
  210. Delta_K = if_else(NG == 1, mean_K - WT_K, Delta_K),
  211. Delta_r = if_else(NG == 1, mean_r - WT_r, Delta_r),
  212. Delta_AUC = if_else(NG == 1, mean_AUC - WT_AUC, Delta_AUC),
  213. Delta_L = if_else(SM == 1, mean_L - WT_L, Delta_L),
  214. # Calculate Z-scores
  215. Zscore_L = Delta_L / WT_sd_L,
  216. Zscore_K = Delta_K / WT_sd_K,
  217. Zscore_r = Delta_r / WT_sd_r,
  218. Zscore_AUC = Delta_AUC / WT_sd_AUC,
  219. # Fit linear models and store in list-columns
  220. gene_lm_L = list(lm(Delta_L ~ conc_num_factor, data = pick(everything()))),
  221. gene_lm_K = list(lm(Delta_K ~ conc_num_factor, data = pick(everything()))),
  222. gene_lm_r = list(lm(Delta_r ~ conc_num_factor, data = pick(everything()))),
  223. gene_lm_AUC = list(lm(Delta_AUC ~ conc_num_factor, data = pick(everything()))),
  224. # Extract coefficients using purrr::map_dbl
  225. lm_intercept_L = map_dbl(gene_lm_L, ~ coef(.x)[1]),
  226. lm_slope_L = map_dbl(gene_lm_L, ~ coef(.x)[2]),
  227. lm_intercept_K = map_dbl(gene_lm_K, ~ coef(.x)[1]),
  228. lm_slope_K = map_dbl(gene_lm_K, ~ coef(.x)[2]),
  229. lm_intercept_r = map_dbl(gene_lm_r, ~ coef(.x)[1]),
  230. lm_slope_r = map_dbl(gene_lm_r, ~ coef(.x)[2]),
  231. lm_intercept_AUC = map_dbl(gene_lm_AUC, ~ coef(.x)[1]),
  232. lm_slope_AUC = map_dbl(gene_lm_AUC, ~ coef(.x)[2]),
  233. # Calculate lm_Score_* based on coefficients
  234. lm_Score_L = max_conc * lm_slope_L + lm_intercept_L,
  235. lm_Score_K = max_conc * lm_slope_K + lm_intercept_K,
  236. lm_Score_r = max_conc * lm_slope_r + lm_intercept_r,
  237. lm_Score_AUC = max_conc * lm_slope_AUC + lm_intercept_AUC,
  238. # Calculate R-squared values
  239. R_Squared_L = map_dbl(gene_lm_L, ~ summary(.x)$r.squared),
  240. R_Squared_K = map_dbl(gene_lm_K, ~ summary(.x)$r.squared),
  241. R_Squared_r = map_dbl(gene_lm_r, ~ summary(.x)$r.squared),
  242. R_Squared_AUC = map_dbl(gene_lm_AUC, ~ summary(.x)$r.squared)
  243. ) %>%
  244. ungroup()
  245. # Calculate overall mean and SD for lm_Score_* variables
  246. lm_means_sds <- calculations %>%
  247. summarise(
  248. lm_mean_L = mean(lm_Score_L, na.rm = TRUE),
  249. lm_sd_L = sd(lm_Score_L, na.rm = TRUE),
  250. lm_mean_K = mean(lm_Score_K, na.rm = TRUE),
  251. lm_sd_K = sd(lm_Score_K, na.rm = TRUE),
  252. lm_mean_r = mean(lm_Score_r, na.rm = TRUE),
  253. lm_sd_r = sd(lm_Score_r, na.rm = TRUE),
  254. lm_mean_AUC = mean(lm_Score_AUC, na.rm = TRUE),
  255. lm_sd_AUC = sd(lm_Score_AUC, na.rm = TRUE)
  256. )
  257. calculations <- calculations %>%
  258. mutate(
  259. Z_lm_L = (lm_Score_L - lm_means_sds$lm_mean_L) / lm_means_sds$lm_sd_L,
  260. Z_lm_K = (lm_Score_K - lm_means_sds$lm_mean_K) / lm_means_sds$lm_sd_K,
  261. Z_lm_r = (lm_Score_r - lm_means_sds$lm_mean_r) / lm_means_sds$lm_sd_r,
  262. Z_lm_AUC = (lm_Score_AUC - lm_means_sds$lm_mean_AUC) / lm_means_sds$lm_sd_AUC
  263. )
  264. # Summarize some of the stats
  265. interactions <- calculations %>%
  266. group_by(across(all_of(group_vars))) %>%
  267. mutate(
  268. # Calculate raw shifts
  269. Raw_Shift_L = first(Raw_Shift_L),
  270. Raw_Shift_K = first(Raw_Shift_K),
  271. Raw_Shift_r = first(Raw_Shift_r),
  272. Raw_Shift_AUC = first(Raw_Shift_AUC),
  273. # Calculate Z-shifts
  274. Z_Shift_L = first(Z_Shift_L),
  275. Z_Shift_K = first(Z_Shift_K),
  276. Z_Shift_r = first(Z_Shift_r),
  277. Z_Shift_AUC = first(Z_Shift_AUC),
  278. # Sum Z-scores
  279. Sum_Z_Score_L = sum(Zscore_L),
  280. Sum_Z_Score_K = sum(Zscore_K),
  281. Sum_Z_Score_r = sum(Zscore_r),
  282. Sum_Z_Score_AUC = sum(Zscore_AUC),
  283. # Calculate Average Z-scores
  284. Avg_Zscore_L = Sum_Z_Score_L / num_non_removed_concs,
  285. Avg_Zscore_K = Sum_Z_Score_K / num_non_removed_concs,
  286. Avg_Zscore_r = Sum_Z_Score_r / (total_conc_num - 1),
  287. Avg_Zscore_AUC = Sum_Z_Score_AUC / (total_conc_num - 1)
  288. ) %>%
  289. arrange(desc(Z_lm_L), desc(NG)) %>%
  290. ungroup()
  291. # Declare column order for output
  292. calculations <- calculations %>%
  293. select(
  294. "OrfRep", "Gene", "num", "N",
  295. "conc_num", "conc_num_factor", "conc_num_factor_factor",
  296. "mean_L", "mean_K", "mean_r", "mean_AUC",
  297. "median_L", "median_K", "median_r", "median_AUC",
  298. "sd_L", "sd_K", "sd_r", "sd_AUC",
  299. "se_L", "se_K", "se_r", "se_AUC",
  300. "Raw_Shift_L", "Raw_Shift_K", "Raw_Shift_r", "Raw_Shift_AUC",
  301. "Z_Shift_L", "Z_Shift_K", "Z_Shift_r", "Z_Shift_AUC",
  302. "WT_L", "WT_K", "WT_r", "WT_AUC",
  303. "WT_sd_L", "WT_sd_K", "WT_sd_r", "WT_sd_AUC",
  304. "Exp_L", "Exp_K", "Exp_r", "Exp_AUC",
  305. "Delta_L", "Delta_K", "Delta_r", "Delta_AUC",
  306. "Zscore_L", "Zscore_K", "Zscore_r", "Zscore_AUC",
  307. "NG", "SM", "DB"
  308. )
  309. interactions <- interactions %>%
  310. select(
  311. "OrfRep", "Gene", "num", "NG", "DB", "SM",
  312. "conc_num", "conc_num_factor", "conc_num_factor_factor",
  313. "Raw_Shift_L", "Raw_Shift_K", "Raw_Shift_r", "Raw_Shift_AUC",
  314. "Z_Shift_L", "Z_Shift_K", "Z_Shift_r", "Z_Shift_AUC",
  315. "Sum_Z_Score_L", "Sum_Z_Score_K", "Sum_Z_Score_r", "Sum_Z_Score_AUC",
  316. "Avg_Zscore_L", "Avg_Zscore_K", "Avg_Zscore_r", "Avg_Zscore_AUC",
  317. "lm_Score_L", "lm_Score_K", "lm_Score_r", "lm_Score_AUC",
  318. "R_Squared_L", "R_Squared_K", "R_Squared_r", "R_Squared_AUC",
  319. "Z_lm_L", "Z_lm_K", "Z_lm_r", "Z_lm_AUC"
  320. )
  321. # Clean the original dataframe by removing overlapping columns
  322. cleaned_df <- df %>%
  323. select(-any_of(
  324. setdiff(intersect(names(df), names(calculations)),
  325. c("OrfRep", "Gene", "num", "conc_num", "conc_num_factor", "conc_num_factor_factor"))))
  326. # Join the original dataframe with calculations
  327. df_with_calculations <- left_join(cleaned_df, calculations,
  328. by = c("OrfRep", "Gene", "num", "conc_num", "conc_num_factor", "conc_num_factor_factor"))
  329. # Remove overlapping columns between df_with_calculations and interactions
  330. df_with_calculations_clean <- df_with_calculations %>%
