calculate_interaction_zscores.R 55 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525
  1. suppressMessages({
  2. library("ggplot2")
  3. library("plotly")
  4. library("htmlwidgets")
  5. library("htmltools")
  6. library("dplyr")
  7. library("rlang")
  8. library("ggthemes")
  9. library("data.table")
  10. library("gridExtra")
  11. library("future")
  12. library("furrr")
  13. library("purrr")
  14. })
  15. # These parallelization libraries are very noisy
  16. suppressPackageStartupMessages({
  17. library("future")
  18. library("furrr")
  19. library("purrr")
  20. })
  21. options(warn = 2)
  22. # Constants for configuration
  23. plot_width <- 14
  24. plot_height <- 9
  25. base_size <- 14
  26. parse_arguments <- function() {
  27. args <- if (interactive()) {
  28. c(
  29. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/20240116_jhartman2_DoxoHLD",
  30. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/apps/r/SGD_features.tab",
  31. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/easy/20240116_jhartman2_DoxoHLD/results_std.txt",
  32. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/20240822_jhartman2_DoxoHLD/exp1",
  33. "Experiment 1: Doxo versus HLD",
  34. 3,
  35. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/20240822_jhartman2_DoxoHLD/exp2",
  36. "Experiment 2: HLD versus Doxo",
  37. 3
  38. )
  39. } else {
  40. commandArgs(trailingOnly = TRUE)
  41. }
  42. out_dir <- normalizePath(args[1], mustWork = FALSE)
  43. sgd_gene_list <- normalizePath(args[2], mustWork = FALSE)
  44. easy_results_file <- normalizePath(args[3], mustWork = FALSE)
  45. # The remaining arguments should be in groups of 3
  46. exp_args <- args[-(1:3)]
  47. if (length(exp_args) %% 3 != 0) {
  48. stop("Experiment arguments should be in groups of 3: path, name, sd.")
  49. }
  50. # Extract the experiments into a list
  51. experiments <- list()
  52. for (i in seq(1, length(exp_args), by = 3)) {
  53. exp_name <- exp_args[i + 1]
  54. experiments[[exp_name]] <- list(
  55. path = normalizePath(exp_args[i], mustWork = FALSE),
  56. sd = as.numeric(exp_args[i + 2])
  57. )
  58. }
  59. # Extract the trailing number from each path
  60. trailing_numbers <- sapply(experiments, function(x) {
  61. path <- x$path
  62. nums <- gsub("[^0-9]", "", basename(path))
  63. as.integer(nums)
  64. })
  65. # Sort the experiments based on the trailing numbers
  66. sorted_experiments <- experiments[order(trailing_numbers)]
  67. list(
  68. out_dir = out_dir,
  69. sgd_gene_list = sgd_gene_list,
  70. easy_results_file = easy_results_file,
  71. experiments = sorted_experiments
  72. )
  73. }
  74. args <- parse_arguments()
  75. # Should we keep output in exp dirs or combine in the study output dir?
  76. # dir.create(file.path(args$out_dir, "zscores"), showWarnings = FALSE)
  77. # dir.create(file.path(args$out_dir, "zscores", "qc"), showWarnings = FALSE)
  78. theme_publication <- function(base_size = 14, base_family = "sans", legend_position = NULL) {
  79. # Ensure that legend_position has a valid value or default to "none"
  80. legend_position <- if (is.null(legend_position) || length(legend_position) == 0) "none" else legend_position
  81. theme_foundation <- ggthemes::theme_foundation(base_size = base_size, base_family = base_family)
  82. theme_foundation %+replace%
  83. theme(
  84. plot.title = element_text(face = "bold", size = rel(1.6), hjust = 0.5),
  85. text = element_text(),
  86. panel.background = element_blank(),
  87. plot.background = element_blank(),
  88. panel.border = element_blank(),
  89. axis.title = element_text(face = "bold", size = rel(1.4)),
  90. axis.title.y = element_text(angle = 90, vjust = 2),
  91. axis.text = element_text(size = rel(1.2)),
  92. axis.line = element_line(colour = "black"),
  93. panel.grid.major = element_line(colour = "#f0f0f0"),
  94. panel.grid.minor = element_blank(),
  95. legend.key = element_rect(colour = NA),
  96. legend.position = legend_position,
  97. legend.direction =
  98. if (legend_position == "right") {
  99. "vertical"
  100. } else if (legend_position == "bottom") {
  101. "horizontal"
  102. } else {
  103. NULL # No legend direction if position is "none" or other values
  104. },
  105. legend.spacing = unit(0, "cm"),
  106. legend.title = element_text(face = "italic", size = rel(1.3)),
  107. legend.text = element_text(size = rel(1.2)),
  108. plot.margin = unit(c(10, 5, 5, 5), "mm")
  109. )
  110. }
  111. scale_fill_publication <- function(...) {
  112. discrete_scale("fill", "Publication", manual_pal(values = c(
  113. "#386cb0", "#fdb462", "#7fc97f", "#ef3b2c", "#662506",
  114. "#a6cee3", "#fb9a99", "#984ea3", "#ffff33"
  115. )), ...)
  116. }
  117. scale_colour_publication <- function(...) {
  118. discrete_scale("colour", "Publication", manual_pal(values = c(
  119. "#386cb0", "#fdb462", "#7fc97f", "#ef3b2c", "#662506",
  120. "#a6cee3", "#fb9a99", "#984ea3", "#ffff33"
  121. )), ...)
  122. }
  123. # Load the initial dataframe from the easy_results_file
  124. load_and_filter_data <- function(easy_results_file, sd = 3) {
  125. df <- read.delim(easy_results_file, skip = 2, as.is = TRUE, row.names = 1, strip.white = TRUE)
  126. df <- df %>%
  127. filter(!(.[[1]] %in% c("", "Scan"))) %>%
  128. filter(!is.na(ORF) & ORF != "" & !Gene %in% c("BLANK", "Blank", "blank") & Drug != "BMH21") %>%
  129. # Rename columns
  130. rename(L = l, num = Num., AUC = AUC96, scan = Scan, last_bg = LstBackgrd, first_bg = X1stBackgrd) %>%
  131. mutate(
  132. across(c(Col, Row, num, L, K, r, scan, AUC, last_bg, first_bg), as.numeric),
  133. delta_bg = last_bg - first_bg,
  134. delta_bg_tolerance = mean(delta_bg, na.rm = TRUE) + (sd * sd(delta_bg, na.rm = TRUE)),
