calculate_interaction_zscores.R 68 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791
  1. suppressMessages({
  2. library("ggplot2")
  3. library("plotly")
  4. library("htmlwidgets")
  5. library("htmltools")
  6. library("dplyr")
  7. library("rlang")
  8. library("ggthemes")
  9. library("data.table")
  10. library("grid")
  11. library("gridExtra")
  12. library("future")
  13. library("furrr")
  14. library("purrr")
  15. })
  16. # These parallelization libraries are very noisy
  17. suppressPackageStartupMessages({
  18. library("future")
  19. library("furrr")
  20. library("purrr")
  21. })
  22. # Turn all warnings into errors for development
  23. options(warn = 2)
  24. parse_arguments <- function() {
  25. args <- if (interactive()) {
  26. c(
  27. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/20240116_jhartman2_DoxoHLD",
  28. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/apps/r/SGD_features.tab",
  29. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/easy/20240116_jhartman2_DoxoHLD/results_std.txt",
  30. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/20240822_jhartman2_DoxoHLD/exp1",
  31. "Experiment 1: Doxo versus HLD",
  32. 3,
  33. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/20240822_jhartman2_DoxoHLD/exp2",
  34. "Experiment 2: HLD versus Doxo",
  35. 3
  36. )
  37. } else {
  38. commandArgs(trailingOnly = TRUE)
  39. }
  40. out_dir <- normalizePath(args[1], mustWork = FALSE)
  41. sgd_gene_list <- normalizePath(args[2], mustWork = FALSE)
  42. easy_results_file <- normalizePath(args[3], mustWork = FALSE)
  43. # The remaining arguments should be in groups of 3
  44. exp_args <- args[-(1:3)]
  45. if (length(exp_args) %% 3 != 0) {
  46. stop("Experiment arguments should be in groups of 3: path, name, sd.")
  47. }
  48. # Extract the experiments into a list
  49. experiments <- list()
  50. for (i in seq(1, length(exp_args), by = 3)) {
  51. exp_name <- exp_args[i + 1]
  52. experiments[[exp_name]] <- list(
  53. path = normalizePath(exp_args[i], mustWork = FALSE),
  54. sd = as.numeric(exp_args[i + 2])
  55. )
  56. }
  57. # Extract the trailing number from each path
  58. trailing_numbers <- sapply(experiments, function(x) {
  59. path <- x$path
  60. nums <- gsub("[^0-9]", "", basename(path))
  61. as.integer(nums)
  62. })
  63. # Sort the experiments based on the trailing numbers
  64. sorted_experiments <- experiments[order(trailing_numbers)]
  65. list(
  66. out_dir = out_dir,
  67. sgd_gene_list = sgd_gene_list,
  68. easy_results_file = easy_results_file,
  69. experiments = sorted_experiments
  70. )
  71. }
  72. args <- parse_arguments()
  73. # Should we keep output in exp dirs or combine in the study output dir?
  74. # dir.create(file.path(args$out_dir, "zscores"), showWarnings = FALSE)
  75. # dir.create(file.path(args$out_dir, "zscores", "qc"), showWarnings = FALSE)
  76. theme_publication <- function(base_size = 14, base_family = "sans", legend_position = NULL) {
  77. # Ensure that legend_position has a valid value or default to "none"
  78. legend_position <- if (is.null(legend_position) || length(legend_position) == 0) "none" else legend_position
  79. theme_foundation <- ggthemes::theme_foundation(base_size = base_size, base_family = base_family)
  80. theme_foundation %+replace%
  81. theme(
  82. plot.title = element_text(face = "bold", size = rel(1.6), hjust = 0.5),
  83. text = element_text(),
  84. panel.background = element_blank(),
  85. plot.background = element_blank(),
  86. panel.border = element_blank(),
  87. axis.title = element_text(face = "bold", size = rel(1.4)),
  88. axis.title.y = element_text(angle = 90, vjust = 2),
  89. axis.text = element_text(size = rel(1.2)),
  90. axis.line = element_line(colour = "black"),
  91. panel.grid.major = element_line(colour = "#f0f0f0"),
  92. panel.grid.minor = element_blank(),
  93. legend.key = element_rect(colour = NA),
  94. legend.position = legend_position,
  95. legend.direction =
  96. if (legend_position == "right") {
  97. "vertical"
  98. } else if (legend_position == "bottom") {
  99. "horizontal"
  100. } else {
  101. NULL # No legend direction if position is "none" or other values
  102. },
  103. legend.spacing = unit(0, "cm"),
  104. legend.title = element_text(face = "italic", size = rel(1.3)),
  105. legend.text = element_text(size = rel(1.2)),
  106. plot.margin = unit(c(10, 5, 5, 5), "mm")
  107. )
  108. }
  109. scale_fill_publication <- function(...) {
  110. discrete_scale("fill", "Publication", manual_pal(values = c(
  111. "#386cb0", "#fdb462", "#7fc97f", "#ef3b2c", "#662506",
  112. "#a6cee3", "#fb9a99", "#984ea3", "#ffff33"
  113. )), ...)
  114. }
  115. scale_colour_publication <- function(...) {
  116. discrete_scale("colour", "Publication", manual_pal(values = c(
  117. "#386cb0", "#fdb462", "#7fc97f", "#ef3b2c", "#662506",
  118. "#a6cee3", "#fb9a99", "#984ea3", "#ffff33"
  119. )), ...)
  120. }
  121. # Load the initial dataframe from the easy_results_file
  122. load_and_filter_data <- function(easy_results_file, sd = 3) {
  123. df <- read.delim(easy_results_file, skip = 2, as.is = TRUE, row.names = 1, strip.white = TRUE)
  124. df <- df %>%
  125. filter(!(.[[1]] %in% c("", "Scan"))) %>%
  126. filter(!is.na(ORF) & ORF != "" & !Gene %in% c("BLANK", "Blank", "blank") & Drug != "BMH21") %>%
  127. # Rename columns
  128. rename(L = l, num = Num., AUC = AUC96, scan = Scan, last_bg = LstBackgrd, first_bg = X1stBackgrd) %>%
  129. mutate(
  130. across(c(Col, Row, num, L, K, r, scan, AUC, last_bg, first_bg), as.numeric),
  131. delta_bg = last_bg - first_bg,
  132. delta_bg_tolerance = mean(delta_bg, na.rm = TRUE) + (sd * sd(delta_bg, na.rm = TRUE)),
  133. NG = if_else(L == 0 & !is.na(L), 1, 0),
  134. DB = if_else(delta_bg >= delta_bg_tolerance, 1, 0),
  135. SM = 0,
  136. OrfRep = if_else(ORF == "YDL227C", "YDL227C", OrfRep), # should these be hardcoded?
  137. conc_num = as.numeric(gsub("[^0-9\\.]", "", Conc)),
  138. conc_num_factor = as.numeric(as.factor(conc_num)) - 1, # for legacy purposes
  139. conc_num_factor_factor = as.factor(conc_num)
  140. )
  141. return(df)
  142. }
  143. update_gene_names <- function(df, sgd_gene_list) {
  144. genes <- read.delim(file = sgd_gene_list, quote = "", header = FALSE,
  145. colClasses = c(rep("NULL", 3), rep("character", 2), rep("NULL", 11)))
  146. gene_map <- setNames(genes$V5, genes$V4) # ORF to GeneName mapping
  147. df <- df %>%
  148. mutate(
  149. mapped_genes = gene_map[ORF],
  150. Gene = if_else(is.na(mapped_genes) | OrfRep == "YDL227C", Gene, mapped_genes),
  151. Gene = if_else(Gene == "" | Gene == "OCT1", OrfRep, Gene) # Handle invalid names
  152. )
  153. return(df)
  154. }
  155. calculate_summary_stats <- function(df, variables, group_vars) {
  156. summary_stats <- df %>%
  157. group_by(across(all_of(group_vars))) %>%
  158. summarise(
  159. N = n(),
  160. across(all_of(variables),
  161. list(
  162. mean = ~ mean(.x, na.rm = TRUE),
  163. median = ~ median(.x, na.rm = TRUE),
  164. max = ~ ifelse(all(is.na(.x)), NA, max(.x, na.rm = TRUE)),
  165. min = ~ ifelse(all(is.na(.x)), NA, min(.x, na.rm = TRUE)),
  166. sd = ~ sd(.x, na.rm = TRUE),
  167. se = ~ sd(.x, na.rm = TRUE) / sqrt(n() - 1)
  168. ),
  169. .names = "{.fn}_{.col}"
  170. ),
  171. .groups = "drop"
  172. )
  173. # Create a cleaned version of df that doesn't overlap with summary_stats
  174. df_cleaned <- df %>%
  175. select(-any_of(setdiff(intersect(names(df), names(summary_stats)), group_vars)))
  176. df_joined <- left_join(df_cleaned, summary_stats, by = group_vars)
  177. return(list(summary_stats = summary_stats, df_with_stats = df_joined))
  178. }
  179. calculate_interaction_scores <- function(df, df_bg, type, overlap_threshold = 2) {
  180. max_conc <- max(as.numeric(df$conc_num_factor), na.rm = TRUE)
  181. total_conc_num <- length(unique(df$conc_num))
  182. if (type == "reference") {
  183. bg_group_vars <- c("OrfRep", "Gene", "num", "Drug", "conc_num", "conc_num_factor", "conc_num_factor_factor")
  184. group_vars <- c("OrfRep", "Gene", "num", "Drug")
  185. } else if (type == "deletion") {
  186. bg_group_vars <- c("Drug", "conc_num", "conc_num_factor", "conc_num_factor_factor")
  187. group_vars <- c("OrfRep", "Gene", "Drug")
  188. }
  189. perform_lm_simple <- function(x, y, max_conc) {
  190. if (all(is.na(x)) || all(is.na(y)) || length(x[!is.na(x)]) == 0 || length(y[!is.na(y)]) == 0) {
  191. return(list(intercept = NA, slope = NA, r_squared = NA, score = NA))
  192. } else {
  193. fit <- lm(y ~ x)
  194. return(list(
  195. intercept = coef(fit)[1],
  196. slope = coef(fit)[2],
  197. r_squared = summary(fit)$r.squared,
  198. score = max_conc * coef(fit)[2] + coef(fit)[1]
  199. ))
  200. }
  201. }
  202. # Calculate WT statistics from df_bg
  203. wt_stats <- df_bg %>%