  331. select(-any_of(
  332. setdiff(intersect(names(df_with_calculations), names(interactions)),
  333. c("OrfRep", "Gene", "num", "conc_num", "conc_num_factor"))))
  334. # Join with interactions to create the full dataset
  335. full_data <- left_join(df_with_calculations_clean, interactions,
  336. by = c("OrfRep", "Gene", "num", "conc_num", "conc_num_factor", "conc_num_factor_factor"))
  337. return(list(
  338. calculations = calculations,
  339. interactions = interactions,
  340. full_data = full_data
  341. ))
  342. }
  343. generate_and_save_plots <- function(out_dir, filename, plot_configs) {
  344. message("Generating ", filename, ".pdf and ", filename, ".html")
  345. grid_nrow <- ifelse(is.null(plot_configs$grid_layout$nrow), 1, plot_configs$grid_layout$nrow)
  346. grid_ncol <- ifelse(is.null(plot_configs$grid_layout$ncol), length(plot_configs$plots), plot_configs$grid_layout$ncol)
  347. static_plots <- list()
  348. plotly_plots <- list()
  349. for (i in seq_along(plot_configs$plots)) {
  350. config <- plot_configs$plots[[i]]
  351. df <- config$df
  352. # Define aes_mapping and handle color_var defaulting
  353. aes_mapping <- if (config$plot_type == "bar") {
  354. if (!is.null(config$color_var)) {
  355. aes(x = .data[[config$x_var]], fill = .data[[config$color_var]], color = .data[[config$color_var]])
  356. } else {
  357. aes(x = .data[[config$x_var]])
  358. }
  359. } else if (config$plot_type == "density") {
  360. if (!is.null(config$color_var)) {
  361. aes(x = .data[[config$x_var]], color = .data[[config$color_var]])
  362. } else {
  363. aes(x = .data[[config$x_var]])
  364. }
  365. } else {
  366. if (!is.null(config$color_var)) {
  367. aes(x = .data[[config$x_var]], y = .data[[config$y_var]], color = .data[[config$color_var]])
  368. } else {
  369. aes(x = .data[[config$x_var]], y = .data[[config$y_var]])
  370. }
  371. }
  372. # Apply theme_publication with legend_position
  373. plot <- ggplot(df, aes_mapping) + theme_publication(legend_position = config$legend_position)
  374. # Apply appropriate plot function
  375. plot <- switch(config$plot_type,
  376. "scatter" = generate_scatter_plot(plot, config),
  377. "box" = generate_box_plot(plot, config),
  378. "density" = plot + geom_density(),
  379. "bar" = plot + geom_bar(),
  380. plot # default case
  381. )
  382. # Add titles and labels
  383. if (!is.null(config$title)) plot <- plot + ggtitle(config$title)
  384. if (!is.null(config$x_label)) plot <- plot + xlab(config$x_label)
  385. if (!is.null(config$y_label)) plot <- plot + ylab(config$y_label)
  386. if (!is.null(config$coord_cartesian)) plot <- plot + coord_cartesian(ylim = config$coord_cartesian)
  387. # Add interactive tooltips for plotly
  388. tooltip_vars <- ifelse(!is.null(config$tooltip_vars), config$tooltip_vars, "none")
  389. plotly_plot <- suppressWarnings(plotly::ggplotly(plot, tooltip = tooltip_vars))
  390. # Adjust legend position in plotly
  391. if (!is.null(config$legend_position) && config$legend_position == "bottom") {
  392. plotly_plot <- plotly_plot %>% layout(legend = list(orientation = "h"))
  393. }
  394. # Add static and interactive plots to lists
  395. static_plots[[i]] <- plot
  396. plotly_plots[[i]] <- plotly_plot
  397. }
  398. # Save static PDF plots
  399. pdf(file.path(out_dir, paste0(filename, ".pdf")), width = 16, height = 9)
  400. grid.arrange(grobs = static_plots, ncol = grid_ncol, nrow = grid_nrow)
  401. dev.off()
  402. # Save combined interactive HTML plots
  403. if (length(plotly_plots) == 1) {
  404. combined_plot <- plotly_plots[[1]]
  405. } else {
  406. combined_plot <- plotly::subplot(plotly_plots, nrows = grid_nrow, ncols = grid_ncol, margin = 0.05)
  407. }
  408. html_file <- file.path(out_dir, paste0(filename, ".html"))
  409. saveWidget(combined_plot, file = html_file, selfcontained = TRUE)
  410. }
  411. generate_scatter_plot <- function(plot, config) {
  412. # Define the points
  413. shape <- if (!is.null(config$shape)) config$shape else 3
  414. size <- if (!is.null(config$size)) config$size else 1.5
  415. position <-
  416. if (!is.null(config$position) && config$position == "jitter") {
  417. position_jitter(width = 0.1, height = 0)
  418. } else {
  419. "identity"
  420. }
  421. plot <- plot + geom_point(
  422. shape = shape,
  423. size = size,
  424. position = position
  425. )
  426. if (!is.null(config$cyan_points) && config$cyan_points) {
  427. plot <- plot + geom_point(
  428. aes(x = .data[[config$x_var]], y = .data[[config$y_var]]),
  429. color = "cyan",
  430. shape = 3,
  431. size = 0.5
  432. )
  433. }
  434. # Add Smooth Line if specified
  435. if (!is.null(config$smooth) && config$smooth) {
  436. smooth_color <- if (!is.null(config$smooth_color)) config$smooth_color else "blue"
  437. if (!is.null(config$lm_line)) {
  438. plot <- plot +
  439. geom_abline(
  440. intercept = config$lm_line$intercept,
  441. slope = config$lm_line$slope,
  442. color = smooth_color
  443. )
  444. } else {
  445. plot <- plot +
  446. geom_smooth(
  447. method = "lm",
  448. se = FALSE,
  449. color = smooth_color
  450. )
  451. }
  452. }
  453. # Add SD Bands if specified
  454. if (!is.null(config$sd_band)) {
  455. plot <- plot +
  456. annotate(
  457. "rect",
  458. xmin = -Inf, xmax = Inf,
  459. ymin = config$sd_band, ymax = Inf,
  460. fill = ifelse(!is.null(config$fill_positive), config$fill_positive, "#542788"),
  461. alpha = ifelse(!is.null(config$alpha_positive), config$alpha_positive, 0.3)
  462. ) +
  463. annotate(
  464. "rect",
  465. xmin = -Inf, xmax = Inf,
  466. ymin = -config$sd_band, ymax = -Inf,
  467. fill = ifelse(!is.null(config$fill_negative), config$fill_negative, "orange"),
  468. alpha = ifelse(!is.null(config$alpha_negative), config$alpha_negative, 0.3)
  469. ) +
  470. geom_hline(
  471. yintercept = c(-config$sd_band, config$sd_band),