  135. NG = if_else(L == 0 & !is.na(L), 1, 0),
  136. DB = if_else(delta_bg >= delta_bg_tolerance, 1, 0),
  137. SM = 0,
  138. OrfRep = if_else(ORF == "YDL227C", "YDL227C", OrfRep), # should these be hardcoded?
  139. conc_num = as.numeric(gsub("[^0-9\\.]", "", Conc)),
  140. conc_num_factor = as.numeric(as.factor(conc_num)) - 1, # for legacy purposes
  141. conc_num_factor_factor = as.factor(conc_num)
  142. )
  143. return(df)
  144. }
  145. # Update Gene names using the SGD gene list
  146. update_gene_names <- function(df, sgd_gene_list) {
  147. # Load SGD gene list
  148. genes <- read.delim(file = sgd_gene_list,
  149. quote = "", header = FALSE,
  150. colClasses = c(rep("NULL", 3), rep("character", 2), rep("NULL", 11)))
  151. # Create a named vector for mapping ORF to GeneName
  152. gene_map <- setNames(genes$V5, genes$V4)
  153. # Vectorized match to find the GeneName from gene_map
  154. mapped_genes <- gene_map[df$ORF]
  155. # Replace NAs in mapped_genes with original Gene names (preserves existing Gene names if ORF is not found)
  156. updated_genes <- ifelse(is.na(mapped_genes) | df$OrfRep == "YDL227C", df$Gene, mapped_genes)
  157. # Ensure Gene is not left blank or incorrectly updated to "OCT1"
  158. df <- df %>%
  159. mutate(Gene = ifelse(updated_genes == "" | updated_genes == "OCT1", OrfRep, updated_genes))
  160. return(df)
  161. }
  162. calculate_summary_stats <- function(df, variables, group_vars) {
  163. summary_stats <- df %>%
  164. group_by(across(all_of(group_vars))) %>%
  165. summarise(
  166. N = n(),
  167. across(all_of(variables),
  168. list(
  169. mean = ~ mean(.x, na.rm = TRUE),
  170. median = ~ median(.x, na.rm = TRUE),
  171. max = ~ ifelse(all(is.na(.x)), NA, max(.x, na.rm = TRUE)),
  172. min = ~ ifelse(all(is.na(.x)), NA, min(.x, na.rm = TRUE)),
  173. sd = ~ sd(.x, na.rm = TRUE),
  174. se = ~ sd(.x, na.rm = TRUE) / sqrt(n() - 1)
  175. ),
  176. .names = "{.fn}_{.col}"
  177. ),
  178. .groups = "drop"
  179. )
  180. # Create a cleaned version of df that doesn't overlap with summary_stats
  181. cleaned_df <- df %>%
  182. select(-any_of(setdiff(intersect(names(df), names(summary_stats)), group_vars)))
  183. df_joined <- left_join(cleaned_df, summary_stats, by = group_vars)
  184. return(list(summary_stats = summary_stats, df_with_stats = df_joined))
  185. }
  186. calculate_interaction_scores <- function(df, max_conc, bg_stats, group_vars, overlap_threshold = 2) {
  187. # Calculate total concentration variables
  188. total_conc_num <- length(unique(df$conc_num))
  189. # Initial calculations
  190. calculations <- df %>%
  191. group_by(across(all_of(group_vars))) %>%
  192. mutate(
  193. NG = sum(NG, na.rm = TRUE),
  194. DB = sum(DB, na.rm = TRUE),
  195. SM = sum(SM, na.rm = TRUE),
  196. num_non_removed_concs = total_conc_num - sum(DB, na.rm = TRUE) - 1,
  197. # Calculate raw data
  198. Raw_Shift_L = first(mean_L) - bg_stats$mean_L,
  199. Raw_Shift_K = first(mean_K) - bg_stats$mean_K,
  200. Raw_Shift_r = first(mean_r) - bg_stats$mean_r,
  201. Raw_Shift_AUC = first(mean_AUC) - bg_stats$mean_AUC,
  202. Z_Shift_L = Raw_Shift_L / bg_stats$sd_L,
  203. Z_Shift_K = Raw_Shift_K / bg_stats$sd_K,
  204. Z_Shift_r = Raw_Shift_r / bg_stats$sd_r,
  205. Z_Shift_AUC = Raw_Shift_AUC / bg_stats$sd_AUC,
  206. # Expected values
  207. Exp_L = WT_L + Raw_Shift_L,
  208. Exp_K = WT_K + Raw_Shift_K,
  209. Exp_r = WT_r + Raw_Shift_r,
  210. Exp_AUC = WT_AUC + Raw_Shift_AUC,
  211. # Deltas
  212. Delta_L = mean_L - Exp_L,
  213. Delta_K = mean_K - Exp_K,
  214. Delta_r = mean_r - Exp_r,
  215. Delta_AUC = mean_AUC - Exp_AUC,
  216. Delta_L = if_else(NG == 1, mean_L - WT_L, Delta_L),
  217. Delta_K = if_else(NG == 1, mean_K - WT_K, Delta_K),
  218. Delta_r = if_else(NG == 1, mean_r - WT_r, Delta_r),
  219. Delta_AUC = if_else(NG == 1, mean_AUC - WT_AUC, Delta_AUC),
  220. Delta_L = if_else(SM == 1, mean_L - WT_L, Delta_L),
  221. # Calculate Z-scores
  222. Zscore_L = Delta_L / WT_sd_L,
  223. Zscore_K = Delta_K / WT_sd_K,
  224. Zscore_r = Delta_r / WT_sd_r,
  225. Zscore_AUC = Delta_AUC / WT_sd_AUC
  226. ) %>%
  227. group_modify(~ {
  228. # Perform linear models
  229. lm_L <- lm(Delta_L ~ conc_num_factor, data = .x)
  230. lm_K <- lm(Delta_K ~ conc_num_factor, data = .x)
  231. lm_r <- lm(Delta_r ~ conc_num_factor, data = .x)
  232. lm_AUC <- lm(Delta_AUC ~ conc_num_factor, data = .x)
  233. .x %>%
  234. mutate(
  235. lm_intercept_L = coef(lm_L)[1],
  236. lm_slope_L = coef(lm_L)[2],
  237. R_Squared_L = summary(lm_L)$r.squared,
  238. lm_Score_L = max_conc * lm_slope_L + lm_intercept_L,
  239. lm_intercept_K = coef(lm_K)[1],
  240. lm_slope_K = coef(lm_K)[2],
  241. R_Squared_K = summary(lm_K)$r.squared,
  242. lm_Score_K = max_conc * lm_slope_K + lm_intercept_K,
  243. lm_intercept_r = coef(lm_r)[1],
  244. lm_slope_r = coef(lm_r)[2],
  245. R_Squared_r = summary(lm_r)$r.squared,
  246. lm_Score_r = max_conc * lm_slope_r + lm_intercept_r,
  247. lm_intercept_AUC = coef(lm_AUC)[1],
  248. lm_slope_AUC = coef(lm_AUC)[2],
  249. R_Squared_AUC = summary(lm_AUC)$r.squared,
  250. lm_Score_AUC = max_conc * lm_slope_AUC + lm_intercept_AUC
  251. )
  252. }) %>%
  253. ungroup()
  254. # Summary statistics for lm scores
  255. lm_means_sds <- calculations %>%
  256. group_by(across(all_of(group_vars))) %>%
  257. summarise(
  258. mean_mean_L = mean(mean_L, na.rm = TRUE),
  259. mean_lm_L = mean(lm_Score_L, na.rm = TRUE),
  260. sd_lm_L = sd(lm_Score_L, na.rm = TRUE),
  261. mean_mean_K = mean(mean_K, na.rm = TRUE),
  262. mean_lm_K = mean(lm_Score_K, na.rm = TRUE),
  263. sd_lm_K = sd(lm_Score_K, na.rm = TRUE),
  264. mean_mean_r = mean(mean_r, na.rm = TRUE),
  265. mean_lm_r = mean(lm_Score_r, na.rm = TRUE),
  266. sd_lm_r = sd(lm_Score_r, na.rm = TRUE),
  267. mean_mean_AUC = mean(mean_AUC, na.rm = TRUE),