  204. group_by(across(all_of(bg_group_vars))) %>%
  205. summarise(
  206. WT_L = mean(mean_L, na.rm = TRUE),
  207. WT_sd_L = mean(sd_L, na.rm = TRUE),
  208. WT_K = mean(mean_K, na.rm = TRUE),
  209. WT_sd_K = mean(sd_K, na.rm = TRUE),
  210. WT_r = mean(mean_r, na.rm = TRUE),
  211. WT_sd_r = mean(sd_r, na.rm = TRUE),
  212. WT_AUC = mean(mean_AUC, na.rm = TRUE),
  213. WT_sd_AUC = mean(sd_AUC, na.rm = TRUE),
  214. .groups = "drop"
  215. )
  216. # Join WT statistics to df
  217. df <- df %>%
  218. left_join(wt_stats, by = c(bg_group_vars))
  219. # Compute mean values at zero concentration
  220. mean_zeroes <- df %>%
  221. filter(conc_num == 0) %>%
  222. group_by(across(all_of(group_vars))) %>%
  223. summarise(
  224. mean_L_zero = mean(mean_L, na.rm = TRUE),
  225. mean_K_zero = mean(mean_K, na.rm = TRUE),
  226. mean_r_zero = mean(mean_r, na.rm = TRUE),
  227. mean_AUC_zero = mean(mean_AUC, na.rm = TRUE),
  228. .groups = "drop"
  229. )
  230. df <- df %>%
  231. left_join(mean_zeroes, by = c(group_vars))
  232. # Calculate Raw Shifts and Z Shifts
  233. df <- df %>%
  234. mutate(
  235. Raw_Shift_L = mean_L_zero - WT_L,
  236. Raw_Shift_K = mean_K_zero - WT_K,
  237. Raw_Shift_r = mean_r_zero - WT_r,
  238. Raw_Shift_AUC = mean_AUC_zero - WT_AUC,
  239. Z_Shift_L = Raw_Shift_L / WT_sd_L,
  240. Z_Shift_K = Raw_Shift_K / WT_sd_K,
  241. Z_Shift_r = Raw_Shift_r / WT_sd_r,
  242. Z_Shift_AUC = Raw_Shift_AUC / WT_sd_AUC
  243. )
  244. calculations <- df %>%
  245. group_by(across(all_of(c(group_vars, "conc_num", "conc_num_factor", "conc_num_factor_factor")))) %>%
  246. mutate(
  247. NG_sum = sum(NG, na.rm = TRUE),
  248. DB_sum = sum(DB, na.rm = TRUE),
  249. SM_sum = sum(SM, na.rm = TRUE),
  250. # Expected values
  251. Exp_L = WT_L + Raw_Shift_L,
  252. Exp_K = WT_K + Raw_Shift_K,
  253. Exp_r = WT_r + Raw_Shift_r,
  254. Exp_AUC = WT_AUC + Raw_Shift_AUC,
  255. # Deltas
  256. Delta_L = mean_L - Exp_L,
  257. Delta_K = mean_K - Exp_K,
  258. Delta_r = mean_r - Exp_r,
  259. Delta_AUC = mean_AUC - Exp_AUC,
  260. # Adjust deltas for NG and SM
  261. Delta_L = if_else(NG == 1, mean_L - WT_L, Delta_L),
  262. Delta_K = if_else(NG == 1, mean_K - WT_K, Delta_K),
  263. Delta_r = if_else(NG == 1, mean_r - WT_r, Delta_r),
  264. Delta_AUC = if_else(NG == 1, mean_AUC - WT_AUC, Delta_AUC),
  265. Delta_L = if_else(SM == 1, mean_L - WT_L, Delta_L),
  266. # Calculate Z-scores
  267. Zscore_L = Delta_L / WT_sd_L,
  268. Zscore_K = Delta_K / WT_sd_K,
  269. Zscore_r = Delta_r / WT_sd_r,
  270. Zscore_AUC = Delta_AUC / WT_sd_AUC
  271. ) %>%
  272. ungroup()
  273. calculations <- calculations %>%
  274. group_by(across(all_of(group_vars))) %>%
  275. mutate(
  276. # Apply the simple LM function for each variable
  277. lm_L = list(perform_lm_simple(Delta_L, conc_num_factor, max_conc)),
  278. lm_K = list(perform_lm_simple(Delta_K, conc_num_factor, max_conc)),
  279. lm_r = list(perform_lm_simple(Delta_r, conc_num_factor, max_conc)),
  280. lm_AUC = list(perform_lm_simple(Delta_AUC, conc_num_factor, max_conc)),
  281. # Extract coefficients and statistics for each model
  282. lm_intercept_L = lm_L[[1]]$intercept,
  283. lm_slope_L = lm_L[[1]]$slope,
  284. R_Squared_L = lm_L[[1]]$r_squared,
  285. lm_Score_L = lm_L[[1]]$score,
  286. lm_intercept_K = lm_K[[1]]$intercept,
  287. lm_slope_K = lm_K[[1]]$slope,
  288. R_Squared_K = lm_K[[1]]$r_squared,
  289. lm_Score_K = lm_K[[1]]$score,
  290. lm_intercept_r = lm_r[[1]]$intercept,
  291. lm_slope_r = lm_r[[1]]$slope,
  292. R_Squared_r = lm_r[[1]]$r_squared,
  293. lm_Score_r = lm_r[[1]]$score,
  294. lm_intercept_AUC = lm_AUC[[1]]$intercept,
  295. lm_slope_AUC = lm_AUC[[1]]$slope,
  296. R_Squared_AUC = lm_AUC[[1]]$r_squared,
  297. lm_Score_AUC = lm_AUC[[1]]$score
  298. ) %>%
  299. select(-lm_L, -lm_K, -lm_r, -lm_AUC) %>%
  300. ungroup()
  301. # For interaction plot error bars
  302. delta_means_sds <- calculations %>%
  303. group_by(across(all_of(group_vars))) %>%
  304. summarise(
  305. mean_Delta_L = mean(Delta_L, na.rm = TRUE),
  306. mean_Delta_K = mean(Delta_K, na.rm = TRUE),
  307. mean_Delta_r = mean(Delta_r, na.rm = TRUE),
  308. mean_Delta_AUC = mean(Delta_AUC, na.rm = TRUE),
  309. sd_Delta_L = sd(Delta_L, na.rm = TRUE),
  310. sd_Delta_K = sd(Delta_K, na.rm = TRUE),
  311. sd_Delta_r = sd(Delta_r, na.rm = TRUE),
  312. sd_Delta_AUC = sd(Delta_AUC, na.rm = TRUE),
  313. .groups = "drop"
  314. )
  315. calculations <- calculations %>%
  316. left_join(delta_means_sds, by = group_vars)
  317. # Summary statistics for lm scores
  318. calculations <- calculations %>%
  319. mutate(
  320. lm_mean_L = mean(lm_Score_L, na.rm = TRUE),
  321. lm_sd_L = sd(lm_Score_L, na.rm = TRUE),
  322. lm_mean_K = mean(lm_Score_K, na.rm = TRUE),
  323. lm_sd_K = sd(lm_Score_K, na.rm = TRUE),
  324. lm_mean_r = mean(lm_Score_r, na.rm = TRUE),
  325. lm_sd_r = sd(lm_Score_r, na.rm = TRUE),
  326. lm_mean_AUC = mean(lm_Score_AUC, na.rm = TRUE),
  327. lm_sd_AUC = sd(lm_Score_AUC, na.rm = TRUE),
  328. Z_lm_L = (lm_Score_L - lm_mean_L) / lm_sd_L,
  329. Z_lm_K = (lm_Score_K - lm_mean_K) / lm_sd_K,
  330. Z_lm_r = (lm_Score_r - lm_mean_r) / lm_sd_r,
  331. Z_lm_AUC = (lm_Score_AUC - lm_mean_AUC) / lm_sd_AUC
  332. )
  333. # Build summary stats (interactions)
  334. interactions <- calculations %>%
  335. group_by(across(all_of(group_vars))) %>%
  336. summarise(
  337. num_non_removed_concs = total_conc_num - sum(DB, na.rm = TRUE) - 1,
  338. Sum_Z_Score_L = sum(Zscore_L, na.rm = TRUE),
  339. Sum_Z_Score_K = sum(Zscore_K, na.rm = TRUE),
  340. Sum_Z_Score_r = sum(Zscore_r, na.rm = TRUE),
  341. Sum_Z_Score_AUC = sum(Zscore_AUC, na.rm = TRUE),
  342. Avg_Zscore_L = Sum_Z_Score_L / first(num_non_removed_concs),
  343. Avg_Zscore_K = Sum_Z_Score_K / first(num_non_removed_concs),
  344. Avg_Zscore_r = Sum_Z_Score_r / first(num_non_removed_concs),
  345. Avg_Zscore_AUC = Sum_Z_Score_AUC / first(num_non_removed_concs),
  346. # R_Squared
  347. R_Squared_L = first(R_Squared_L),
  348. R_Squared_K = first(R_Squared_K),
  349. R_Squared_r = first(R_Squared_r),
  350. R_Squared_AUC = first(R_Squared_AUC),
  351. # Interaction Z-scores
  352. Z_lm_L = first(Z_lm_L),
  353. Z_lm_K = first(Z_lm_K),
  354. Z_lm_r = first(Z_lm_r),
  355. Z_lm_AUC = first(Z_lm_AUC),
  356. # Raw Shifts
  357. Raw_Shift_L = first(Raw_Shift_L),
  358. Raw_Shift_K = first(Raw_Shift_K),
  359. Raw_Shift_r = first(Raw_Shift_r),
  360. Raw_Shift_AUC = first(Raw_Shift_AUC),
  361. # Z Shifts
  362. Z_Shift_L = first(Z_Shift_L),
  363. Z_Shift_K = first(Z_Shift_K),
  364. Z_Shift_r = first(Z_Shift_r),
  365. Z_Shift_AUC = first(Z_Shift_AUC),
  366. # Gene-Gene Interaction
  367. lm_Score_L = first(lm_Score_L),
  368. lm_Score_K = first(lm_Score_K),
  369. lm_Score_r = first(lm_Score_r),
  370. lm_Score_AUC = first(lm_Score_AUC),
  371. # NG, DB, SM values
  372. NG_sum_int = sum(NG),
  373. DB_sum_int = sum(DB),
  374. SM_sum_int = sum(SM),
  375. .groups = "drop"
  376. ) %>%
  377. arrange(desc(Z_lm_L), desc(NG_sum_int))
  378. # Deletion data ranking and linear modeling
  379. if (type == "deletion") {
  380. interactions <- interactions %>%
  381. mutate(
  382. Avg_Zscore_L_adjusted = ifelse(is.na(Avg_Zscore_L), 0.001, Avg_Zscore_L),
  383. Avg_Zscore_K_adjusted = ifelse(is.na(Avg_Zscore_K), 0.001, Avg_Zscore_K),
  384. Avg_Zscore_r_adjusted = ifelse(is.na(Avg_Zscore_r), 0.001, Avg_Zscore_r),
  385. Avg_Zscore_AUC_adjusted = ifelse(is.na(Avg_Zscore_AUC), 0.001, Avg_Zscore_AUC),
  386. Z_lm_L_adjusted = ifelse(is.na(Z_lm_L), 0.001, Z_lm_L),
  387. Z_lm_K_adjusted = ifelse(is.na(Z_lm_K), 0.001, Z_lm_K),
  388. Z_lm_r_adjusted = ifelse(is.na(Z_lm_r), 0.001, Z_lm_r),
  389. Z_lm_AUC_adjusted = ifelse(is.na(Z_lm_AUC), 0.001, Z_lm_AUC)
  390. ) %>%
  391. mutate(
  392. Rank_L = rank(Avg_Zscore_L_adjusted),
  393. Rank_K = rank(Avg_Zscore_K_adjusted),
  394. Rank_r = rank(Avg_Zscore_r_adjusted),
  395. Rank_AUC = rank(Avg_Zscore_AUC_adjusted),
  396. Rank_lm_L = rank(Z_lm_L_adjusted),
  397. Rank_lm_K = rank(Z_lm_K_adjusted),
  398. Rank_lm_r = rank(Z_lm_r_adjusted),
  399. Rank_lm_AUC = rank(Z_lm_AUC_adjusted)
  400. ) %>%
  401. mutate(
  402. lm_R_squared_rank_L = summary(lm(Rank_lm_L ~ Rank_L, data = .))$r.squared,
  403. lm_R_squared_rank_K = summary(lm(Rank_lm_K ~ Rank_K, data = .))$r.squared,
  404. lm_R_squared_rank_r = summary(lm(Rank_lm_r ~ Rank_r, data = .))$r.squared,
  405. lm_R_squared_rank_AUC = summary(lm(Rank_lm_AUC ~ Rank_AUC, data = .))$r.squared
  406. )
  407. # Add overlap threshold categories based on Z-lm and Avg-Z scores
  408. interactions <- interactions %>%
  409. filter(!is.na(Z_lm_L) | !is.na(Avg_Zscore_L)) %>%
  410. mutate(
  411. Overlap = case_when(
  412. Z_lm_L >= overlap_threshold & Avg_Zscore_L >= overlap_threshold ~ "Deletion Enhancer Both",