  472. color = ifelse(!is.null(config$hl_color), config$hl_color, "gray")
  473. )
  474. }
  475. # Add Rectangles if specified
  476. if (!is.null(config$rectangles)) {
  477. for (rect in config$rectangles) {
  478. plot <- plot + annotate(
  479. "rect",
  480. xmin = rect$xmin,
  481. xmax = rect$xmax,
  482. ymin = rect$ymin,
  483. ymax = rect$ymax,
  484. fill = ifelse(is.null(rect$fill), NA, rect$fill),
  485. color = ifelse(is.null(rect$color), "black", rect$color),
  486. alpha = ifelse(is.null(rect$alpha), 0.1, rect$alpha)
  487. )
  488. }
  489. }
  490. # Add error bars if specified
  491. if (!is.null(config$error_bar) && config$error_bar && !is.null(config$y_var)) {
  492. if (!is.null(config$error_bar_params)) {
  493. plot <- plot +
  494. geom_errorbar(
  495. aes(
  496. ymin = config$error_bar_params$ymin,
  497. ymax = config$error_bar_params$ymax
  498. ),
  499. alpha = 0.3,
  500. linewidth = 0.5
  501. )
  502. } else {
  503. y_mean_col <- paste0("mean_", config$y_var)
  504. y_sd_col <- paste0("sd_", config$y_var)
  505. plot <- plot +
  506. geom_errorbar(
  507. aes(
  508. ymin = !!sym(y_mean_col) - !!sym(y_sd_col),
  509. ymax = !!sym(y_mean_col) + !!sym(y_sd_col)
  510. ),
  511. alpha = 0.3,
  512. linewidth = 0.5
  513. )
  514. }
  515. }
  516. # Customize X-axis if specified
  517. if (!is.null(config$x_breaks) && !is.null(config$x_labels) && !is.null(config$x_label)) {
  518. plot <- plot +
  519. scale_x_discrete(
  520. name = config$x_label,
  521. breaks = config$x_breaks,
  522. labels = config$x_labels
  523. )
  524. }
  525. # Set Y-axis limits if specified
  526. if (!is.null(config$ylim_vals)) {
  527. plot <- plot + scale_y_continuous(limits = config$ylim_vals)
  528. }
  529. # Add annotations if specified
  530. if (!is.null(config$annotations)) {
  531. for (annotation in config$annotations) {
  532. plot <- plot +
  533. annotate(
  534. "text",
  535. x = annotation$x,
  536. y = annotation$y,
  537. label = annotation$label,
  538. hjust = ifelse(is.null(annotation$hjust), 0.5, annotation$hjust),
  539. vjust = ifelse(is.null(annotation$vjust), 0.5, annotation$vjust),
  540. size = ifelse(is.null(annotation$size), 6, annotation$size),
  541. color = ifelse(is.null(annotation$color), "black", annotation$color)
  542. )
  543. }
  544. }
  545. return(plot)
  546. }
  547. generate_box_plot <- function(plot, config) {
  548. # Convert x_var to a factor within aes mapping
  549. plot <- plot + geom_boxplot(aes(x = factor(.data[[config$x_var]])))
  550. # Apply scale_x_discrete for breaks, labels, and axis label if provided
  551. if (!is.null(config$x_breaks) && !is.null(config$x_labels) && !is.null(config$x_label)) {
  552. plot <- plot + scale_x_discrete(
  553. name = config$x_label,
  554. breaks = config$x_breaks,
  555. labels = config$x_labels
  556. )
  557. }
  558. return(plot)
  559. }
  560. generate_plate_analysis_plot_configs <- function(variables, df_before = NULL, df_after = NULL,
  561. plot_type = "scatter", stages = c("before", "after")) {
  562. plots <- list()
  563. for (var in variables) {
  564. for (stage in stages) {
  565. df_plot <- if (stage == "before") df_before else df_after
  566. # Check for non-finite values in the y-variable
  567. df_plot_filtered <- df_plot %>% filter(is.finite(!!sym(var)))
  568. # Adjust settings based on plot_type
  569. config <- list(
  570. df = df_plot_filtered,
  571. x_var = "scan",
  572. y_var = var,
  573. plot_type = plot_type,
  574. title = paste("Plate analysis by Drug Conc for", var, stage, "quality control"),
  575. color_var = "conc_num_factor_factor",
  576. position = if (plot_type == "scatter") "jitter" else NULL,
  577. size = 0.2,
  578. error_bar = (plot_type == "scatter")
  579. )
  580. # Add config to plots list
  581. plots <- append(plots, list(config))
  582. }
  583. }
  584. return(list(grid_layout = list(ncol = 1, nrow = length(plots)), plots = plots))
  585. }
  586. generate_interaction_plot_configs <- function(df, limits_map = NULL, plot_type = "reference") {
  587. if (is.null(limits_map)) {
  588. limits_map <- list(
  589. L = c(0, 130),
  590. K = c(-20, 160),
  591. r = c(0, 1),
  592. AUC = c(0, 12500),
  593. Delta_L = c(-60, 60),
  594. Delta_K = c(-60, 60),
  595. Delta_r = c(-0.6, 0.6),
  596. Delta_AUC = c(-6000, 6000)
  597. )
  598. }
  599. group_vars <- if (plot_type == "reference") c("OrfRep", "Gene", "num") else c("OrfRep", "Gene")
  600. df_filtered <- df %>%
  601. mutate(OrfRepCombined = if (plot_type == "reference") paste(OrfRep, Gene, num, sep = "_") else paste(OrfRep, Gene, sep = "_"))
  602. # Separate the plots into two groups: overall variables and delta comparisons
  603. overall_plots <- list()
  604. delta_plots <- list()
  605. for (var in c("L", "K", "r", "AUC")) {
  606. y_limits <- limits_map[[var]]
  607. config <- list(
  608. df = df_filtered,
  609. plot_type = "scatter",
  610. x_var = "conc_num_factor_factor",
  611. y_var = var,
  612. x_label = unique(df_filtered$Drug)[1],
  613. title = sprintf("Scatter RF for %s with SD", var),
  614. coord_cartesian = y_limits,
  615. error_bar = TRUE,
  616. x_breaks = unique(df_filtered$conc_num_factor_factor),
  617. x_labels = as.character(unique(df_filtered$conc_num)),
  618. position = "jitter",
  619. smooth = TRUE
  620. )
  621. overall_plots <- append(overall_plots, list(config))
  622. }
  623. unique_groups <- df_filtered %>% select(all_of(group_vars)) %>% distinct()
  624. for (i in seq_len(nrow(unique_groups))) {
  625. group <- unique_groups[i, ]
  626. group_data <- df_filtered %>% semi_join(group, by = group_vars)
  627. OrfRep <- as.character(group$OrfRep)
  628. Gene <- if ("Gene" %in% names(group)) as.character(group$Gene) else ""
  629. num <- if ("num" %in% names(group)) as.character(group$num) else ""
  630. for (var in c("Delta_L", "Delta_K", "Delta_r", "Delta_AUC")) {
  631. y_limits <- limits_map[[var]]
  632. y_span <- y_limits[2] - y_limits[1]