  268. mean_lm_AUC = mean(lm_Score_AUC, na.rm = TRUE),
  269. sd_lm_AUC = sd(lm_Score_AUC, na.rm = TRUE)
  270. )
  271. # Continue with gene Z-scores and interactions
  272. calculations <- calculations %>%
  273. left_join(lm_means_sds, by = group_vars) %>%
  274. group_by(across(all_of(group_vars))) %>%
  275. mutate(
  276. Z_lm_L = (lm_Score_L - mean_lm_L) / sd_lm_L,
  277. Z_lm_K = (lm_Score_K - mean_lm_K) / sd_lm_K,
  278. Z_lm_r = (lm_Score_r - mean_lm_r) / sd_lm_r,
  279. Z_lm_AUC = (lm_Score_AUC - mean_lm_AUC) / sd_lm_AUC
  280. )
  281. # Build summary stats (interactions)
  282. interactions <- calculations %>%
  283. group_by(across(all_of(group_vars))) %>%
  284. summarise(
  285. Avg_Zscore_L = sum(Zscore_L, na.rm = TRUE) / first(num_non_removed_concs),
  286. Avg_Zscore_K = sum(Zscore_K, na.rm = TRUE) / first(num_non_removed_concs),
  287. Avg_Zscore_r = sum(Zscore_r, na.rm = TRUE) / first(num_non_removed_concs),
  288. Avg_Zscore_AUC = sum(Zscore_AUC, na.rm = TRUE) / first(num_non_removed_concs),
  289. # Interaction Z-scores
  290. Z_lm_L = first(Z_lm_L),
  291. Z_lm_K = first(Z_lm_K),
  292. Z_lm_r = first(Z_lm_r),
  293. Z_lm_AUC = first(Z_lm_AUC),
  294. # Raw Shifts
  295. Raw_Shift_L = first(Raw_Shift_L),
  296. Raw_Shift_K = first(Raw_Shift_K),
  297. Raw_Shift_r = first(Raw_Shift_r),
  298. Raw_Shift_AUC = first(Raw_Shift_AUC),
  299. # Z Shifts
  300. Z_Shift_L = first(Z_Shift_L),
  301. Z_Shift_K = first(Z_Shift_K),
  302. Z_Shift_r = first(Z_Shift_r),
  303. Z_Shift_AUC = first(Z_Shift_AUC),
  304. # NG, DB, SM values
  305. NG = first(NG),
  306. DB = first(DB),
  307. SM = first(SM)
  308. )
  309. # Creating the final calculations and interactions dataframes with only required columns for csv output
  310. calculations_df <- calculations %>%
  311. select(
  312. all_of(group_vars),
  313. conc_num, conc_num_factor, conc_num_factor_factor,
  314. N, NG, DB, SM,
  315. mean_L, median_L, sd_L, se_L,
  316. mean_K, median_K, sd_K, se_K,
  317. mean_r, median_r, sd_r, se_r,
  318. mean_AUC, median_AUC, sd_AUC, se_AUC,
  319. Raw_Shift_L, Raw_Shift_K, Raw_Shift_r, Raw_Shift_AUC,
  320. Z_Shift_L, Z_Shift_K, Z_Shift_r, Z_Shift_AUC,
  321. WT_L, WT_K, WT_r, WT_AUC,
  322. WT_sd_L, WT_sd_K, WT_sd_r, WT_sd_AUC,
  323. Exp_L, Exp_K, Exp_r, Exp_AUC,
  324. Delta_L, Delta_K, Delta_r, Delta_AUC,
  325. Zscore_L, Zscore_K, Zscore_r, Zscore_AUC
  326. )
  327. interactions_df <- interactions %>%
  328. select(
  329. all_of(group_vars),
  330. NG, DB, SM,
  331. Avg_Zscore_L, Avg_Zscore_K, Avg_Zscore_r, Avg_Zscore_AUC,
  332. Z_lm_L, Z_lm_K, Z_lm_r, Z_lm_AUC,
  333. Raw_Shift_L, Raw_Shift_K, Raw_Shift_r, Raw_Shift_AUC,
  334. Z_Shift_L, Z_Shift_K, Z_Shift_r, Z_Shift_AUC
  335. )
  336. calculations_no_overlap <- calculations %>%
  337. # DB, NG, SM are same as in interactions, the rest may be different and need to be checked
  338. select(-any_of(c(
  339. "DB", "NG", "SM",
  340. "Raw_Shift_L", "Raw_Shift_K", "Raw_Shift_r", "Raw_Shift_AUC",
  341. "Z_Shift_L", "Z_Shift_K", "Z_Shift_r", "Z_Shift_AUC",
  342. "Z_lm_L", "Z_lm_K", "Z_lm_r", "Z_lm_AUC"
  343. )))
  344. # Use left_join to avoid dimension mismatch issues
  345. full_data <- calculations_no_overlap %>%
  346. left_join(interactions, by = group_vars)
  347. # Return full_data and the two required dataframes (calculations and interactions)
  348. return(list(
  349. calculations = calculations_df,
  350. interactions = interactions_df,
  351. full_data = full_data
  352. ))
  353. }
  354. generate_and_save_plots <- function(out_dir, filename, plot_configs) {
  355. message("Generating ", filename, ".pdf and ", filename, ".html")
  356. # Check if we're dealing with multiple plot groups
  357. plot_groups <- if ("plots" %in% names(plot_configs)) {
  358. list(plot_configs) # Single group
  359. } else {
  360. plot_configs # Multiple groups
  361. }
  362. # Open the PDF device once for all plots
  363. pdf(file.path(out_dir, paste0(filename, ".pdf")), width = 16, height = 9)
  364. # Loop through each plot group
  365. for (group in plot_groups) {
  366. static_plots <- list()
  367. plotly_plots <- list()
  368. grid_layout <- group$grid_layout
  369. plots <- group$plots
  370. for (i in seq_along(plots)) {
  371. config <- plots[[i]]
  372. df <- config$df
  373. # Set up aes mapping based on plot type
  374. aes_mapping <- if (config$plot_type == "bar" || config$plot_type == "density") {
  375. if (!is.null(config$color_var)) {
  376. aes(x = .data[[config$x_var]], fill = .data[[config$color_var]], color = .data[[config$color_var]])
  377. } else {
  378. aes(x = .data[[config$x_var]])
  379. }
  380. } else {
  381. if (!is.null(config$y_var) && !is.null(config$color_var)) {
  382. aes(x = .data[[config$x_var]], y = .data[[config$y_var]], color = .data[[config$color_var]])
  383. } else if (!is.null(config$y_var)) {
  384. aes(x = .data[[config$x_var]], y = .data[[config$y_var]])
  385. } else {
  386. aes(x = .data[[config$x_var]])
  387. }
  388. }
  389. plot <- ggplot(df, aes_mapping) + theme_publication(legend_position = config$legend_position)
  390. # Add appropriate plot layer based on plot type
  391. plot <- switch(config$plot_type,
  392. "scatter" = generate_scatter_plot(plot, config),
  393. "box" = generate_boxplot(plot, config),
  394. "density" = plot + geom_density(),
  395. "bar" = plot + geom_bar(),
  396. plot # default (unused)
  397. )
  398. # Add labels and title
  399. if (!is.null(config$title)) plot <- plot + ggtitle(config$title)
  400. if (!is.null(config$x_label)) plot <- plot + xlab(config$x_label)
  401. if (!is.null(config$y_label)) plot <- plot + ylab(config$y_label)
  402. if (!is.null(config$coord_cartesian)) plot <- plot + coord_cartesian(ylim = config$coord_cartesian)
  403. # Add error bars if specified
  404. if (!is.null(config$error_bar) && config$error_bar) {