  413. Z_lm_L <= -overlap_threshold & Avg_Zscore_L <= -overlap_threshold ~ "Deletion Suppressor Both",
  414. Z_lm_L >= overlap_threshold & Avg_Zscore_L <= overlap_threshold ~ "Deletion Enhancer lm only",
  415. Z_lm_L <= overlap_threshold & Avg_Zscore_L >= overlap_threshold ~ "Deletion Enhancer Avg Zscore only",
  416. Z_lm_L <= -overlap_threshold & Avg_Zscore_L >= -overlap_threshold ~ "Deletion Suppressor lm only",
  417. Z_lm_L >= -overlap_threshold & Avg_Zscore_L <= -overlap_threshold ~ "Deletion Suppressor Avg Zscore only",
  418. Z_lm_L >= overlap_threshold & Avg_Zscore_L <= -overlap_threshold ~ "Deletion Enhancer lm, Deletion Suppressor Avg Zscore",
  419. Z_lm_L <= -overlap_threshold & Avg_Zscore_L >= overlap_threshold ~ "Deletion Suppressor lm, Deletion Enhancer Avg Zscore",
  420. TRUE ~ "No Effect"
  421. ),
  422. # Apply the perform_lm_simple function for each variable pair
  423. lm_L = list(perform_lm_simple(Z_lm_L, Avg_Zscore_L, max_conc)),
  424. lm_K = list(perform_lm_simple(Z_lm_K, Avg_Zscore_K, max_conc)),
  425. lm_r = list(perform_lm_simple(Z_lm_r, Avg_Zscore_r, max_conc)),
  426. lm_AUC = list(perform_lm_simple(Z_lm_AUC, Avg_Zscore_AUC, max_conc)),
  427. # Correlation models for various pairs
  428. Z_lm_K_L = list(perform_lm_simple(Z_lm_K, Z_lm_L, max_conc)),
  429. Z_lm_r_L = list(perform_lm_simple(Z_lm_r, Z_lm_L, max_conc)),
  430. Z_lm_R_AUC_L = list(perform_lm_simple(Z_lm_AUC, Z_lm_L, max_conc)),
  431. Z_lm_R_r_K = list(perform_lm_simple(Z_lm_r, Z_lm_K, max_conc)),
  432. Z_lm_R_AUC_K = list(perform_lm_simple(Z_lm_AUC, Z_lm_K, max_conc)),
  433. Z_lm_R_AUC_r = list(perform_lm_simple(Z_lm_AUC, Z_lm_r, max_conc)),
  434. # Extract coefficients and statistics for each model
  435. lm_rank_intercept_L = lm_L[[1]]$intercept,
  436. lm_rank_slope_L = lm_L[[1]]$slope,
  437. R_Squared_L = lm_L[[1]]$r_squared,
  438. lm_Score_L = lm_L[[1]]$score,
  439. lm_intercept_K = lm_K[[1]]$intercept,
  440. lm_slope_K = lm_K[[1]]$slope,
  441. R_Squared_K = lm_K[[1]]$r_squared,
  442. lm_Score_K = lm_K[[1]]$score,
  443. lm_intercept_r = lm_r[[1]]$intercept,
  444. lm_slope_r = lm_r[[1]]$slope,
  445. R_Squared_r = lm_r[[1]]$r_squared,
  446. lm_Score_r = lm_r[[1]]$score,
  447. lm_intercept_AUC = lm_AUC[[1]]$intercept,
  448. lm_slope_AUC = lm_AUC[[1]]$slope,
  449. R_Squared_AUC = lm_AUC[[1]]$r_squared,
  450. lm_Score_AUC = lm_AUC[[1]]$score,
  451. Z_lm_intercept_K_L = Z_lm_K_L[[1]]$intercept,
  452. Z_lm_slope_K_L = Z_lm_K_L[[1]]$slope,
  453. Z_lm_R_squared_K_L = Z_lm_K_L[[1]]$r_squared,
  454. Z_lm_Score_K_L = Z_lm_K_L[[1]]$score,
  455. Z_lm_intercept_r_L = Z_lm_r_L[[1]]$intercept,
  456. Z_lm_slope_r_L = Z_lm_r_L[[1]]$slope,
  457. Z_lm_R_squared_r_L = Z_lm_r_L[[1]]$r_squared,
  458. Z_lm_Score_r_L = Z_lm_r_L[[1]]$score,
  459. Z_lm_intercept_R_AUC_L = Z_lm_R_AUC_L[[1]]$intercept,
  460. Z_lm_slope_R_AUC_L = Z_lm_R_AUC_L[[1]]$slope,
  461. Z_lm_R_squared_R_AUC_L = Z_lm_R_AUC_L[[1]]$r_squared,
  462. Z_lm_Score_R_AUC_L = Z_lm_R_AUC_L[[1]]$score,
  463. Z_lm_intercept_R_r_K = Z_lm_R_r_K[[1]]$intercept,
  464. Z_lm_slope_R_r_K = Z_lm_R_r_K[[1]]$slope,
  465. Z_lm_R_squared_R_r_K = Z_lm_R_r_K[[1]]$r_squared,
  466. Z_lm_Score_R_r_K = Z_lm_R_r_K[[1]]$score,
  467. Z_lm_intercept_R_AUC_K = Z_lm_R_AUC_K[[1]]$intercept,
  468. Z_lm_slope_R_AUC_K = Z_lm_R_AUC_K[[1]]$slope,
  469. Z_lm_R_squared_R_AUC_K = Z_lm_R_AUC_K[[1]]$r_squared,
  470. Z_lm_Score_R_AUC_K = Z_lm_R_AUC_K[[1]]$score,
  471. Z_lm_intercept_R_AUC_r = Z_lm_R_AUC_r[[1]]$intercept,
  472. Z_lm_slope_R_AUC_r = Z_lm_R_AUC_r[[1]]$slope,
  473. Z_lm_R_squared_R_AUC_r = Z_lm_R_AUC_r[[1]]$r_squared,
  474. Z_lm_Score_R_AUC_r = Z_lm_R_AUC_r[[1]]$score
  475. ) %>%
  476. select(
  477. -lm_L, -lm_K, -lm_r, -lm_AUC, -Z_lm_K_L, -Z_lm_r_L, -Z_lm_R_AUC_L,
  478. -Z_lm_R_r_K, -Z_lm_R_AUC_K, -Z_lm_R_AUC_r)
  479. } # end deletion-specific block
  480. # Create the final calculations and interactions dataframes with only required columns for csv output
  481. df_calculations <- calculations %>%
  482. select(
  483. all_of(group_vars),
  484. conc_num, conc_num_factor, conc_num_factor_factor, N,
  485. mean_L, median_L, sd_L, se_L,
  486. mean_K, median_K, sd_K, se_K,
  487. mean_r, median_r, sd_r, se_r,
  488. mean_AUC, median_AUC, sd_AUC, se_AUC,
  489. Raw_Shift_L, Raw_Shift_K, Raw_Shift_r, Raw_Shift_AUC,
  490. Z_Shift_L, Z_Shift_K, Z_Shift_r, Z_Shift_AUC,
  491. WT_L, WT_K, WT_r, WT_AUC,
  492. WT_sd_L, WT_sd_K, WT_sd_r, WT_sd_AUC,
  493. Exp_L, Exp_K, Exp_r, Exp_AUC,
  494. Delta_L, Delta_K, Delta_r, Delta_AUC,
  495. mean_Delta_L, mean_Delta_K, mean_Delta_r, mean_Delta_AUC,
  496. Zscore_L, Zscore_K, Zscore_r, Zscore_AUC,
  497. NG_sum, DB_sum, SM_sum
  498. ) %>%
  499. rename(NG = NG_sum, DB = DB_sum, SM = SM_sum)
  500. df_interactions <- interactions %>%
  501. select(
  502. all_of(group_vars),
  503. Avg_Zscore_L, Avg_Zscore_K, Avg_Zscore_r, Avg_Zscore_AUC,
  504. Sum_Z_Score_L, Sum_Z_Score_K, Sum_Z_Score_r, Sum_Z_Score_AUC,
  505. Z_lm_L, Z_lm_K, Z_lm_r, Z_lm_AUC,
  506. Raw_Shift_L, Raw_Shift_K, Raw_Shift_r, Raw_Shift_AUC,
  507. Z_Shift_L, Z_Shift_K, Z_Shift_r, Z_Shift_AUC,
  508. lm_Score_L, lm_Score_K, lm_Score_r, lm_Score_AUC,
  509. R_Squared_L, R_Squared_K, R_Squared_r, R_Squared_AUC,
  510. NG_sum_int, DB_sum_int, SM_sum_int
  511. ) %>%
  512. rename(NG = NG_sum_int, DB = DB_sum_int, SM = SM_sum_int)
  513. # Avoid column collision on left join for overlapping variables
  514. calculations_no_overlap <- calculations %>%
  515. select(-any_of(c("DB", "NG", "SM",
  516. # Don't need these anywhere so easier to remove
  517. "Raw_Shift_L", "Raw_Shift_K", "Raw_Shift_r", "Raw_Shift_AUC",
  518. "R_Squared_L", "R_Squared_K", "R_Squared_r", "R_Squared_AUC",
  519. # we need these for the interactions but the original code has the same names in both datasets
  520. "Z_Shift_L", "Z_Shift_K", "Z_Shift_r", "Z_Shift_AUC"
  521. )))
  522. full_data <- calculations_no_overlap %>%
  523. left_join(interactions, by = group_vars)
  524. # Return final dataframes
  525. return(list(
  526. calculations = df_calculations,
  527. interactions = df_interactions,
  528. full_data = full_data
  529. ))
  530. }
  531. generate_and_save_plots <- function(out_dir, filename, plot_configs, page_width = 12, page_height = 8) {
  532. message("Generating ", filename, ".pdf and ", filename, ".html")
  533. plot_groups <- if ("plots" %in% names(plot_configs)) {
  534. list(plot_configs) # Single group
  535. } else {
  536. plot_configs # Multiple groups
  537. }
  538. pdf(file.path(out_dir, paste0(filename, ".pdf")), width = page_width, height = page_height)
  539. for (group in plot_groups) {
  540. static_plots <- list()
  541. plotly_plots <- list()
  542. for (i in seq_along(group$plots)) {
  543. config <- group$plots[[i]]
  544. df <- config$df
  545. # Filter NAs
  546. if (!is.null(config$filter_na) && config$filter_na) {
  547. df <- df %>%
  548. filter(!is.na(!!sym(config$y_var)))
  549. }
  550. # TODO for now skip all NA plots NA data
  551. # Eventually add to own or filter_na block so we can handle selectively
  552. if (nrow(df) == 0) {
  553. message("Insufficient data for plot:", config$title)
  554. next # skip plot if insufficient data is available
  555. }
  556. # Create initial aes mappings for all plot types
  557. aes_mapping <- aes(x = !!sym(config$x_var)) # required
  558. if (!is.null(config$y_var)) {
  559. aes_mapping <- modifyList(aes_mapping, aes(y = !!sym(config$y_var))) # optional for density/bar plots
  560. }
  561. if (!is.null(config$color_var)) {
  562. aes_mapping <- modifyList(aes_mapping, aes(color = !!sym(config$color_var))) # dynamic color_var
  563. } else if (!is.null(config$color)) {
  564. aes_mapping <- modifyList(aes_mapping, aes(color = config$color)) # static color
  565. }
  566. if (config$plot_type == "bar" && !is.null(config$color_var)) {
  567. aes_mapping <- modifyList(aes_mapping, aes(fill = !!sym(config$color_var))) # only fill bar plots
  568. }
  569. # Begin plot generation
  570. plot <- ggplot(df, aes_mapping) + theme_publication(legend_position = config$legend_position)
  571. plot <- switch(config$plot_type,
  572. "scatter" = generate_scatter_plot(plot, config),
  573. "box" = generate_boxplot(plot, config),
  574. "density" = plot + geom_density(),
  575. "bar" = plot + geom_bar(),
  576. plot # default
  577. )
  578. if (!is.null(config$title)) {
  579. plot <- plot + ggtitle(config$title)
  580. if (!is.null(config$title_size)) {
  581. plot <- plot + theme(plot.title = element_text(size = config$title_size))
  582. }
  583. }
  584. if (!is.null(config$x_label)) plot <- plot + xlab(config$x_label)
  585. if (!is.null(config$y_label)) plot <- plot + ylab(config$y_label)
  586. if (!is.null(config$coord_cartesian)) plot <- plot + coord_cartesian(ylim = config$coord_cartesian)
  587. #plotly_plot <- suppressWarnings(plotly::ggplotly(plot))