  633. # Error bars
  634. WT_sd_var <- paste0("WT_sd_", sub("Delta_", "", var))
  635. WT_sd_value <- group_data[[WT_sd_var]][1]
  636. error_bar_ymin <- 0 - (2 * WT_sd_value)
  637. error_bar_ymax <- 0 + (2 * WT_sd_value)
  638. # Annotations
  639. Z_Shift_value <- round(group_data[[paste0("Z_Shift_", sub("Delta_", "", var))]][1], 2)
  640. Z_lm_value <- round(group_data[[paste0("Z_lm_", sub("Delta_", "", var))]][1], 2)
  641. NG_value <- group_data$NG[1]
  642. DB_value <- group_data$DB[1]
  643. SM_value <- group_data$SM[1]
  644. annotations <- list(
  645. list(x = 1, y = y_limits[2] - 0.2 * y_span, label = paste("ZShift =", Z_Shift_value)),
  646. list(x = 1, y = y_limits[2] - 0.3 * y_span, label = paste("lm ZScore =", Z_lm_value)),
  647. list(x = 1, y = y_limits[1] + 0.2 * y_span, label = paste("NG =", NG_value)),
  648. list(x = 1, y = y_limits[1] + 0.1 * y_span, label = paste("DB =", DB_value)),
  649. list(x = 1, y = y_limits[1], label = paste("SM =", SM_value))
  650. )
  651. config <- list(
  652. df = group_data,
  653. plot_type = "scatter",
  654. x_var = "conc_num_factor_factor",
  655. y_var = var,
  656. x_label = unique(group_data$Drug)[1],
  657. title = paste(OrfRep, Gene, sep = " "),
  658. coord_cartesian = y_limits,
  659. annotations = annotations,
  660. error_bar = TRUE,
  661. error_bar_params = list(
  662. ymin = error_bar_ymin,
  663. ymax = error_bar_ymax
  664. ),
  665. smooth = TRUE,
  666. x_breaks = unique(group_data$conc_num_factor_factor),
  667. x_labels = as.character(unique(group_data$conc_num)),
  668. ylim_vals = y_limits
  669. )
  670. delta_plots <- append(delta_plots, list(config))
  671. }
  672. }
  673. return(list(
  674. overall_plots = list(grid_layout = list(ncol = 2, nrow = 2), plots = overall_plots),
  675. delta_plots = list(grid_layout = list(ncol = 4, nrow = 3), plots = delta_plots)
  676. ))
  677. }
  678. generate_rank_plot_configs <- function(df, variables, is_lm = FALSE, adjust = FALSE, overlap_color = FALSE) {
  679. sd_bands <- c(1, 2, 3)
  680. avg_zscore_cols <- paste0("Avg_Zscore_", variables)
  681. z_lm_cols <- paste0("Z_lm_", variables)
  682. rank_avg_zscore_cols <- paste0("Rank_", variables)
  683. rank_z_lm_cols <- paste0("Rank_lm_", variables)
  684. configs <- list()
  685. # Adjust values if necessary
  686. if (adjust) {
  687. df <- df %>%
  688. mutate(
  689. across(all_of(avg_zscore_cols), ~ifelse(is.na(.), 0.001, .)),
  690. across(all_of(z_lm_cols), ~ifelse(is.na(.), 0.001, .))
  691. )
  692. }
  693. # Calculate rank columns for Avg_Zscore and Z_lm columns
  694. df_ranked <- df %>%
  695. mutate(across(all_of(avg_zscore_cols), ~rank(., na.last = "keep"), .names = paste0("Rank_", avg_zscore_cols))) %>%
  696. mutate(across(all_of(z_lm_cols), ~rank(., na.last = "keep"), .names = paste0("Rank_lm_", z_lm_cols)))
  697. # Generate plots for SD-based L and K variables
  698. for (variable in c("L", "K")) {
  699. rank_var <- if (is_lm) paste0("Rank_lm_", variable) else paste0("Rank_", variable)
  700. zscore_var <- if (is_lm) paste0("Z_lm_", variable) else paste0("Avg_Zscore_", variable)
  701. y_label <- if (is_lm) paste("Int Z score", variable) else paste("Avg Z score", variable)
  702. for (sd_band in sd_bands) {
  703. num_enhancers <- sum(df_ranked[[zscore_var]] >= sd_band, na.rm = TRUE)
  704. num_suppressors <- sum(df_ranked[[zscore_var]] <= -sd_band, na.rm = TRUE)
  705. # Plot with annotations
  706. configs[[length(configs) + 1]] <- list(
  707. df = df_ranked,
  708. x_var = rank_var,
  709. y_var = zscore_var,
  710. plot_type = "scatter",
  711. title = paste(y_label, "vs. Rank for", variable, "above", sd_band, "SD"),
  712. sd_band = sd_band,
  713. fill_positive = "#542788",
  714. fill_negative = "orange",
  715. alpha_positive = 0.3,
  716. alpha_negative = 0.3,
  717. annotations = list(
  718. list(
  719. x = median(df_ranked[[rank_var]], na.rm = TRUE),
  720. y = max(df_ranked[[zscore_var]], na.rm = TRUE) * 0.9,
  721. label = paste("Deletion Enhancers =", num_enhancers)
  722. ),
  723. list(
  724. x = median(df_ranked[[rank_var]], na.rm = TRUE),
  725. y = min(df_ranked[[zscore_var]], na.rm = TRUE) * 0.9,
  726. label = paste("Deletion Suppressors =", num_suppressors)
  727. )
  728. ),
  729. shape = 3,
  730. size = 0.1,
  731. y_label = y_label,
  732. x_label = "Rank",
  733. legend_position = "none"
  734. )
  735. # Plot without annotations
  736. configs[[length(configs) + 1]] <- list(
  737. df = df_ranked,
  738. x_var = rank_var,
  739. y_var = zscore_var,
  740. plot_type = "scatter",
  741. title = paste(y_label, "vs. Rank for", variable, "above", sd_band, "SD No Annotations"),
  742. sd_band = sd_band,
  743. fill_positive = "#542788",
  744. fill_negative = "orange",
  745. alpha_positive = 0.3,
  746. alpha_negative = 0.3,
  747. annotations = NULL,
  748. shape = 3,
  749. size = 0.1,
  750. y_label = y_label,
  751. x_label = "Rank",
  752. legend_position = "none"
  753. )
  754. }
  755. }
  756. # Generate Avg ZScore and Rank Avg ZScore plots for each variable
  757. for (variable in variables) {
  758. for (plot_type in c("Avg Zscore vs lm", "Rank Avg Zscore vs lm")) {
  759. title <- paste(plot_type, variable)
  760. # Define specific variables based on plot type
  761. x_var <- if (plot_type == "Avg Zscore vs lm") paste0("Avg_Zscore_", variable) else paste0("Rank_", variable)
  762. y_var <- if (plot_type == "Avg Zscore vs lm") paste0("Z_lm_", variable) else paste0("Rank_lm_", variable)
  763. # Fit the linear model
  764. lm_model <- lm(as.formula(paste(y_var, "~", x_var)), data = df_ranked)
  765. intercept <- coef(lm_model)[1]
  766. slope <- coef(lm_model)[2]
  767. r_squared <- summary(lm_model)$r.squared
  768. annotations <- list(
  769. list(
  770. x = mean(range(df_ranked[[x_var]], na.rm = TRUE)),
  771. y = mean(range(df_ranked[[y_var]], na.rm = TRUE)),
  772. label = paste("R-squared =", round(r_squared, 2)),
  773. hjust = 0.5,