  405. error_bar_color <- if (!is.null(config$error_bar_params$color)) {
  406. config$error_bar_params$color
  407. } else {
  408. "red"
  409. }
  410. y_mean_col <- paste0("mean_mean_", config$y_var)
  411. # Dynamically set y_sd_col based on the provided prefix in error_bar_params
  412. y_sd_prefix <- if (!is.null(config$error_bar_params$y_sd_prefix)) {
  413. config$error_bar_params$y_sd_prefix
  414. } else {
  415. "sd_"
  416. }
  417. y_sd_col <- paste0(y_sd_prefix, config$y_var)
  418. if (!is.null(config$error_bar_params$center_point)) {
  419. plot <- plot + geom_point(aes(
  420. x = .data[[config$x_var]],
  421. y = .data[[y_mean_col]]),
  422. color = error_bar_color,
  423. shape = 16)
  424. }
  425. # Use error_bar_params if provided, otherwise calculate from mean and sd
  426. if (!is.null(config$error_bar_params$ymin) && !is.null(config$error_bar_params$ymax)) {
  427. plot <- plot + geom_errorbar(aes(
  428. ymin = config$error_bar_params$ymin,
  429. ymax = config$error_bar_params$ymax),
  430. color = error_bar_color)
  431. } else {
  432. plot <- plot + geom_errorbar(aes(
  433. ymin = .data[[y_mean_col]] - .data[[y_sd_col]],
  434. ymax = .data[[y_mean_col]] + .data[[y_sd_col]]),
  435. color = error_bar_color)
  436. }
  437. }
  438. # Convert ggplot to plotly for interactive version
  439. plotly_plot <- suppressWarnings(plotly::ggplotly(plot))
  440. # Store both static and interactive versions
  441. static_plots[[i]] <- plot
  442. plotly_plots[[i]] <- plotly_plot
  443. }
  444. # Print the plots in the current group to the PDF
  445. if (is.null(grid_layout)) {
  446. # Print each plot individually on separate pages if no grid layout is specified
  447. for (plot in static_plots) {
  448. print(plot)
  449. }
  450. } else {
  451. # Arrange plots in grid layout on a single page
  452. grid.arrange(
  453. grobs = static_plots,
  454. ncol = grid_layout$ncol,
  455. nrow = grid_layout$nrow
  456. )
  457. }
  458. }
  459. # Close the PDF device after all plots are done
  460. dev.off()
  461. # Save HTML file with interactive plots if needed
  462. out_html_file <- file.path(out_dir, paste0(filename, ".html"))
  463. message("Saving combined HTML file: ", out_html_file)
  464. htmltools::save_html(
  465. htmltools::tagList(plotly_plots),
  466. file = out_html_file
  467. )
  468. }
  469. generate_scatter_plot <- function(plot, config) {
  470. # Define the points
  471. shape <- if (!is.null(config$shape)) config$shape else 3
  472. size <- if (!is.null(config$size)) config$size else 1.5
  473. position <-
  474. if (!is.null(config$position) && config$position == "jitter") {
  475. position_jitter(width = 0.3, height = 0.1)
  476. } else {
  477. "identity"
  478. }
  479. plot <- plot + geom_point(
  480. shape = shape,
  481. size = size,
  482. position = position
  483. )
  484. if (!is.null(config$cyan_points) && config$cyan_points) {
  485. plot <- plot + geom_point(
  486. aes(x = .data[[config$x_var]], y = .data[[config$y_var]]),
  487. color = "cyan",
  488. shape = 3,
  489. size = 0.5
  490. )
  491. }
  492. # Add Smooth Line if specified
  493. if (!is.null(config$smooth) && config$smooth) {
  494. smooth_color <- if (!is.null(config$smooth_color)) config$smooth_color else "blue"
  495. if (!is.null(config$lm_line)) {
  496. plot <- plot +
  497. geom_abline(
  498. intercept = config$lm_line$intercept,
  499. slope = config$lm_line$slope,
  500. color = smooth_color
  501. )
  502. } else {
  503. plot <- plot +
  504. geom_smooth(
  505. method = "lm",
  506. se = FALSE,
  507. color = smooth_color
  508. )
  509. }
  510. }
  511. # Add SD Bands if specified
  512. if (!is.null(config$sd_band)) {
  513. plot <- plot +
  514. annotate(
  515. "rect",
  516. xmin = -Inf, xmax = Inf,
  517. ymin = config$sd_band, ymax = Inf,
  518. fill = ifelse(!is.null(config$fill_positive), config$fill_positive, "#542788"),
  519. alpha = ifelse(!is.null(config$alpha_positive), config$alpha_positive, 0.3)
  520. ) +
  521. annotate(
  522. "rect",
  523. xmin = -Inf, xmax = Inf,
  524. ymin = -config$sd_band, ymax = -Inf,
  525. fill = ifelse(!is.null(config$fill_negative), config$fill_negative, "orange"),
  526. alpha = ifelse(!is.null(config$alpha_negative), config$alpha_negative, 0.3)
  527. ) +
  528. geom_hline(
  529. yintercept = c(-config$sd_band, config$sd_band),
  530. color = ifelse(!is.null(config$hl_color), config$hl_color, "gray")
  531. )
  532. }
  533. # Add Rectangles if specified
  534. if (!is.null(config$rectangles)) {
  535. for (rect in config$rectangles) {
  536. plot <- plot + annotate(
  537. "rect",
  538. xmin = rect$xmin,
  539. xmax = rect$xmax,
  540. ymin = rect$ymin,
  541. ymax = rect$ymax,
  542. fill = ifelse(is.null(rect$fill), NA, rect$fill),
  543. color = ifelse(is.null(rect$color), "black", rect$color),
  544. alpha = ifelse(is.null(rect$alpha), 0.1, rect$alpha)
  545. )
  546. }
  547. }
  548. # Customize X-axis if specified
  549. if (!is.null(config$x_breaks) && !is.null(config$x_labels) && !is.null(config$x_label)) {
  550. # Check if x_var is factor or character (for discrete x-axis)
  551. if (is.factor(plot$data[[config$x_var]]) || is.character(plot$data[[config$x_var]])) {
  552. plot <- plot +
  553. scale_x_discrete(
  554. name = config$x_label,
  555. breaks = config$x_breaks,
  556. labels = config$x_labels
  557. )
  558. } else {
  559. plot <- plot +
  560. scale_x_continuous(
  561. name = config$x_label,
  562. breaks = config$x_breaks,
  563. labels = config$x_labels
  564. )
  565. }
  566. }
  567. # Set Y-axis limits if specified
  568. if (!is.null(config$ylim_vals)) {
  569. plot <- plot + scale_y_continuous(limits = config$ylim_vals)
  570. }
  571. # Add annotations if specified
  572. if (!is.null(config$annotations)) {
  573. for (annotation in config$annotations) {