  588. static_plots[[i]] <- plot
  589. #plotly_plots[[i]] <- plotly_plot
  590. }
  591. grid_layout <- group$grid_layout
  592. if (!is.null(grid_layout)) {
  593. if (is.null(grid_layout$ncol)) {
  594. grid_layout$ncol <- 1
  595. }
  596. if (!is.null(grid_layout$ncol) && is.null(grid_layout$nrow)) {
  597. num_plots <- length(static_plots)
  598. grid_layout$nrow <- ceiling(num_plots / grid_layout$ncol)
  599. }
  600. # total_spots <- grid_layout$nrow * grid_layout$ncol
  601. # num_plots <- length(static_plots)
  602. # if (num_plots < total_spots) {
  603. # message("Filling ", total_spots - num_plots, " empty spots with nullGrob()")
  604. # static_plots <- c(static_plots, replicate(total_spots - num_plots, nullGrob(), simplify = FALSE))
  605. # }
  606. grid.arrange(
  607. grobs = static_plots,
  608. ncol = grid_layout$ncol,
  609. nrow = grid_layout$nrow
  610. )
  611. } else {
  612. for (plot in static_plots) {
  613. print(plot)
  614. }
  615. }
  616. }
  617. dev.off()
  618. # out_html_file <- file.path(out_dir, paste0(filename, ".html"))
  619. # message("Saving combined HTML file: ", out_html_file)
  620. # htmltools::save_html(
  621. # htmltools::tagList(plotly_plots),
  622. # file = out_html_file
  623. # )
  624. }
  625. generate_scatter_plot <- function(plot, config) {
  626. # Define the points
  627. shape <- if (!is.null(config$shape)) config$shape else 3
  628. size <- if (!is.null(config$size)) config$size else 1.5
  629. position <-
  630. if (!is.null(config$position) && config$position == "jitter") {
  631. position_jitter(width = 0.4, height = 0.1)
  632. } else {
  633. "identity"
  634. }
  635. plot <- plot + geom_point(
  636. shape = shape,
  637. size = size,
  638. position = position
  639. )
  640. # Add a cyan point for the reference data for correlation plots
  641. if (!is.null(config$cyan_points) && config$cyan_points) {
  642. plot <- plot + geom_point(
  643. aes(x = !!sym(config$x_var), y = !!sym(config$y_var)),
  644. data = config$df_reference,
  645. color = "cyan",
  646. shape = 3,
  647. size = 0.5
  648. )
  649. }
  650. # Add error bars if specified
  651. if (!is.null(config$error_bar) && config$error_bar) {
  652. # Check if custom columns are provided for y_mean and y_sd, or use the defaults
  653. y_mean_col <- if (!is.null(config$error_bar_params$y_mean_col)) {
  654. config$error_bar_params$y_mean_col
  655. } else {
  656. paste0("mean_", config$y_var)
  657. }
  658. y_sd_col <- if (!is.null(config$error_bar_params$y_sd_col)) {
  659. config$error_bar_params$y_sd_col
  660. } else {
  661. paste0("sd_", config$y_var)
  662. }
  663. # Use rlang to handle custom error bar calculations
  664. if (!is.null(config$error_bar_params$custom_error_bar)) {
  665. custom_ymin_expr <- rlang::parse_expr(config$error_bar_params$custom_error_bar$ymin)
  666. custom_ymax_expr <- rlang::parse_expr(config$error_bar_params$custom_error_bar$ymax)
  667. plot <- plot + geom_errorbar(
  668. aes(
  669. ymin = !!custom_ymin_expr,
  670. ymax = !!custom_ymax_expr
  671. ),
  672. color = config$error_bar_params$color,
  673. linewidth = ifelse(is.null(config$error_bar_params$linewidth), 0.1, config$error_bar_params$linewidth)
  674. )
  675. } else {
  676. # If no custom error bar formula, use the default or dynamic ones
  677. if (!is.null(config$color_var) && config$color_var %in% colnames(config$df)) {
  678. # Only use color_var if it's present in the dataframe
  679. plot <- plot + geom_errorbar(
  680. aes(
  681. ymin = !!sym(y_mean_col) - !!sym(y_sd_col),
  682. ymax = !!sym(y_mean_col) + !!sym(y_sd_col),
  683. color = !!sym(config$color_var)
  684. ),
  685. linewidth = 0.1
  686. )
  687. } else {
  688. # If color_var is missing, fall back to a default color or none
  689. plot <- plot + geom_errorbar(
  690. aes(
  691. ymin = !!sym(y_mean_col) - !!sym(y_sd_col),
  692. ymax = !!sym(y_mean_col) + !!sym(y_sd_col)
  693. ),
  694. color = config$error_bar_params$color, # use the provided color or default
  695. linewidth = ifelse(is.null(config$error_bar_params$linewidth), 0.1, config$error_bar_params$linewidth)
  696. )
  697. }
  698. }
  699. # Add the center point if the option is provided
  700. if (!is.null(config$error_bar_params$mean_point) && config$error_bar_params$mean_point) {
  701. if (!is.null(config$error_bar_params$color)) {
  702. plot <- plot + geom_point(
  703. aes(x = !!sym(config$x_var), y = !!sym(y_mean_col)),
  704. color = config$error_bar_params$color,
  705. shape = 16
  706. )
  707. } else {
  708. plot <- plot + geom_point(
  709. aes(x = !!sym(config$x_var), y = !!sym(y_mean_col)),
  710. shape = 16
  711. )
  712. }
  713. }
  714. }
  715. # Add linear regression line if specified
  716. if (!is.null(config$lm_line)) {
  717. # Extract necessary values
  718. intercept <- config$lm_line$intercept # required
  719. slope <- config$lm_line$slope # required
  720. xmin <- ifelse(!is.null(config$lm_line$xmin), config$lm_line$xmin, min(as.numeric(config$df[[config$x_var]])))
  721. xmax <- ifelse(!is.null(config$lm_line$xmax), config$lm_line$xmax, max(as.numeric(config$df[[config$x_var]])))
  722. color <- ifelse(!is.null(config$lm_line$color), config$lm_line$color, "blue")
  723. linewidth <- ifelse(!is.null(config$lm_line$linewidth), config$lm_line$linewidth, 1)
  724. ymin <- intercept + slope * xmin
  725. ymax <- intercept + slope * xmax
  726. # Ensure y-values are within y-limits (if any)
  727. if (!is.null(config$ylim_vals)) {
  728. ymin_within_limits <- ymin >= config$ylim_vals[1] && ymin <= config$ylim_vals[2]
  729. ymax_within_limits <- ymax >= config$ylim_vals[1] && ymax <= config$ylim_vals[2]
  730. # Adjust or skip based on whether the values fall within limits
  731. if (ymin_within_limits && ymax_within_limits) {
  732. plot <- plot + annotate(
  733. "segment",
  734. x = xmin,
  735. xend = xmax,
  736. y = ymin,
  737. yend = ymax,
  738. color = color,
  739. linewidth = linewidth,
  740. )
  741. } else {
  742. message("Skipping linear regression line due to y-values outside of limits")
  743. }
  744. } else {
  745. # If no y-limits are provided, proceed with the annotation
  746. plot <- plot + annotate(
  747. "segment",
  748. x = xmin,
  749. xend = xmax,
  750. y = ymin,
  751. yend = ymax,
  752. color = color,
  753. linewidth = linewidth
  754. )
  755. }
  756. }
  757. # Add SD Bands if specified
  758. if (!is.null(config$sd_band)) {
  759. plot <- plot +
  760. annotate(
  761. "rect",
  762. xmin = -Inf, xmax = Inf,
  763. ymin = config$sd_band, ymax = Inf,
  764. fill = ifelse(!is.null(config$fill_positive), config$fill_positive, "#542788"),
  765. alpha = ifelse(!is.null(config$alpha_positive), config$alpha_positive, 0.3)
  766. ) +
  767. annotate(
  768. "rect",
  769. xmin = -Inf, xmax = Inf,
  770. ymin = -config$sd_band, ymax = -Inf,
  771. fill = ifelse(!is.null(config$fill_negative), config$fill_negative, "orange"),
  772. alpha = ifelse(!is.null(config$alpha_negative), config$alpha_negative, 0.3)
  773. ) +
  774. geom_hline(
  775. yintercept = c(-config$sd_band, config$sd_band),
  776. color = ifelse(!is.null(config$hl_color), config$hl_color, "black")
  777. )
  778. }
  779. # # Add rectangles if specified
  780. # if (!is.null(config$rectangles)) {
  781. # for (rect in config$rectangles) {
  782. # plot <- plot + annotate(
  783. # "rect",
  784. # xmin = rect$xmin,
  785. # xmax = rect$xmax,
  786. # ymin = rect$ymin,
  787. # ymax = rect$ymax,
  788. # fill = ifelse(is.null(rect$fill), NA, rect$fill),
  789. # color = ifelse(is.null(rect$color), "black", rect$color),
  790. # alpha = ifelse(is.null(rect$alpha), 0.1, rect$alpha)
  791. # )
  792. # }
  793. # }
  794. # Customize X-axis if specified
  795. if (!is.null(config$x_breaks) && !is.null(config$x_labels) && !is.null(config$x_label)) {
  796. # Check if x_var is factor or character (for discrete x-axis)
  797. if (is.factor(plot$data[[config$x_var]]) || is.character(plot$data[[config$x_var]])) {
  798. plot <- plot +
  799. scale_x_discrete(
  800. name = config$x_label,
  801. breaks = config$x_breaks,
  802. labels = config$x_labels
  803. )
  804. } else {
  805. plot <- plot +
  806. scale_x_continuous(
  807. name = config$x_label,
  808. breaks = config$x_breaks,
  809. labels = config$x_labels
  810. )
  811. }
  812. }
  813. # Set Y-axis limits if specified
  814. if (!is.null(config$ylim_vals)) {
  815. plot <- plot + scale_y_continuous(limits = config$ylim_vals)
  816. }
  817. return(plot)
  818. }
  819. generate_boxplot <- function(plot, config) {
  820. # Convert x_var to a factor within aes mapping
  821. plot <- plot + geom_boxplot(aes(x = factor(!!sym(config$x_var))))
  822. # Customize X-axis if specified
  823. if (!is.null(config$x_breaks) && !is.null(config$x_labels) && !is.null(config$x_label)) {