  774. vjust = 1,
  775. size = 5
  776. )
  777. )
  778. rectangles <- if (plot_type == "Avg Zscore vs lm") {
  779. list(list(xmin = -2, xmax = 2, ymin = -2, ymax = 2, fill = NA, color = "grey20", alpha = 0.1))
  780. } else {
  781. NULL
  782. }
  783. configs[[length(configs) + 1]] <- list(
  784. df = df_ranked,
  785. x_var = x_var,
  786. y_var = y_var,
  787. plot_type = "scatter",
  788. title = title,
  789. annotations = annotations,
  790. shape = 3,
  791. size = 0.25,
  792. smooth = TRUE,
  793. smooth_color = "black",
  794. lm_line = list(intercept = intercept, slope = slope),
  795. legend_position = "right",
  796. color_var = if (overlap_color) "Overlap" else NULL,
  797. x_label = x_var,
  798. y_label = y_var,
  799. rectangles = rectangles
  800. )
  801. }
  802. }
  803. return(list(grid_layout = list(ncol = 3, nrow = 2), plots = configs))
  804. }
  805. generate_correlation_plot_configs <- function(df, highlight_cyan = FALSE) {
  806. relationships <- list(
  807. list(x = "Z_lm_L", y = "Z_lm_K", label = "Interaction L vs. Interaction K"),
  808. list(x = "Z_lm_L", y = "Z_lm_r", label = "Interaction L vs. Interaction r"),
  809. list(x = "Z_lm_L", y = "Z_lm_AUC", label = "Interaction L vs. Interaction AUC"),
  810. list(x = "Z_lm_K", y = "Z_lm_r", label = "Interaction K vs. Interaction r"),
  811. list(x = "Z_lm_K", y = "Z_lm_AUC", label = "Interaction K vs. Interaction AUC"),
  812. list(x = "Z_lm_r", y = "Z_lm_AUC", label = "Interaction r vs. Interaction AUC")
  813. )
  814. plots <- list()
  815. for (rel in relationships) {
  816. lm_model <- lm(as.formula(paste(rel$y, "~", rel$x)), data = df)
  817. r_squared <- summary(lm_model)$r.squared
  818. config <- list(
  819. df = df,
  820. x_var = rel$x,
  821. y_var = rel$y,
  822. plot_type = "scatter",
  823. title = rel$label,
  824. annotations = list(
  825. list(x = mean(df[[rel$x]], na.rm = TRUE),
  826. y = mean(df[[rel$y]], na.rm = TRUE),
  827. label = paste("R-squared =", round(r_squared, 3)))
  828. ),
  829. smooth = TRUE,
  830. smooth_color = "tomato3",
  831. lm_line = list(intercept = coef(lm_model)[1], slope = coef(lm_model)[2]),
  832. shape = 3,
  833. size = 0.5,
  834. color_var = "Overlap",
  835. cyan_points = highlight_cyan
  836. )
  837. plots <- append(plots, list(config))
  838. }
  839. return(list(grid_layout = list(ncol = 3, nrow = 2), plots = plots))
  840. }
  841. main <- function() {
  842. lapply(names(args$experiments), function(exp_name) {
  843. exp <- args$experiments[[exp_name]]
  844. exp_path <- exp$path
  845. exp_sd <- exp$sd
  846. out_dir <- file.path(exp_path, "zscores")
  847. out_dir_qc <- file.path(exp_path, "zscores", "qc")
  848. dir.create(out_dir, recursive = TRUE, showWarnings = FALSE)
  849. dir.create(out_dir_qc, recursive = TRUE, showWarnings = FALSE)
  850. summary_vars <- c("L", "K", "r", "AUC", "delta_bg") # fields to filter and calculate summary stats across
  851. interaction_vars <- c("L", "K", "r", "AUC") # fields to calculate interaction z-scores
  852. message("Loading and filtering data for experiment: ", exp_name)
  853. df <- load_and_filter_data(args$easy_results_file, sd = exp_sd) %>%
  854. update_gene_names(args$sgd_gene_list) %>%
  855. as_tibble()
  856. # Filter rows above delta background tolerance
  857. df_above_tolerance <- df %>% filter(DB == 1)
  858. df_na <- df %>% mutate(across(all_of(summary_vars), ~ ifelse(DB == 1, NA, .))) # formerly X
  859. df_no_zeros <- df_na %>% filter(L > 0) # formerly X_noZero
  860. # Save some constants
  861. max_conc <- max(df$conc_num_factor)
  862. l_half_median <- (median(df_above_tolerance$L, na.rm = TRUE)) / 2
  863. k_half_median <- (median(df_above_tolerance$K, na.rm = TRUE)) / 2
  864. message("Calculating summary statistics before quality control")
  865. df_stats <- calculate_summary_stats(
  866. df = df,
  867. variables = summary_vars,
  868. group_vars = c("conc_num", "conc_num_factor", "conc_num_factor_factor"))$df_with_stats
  869. message("Calculating summary statistics after quality control")
  870. ss <- calculate_summary_stats(
  871. df = df_na,
  872. variables = summary_vars,
  873. group_vars = c("conc_num", "conc_num_factor", "conc_num_factor_factor"))
  874. df_na_ss <- ss$summary_stats
  875. df_na_stats <- ss$df_with_stats
  876. write.csv(df_na_ss, file = file.path(out_dir, "summary_stats_all_strains.csv"), row.names = FALSE)
  877. # For plotting (ggplot warns on NAs)
  878. df_na_stats_filtered <- df_na_stats %>% filter(if_all(all_of(summary_vars), is.finite))
  879. df_na_stats <- df_na_stats %>%
  880. mutate(
  881. WT_L = mean_L,
  882. WT_K = mean_K,
  883. WT_r = mean_r,
  884. WT_AUC = mean_AUC,
  885. WT_sd_L = sd_L,
  886. WT_sd_K = sd_K,
  887. WT_sd_r = sd_r,
  888. WT_sd_AUC = sd_AUC
  889. )
  890. # Pull the background means and standard deviations from zero concentration for interactions
  891. bg_stats <- df_na_stats %>%
  892. filter(conc_num == 0) %>%
  893. summarise(
  894. mean_L = first(mean_L),
  895. mean_K = first(mean_K),
  896. mean_r = first(mean_r),
  897. mean_AUC = first(mean_AUC),
  898. sd_L = first(sd_L),
  899. sd_K = first(sd_K),
  900. sd_r = first(sd_r),
  901. sd_AUC = first(sd_AUC)
  902. )
  903. message("Calculating summary statistics after quality control excluding zero values")
  904. df_no_zeros_stats <- calculate_summary_stats(
  905. df = df_no_zeros,
  906. variables = summary_vars,
  907. group_vars = c("conc_num", "conc_num_factor", "conc_num_factor_factor")
  908. )$df_with_stats
  909. message("Filtering by 2SD of K")
  910. df_na_within_2sd_k <- df_na_stats %>%
  911. filter(K >= (mean_K - 2 * sd_K) & K <= (mean_K + 2 * sd_K))
  912. df_na_outside_2sd_k <- df_na_stats %>%
  913. filter(K < (mean_K - 2 * sd_K) | K > (mean_K + 2 * sd_K))
  914. message("Calculating summary statistics for L within 2SD of K")
  915. # TODO We're omitting the original z_max calculation, not sure if needed?