  574. plot <- plot +
  575. annotate(
  576. "text",
  577. x = annotation$x,
  578. y = annotation$y,
  579. label = annotation$label,
  580. hjust = ifelse(is.null(annotation$hjust), 0.5, annotation$hjust),
  581. vjust = ifelse(is.null(annotation$vjust), 0.5, annotation$vjust),
  582. size = ifelse(is.null(annotation$size), 3, annotation$size),
  583. color = ifelse(is.null(annotation$color), "black", annotation$color)
  584. )
  585. }
  586. }
  587. return(plot)
  588. }
  589. generate_boxplot <- function(plot, config) {
  590. # Convert x_var to a factor within aes mapping
  591. plot <- plot + geom_boxplot(aes(x = factor(.data[[config$x_var]])))
  592. # Customize X-axis if specified
  593. if (!is.null(config$x_breaks) && !is.null(config$x_labels) && !is.null(config$x_label)) {
  594. # Check if x_var is factor or character (for discrete x-axis)
  595. if (is.factor(plot$data[[config$x_var]]) || is.character(plot$data[[config$x_var]])) {
  596. plot <- plot +
  597. scale_x_discrete(
  598. name = config$x_label,
  599. breaks = config$x_breaks,
  600. labels = config$x_labels
  601. )
  602. } else {
  603. plot <- plot +
  604. scale_x_continuous(
  605. name = config$x_label,
  606. breaks = config$x_breaks,
  607. labels = config$x_labels
  608. )
  609. }
  610. }
  611. return(plot)
  612. }
  613. generate_plate_analysis_plot_configs <- function(variables, df_before = NULL, df_after = NULL,
  614. plot_type = "scatter", stages = c("before", "after")) {
  615. plot_configs <- list()
  616. for (var in variables) {
  617. for (stage in stages) {
  618. df_plot <- if (stage == "before") df_before else df_after
  619. # Check for non-finite values in the y-variable
  620. df_plot_filtered <- df_plot %>% filter(is.finite(!!sym(var)))
  621. # Adjust settings based on plot_type
  622. plot_config <- list(
  623. df = df_plot_filtered,
  624. x_var = "scan",
  625. y_var = var,
  626. plot_type = plot_type,
  627. title = paste("Plate analysis by Drug Conc for", var, stage, "quality control"),
  628. color_var = "conc_num_factor_factor",
  629. position = if (plot_type == "scatter") "jitter" else NULL,
  630. size = 0.2,
  631. error_bar = (plot_type == "scatter")
  632. )
  633. # Add config to plots list
  634. plot_configs <- append(plot_configs, list(plot_config))
  635. }
  636. }
  637. return(list(plots = plot_configs))
  638. }
  639. generate_interaction_plot_configs <- function(df, type) {
  640. # Define the y-limits for the plots
  641. limits_map <- list(
  642. L = c(0, 130),
  643. K = c(-20, 160),
  644. r = c(0, 1),
  645. AUC = c(0, 12500)
  646. )
  647. stats_plot_configs <- list()
  648. stats_boxplot_configs <- list()
  649. delta_plot_configs <- list()
  650. # Overall statistics plots
  651. OrfRep <- first(df$OrfRep) # this should correspond to the reference strain
  652. for (plot_type in c("scatter", "box")) {
  653. for (var in names(limits_map)) {
  654. y_limits <- limits_map[[var]]
  655. y_span <- y_limits[2] - y_limits[1]
  656. # Common plot configuration
  657. plot_config <- list(
  658. df = df,
  659. x_var = "conc_num_factor_factor",
  660. y_var = var,
  661. shape = 16,
  662. x_label = unique(df$Drug)[1],
  663. coord_cartesian = y_limits,
  664. x_breaks = unique(df$conc_num_factor_factor),
  665. x_labels = as.character(unique(df$conc_num))
  666. )
  667. # Add specific configurations for scatter and box plots
  668. if (plot_type == "scatter") {
  669. plot_config$plot_type <- "scatter"
  670. plot_config$title <- sprintf("%s Scatter RF for %s with SD", OrfRep, var)
  671. plot_config$error_bar <- TRUE
  672. plot_config$error_bar_params <- list(
  673. y_sd_prefix = "WT_sd_",
  674. color = "red",
  675. center_point = TRUE
  676. )
  677. plot_config$position <- "jitter"
  678. annotations <- list(
  679. list(x = -0.25, y = y_limits[1] + 0.1 * y_span, label = "NG ="), # Slightly above y-min
  680. list(x = -0.25, y = y_limits[1] + 0.05 * y_span, label = "DB ="),
  681. list(x = -0.25, y = y_limits[1], label = "SM =")
  682. )
  683. # Loop over unique x values and add NG, DB, SM values at calculated y positions
  684. for (x_val in unique(df$conc_num_factor_factor)) {
  685. current_df <- df %>% filter(.data[[plot_config$x_var]] == x_val)
  686. annotations <- append(annotations, list(
  687. list(x = x_val, y = y_limits[1] + 0.1 * y_span, label = first(current_df$NG, default = 0)),
  688. list(x = x_val, y = y_limits[1] + 0.05 * y_span, label = first(current_df$DB, default = 0)),
  689. list(x = x_val, y = y_limits[1], label = first(current_df$SM, default = 0))
  690. ))
  691. }
  692. plot_config$annotations <- annotations
  693. # Append to scatter plot configurations
  694. stats_plot_configs <- append(stats_plot_configs, list(plot_config))
  695. } else if (plot_type == "box") {
  696. plot_config$plot_type <- "box"
  697. plot_config$title <- sprintf("%s Boxplot RF for %s with SD", OrfRep, var)
  698. plot_config$position <- "dodge" # Boxplots don't need jitter, use dodge instead
  699. # Append to boxplot configurations
  700. stats_boxplot_configs <- append(stats_boxplot_configs, list(plot_config))
  701. }
  702. }
  703. }
  704. # Delta interaction plots
  705. if (type == "reference") {
  706. group_vars <- c("OrfRep", "Gene", "num")
  707. } else if (type == "deletion") {
  708. group_vars <- c("OrfRep", "Gene")
  709. }
  710. delta_limits_map <- list(
  711. L = c(-60, 60),
  712. K = c(-60, 60),
  713. r = c(-0.6, 0.6),
  714. AUC = c(-6000, 6000)
  715. )
  716. grouped_data <- df %>%
  717. group_by(across(all_of(group_vars))) %>%
  718. group_split()
  719. for (group_data in grouped_data) {
  720. OrfRep <- first(group_data$OrfRep)
  721. Gene <- first(group_data$Gene)
  722. num <- if ("num" %in% names(group_data)) first(group_data$num) else ""
  723. if (type == "reference") {