  824. # Check if x_var is factor or character (for discrete x-axis)
  825. if (is.factor(plot$data[[config$x_var]]) || is.character(plot$data[[config$x_var]])) {
  826. plot <- plot +
  827. scale_x_discrete(
  828. name = config$x_label,
  829. breaks = config$x_breaks,
  830. labels = config$x_labels
  831. )
  832. } else {
  833. plot <- plot +
  834. scale_x_continuous(
  835. name = config$x_label,
  836. breaks = config$x_breaks,
  837. labels = config$x_labels
  838. )
  839. }
  840. }
  841. return(plot)
  842. }
  843. generate_plate_analysis_plot_configs <- function(variables, df_before = NULL, df_after = NULL,
  844. plot_type = "scatter", stages = c("before", "after")) {
  845. plot_configs <- list()
  846. for (var in variables) {
  847. for (stage in stages) {
  848. df_plot <- if (stage == "before") df_before else df_after
  849. # Check for non-finite values in the y-variable
  850. # df_plot_filtered <- df_plot %>% filter(is.finite(!!sym(var)))
  851. # Adjust settings based on plot_type
  852. plot_config <- list(
  853. df = df_plot,
  854. x_var = "scan",
  855. y_var = var,
  856. plot_type = plot_type,
  857. title = paste("Plate analysis by Drug Conc for", var, stage, "quality control"),
  858. color_var = "conc_num_factor_factor",
  859. size = 0.2,
  860. error_bar = (plot_type == "scatter"),
  861. legend_position = "bottom",
  862. filter_na = TRUE
  863. )
  864. # Add config to plots list
  865. plot_configs <- append(plot_configs, list(plot_config))
  866. }
  867. }
  868. return(list(plots = plot_configs))
  869. }
  870. generate_interaction_plot_configs <- function(df_summary, df_interactions, type) {
  871. # Define the y-limits for the plots
  872. limits_map <- list(
  873. L = c(0, 130),
  874. K = c(-20, 160),
  875. r = c(0, 1),
  876. AUC = c(0, 12500)
  877. )
  878. stats_plot_configs <- list()
  879. stats_boxplot_configs <- list()
  880. delta_plot_configs <- list()
  881. # Overall statistics plots
  882. OrfRep <- first(df_summary$OrfRep) # this should correspond to the reference strain
  883. for (plot_type in c("scatter", "box")) {
  884. for (var in names(limits_map)) {
  885. y_limits <- limits_map[[var]]
  886. y_span <- y_limits[2] - y_limits[1]
  887. # Common plot configuration
  888. plot_config <- list(
  889. df = df_summary,
  890. plot_type = plot_type,
  891. x_var = "conc_num_factor_factor",
  892. y_var = var,
  893. shape = 16,
  894. x_label = paste0("[", unique(df_summary$Drug)[1], "]"),
  895. coord_cartesian = y_limits,
  896. x_breaks = unique(df_summary$conc_num_factor_factor),
  897. x_labels = as.character(unique(df_summary$conc_num))
  898. )
  899. # Add specific configurations for scatter and box plots
  900. if (plot_type == "scatter") {
  901. plot_config$title <- sprintf("%s Scatter RF for %s with SD", OrfRep, var)
  902. plot_config$error_bar <- TRUE
  903. plot_config$error_bar_params <- list(
  904. color = "red",
  905. mean_point = TRUE,
  906. y_mean_col = paste0("mean_mean_", var),
  907. y_sd_col = paste0("mean_sd_", var)
  908. )
  909. plot_config$position <- "jitter"
  910. annotations <- list(
  911. list(x = 0.25, y = y_limits[1] + 0.08 * y_span, label = " NG =", size = 4),
  912. list(x = 0.25, y = y_limits[1] + 0.04 * y_span, label = " DB =", size = 4),
  913. list(x = 0.25, y = y_limits[1], label = " SM =", size = 4)
  914. )
  915. for (x_val in unique(df_summary$conc_num_factor_factor)) {
  916. current_df <- df_summary %>% filter(!!sym(plot_config$x_var) == x_val)
  917. annotations <- append(annotations, list(
  918. list(x = x_val, y = y_limits[1] + 0.08 * y_span, label = first(current_df$NG, default = 0), size = 4),
  919. list(x = x_val, y = y_limits[1] + 0.04 * y_span, label = first(current_df$DB, default = 0), size = 4),
  920. list(x = x_val, y = y_limits[1], label = first(current_df$SM, default = 0), size = 4)
  921. ))
  922. }
  923. plot_config$annotations <- annotations
  924. stats_plot_configs <- append(stats_plot_configs, list(plot_config))
  925. } else if (plot_type == "box") {
  926. plot_config$title <- sprintf("%s Box RF for %s with SD", OrfRep, var)
  927. plot_config$position <- "dodge"
  928. stats_boxplot_configs <- append(stats_boxplot_configs, list(plot_config))
  929. }
  930. }
  931. }
  932. # Delta interaction plots
  933. delta_limits_map <- list(
  934. L = c(-60, 60),
  935. K = c(-60, 60),
  936. r = c(-0.6, 0.6),
  937. AUC = c(-6000, 6000)
  938. )
  939. # Select the data grouping by data type
  940. if (type == "reference") {
  941. group_vars <- c("OrfRep", "Gene", "num")
  942. } else if (type == "deletion") {
  943. group_vars <- c("OrfRep", "Gene")
  944. }
  945. grouped_data <- df_interactions %>%
  946. group_by(across(all_of(group_vars))) %>%
  947. group_split()
  948. for (group_data in grouped_data) {
  949. # Build the plot title
  950. OrfRep <- first(group_data$OrfRep)
  951. Gene <- first(group_data$Gene)
  952. if (type == "reference") {
  953. num <- if ("num" %in% names(group_data)) first(group_data$num) else ""
  954. OrfRepTitle <- paste(OrfRep, Gene, num, sep = "_")
  955. } else if (type == "deletion") {
  956. OrfRepTitle <- OrfRep
  957. }
  958. for (var in names(delta_limits_map)) {
  959. y_limits <- delta_limits_map[[var]]
  960. y_span <- y_limits[2] - y_limits[1]
  961. y_var_name <- paste0("Delta_", var)
  962. # Anti-filter to select out-of-bounds rows
  963. out_of_bounds <- group_data %>%
  964. filter(is.na(!!sym(y_var_name)) |
  965. !!sym(y_var_name) < y_limits[1] |
  966. !!sym(y_var_name) > y_limits[2])
  967. if (nrow(out_of_bounds) > 0) {
  968. message(sprintf("Filtered %d row(s) from '%s' because %s is outside of y-limits: [%f, %f]",
  969. nrow(out_of_bounds), OrfRepTitle, y_var_name, y_limits[1], y_limits[2]
  970. ))
  971. }
  972. # Do the actual filtering
  973. group_data_filtered <- group_data %>%
  974. filter(!is.na(!!sym(y_var_name)) &
  975. !!sym(y_var_name) >= y_limits[1] &
  976. !!sym(y_var_name) <= y_limits[2])
  977. if (nrow(group_data_filtered) == 0) {
  978. message("Insufficient data for plot: ", OrfRepTitle, " ", var)
  979. next # skip plot if insufficient data is available
  980. }
  981. WT_sd_value <- first(group_data_filtered[[paste0("WT_sd_", var)]], default = 0)
  982. Z_Shift_value <- round(first(group_data_filtered[[paste0("Z_Shift_", var)]], default = 0), 2)
  983. Z_lm_value <- round(first(group_data_filtered[[paste0("Z_lm_", var)]], default = 0), 2)
  984. R_squared_value <- round(first(group_data_filtered[[paste0("R_Squared_", var)]], default = 0), 2)
  985. NG_value <- first(group_data_filtered$NG, default = 0)
  986. DB_value <- first(group_data_filtered$DB, default = 0)
  987. SM_value <- first(group_data_filtered$SM, default = 0)
  988. lm_intercept_col <- paste0("lm_intercept_", var)
  989. lm_slope_col <- paste0("lm_slope_", var)
  990. lm_intercept <- first(group_data_filtered[[lm_intercept_col]], default = 0)
  991. lm_slope <- first(group_data_filtered[[lm_slope_col]], default = 0)
  992. plot_config <- list(
  993. df = group_data_filtered,
  994. plot_type = "scatter",
  995. x_var = "conc_num_factor_factor",
  996. y_var = y_var_name,
  997. x_label = paste0("[", unique(df_summary$Drug)[1], "]"),
  998. shape = 16,
  999. title = paste(OrfRepTitle, Gene, sep = " "),
  1000. title_size = rel(1.4),
  1001. coord_cartesian = y_limits,
  1002. annotations = list(
  1003. list(x = 1, y = y_limits[2] - 0.1 * y_span, label = paste(" ZShift =", round(Z_Shift_value, 2))),
  1004. list(x = 1, y = y_limits[2] - 0.2 * y_span, label = paste(" lm ZScore =", round(Z_lm_value, 2))),
  1005. # list(x = 1, y = y_limits[2] - 0.3 * y_span, label = paste(" R-squared =", round(R_squared_value, 2))),
  1006. list(x = 1, y = y_limits[1] + 0.1 * y_span, label = paste("NG =", NG_value)),
  1007. list(x = 1, y = y_limits[1] + 0.05 * y_span, label = paste("DB =", DB_value)),
  1008. list(x = 1, y = y_limits[1], label = paste("SM =", SM_value))
  1009. ),
  1010. error_bar = TRUE,
  1011. error_bar_params = list(
  1012. custom_error_bar = list(
  1013. ymin = paste0("0 - 2 * WT_sd_", var),
  1014. ymax = paste0("0 + 2 * WT_sd_", var)
  1015. ),
  1016. color = "gray70",
  1017. linewidth = 0.5
  1018. ),
  1019. x_breaks = unique(group_data_filtered$conc_num_factor_factor),
  1020. x_labels = as.character(unique(group_data_filtered$conc_num)),
  1021. ylim_vals = y_limits,
  1022. lm_line = list(
  1023. intercept = lm_intercept,
  1024. slope = lm_slope,
  1025. color = "blue",
  1026. linewidth = 0.8
  1027. )
  1028. )
  1029. delta_plot_configs <- append(delta_plot_configs, list(plot_config))
  1030. }
  1031. }
  1032. # Group delta plots in chunks of 12 per page
  1033. chunk_size <- 12
  1034. delta_plot_chunks <- split(delta_plot_configs, ceiling(seq_along(delta_plot_configs) / chunk_size))
  1035. return(c(