  916. ss <- calculate_summary_stats(df_na_within_2sd_k, "L", group_vars = c("conc_num", "conc_num_factor", "conc_num_factor_factor"))$summary_stats
  917. write.csv(ss,
  918. file = file.path(out_dir_qc, "max_observed_L_vals_for_spots_within_2sd_K.csv"),
  919. row.names = FALSE)
  920. message("Calculating summary statistics for L outside 2SD of K")
  921. ss <- calculate_summary_stats(df_na_outside_2sd_k, "L", group_vars = c("conc_num", "conc_num_factor", "conc_num_factor_factor"))
  922. df_na_l_outside_2sd_k_stats <- ss$df_with_stats
  923. write.csv(ss$summary_stats,
  924. file = file.path(out_dir, "max_observed_L_vals_for_spots_outside_2sd_K.csv"),
  925. row.names = FALSE)
  926. # Each plots list corresponds to a file
  927. l_vs_k_plot_configs <- list(
  928. plots = list(
  929. list(
  930. df = df,
  931. x_var = "L",
  932. y_var = "K",
  933. plot_type = "scatter",
  934. tooltip_vars = c("OrfRep", "Gene", "delta_bg"),
  935. title = "Raw L vs K before quality control",
  936. color_var = "conc_num_factor_factor",
  937. error_bar = FALSE,
  938. legend_position = "right"
  939. )
  940. )
  941. )
  942. frequency_delta_bg_plot_configs <- list(
  943. plots = list(
  944. list(
  945. df = df_stats,
  946. x_var = "delta_bg",
  947. y_var = NULL,
  948. plot_type = "density",
  949. title = "Density plot for Delta Background by [Drug] (All Data)",
  950. color_var = "conc_num_factor_factor",
  951. x_label = "Delta Background",
  952. y_label = "Density",
  953. error_bar = FALSE,
  954. legend_position = "right"
  955. ),
  956. list(
  957. df = df_stats,
  958. x_var = "delta_bg",
  959. y_var = NULL,
  960. plot_type = "bar",
  961. title = "Bar plot for Delta Background by [Drug] (All Data)",
  962. color_var = "conc_num_factor_factor",
  963. x_label = "Delta Background",
  964. y_label = "Count",
  965. error_bar = FALSE,
  966. legend_position = "right"
  967. )
  968. )
  969. )
  970. above_threshold_plot_configs <- list(
  971. plots = list(
  972. list(
  973. df = df_above_tolerance,
  974. x_var = "L",
  975. y_var = "K",
  976. plot_type = "scatter",
  977. tooltip_vars = c("OrfRep", "Gene", "delta_bg"),
  978. title = paste("Raw L vs K for strains above Delta Background threshold of",
  979. round(df_above_tolerance$delta_bg_tolerance[[1]], 3), "or above"),
  980. color_var = "conc_num_factor_factor",
  981. position = "jitter",
  982. annotations = list(
  983. list(
  984. x = l_half_median,
  985. y = k_half_median,
  986. label = paste("# strains above Delta Background tolerance =", nrow(df_above_tolerance))
  987. )
  988. ),
  989. error_bar = FALSE,
  990. legend_position = "right"
  991. )
  992. )
  993. )
  994. plate_analysis_plot_configs <- generate_plate_analysis_plot_configs(
  995. variables = summary_vars,
  996. df_before = df_stats,
  997. df_after = df_na_stats_filtered
  998. )
  999. plate_analysis_boxplot_configs <- generate_plate_analysis_plot_configs(
  1000. variables = summary_vars,
  1001. df_before = df_stats,
  1002. df_after = df_na_stats_filtered,
  1003. plot_type = "box"
  1004. )
  1005. plate_analysis_no_zeros_plot_configs <- generate_plate_analysis_plot_configs(
  1006. variables = summary_vars,
  1007. stages = c("after"), # Only after QC
  1008. df_after = df_no_zeros_stats
  1009. )
  1010. plate_analysis_no_zeros_boxplot_configs <- generate_plate_analysis_plot_configs(
  1011. variables = summary_vars,
  1012. stages = c("after"), # Only after QC
  1013. df_after = df_no_zeros_stats,
  1014. plot_type = "box"
  1015. )
  1016. l_outside_2sd_k_plot_configs <- list(
  1017. plots = list(
  1018. list(
  1019. df = df_na_l_outside_2sd_k_stats,
  1020. x_var = "L",
  1021. y_var = "K",
  1022. plot_type = "scatter",
  1023. title = "Raw L vs K for strains falling outside 2SD of the K mean at each Conc",
  1024. color_var = "conc_num_factor_factor",
  1025. position = "jitter", # Apply jitter for better visibility
  1026. tooltip_vars = c("OrfRep", "Gene", "delta_bg"),
  1027. annotations = list(
  1028. list(
  1029. x = mean(df_na_l_outside_2sd_k_stats$L, na.rm = TRUE),
  1030. y = mean(df_na_l_outside_2sd_k_stats$K, na.rm = TRUE),
  1031. label = paste("Total strains:", nrow(df_na_l_outside_2sd_k_stats))
  1032. )
  1033. ),
  1034. error_bar = FALSE, # No error bars for this plot
  1035. legend_position = "right"
  1036. )
  1037. )
  1038. )
  1039. delta_bg_outside_2sd_k_plot_configs <- list(
  1040. plots = list(
  1041. list(
  1042. df = df_na_l_outside_2sd_k_stats,
  1043. x_var = "delta_bg",
  1044. y_var = "K",
  1045. plot_type = "scatter",
  1046. title = "Delta Background vs K for strains falling outside 2SD of the K mean at each Conc",
  1047. color_var = "conc_num_factor_factor",
  1048. position = "jitter", # Apply jitter for better visibility
  1049. tooltip_vars = c("OrfRep", "Gene", "delta_bg"),
  1050. annotations = list(
  1051. list(
  1052. x = mean(df_na_l_outside_2sd_k_stats$delta_bg, na.rm = TRUE),
  1053. y = mean(df_na_l_outside_2sd_k_stats$K, na.rm = TRUE),
  1054. label = paste("Total strains:", nrow(df_na_l_outside_2sd_k_stats))
  1055. )
  1056. ),
  1057. error_bar = FALSE, # No error bars for this plot
  1058. legend_position = "right"
  1059. )
  1060. )
  1061. )
  1062. message("Generating quality control plots in parallel")
  1063. # # future::plan(future::multicore, workers = parallel::detectCores())
  1064. future::plan(future::multisession, workers = 3) # generate 3 plots in parallel
  1065. plot_configs <- list(
  1066. list(out_dir = out_dir_qc, filename = "L_vs_K_before_quality_control",
  1067. plot_configs = l_vs_k_plot_configs),
  1068. list(out_dir = out_dir_qc, filename = "frequency_delta_background",
  1069. plot_configs = frequency_delta_bg_plot_configs),
  1070. list(out_dir = out_dir_qc, filename = "L_vs_K_above_threshold",
  1071. plot_configs = above_threshold_plot_configs),