  724. OrfRepTitle <- paste(OrfRep, Gene, num, sep = "_")
  725. } else if (type == "deletion") {
  726. OrfRepTitle <- OrfRep
  727. }
  728. for (var in names(delta_limits_map)) {
  729. y_limits <- delta_limits_map[[var]]
  730. y_span <- y_limits[2] - y_limits[1]
  731. # Error bars
  732. WT_sd_value <- first(group_data[[paste0("WT_sd_", var)]], default = 0)
  733. # Z_Shift and lm values
  734. Z_Shift_value <- round(first(group_data[[paste0("Z_Shift_", var)]], default = 0), 2)
  735. Z_lm_value <- round(first(group_data[[paste0("Z_lm_", var)]], default = 0), 2)
  736. R_squared_value <- round(first(group_data[[paste0("R_Squared_", var)]], default = 0), 2)
  737. # NG, DB, SM values
  738. NG_value <- first(group_data$NG, default = 0)
  739. DB_value <- first(group_data$DB, default = 0)
  740. SM_value <- first(group_data$SM, default = 0)
  741. # Use the pre-calculated lm intercept and slope from the dataframe
  742. lm_intercept_col <- paste0("lm_intercept_", var)
  743. lm_slope_col <- paste0("lm_slope_", var)
  744. lm_intercept_value <- first(group_data[[lm_intercept_col]], default = 0)
  745. lm_slope_value <- first(group_data[[lm_slope_col]], default = 0)
  746. plot_config <- list(
  747. df = group_data,
  748. plot_type = "scatter",
  749. x_var = "conc_num_factor_factor",
  750. y_var = var,
  751. x_label = unique(group_data$Drug)[1],
  752. title = paste(OrfRepTitle, Gene, num, sep = " "),
  753. coord_cartesian = y_limits,
  754. annotations = list(
  755. list(x = 1, y = y_limits[2] - 0.2 * y_span, label = paste("ZShift =", Z_Shift_value)),
  756. list(x = 1, y = y_limits[2] - 0.3 * y_span, label = paste("lm ZScore =", Z_lm_value)),
  757. list(x = 1, y = y_limits[2] - 0.4 * y_span, label = paste("R-squared =", R_squared_value)),
  758. list(x = 1, y = y_limits[1] + 0.2 * y_span, label = paste("NG =", NG_value)),
  759. list(x = 1, y = y_limits[1] + 0.1 * y_span, label = paste("DB =", DB_value)),
  760. list(x = 1, y = y_limits[1], label = paste("SM =", SM_value))
  761. ),
  762. error_bar = TRUE,
  763. error_bar_params = list(
  764. ymin = 0 - (2 * WT_sd_value),
  765. ymax = 0 + (2 * WT_sd_value),
  766. color = "black"
  767. ),
  768. smooth = TRUE,
  769. x_breaks = unique(group_data$conc_num_factor_factor),
  770. x_labels = as.character(unique(group_data$conc_num)),
  771. ylim_vals = y_limits,
  772. lm_line = list(
  773. intercept = lm_intercept_value,
  774. slope = lm_slope_value
  775. )
  776. )
  777. delta_plot_configs <- append(delta_plot_configs, list(plot_config))
  778. }
  779. }
  780. # Calculate dynamic grid layout
  781. grid_ncol <- 4
  782. num_plots <- length(delta_plot_configs)
  783. grid_nrow <- ceiling(num_plots / grid_ncol)
  784. return(list(
  785. list(grid_layout = list(ncol = 2, nrow = 2), plots = stats_plot_configs),
  786. list(grid_layout = list(ncol = 2, nrow = 2), plots = stats_boxplot_configs),
  787. list(grid_layout = list(ncol = 4, nrow = grid_nrow), plots = delta_plot_configs)
  788. ))
  789. }
  790. generate_rank_plot_configs <- function(df, variables, is_lm = FALSE, adjust = FALSE, overlap_color = FALSE) {
  791. sd_bands <- c(1, 2, 3)
  792. plot_configs <- list()
  793. variables <- c("L", "K")
  794. # Adjust (if necessary) and rank columns
  795. for (variable in variables) {
  796. if (adjust) {
  797. df[[paste0("Avg_Zscore_", variable)]] <- ifelse(is.na(df[[paste0("Avg_Zscore_", variable)]]), 0.001, df[[paste0("Avg_Zscore_", variable)]])
  798. df[[paste0("Z_lm_", variable)]] <- ifelse(is.na(df[[paste0("Z_lm_", variable)]]), 0.001, df[[paste0("Z_lm_", variable)]])
  799. }
  800. df[[paste0("Rank_", variable)]] <- rank(df[[paste0("Avg_Zscore_", variable)]], na.last = "keep")
  801. df[[paste0("Rank_lm_", variable)]] <- rank(df[[paste0("Z_lm_", variable)]], na.last = "keep")
  802. }
  803. # Helper function to create a plot configuration
  804. create_plot_config <- function(variable, rank_var, zscore_var, y_label, sd_band, with_annotations = TRUE) {
  805. num_enhancers <- sum(df[[zscore_var]] >= sd_band, na.rm = TRUE)
  806. num_suppressors <- sum(df[[zscore_var]] <= -sd_band, na.rm = TRUE)
  807. # Default plot config
  808. plot_config <- list(
  809. df = df,
  810. x_var = rank_var,
  811. y_var = zscore_var,
  812. plot_type = "scatter",
  813. title = paste(y_label, "vs. Rank for", variable, "above", sd_band),
  814. sd_band = sd_band,
  815. fill_positive = "#542788",
  816. fill_negative = "orange",
  817. alpha_positive = 0.3,
  818. alpha_negative = 0.3,
  819. annotations = NULL,
  820. shape = 3,
  821. size = 0.1,
  822. y_label = y_label,
  823. x_label = "Rank",
  824. legend_position = "none"
  825. )
  826. if (with_annotations) {
  827. # Add specific annotations for plots with annotations
  828. plot_config$annotations <- list(
  829. list(
  830. x = median(df[[rank_var]], na.rm = TRUE),
  831. y = max(df[[zscore_var]], na.rm = TRUE) * 0.9,
  832. label = paste("Deletion Enhancers =", num_enhancers)
  833. ),
  834. list(
  835. x = median(df[[rank_var]], na.rm = TRUE),
  836. y = min(df[[zscore_var]], na.rm = TRUE) * 0.9,
  837. label = paste("Deletion Suppressors =", num_suppressors)
  838. )
  839. )
  840. }
  841. return(plot_config)
  842. }
  843. # Generate plots for each variable
  844. for (variable in variables) {
  845. rank_var <- if (is_lm) paste0("Rank_lm_", variable) else paste0("Rank_", variable)
  846. zscore_var <- if (is_lm) paste0("Z_lm_", variable) else paste0("Avg_Zscore_", variable)
  847. y_label <- if (is_lm) paste("Int Z score", variable) else paste("Avg Z score", variable)
  848. # Loop through SD bands
  849. for (sd_band in sd_bands) {
  850. # Create plot with annotations
  851. plot_configs[[length(plot_configs) + 1]] <- create_plot_config(variable, rank_var, zscore_var, y_label, sd_band, with_annotations = TRUE)
  852. # Create plot without annotations