  1036. list(list(grid_layout = list(ncol = 2), plots = stats_plot_configs)),
  1037. list(list(grid_layout = list(ncol = 2), plots = stats_boxplot_configs)),
  1038. lapply(delta_plot_chunks, function(chunk) list(grid_layout = list(ncol = 4), plots = chunk))
  1039. ))
  1040. }
  1041. generate_rank_plot_configs <- function(df, is_lm = FALSE, filter_na = FALSE, overlap_color = FALSE) {
  1042. sd_bands <- c(1, 2, 3)
  1043. plot_configs <- list()
  1044. variables <- c("L", "K")
  1045. # Helper function to create a rank plot configuration
  1046. create_plot_config <- function(variable, rank_var, zscore_var, y_label, sd_band, filter_na, with_annotations = TRUE) {
  1047. num_enhancers <- sum(df[[zscore_var]] >= sd_band, na.rm = TRUE)
  1048. num_suppressors <- sum(df[[zscore_var]] <= -sd_band, na.rm = TRUE)
  1049. # Default plot config
  1050. plot_config <- list(
  1051. df = df,
  1052. x_var = rank_var,
  1053. y_var = zscore_var,
  1054. x_label = "Rank",
  1055. y_label = y_label,
  1056. plot_type = "scatter",
  1057. title = paste(y_label, "vs. Rank for", variable, "above", sd_band, "SD"),
  1058. sd_band = sd_band,
  1059. fill_positive = "#542788",
  1060. fill_negative = "orange",
  1061. alpha_positive = 0.3,
  1062. alpha_negative = 0.3,
  1063. shape = 3,
  1064. size = 0.1,
  1065. filter_na = filter_na,
  1066. legend_position = "none"
  1067. )
  1068. # Selectively add annotations
  1069. if (with_annotations) {
  1070. plot_config$annotations <- list(
  1071. list(
  1072. x = nrow(df) / 2,
  1073. y = 10,
  1074. label = paste("Deletion Enhancers =", num_enhancers)
  1075. ),
  1076. list(
  1077. x = nrow(df) / 2,
  1078. y = -10,
  1079. label = paste("Deletion Suppressors =", num_suppressors)
  1080. )
  1081. )
  1082. }
  1083. return(plot_config)
  1084. }
  1085. # Generate plots for each variable
  1086. for (variable in variables) {
  1087. rank_var <- if (is_lm) paste0("Rank_lm_", variable) else paste0("Rank_", variable)
  1088. zscore_var <- if (is_lm) paste0("Z_lm_", variable) else paste0("Avg_Zscore_", variable)
  1089. y_label <- if (is_lm) paste("Int Z score", variable) else paste("Avg Z score", variable)
  1090. # Loop through SD bands
  1091. for (sd_band in sd_bands) {
  1092. # Create plot with annotations
  1093. plot_configs[[length(plot_configs) + 1]] <-
  1094. create_plot_config(variable, rank_var, zscore_var, y_label, sd_band, filter_na, with_annotations = TRUE)
  1095. # Create plot without annotations
  1096. plot_configs[[length(plot_configs) + 1]] <-
  1097. create_plot_config(variable, rank_var, zscore_var, y_label, sd_band, filter_na, with_annotations = FALSE)
  1098. }
  1099. }
  1100. # Group delta plots in chunks of 6 per page
  1101. chunk_size <- 6
  1102. plot_chunks <- split(plot_configs, ceiling(seq_along(plot_configs) / chunk_size))
  1103. return(c(
  1104. lapply(plot_chunks, function(chunk) list(grid_layout = list(ncol = 3), plots = chunk))
  1105. ))
  1106. }
  1107. generate_correlation_plot_configs <- function(df, df_reference) {
  1108. # Define relationships for different-variable correlations
  1109. relationships <- list(
  1110. list(x = "L", y = "K"), # x-var is predictor, y-var is reponse
  1111. list(x = "L", y = "r"),
  1112. list(x = "L", y = "AUC"),
  1113. list(x = "K", y = "r"),
  1114. list(x = "K", y = "AUC"),
  1115. list(x = "r", y = "AUC")
  1116. )
  1117. # Filter both dataframes for missing linear model zscores for plotting
  1118. df <- df %>%
  1119. filter(!is.na(Z_lm_L))
  1120. df_reference <- df_reference %>%
  1121. filter(!is.na(Z_lm_L))
  1122. plot_configs <- list()
  1123. # Iterate over the option to highlight cyan points (TRUE/FALSE)
  1124. highlight_cyan_options <- c(FALSE, TRUE)
  1125. for (highlight_cyan in highlight_cyan_options) {
  1126. for (rel in relationships) {
  1127. # Extract relevant variable names for Z_lm values
  1128. x_var <- paste0("Z_lm_", rel$x) # predictor
  1129. y_var <- paste0("Z_lm_", rel$y) # response
  1130. # Skip this plot if there's no valid data
  1131. # if (all(is.na(df[[x_var]])) || all(is.na(df_reference[[x_var]])) ||
  1132. # all(is.na(df[[y_var]])) || all(is.na(df_reference[[y_var]]))) {
  1133. # next
  1134. # }
  1135. # Find the max and min of both dataframes for printing linear regression line
  1136. xmin <- min(c(min(df[[x_var]], na.rm = TRUE), min(df_reference[[x_var]], na.rm = TRUE)), na.rm = TRUE)
  1137. xmax <- max(c(max(df[[x_var]], na.rm = TRUE), max(df_reference[[x_var]], na.rm = TRUE)), na.rm = TRUE)
  1138. # Extract the R-squared, intercept, and slope from the df (first value)
  1139. intercept <- df[[paste0("Z_lm_intercept_", rel$y, "_", rel$x)]][1]
  1140. slope <- df[[paste0("Z_lm_slope_", rel$y, "_", rel$x)]][1]
  1141. r_squared <- df[[paste0("Z_lm_R_squared_", rel$y, "_", rel$x)]][1]
  1142. # Generate the label for the plot
  1143. plot_label <- paste("Interaction", rel$x, "vs.", rel$y)
  1144. # Construct plot config
  1145. plot_config <- list(
  1146. df = df,
  1147. df_reference = df_reference,
  1148. x_var = x_var,
  1149. y_var = y_var,
  1150. plot_type = "scatter",
  1151. title = plot_label,
  1152. annotations = list(
  1153. list(
  1154. x = mean(df[[x_var]], na.rm = TRUE),
  1155. y = mean(df[[y_var]], na.rm = TRUE),
  1156. label = paste("R-squared =", round(r_squared, 3))
  1157. )
  1158. ),
  1159. lm_line = list(
  1160. intercept = intercept,
  1161. slope = slope,
  1162. color = "tomato3",
  1163. linewidth = 0.8,
  1164. xmin = xmin,
  1165. xmax = xmax
  1166. ),
  1167. color = "gray70",
  1168. filter_na = TRUE,
  1169. cyan_points = highlight_cyan # include cyan points or not based on the loop
  1170. )
  1171. plot_configs <- append(plot_configs, list(plot_config))
  1172. }
  1173. }
  1174. return(list(plots = plot_configs))
  1175. }
  1176. main <- function() {
  1177. lapply(names(args$experiments), function(exp_name) {
  1178. exp <- args$experiments[[exp_name]]
  1179. exp_path <- exp$path
  1180. exp_sd <- exp$sd
  1181. out_dir <- file.path(exp_path, "zscores")
  1182. out_dir_qc <- file.path(exp_path, "zscores", "qc")
  1183. dir.create(out_dir, recursive = TRUE, showWarnings = FALSE)
  1184. dir.create(out_dir_qc, recursive = TRUE, showWarnings = FALSE)
  1185. # Each list of plots corresponds to a separate file
  1186. message("Loading and filtering data for experiment: ", exp_name)
  1187. df <- load_and_filter_data(args$easy_results_file, sd = exp_sd) %>%
  1188. update_gene_names(args$sgd_gene_list) %>%
  1189. as_tibble()
  1190. l_vs_k_plot_configs <- list(
  1191. plots = list(
  1192. list(
  1193. df = df,
  1194. x_var = "L",
  1195. y_var = "K",
  1196. plot_type = "scatter",
  1197. tooltip_vars = c("OrfRep", "Gene", "delta_bg"),
  1198. title = "Raw L vs K before quality control",
  1199. color_var = "conc_num_factor_factor",
  1200. error_bar = FALSE,
  1201. legend_position = "right"
  1202. )
  1203. )
  1204. )
  1205. message("Calculating summary statistics before quality control")
  1206. df_stats <- calculate_summary_stats( # formerly X_stats_ALL
  1207. df = df,
  1208. variables = c("L", "K", "r", "AUC", "delta_bg"),
  1209. group_vars = c("conc_num", "conc_num_factor_factor"))$df_with_stats
  1210. frequency_delta_bg_plot_configs <- list(
  1211. plots = list(
  1212. list(
  1213. df = df_stats,
  1214. x_var = "delta_bg",
  1215. y_var = NULL,
  1216. plot_type = "density",
  1217. title = "Density plot for Delta Background by [Drug] (All Data)",
  1218. color_var = "conc_num_factor_factor",
  1219. x_label = "Delta Background",
  1220. y_label = "Density",
  1221. error_bar = FALSE,
  1222. legend_position = "right"
  1223. ),
  1224. list(
  1225. df = df_stats,
  1226. x_var = "delta_bg",
  1227. y_var = NULL,
  1228. plot_type = "bar",
  1229. title = "Bar plot for Delta Background by [Drug] (All Data)",
  1230. color_var = "conc_num_factor_factor",
  1231. x_label = "Delta Background",
  1232. y_label = "Count",
  1233. error_bar = FALSE,
  1234. legend_position = "right"
  1235. )
  1236. )
  1237. )
  1238. message("Filtering rows above delta background tolerance for plotting")
  1239. df_above_tolerance <- df %>% filter(DB == 1)
  1240. above_threshold_plot_configs <- list(
  1241. plots = list(
  1242. list(
  1243. df = df_above_tolerance,
  1244. x_var = "L",
  1245. y_var = "K",
  1246. plot_type = "scatter",
  1247. tooltip_vars = c("OrfRep", "Gene", "delta_bg"),
  1248. title = paste("Raw L vs K for strains above Delta Background threshold of",
  1249. round(df_above_tolerance$delta_bg_tolerance[[1]], 3), "or above"),
  1250. color_var = "conc_num_factor_factor",
  1251. position = "jitter",
  1252. annotations = list(
  1253. list(
  1254. x = median(df_above_tolerance$L, na.rm = TRUE) / 2,
  1255. y = median(df_above_tolerance$K, na.rm = TRUE) / 2,