  1072. list(out_dir = out_dir_qc, filename = "plate_analysis",
  1073. plot_configs = plate_analysis_plot_configs),
  1074. list(out_dir = out_dir_qc, filename = "plate_analysis_boxplots",
  1075. plot_configs = plate_analysis_boxplot_configs),
  1076. list(out_dir = out_dir_qc, filename = "plate_analysis_no_zeros",
  1077. plot_configs = plate_analysis_no_zeros_plot_configs),
  1078. list(out_dir = out_dir_qc, filename = "plate_analysis_no_zeros_boxplots",
  1079. plot_configs = plate_analysis_no_zeros_boxplot_configs),
  1080. list(out_dir = out_dir_qc, filename = "L_vs_K_for_strains_2SD_outside_mean_K",
  1081. plot_configs = l_outside_2sd_k_plot_configs),
  1082. list(out_dir = out_dir_qc, filename = "delta_background_vs_K_for_strains_2sd_outside_mean_K",
  1083. plot_configs = delta_bg_outside_2sd_k_plot_configs)
  1084. )
  1085. # Generating quality control plots in parallel
  1086. furrr::future_map(plot_configs, function(config) {
  1087. generate_and_save_plots(config$out_dir, config$filename, config$plot_configs)
  1088. }, .options = furrr_options(seed = TRUE))
  1089. # Process background strains
  1090. bg_strains <- c("YDL227C")
  1091. lapply(bg_strains, function(strain) {
  1092. message("Processing background strain: ", strain)
  1093. # Handle missing data by setting zero values to NA
  1094. # and then removing any rows with NA in L col
  1095. df_bg <- df_na %>%
  1096. filter(OrfRep == strain) %>%
  1097. mutate(
  1098. L = if_else(L == 0, NA, L),
  1099. K = if_else(K == 0, NA, K),
  1100. r = if_else(r == 0, NA, r),
  1101. AUC = if_else(AUC == 0, NA, AUC)
  1102. ) %>%
  1103. filter(!is.na(L))
  1104. # Recalculate summary statistics for the background strain
  1105. message("Calculating summary statistics for background strain")
  1106. ss_bg <- calculate_summary_stats(df_bg, summary_vars, group_vars = c("OrfRep", "conc_num", "conc_num_factor", "conc_num_factor_factor"))
  1107. summary_stats_bg <- ss_bg$summary_stats
  1108. write.csv(summary_stats_bg,
  1109. file = file.path(out_dir, paste0("summary_stats_background_strain_", strain, ".csv")),
  1110. row.names = FALSE)
  1111. # Set the missing values to the highest theoretical value at each drug conc for L
  1112. # Leave other values as 0 for the max/min
  1113. df_reference <- df_na_stats %>% # formerly X2_RF
  1114. filter(OrfRep == strain) %>%
  1115. filter(!is.na(L)) %>%
  1116. group_by(conc_num, conc_num_factor, conc_num_factor_factor) %>%
  1117. mutate(
  1118. max_l_theoretical = max(max_L, na.rm = TRUE),
  1119. L = ifelse(L == 0 & !is.na(L) & conc_num > 0, max_l_theoretical, L),
  1120. SM = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, 1, 0),
  1121. L = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, max_l_theoretical, L)) %>%
  1122. ungroup()
  1123. # Ditto for deletion strains
  1124. df_deletion <- df_na_stats %>% # formerly X2
  1125. filter(OrfRep != strain) %>%
  1126. filter(!is.na(L)) %>%
  1127. mutate(SM = 0) %>%
  1128. group_by(conc_num, conc_num_factor, conc_num_factor_factor) %>%
  1129. mutate(
  1130. max_l_theoretical = max(max_L, na.rm = TRUE),
  1131. L = ifelse(L == 0 & !is.na(L) & conc_num > 0, max_l_theoretical, L),
  1132. SM = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, 1, SM),
  1133. L = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, max_l_theoretical, L)) %>%
  1134. ungroup()
  1135. message("Calculating reference strain interaction scores")
  1136. df_reference_stats <- calculate_summary_stats(
  1137. df = df_reference,
  1138. variables = interaction_vars,
  1139. group_vars = c("OrfRep", "Gene", "num", "conc_num", "conc_num_factor", "conc_num_factor_factor")
  1140. )$df_with_stats
  1141. reference_results <- calculate_interaction_scores(df_reference_stats, max_conc, bg_stats, group_vars = c("OrfRep", "Gene", "num"))
  1142. zscore_calculations_reference <- reference_results$calculations
  1143. zscore_interactions_reference <- reference_results$interactions
  1144. zscore_interactions_reference_joined <- reference_results$full_data
  1145. message("Calculating deletion strain(s) interactions scores")
  1146. df_deletion_stats <- calculate_summary_stats(
  1147. df = df_deletion,
  1148. variables = interaction_vars,
  1149. group_vars = c("OrfRep", "Gene", "conc_num", "conc_num_factor", "conc_num_factor_factor")
  1150. )$df_with_stats
  1151. deletion_results <- calculate_interaction_scores(df_deletion_stats, max_conc, bg_stats, group_vars = c("OrfRep", "Gene"))
  1152. zscore_calculations <- deletion_results$calculations
  1153. zscore_interactions <- deletion_results$interactions
  1154. zscore_interactions_joined <- deletion_results$full_data
  1155. # Writing Z-Scores to file
  1156. write.csv(zscore_calculations_reference, file = file.path(out_dir, "zscore_calculations_reference.csv"), row.names = FALSE)
  1157. write.csv(zscore_calculations, file = file.path(out_dir, "zscore_calculations.csv"), row.names = FALSE)
  1158. write.csv(zscore_interactions_reference, file = file.path(out_dir, "zscore_interactions_reference.csv"), row.names = FALSE)
  1159. write.csv(zscore_interactions, file = file.path(out_dir, "zscore_interactions.csv"), row.names = FALSE)
  1160. # Create interaction plots
  1161. message("Generating reference interaction plots")
  1162. reference_plot_configs <- generate_interaction_plot_configs(zscore_interactions_reference_joined, plot_type = "reference")
  1163. generate_and_save_plots(out_dir, "interaction_plots_reference", reference_plot_configs)
  1164. message("Generating deletion interaction plots")
  1165. deletion_plot_configs <- generate_interaction_plot_configs(zscore_interactions_joined, plot_type = "deletion")
  1166. generate_and_save_plots(out_dir, "interaction_plots", deletion_plot_configs)
  1167. # Define conditions for enhancers and suppressors
  1168. # TODO Add to study config?