  853. plot_configs[[length(plot_configs) + 1]] <- create_plot_config(variable, rank_var, zscore_var, y_label, sd_band, with_annotations = FALSE)
  854. }
  855. }
  856. # Calculate dynamic grid layout based on the number of plots
  857. grid_ncol <- 3
  858. num_plots <- length(plot_configs)
  859. grid_nrow <- ceiling(num_plots / grid_ncol) # Automatically calculate the number of rows
  860. return(list(grid_layout = list(ncol = grid_ncol, nrow = grid_nrow), plots = plot_configs))
  861. }
  862. generate_correlation_plot_configs <- function(df, correlation_stats) {
  863. # Define relationships for different-variable correlations
  864. relationships <- list(
  865. list(x = "L", y = "K"),
  866. list(x = "L", y = "r"),
  867. list(x = "L", y = "AUC"),
  868. list(x = "K", y = "r"),
  869. list(x = "K", y = "AUC"),
  870. list(x = "r", y = "AUC")
  871. )
  872. plot_configs <- list()
  873. # Iterate over the option to highlight cyan points (TRUE/FALSE)
  874. highlight_cyan_options <- c(FALSE, TRUE)
  875. for (highlight_cyan in highlight_cyan_options) {
  876. for (rel in relationships) {
  877. # Extract relevant variable names for Z_lm values
  878. x_var <- paste0("Z_lm_", rel$x)
  879. y_var <- paste0("Z_lm_", rel$y)
  880. # Access the correlation statistics from the correlation_stats list
  881. relationship_name <- paste0(rel$x, "_vs_", rel$y) # Example: L_vs_K
  882. stats <- correlation_stats[[relationship_name]]
  883. intercept <- stats$intercept
  884. slope <- stats$slope
  885. r_squared <- stats$r_squared
  886. # Generate the label for the plot
  887. plot_label <- paste("Interaction", rel$x, "vs.", rel$y)
  888. # Construct plot config
  889. plot_config <- list(
  890. df = df,
  891. x_var = x_var,
  892. y_var = y_var,
  893. plot_type = "scatter",
  894. title = plot_label,
  895. annotations = list(
  896. list(
  897. x = mean(df[[x_var]], na.rm = TRUE),
  898. y = mean(df[[y_var]], na.rm = TRUE),
  899. label = paste("R-squared =", round(r_squared, 3))
  900. )
  901. ),
  902. smooth = TRUE,
  903. smooth_color = "tomato3",
  904. lm_line = list(
  905. intercept = intercept,
  906. slope = slope
  907. ),
  908. shape = 3,
  909. size = 0.5,
  910. color_var = "Overlap",
  911. cyan_points = highlight_cyan # Include cyan points or not based on the loop
  912. )
  913. plot_configs <- append(plot_configs, list(plot_config))
  914. }
  915. }
  916. return(list(plots = plot_configs))
  917. }
  918. main <- function() {
  919. lapply(names(args$experiments), function(exp_name) {
  920. exp <- args$experiments[[exp_name]]
  921. exp_path <- exp$path
  922. exp_sd <- exp$sd
  923. out_dir <- file.path(exp_path, "zscores")
  924. out_dir_qc <- file.path(exp_path, "zscores", "qc")
  925. dir.create(out_dir, recursive = TRUE, showWarnings = FALSE)
  926. dir.create(out_dir_qc, recursive = TRUE, showWarnings = FALSE)
  927. summary_vars <- c("L", "K", "r", "AUC", "delta_bg") # fields to filter and calculate summary stats across
  928. interaction_vars <- c("L", "K", "r", "AUC") # fields to calculate interaction z-scores
  929. message("Loading and filtering data for experiment: ", exp_name)
  930. df <- load_and_filter_data(args$easy_results_file, sd = exp_sd) %>%
  931. update_gene_names(args$sgd_gene_list) %>%
  932. as_tibble()
  933. # Filter rows above delta background tolerance
  934. df_above_tolerance <- df %>% filter(DB == 1)
  935. df_na <- df %>% mutate(across(all_of(summary_vars), ~ ifelse(DB == 1, NA, .))) # formerly X
  936. df_no_zeros <- df_na %>% filter(L > 0) # formerly X_noZero
  937. # Save some constants
  938. max_conc <- max(df$conc_num_factor)
  939. message("Calculating summary statistics before quality control")
  940. df_stats <- calculate_summary_stats(
  941. df = df,
  942. variables = summary_vars,
  943. group_vars = c("conc_num", "conc_num_factor", "conc_num_factor_factor"))$df_with_stats
  944. message("Calculating summary statistics after quality control")
  945. ss <- calculate_summary_stats(
  946. df = df_na,
  947. variables = summary_vars,
  948. group_vars = c("conc_num", "conc_num_factor", "conc_num_factor_factor"))
  949. df_na_ss <- ss$summary_stats
  950. df_na_stats <- ss$df_with_stats
  951. write.csv(df_na_ss, file = file.path(out_dir, "summary_stats_all_strains.csv"), row.names = FALSE)
  952. # For plotting (ggplot warns on NAs)
  953. df_na_stats_filtered <- df_na_stats %>% filter(if_all(all_of(summary_vars), is.finite))
  954. df_na_stats <- df_na_stats %>%
  955. mutate(
  956. WT_L = mean_L,
  957. WT_K = mean_K,
  958. WT_r = mean_r,
  959. WT_AUC = mean_AUC,
  960. WT_sd_L = sd_L,
  961. WT_sd_K = sd_K,
  962. WT_sd_r = sd_r,
  963. WT_sd_AUC = sd_AUC
  964. )
  965. # Pull the background means and standard deviations from zero concentration for interactions
  966. bg_stats <- df_na_stats %>%
  967. filter(conc_num == 0) %>%
  968. summarise(
  969. mean_L = first(mean_L),
  970. mean_K = first(mean_K),
  971. mean_r = first(mean_r),
  972. mean_AUC = first(mean_AUC),
  973. sd_L = first(sd_L),
  974. sd_K = first(sd_K),
  975. sd_r = first(sd_r),
  976. sd_AUC = first(sd_AUC)
  977. )
  978. message("Calculating summary statistics after quality control excluding zero values")
  979. df_no_zeros_stats <- calculate_summary_stats(
  980. df = df_no_zeros,
  981. variables = summary_vars,
  982. group_vars = c("conc_num", "conc_num_factor", "conc_num_factor_factor")
  983. )$df_with_stats
  984. message("Filtering by 2SD of K")
  985. df_na_within_2sd_k <- df_na_stats %>%
  986. filter(K >= (mean_K - 2 * sd_K) & K <= (mean_K + 2 * sd_K))
  987. df_na_outside_2sd_k <- df_na_stats %>%
  988. filter(K < (mean_K - 2 * sd_K) | K > (mean_K + 2 * sd_K))
  989. message("Calculating summary statistics for L within 2SD of K")
  990. # TODO We're omitting the original z_max calculation, not sure if needed?