  1256. label = paste("# strains above Delta Background tolerance =", nrow(df_above_tolerance))
  1257. )
  1258. ),
  1259. error_bar = FALSE,
  1260. legend_position = "right"
  1261. )
  1262. )
  1263. )
  1264. message("Setting rows above delta background tolerance to NA")
  1265. df_na <- df %>% mutate(across(all_of(c("L", "K", "r", "AUC", "delta_bg")), ~ ifelse(DB == 1, NA, .))) # formerly X
  1266. message("Calculating summary statistics across all strains")
  1267. ss <- calculate_summary_stats(
  1268. df = df_na,
  1269. variables = c("L", "K", "r", "AUC", "delta_bg"),
  1270. group_vars = c("conc_num", "conc_num_factor_factor"))
  1271. df_na_ss <- ss$summary_stats
  1272. df_na_stats <- ss$df_with_stats # formerly X_stats_ALL
  1273. write.csv(df_na_ss, file = file.path(out_dir, "summary_stats_all_strains.csv"), row.names = FALSE)
  1274. # This can help bypass missing values ggplot warnings during testing
  1275. df_na_stats_filtered <- df_na_stats %>% filter(if_all(all_of(c("L", "K", "r", "AUC", "delta_bg")), is.finite))
  1276. message("Calculating summary statistics excluding zero values")
  1277. df_no_zeros <- df_na %>% filter(L > 0) # formerly X_noZero
  1278. df_no_zeros_stats <- calculate_summary_stats(
  1279. df = df_no_zeros,
  1280. variables = c("L", "K", "r", "AUC", "delta_bg"),
  1281. group_vars = c("conc_num", "conc_num_factor_factor")
  1282. )$df_with_stats
  1283. message("Filtering by 2SD of K")
  1284. df_na_within_2sd_k <- df_na_stats %>%
  1285. filter(K >= (mean_K - 2 * sd_K) & K <= (mean_K + 2 * sd_K))
  1286. df_na_outside_2sd_k <- df_na_stats %>%
  1287. filter(K < (mean_K - 2 * sd_K) | K > (mean_K + 2 * sd_K))
  1288. message("Calculating summary statistics for L within 2SD of K")
  1289. # TODO We're omitting the original z_max calculation, not sure if needed?
  1290. ss <- calculate_summary_stats(df_na_within_2sd_k, "L", # formerly X_stats_BY_L_within_2SD_K
  1291. group_vars = c("conc_num", "conc_num_factor_factor"))$summary_stats
  1292. write.csv(ss,
  1293. file = file.path(out_dir_qc, "max_observed_L_vals_for_spots_within_2SD_K.csv"),
  1294. row.names = FALSE)
  1295. message("Calculating summary statistics for L outside 2SD of K")
  1296. ss <- calculate_summary_stats(df_na_outside_2sd_k, "L", # formerly X_stats_BY_L_outside_2SD_K
  1297. group_vars = c("conc_num", "conc_num_factor_factor"))
  1298. df_na_l_outside_2sd_k_stats <- ss$df_with_stats
  1299. write.csv(ss$summary_stats,
  1300. file = file.path(out_dir, "max_observed_L_vals_for_spots_outside_2SD_K.csv"),
  1301. row.names = FALSE)
  1302. plate_analysis_plot_configs <- generate_plate_analysis_plot_configs(
  1303. variables = c("L", "K", "r", "AUC", "delta_bg"),
  1304. df_before = df_stats,
  1305. df_after = df_na_stats_filtered
  1306. )
  1307. plate_analysis_boxplot_configs <- generate_plate_analysis_plot_configs(
  1308. variables = c("L", "K", "r", "AUC", "delta_bg"),
  1309. df_before = df_stats,
  1310. df_after = df_na_stats_filtered,
  1311. plot_type = "box"
  1312. )
  1313. plate_analysis_no_zeros_plot_configs <- generate_plate_analysis_plot_configs(
  1314. variables = c("L", "K", "r", "AUC", "delta_bg"),
  1315. stages = c("after"), # Only after QC
  1316. df_after = df_no_zeros_stats
  1317. )
  1318. plate_analysis_no_zeros_boxplot_configs <- generate_plate_analysis_plot_configs(
  1319. variables = c("L", "K", "r", "AUC", "delta_bg"),
  1320. stages = c("after"), # Only after QC
  1321. df_after = df_no_zeros_stats,
  1322. plot_type = "box"
  1323. )
  1324. l_outside_2sd_k_plot_configs <- list(
  1325. plots = list(
  1326. list(
  1327. df = df_na_l_outside_2sd_k_stats,
  1328. x_var = "L",
  1329. y_var = "K",
  1330. plot_type = "scatter",
  1331. title = "Raw L vs K for strains falling outside 2 SD of the K mean at each Conc",
  1332. color_var = "conc_num_factor_factor",
  1333. position = "jitter",
  1334. tooltip_vars = c("OrfRep", "Gene", "delta_bg"),
  1335. annotations = list(
  1336. list(
  1337. x = median(df_na_l_outside_2sd_k_stats$L, na.rm = TRUE) / 2,
  1338. y = median(df_na_l_outside_2sd_k_stats$K, na.rm = TRUE) / 2,
  1339. label = paste("Total strains:", nrow(df_na_l_outside_2sd_k_stats))
  1340. )
  1341. ),
  1342. error_bar = FALSE,
  1343. legend_position = "right"
  1344. )
  1345. )
  1346. )
  1347. delta_bg_outside_2sd_k_plot_configs <- list(
  1348. plots = list(
  1349. list(
  1350. df = df_na_l_outside_2sd_k_stats,
  1351. x_var = "delta_bg",
  1352. x_label = "Delta Background",
  1353. y_var = "K",
  1354. plot_type = "scatter",
  1355. title = "Delta Background vs K for strains falling outside 2 SD of K",
  1356. color_var = "conc_num_factor_factor",
  1357. position = "jitter",
  1358. tooltip_vars = c("OrfRep", "Gene", "delta_bg"),
  1359. annotations = list(
  1360. list(
  1361. x = 0.05,
  1362. y = 0.95,
  1363. hjust = 0,
  1364. vjust = 1,
  1365. label = paste("Total strains:", nrow(df_na_l_outside_2sd_k_stats)),
  1366. size = 5
  1367. )
  1368. ),
  1369. error_bar = FALSE,
  1370. legend_position = "right"
  1371. )
  1372. )
  1373. )
  1374. message("Generating quality control plots in parallel")
  1375. # future::plan(future::multicore, workers = parallel::detectCores())
  1376. future::plan(future::multisession, workers = 3) # generate 3 plot files in parallel
  1377. plot_configs <- list(
  1378. list(out_dir = out_dir_qc, filename = "L_vs_K_before_quality_control",
  1379. plot_configs = l_vs_k_plot_configs, page_width = 12, page_height = 8),
  1380. list(out_dir = out_dir_qc, filename = "frequency_delta_background",
  1381. plot_configs = frequency_delta_bg_plot_configs, page_width = 12, page_height = 8),
  1382. list(out_dir = out_dir_qc, filename = "L_vs_K_above_threshold",
  1383. plot_configs = above_threshold_plot_configs, page_width = 12, page_height = 8),
  1384. list(out_dir = out_dir_qc, filename = "plate_analysis",
  1385. plot_configs = plate_analysis_plot_configs, page_width = 14, page_height = 9),
  1386. list(out_dir = out_dir_qc, filename = "plate_analysis_boxplots",
  1387. plot_configs = plate_analysis_boxplot_configs, page_width = 18, page_height = 9),
  1388. list(out_dir = out_dir_qc, filename = "plate_analysis_no_zeros",
  1389. plot_configs = plate_analysis_no_zeros_plot_configs, page_width = 14, page_height = 9),
  1390. list(out_dir = out_dir_qc, filename = "plate_analysis_no_zeros_boxplots",
  1391. plot_configs = plate_analysis_no_zeros_boxplot_configs, page_width = 18, page_height = 9),
  1392. list(out_dir = out_dir_qc, filename = "L_vs_K_for_strains_2SD_outside_mean_K",
  1393. plot_configs = l_outside_2sd_k_plot_configs, page_width = 10, page_height = 8),
  1394. list(out_dir = out_dir_qc, filename = "delta_background_vs_K_for_strains_2SD_outside_mean_K",
  1395. plot_configs = delta_bg_outside_2sd_k_plot_configs, page_width = 10, page_height = 8)
  1396. )
  1397. # Parallelize background and quality control plot generation
  1398. # furrr::future_map(plot_configs, function(config) {
  1399. # generate_and_save_plots(config$out_dir, config$filename, config$plot_configs,
  1400. # page_width = config$page_width, page_height = config$page_height)
  1401. # }, .options = furrr_options(seed = TRUE))
  1402. # Loop over background strains
  1403. # TODO currently only tested against one strain, if we want to do multiple strains we'll
  1404. # have to rename or group the output files by dir or something so they don't get clobbered
  1405. bg_strains <- c("YDL227C")
  1406. lapply(bg_strains, function(strain) {
  1407. message("Processing background strain: ", strain)
  1408. # Handle missing data by setting zero values to NA
  1409. # and then removing any rows with NA in L col
  1410. df_bg <- df_na %>%
  1411. filter(OrfRep == strain) %>%
  1412. mutate(
  1413. L = if_else(L == 0, NA, L),
  1414. K = if_else(K == 0, NA, K),
  1415. r = if_else(r == 0, NA, r),
  1416. AUC = if_else(AUC == 0, NA, AUC)
  1417. ) %>%
  1418. filter(!is.na(L))
  1419. message("Calculating background summary statistics")
  1420. ss_bg <- calculate_summary_stats(df_bg, c("L", "K", "r", "AUC", "delta_bg"), # formerly X_stats_BY
  1421. group_vars = c("OrfRep", "Drug", "conc_num", "conc_num_factor_factor"))
  1422. summary_stats_bg <- ss_bg$summary_stats
  1423. df_bg_stats <- ss_bg$df_with_stats
  1424. write.csv(
  1425. summary_stats_bg,
  1426. file = file.path(out_dir, paste0("summary_stats_background_strain_", strain, ".csv")),
  1427. row.names = FALSE)
  1428. message("Setting missing reference values to the highest theoretical value at each drug conc for L")
  1429. df_reference <- df_na_stats %>% # formerly X2_RF
  1430. filter(OrfRep == strain) %>%
  1431. filter(!is.na(L)) %>%
  1432. group_by(OrfRep, Drug, conc_num, conc_num_factor_factor) %>%
  1433. mutate(
  1434. max_l_theoretical = max(max_L, na.rm = TRUE),
  1435. L = ifelse(L == 0 & !is.na(L) & conc_num > 0, max_l_theoretical, L),