  1169. threshold <- 2
  1170. enhancer_condition_L <- zscore_interactions$Avg_Zscore_L >= threshold
  1171. suppressor_condition_L <- zscore_interactions$Avg_Zscore_L <= -threshold
  1172. enhancer_condition_K <- zscore_interactions$Avg_Zscore_K >= threshold
  1173. suppressor_condition_K <- zscore_interactions$Avg_Zscore_K <= -threshold
  1174. # Subset data
  1175. enhancers_L <- zscore_interactions[enhancer_condition_L, ]
  1176. suppressors_L <- zscore_interactions[suppressor_condition_L, ]
  1177. enhancers_K <- zscore_interactions[enhancer_condition_K, ]
  1178. suppressors_K <- zscore_interactions[suppressor_condition_K, ]
  1179. # Save enhancers and suppressors
  1180. message("Writing enhancer/suppressor csv files")
  1181. write.csv(enhancers_L, file = file.path(out_dir, "zscore_interactions_deletion_enhancers_L.csv"), row.names = FALSE)
  1182. write.csv(suppressors_L, file = file.path(out_dir, "zscore_interactions_deletion_suppressors_L.csv"), row.names = FALSE)
  1183. write.csv(enhancers_K, file = file.path(out_dir, "zscore_interactions_deletion_enhancers_K.csv"), row.names = FALSE)
  1184. write.csv(suppressors_K, file = file.path(out_dir, "zscore_interactions_deletion_suppressors_K.csv"), row.names = FALSE)
  1185. # Combine conditions for enhancers and suppressors
  1186. enhancers_and_suppressors_L <- zscore_interactions[enhancer_condition_L | suppressor_condition_L, ]
  1187. enhancers_and_suppressors_K <- zscore_interactions[enhancer_condition_K | suppressor_condition_K, ]
  1188. # Save combined enhancers and suppressors
  1189. write.csv(enhancers_and_suppressors_L,
  1190. file = file.path(out_dir, "zscore_interactions_deletion_enhancers_and_suppressors_L.csv"), row.names = FALSE)
  1191. write.csv(enhancers_and_suppressors_K,
  1192. file = file.path(out_dir, "zscore_interaction_deletion_enhancers_and_suppressors_K.csv"), row.names = FALSE)
  1193. # Handle linear model based enhancers and suppressors
  1194. lm_threshold <- 2 # TODO add to study config?
  1195. enhancers_lm_L <- zscore_interactions[zscore_interactions$Z_lm_L >= lm_threshold, ]
  1196. suppressors_lm_L <- zscore_interactions[zscore_interactions$Z_lm_L <= -lm_threshold, ]
  1197. enhancers_lm_K <- zscore_interactions[zscore_interactions$Z_lm_K >= lm_threshold, ]
  1198. suppressors_lm_K <- zscore_interactions[zscore_interactions$Z_lm_K <= -lm_threshold, ]
  1199. # Save linear model based enhancers and suppressors
  1200. message("Writing linear model enhancer/suppressor csv files")
  1201. write.csv(enhancers_lm_L,
  1202. file = file.path(out_dir, "zscore_interactions_deletion_enhancers_lm_L.csv"), row.names = FALSE)
  1203. write.csv(suppressors_lm_L,
  1204. file = file.path(out_dir, "zscore_interactions_deletion_suppressors_lm_L.csv"), row.names = FALSE)
  1205. write.csv(enhancers_lm_K,
  1206. file = file.path(out_dir, "zscore_interactions_deletion_enhancers_lm_K.csv"), row.names = FALSE)
  1207. write.csv(suppressors_lm_K,
  1208. file = file.path(out_dir, "zscore_interactions_deletion_suppressors_lm_K.csv"), row.names = FALSE)
  1209. message("Generating rank plots")
  1210. rank_plot_configs <- generate_rank_plot_configs(
  1211. df = zscore_interactions_joined,
  1212. variables = interaction_vars,
  1213. is_lm = FALSE,
  1214. adjust = TRUE
  1215. )
  1216. generate_and_save_plots(out_dir = out_dir, filename = "rank_plots",
  1217. plot_configs = rank_plot_configs)
  1218. message("Generating ranked linear model plots")
  1219. rank_lm_plot_configs <- generate_rank_plot_configs(
  1220. df = zscore_interactions_joined,
  1221. variables = interaction_vars,
  1222. is_lm = TRUE,
  1223. adjust = TRUE
  1224. )
  1225. generate_and_save_plots(out_dir = out_dir, filename = "rank_plots_lm",
  1226. plot_configs = rank_lm_plot_configs)
  1227. message("Filtering and reranking plots")
  1228. interaction_threshold <- 2 # TODO add to study config?
  1229. # Formerly X_NArm
  1230. zscore_interactions_filtered <- zscore_interactions_joined %>%
  1231. filter(!is.na(Z_lm_L) & !is.na(Avg_Zscore_L)) %>%
  1232. mutate(
  1233. Overlap = case_when(
  1234. Z_lm_L >= interaction_threshold & Avg_Zscore_L >= interaction_threshold ~ "Deletion Enhancer Both",
  1235. Z_lm_L <= -interaction_threshold & Avg_Zscore_L <= -interaction_threshold ~ "Deletion Suppressor Both",
  1236. Z_lm_L >= interaction_threshold & Avg_Zscore_L <= interaction_threshold ~ "Deletion Enhancer lm only",
  1237. Z_lm_L <= interaction_threshold & Avg_Zscore_L >= interaction_threshold ~ "Deletion Enhancer Avg Zscore only",
  1238. Z_lm_L <= -interaction_threshold & Avg_Zscore_L >= -interaction_threshold ~ "Deletion Suppressor lm only",
  1239. Z_lm_L >= -interaction_threshold & Avg_Zscore_L <= -interaction_threshold ~ "Deletion Suppressor Avg Zscore only",
  1240. Z_lm_L >= interaction_threshold & Avg_Zscore_L <= -interaction_threshold ~ "Deletion Enhancer lm, Deletion Suppressor Avg Z score",
  1241. Z_lm_L <= -interaction_threshold & Avg_Zscore_L >= interaction_threshold ~ "Deletion Suppressor lm, Deletion Enhancer Avg Z score",
  1242. TRUE ~ "No Effect"
  1243. ),
  1244. lm_R_squared_L = summary(lm(Z_lm_L ~ Avg_Zscore_L))$r.squared,
  1245. lm_R_squared_K = summary(lm(Z_lm_K ~ Avg_Zscore_K))$r.squared,
  1246. lm_R_squared_r = summary(lm(Z_lm_r ~ Avg_Zscore_r))$r.squared,
  1247. lm_R_squared_AUC = summary(lm(Z_lm_AUC ~ Avg_Zscore_AUC))$r.squared
  1248. )
  1249. message("Generating filtered ranked plots")
  1250. rank_plot_filtered_configs <- generate_rank_plot_configs(
  1251. df = zscore_interactions_filtered,
  1252. variables = interaction_vars,
  1253. is_lm = FALSE,
  1254. adjust = FALSE,
  1255. overlap_color = TRUE
  1256. )
  1257. generate_and_save_plots(
  1258. out_dir = out_dir,
  1259. filename = "RankPlots_na_rm",
  1260. plot_configs = rank_plot_filtered_configs)
  1261. message("Generating filtered ranked linear model plots")
  1262. rank_plot_lm_filtered_configs <- generate_rank_plot_configs(
  1263. df = zscore_interactions_filtered,
  1264. variables = interaction_vars,
  1265. is_lm = TRUE,
  1266. adjust = FALSE,
  1267. overlap_color = TRUE
  1268. )
  1269. generate_and_save_plots(
  1270. out_dir = out_dir,
  1271. filename = "rank_plots_lm_na_rm",
  1272. plot_configs = rank_plot_lm_filtered_configs)
  1273. message("Generating correlation curve parameter pair plots")
  1274. correlation_plot_configs <- generate_correlation_plot_configs(zscore_interactions_filtered)
  1275. generate_and_save_plots(
  1276. out_dir = out_dir,
  1277. filename = "correlation_cpps",
  1278. plot_configs = correlation_plot_configs,
  1279. )
  1280. })
  1281. })
  1282. }
  1283. main()