  1436. SM = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, 1, 0),
  1437. L = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, max_l_theoretical, L)) %>%
  1438. ungroup()
  1439. message("Calculating reference strain summary statistics")
  1440. df_reference_summary_stats <- calculate_summary_stats( # formerly X_stats_X2_RF
  1441. df = df_reference,
  1442. variables = c("L", "K", "r", "AUC"),
  1443. group_vars = c("OrfRep", "Drug", "conc_num", "conc_num_factor_factor")
  1444. )$df_with_stats
  1445. # Summarise statistics for error bars
  1446. df_reference_summary_stats <- df_reference_summary_stats %>%
  1447. group_by(OrfRep, Drug, conc_num, conc_num_factor_factor) %>%
  1448. mutate(
  1449. mean_mean_L = first(mean_L),
  1450. mean_sd_L = first(sd_L),
  1451. mean_mean_K = first(mean_K),
  1452. mean_sd_K = first(sd_K),
  1453. mean_mean_r = first(mean_r),
  1454. mean_sd_r = first(sd_r),
  1455. mean_mean_AUC = first(mean_AUC),
  1456. mean_sd_AUC = first(sd_AUC),
  1457. .groups = "drop"
  1458. )
  1459. message("Calculating reference strain interaction summary statistics") # formerly X_stats_interaction
  1460. df_reference_interaction_stats <- calculate_summary_stats(
  1461. df = df_reference,
  1462. variables = c("L", "K", "r", "AUC"),
  1463. group_vars = c("OrfRep", "Gene", "num", "Drug", "conc_num", "conc_num_factor_factor")
  1464. )$df_with_stats
  1465. message("Calculating reference strain interaction scores")
  1466. reference_results <- calculate_interaction_scores(df_reference_interaction_stats, df_bg_stats, "reference")
  1467. df_reference_calculations <- reference_results$calculations
  1468. df_reference_interactions_joined <- reference_results$full_data
  1469. df_reference_interactions <- reference_results$interactions
  1470. write.csv(df_reference_calculations, file = file.path(out_dir, "zscore_calculations_reference.csv"), row.names = FALSE)
  1471. write.csv(df_reference_interactions, file = file.path(out_dir, "zscore_interactions_reference.csv"), row.names = FALSE)
  1472. # message("Generating reference interaction plots")
  1473. # reference_plot_configs <- generate_interaction_plot_configs(df_reference_summary_stats, df_reference_interactions_joined, "reference")
  1474. # generate_and_save_plots(out_dir, "interaction_plots_reference", reference_plot_configs, page_width = 16, page_height = 16)
  1475. message("Setting missing deletion values to the highest theoretical value at each drug conc for L")
  1476. df_deletion <- df_na_stats %>% # formerly X2
  1477. filter(OrfRep != strain) %>%
  1478. filter(!is.na(L)) %>%
  1479. group_by(OrfRep, Gene, conc_num, conc_num_factor_factor) %>%
  1480. mutate(
  1481. max_l_theoretical = max(max_L, na.rm = TRUE),
  1482. L = ifelse(L == 0 & !is.na(L) & conc_num > 0, max_l_theoretical, L),
  1483. SM = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, 1, SM),
  1484. L = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, max_l_theoretical, L)) %>%
  1485. ungroup()
  1486. message("Calculating deletion strain(s) interaction summary statistics")
  1487. df_deletion_stats <- calculate_summary_stats(
  1488. df = df_deletion,
  1489. variables = c("L", "K", "r", "AUC"),
  1490. group_vars = c("OrfRep", "Gene", "Drug", "conc_num", "conc_num_factor_factor")
  1491. )$df_with_stats
  1492. message("Calculating deletion strain(s) interactions scores")
  1493. deletion_results <- calculate_interaction_scores(df_deletion_stats, df_bg_stats, "deletion")
  1494. df_calculations <- deletion_results$calculations
  1495. df_interactions <- deletion_results$interactions
  1496. df_interactions_joined <- deletion_results$full_data
  1497. write.csv(df_calculations, file = file.path(out_dir, "zscore_calculations.csv"), row.names = FALSE)
  1498. write.csv(df_interactions, file = file.path(out_dir, "zscore_interactions.csv"), row.names = FALSE)
  1499. # message("Generating deletion interaction plots")
  1500. # deletion_plot_configs <- generate_interaction_plot_configs(df_reference_summary_stats, df_interactions_joined, "deletion")
  1501. # generate_and_save_plots(out_dir, "interaction_plots", deletion_plot_configs, page_width = 16, page_height = 16)
  1502. # message("Writing enhancer/suppressor csv files")
  1503. # interaction_threshold <- 2 # TODO add to study config?
  1504. # enhancer_condition_L <- df_interactions$Avg_Zscore_L >= interaction_threshold
  1505. # suppressor_condition_L <- df_interactions$Avg_Zscore_L <= -interaction_threshold
  1506. # enhancer_condition_K <- df_interactions$Avg_Zscore_K >= interaction_threshold
  1507. # suppressor_condition_K <- df_interactions$Avg_Zscore_K <= -interaction_threshold
  1508. # enhancers_L <- df_interactions[enhancer_condition_L, ]
  1509. # suppressors_L <- df_interactions[suppressor_condition_L, ]
  1510. # enhancers_K <- df_interactions[enhancer_condition_K, ]
  1511. # suppressors_K <- df_interactions[suppressor_condition_K, ]
  1512. # enhancers_and_suppressors_L <- df_interactions[enhancer_condition_L | suppressor_condition_L, ]
  1513. # enhancers_and_suppressors_K <- df_interactions[enhancer_condition_K | suppressor_condition_K, ]
  1514. # write.csv(enhancers_L, file = file.path(out_dir, "zscore_interactions_deletion_enhancers_L.csv"), row.names = FALSE)
  1515. # write.csv(suppressors_L, file = file.path(out_dir, "zscore_interactions_deletion_suppressors_L.csv"), row.names = FALSE)
  1516. # write.csv(enhancers_K, file = file.path(out_dir, "zscore_interactions_deletion_enhancers_K.csv"), row.names = FALSE)
  1517. # write.csv(suppressors_K, file = file.path(out_dir, "zscore_interactions_deletion_suppressors_K.csv"), row.names = FALSE)
  1518. # write.csv(enhancers_and_suppressors_L,
  1519. # file = file.path(out_dir, "zscore_interactions_deletion_enhancers_and_suppressors_L.csv"), row.names = FALSE)
  1520. # write.csv(enhancers_and_suppressors_K,
  1521. # file = file.path(out_dir, "zscore_interaction_deletion_enhancers_and_suppressors_K.csv"), row.names = FALSE)
  1522. # message("Writing linear model enhancer/suppressor csv files")
  1523. # lm_interaction_threshold <- 2 # TODO add to study config?
  1524. # enhancers_lm_L <- df_interactions[df_interactions$Z_lm_L >= lm_interaction_threshold, ]
  1525. # suppressors_lm_L <- df_interactions[df_interactions$Z_lm_L <= -lm_interaction_threshold, ]
  1526. # enhancers_lm_K <- df_interactions[df_interactions$Z_lm_K >= lm_interaction_threshold, ]
  1527. # suppressors_lm_K <- df_interactions[df_interactions$Z_lm_K <= -lm_interaction_threshold, ]
  1528. # write.csv(enhancers_lm_L, file = file.path(out_dir, "zscore_interactions_deletion_enhancers_lm_L.csv"), row.names = FALSE)
  1529. # write.csv(suppressors_lm_L, file = file.path(out_dir, "zscore_interactions_deletion_suppressors_lm_L.csv"), row.names = FALSE)
  1530. # write.csv(enhancers_lm_K, file = file.path(out_dir, "zscore_interactions_deletion_enhancers_lm_K.csv"), row.names = FALSE)
  1531. # write.csv(suppressors_lm_K, file = file.path(out_dir, "zscore_interactions_deletion_suppressors_lm_K.csv"), row.names = FALSE)
  1532. # message("Generating rank plots")
  1533. # rank_plot_configs <- generate_rank_plot_configs(
  1534. # df_interactions,
  1535. # is_lm = FALSE,
  1536. # )
  1537. # generate_and_save_plots(out_dir, "rank_plots", rank_plot_configs,
  1538. # page_width = 18, page_height = 12)
  1539. # message("Generating ranked linear model plots")
  1540. # rank_lm_plot_configs <- generate_rank_plot_configs(
  1541. # df_interactions,
  1542. # is_lm = TRUE,
  1543. # )
  1544. # generate_and_save_plots(out_dir, "rank_plots_lm", rank_lm_plot_configs,
  1545. # page_width = 18, page_height = 12)
  1546. # message("Generating overlapped ranked plots")
  1547. # rank_plot_filtered_configs <- generate_rank_plot_configs(
  1548. # df_interactions,
  1549. # is_lm = FALSE,
  1550. # filter_na = TRUE,
  1551. # overlap_color = TRUE
  1552. # )
  1553. # generate_and_save_plots(out_dir, "rank_plots_na_rm", rank_plot_filtered_configs,
  1554. # page_width = 18, page_height = 12)
  1555. # message("Generating overlapped ranked linear model plots")
  1556. # rank_plot_lm_filtered_configs <- generate_rank_plot_configs(
  1557. # df_interactions,
  1558. # is_lm = TRUE,
  1559. # filter_na = TRUE,
  1560. # overlap_color = TRUE
  1561. # )
  1562. # generate_and_save_plots(out_dir, "rank_plots_lm_na_rm", rank_plot_lm_filtered_configs,
  1563. # page_width = 18, page_height = 12)
  1564. message("Generating correlation curve parameter pair plots")
  1565. correlation_plot_configs <- generate_correlation_plot_configs(
  1566. df_interactions,
  1567. df_reference_interactions
  1568. )
  1569. generate_and_save_plots(out_dir, "correlation_cpps", correlation_plot_configs,
  1570. page_width = 10, page_height = 7)
  1571. })
  1572. })
  1573. }
  1574. main()