  991. ss <- calculate_summary_stats(df_na_within_2sd_k, "L", group_vars = c("conc_num", "conc_num_factor", "conc_num_factor_factor"))$summary_stats
  992. write.csv(ss,
  993. file = file.path(out_dir_qc, "max_observed_L_vals_for_spots_within_2sd_K.csv"),
  994. row.names = FALSE)
  995. message("Calculating summary statistics for L outside 2SD of K")
  996. ss <- calculate_summary_stats(df_na_outside_2sd_k, "L", group_vars = c("conc_num", "conc_num_factor", "conc_num_factor_factor"))
  997. df_na_l_outside_2sd_k_stats <- ss$df_with_stats
  998. write.csv(ss$summary_stats,
  999. file = file.path(out_dir, "max_observed_L_vals_for_spots_outside_2sd_K.csv"),
  1000. row.names = FALSE)
  1001. # Each list of plots corresponds to a file
  1002. l_vs_k_plot_configs <- list(
  1003. plots = list(
  1004. list(
  1005. df = df,
  1006. x_var = "L",
  1007. y_var = "K",
  1008. plot_type = "scatter",
  1009. tooltip_vars = c("OrfRep", "Gene", "delta_bg"),
  1010. title = "Raw L vs K before quality control",
  1011. color_var = "conc_num_factor_factor",
  1012. error_bar = FALSE,
  1013. legend_position = "right"
  1014. )
  1015. )
  1016. )
  1017. frequency_delta_bg_plot_configs <- list(
  1018. plots = list(
  1019. list(
  1020. df = df_stats,
  1021. x_var = "delta_bg",
  1022. y_var = NULL,
  1023. plot_type = "density",
  1024. title = "Density plot for Delta Background by [Drug] (All Data)",
  1025. color_var = "conc_num_factor_factor",
  1026. x_label = "Delta Background",
  1027. y_label = "Density",
  1028. error_bar = FALSE,
  1029. legend_position = "right"
  1030. ),
  1031. list(
  1032. df = df_stats,
  1033. x_var = "delta_bg",
  1034. y_var = NULL,
  1035. plot_type = "bar",
  1036. title = "Bar plot for Delta Background by [Drug] (All Data)",
  1037. color_var = "conc_num_factor_factor",
  1038. x_label = "Delta Background",
  1039. y_label = "Count",
  1040. error_bar = FALSE,
  1041. legend_position = "right"
  1042. )
  1043. )
  1044. )
  1045. above_threshold_plot_configs <- list(
  1046. plots = list(
  1047. list(
  1048. df = df_above_tolerance,
  1049. x_var = "L",
  1050. y_var = "K",
  1051. plot_type = "scatter",
  1052. tooltip_vars = c("OrfRep", "Gene", "delta_bg"),
  1053. title = paste("Raw L vs K for strains above Delta Background threshold of",
  1054. round(df_above_tolerance$delta_bg_tolerance[[1]], 3), "or above"),
  1055. color_var = "conc_num_factor_factor",
  1056. position = "jitter",
  1057. annotations = list(
  1058. list(
  1059. x = median(df_above_tolerance$L, na.rm = TRUE) / 2,
  1060. y = median(df_above_tolerance$K, na.rm = TRUE) / 2,
  1061. label = paste("# strains above Delta Background tolerance =", nrow(df_above_tolerance))
  1062. )
  1063. ),
  1064. error_bar = FALSE,
  1065. legend_position = "right"
  1066. )
  1067. )
  1068. )
  1069. plate_analysis_plot_configs <- generate_plate_analysis_plot_configs(
  1070. variables = summary_vars,
  1071. df_before = df_stats,
  1072. df_after = df_na_stats_filtered
  1073. )
  1074. plate_analysis_boxplot_configs <- generate_plate_analysis_plot_configs(
  1075. variables = summary_vars,
  1076. df_before = df_stats,
  1077. df_after = df_na_stats_filtered,
  1078. plot_type = "box"
  1079. )
  1080. plate_analysis_no_zeros_plot_configs <- generate_plate_analysis_plot_configs(
  1081. variables = summary_vars,
  1082. stages = c("after"), # Only after QC
  1083. df_after = df_no_zeros_stats
  1084. )
  1085. plate_analysis_no_zeros_boxplot_configs <- generate_plate_analysis_plot_configs(
  1086. variables = summary_vars,
  1087. stages = c("after"), # Only after QC
  1088. df_after = df_no_zeros_stats,
  1089. plot_type = "box"
  1090. )
  1091. l_outside_2sd_k_plot_configs <- list(
  1092. plots = list(
  1093. list(
  1094. df = df_na_l_outside_2sd_k_stats,
  1095. x_var = "L",
  1096. y_var = "K",
  1097. plot_type = "scatter",
  1098. title = "Raw L vs K for strains falling outside 2SD of the K mean at each Conc",
  1099. color_var = "conc_num_factor_factor",
  1100. position = "jitter",
  1101. tooltip_vars = c("OrfRep", "Gene", "delta_bg"),
  1102. annotations = list(
  1103. list(
  1104. x = median(df_na_l_outside_2sd_k_stats$L, na.rm = TRUE) / 2,
  1105. y = median(df_na_l_outside_2sd_k_stats$K, na.rm = TRUE) / 2,
  1106. label = paste("Total strains:", nrow(df_na_l_outside_2sd_k_stats))
  1107. )
  1108. ),
  1109. error_bar = FALSE,
  1110. legend_position = "right"
  1111. )
  1112. )
  1113. )
  1114. delta_bg_outside_2sd_k_plot_configs <- list(
  1115. plots = list(
  1116. list(
  1117. df = df_na_l_outside_2sd_k_stats,
  1118. x_var = "delta_bg",
  1119. y_var = "K",
  1120. plot_type = "scatter",
  1121. title = "Delta Background vs K for strains falling outside 2SD of the K mean at each Conc",
  1122. color_var = "conc_num_factor_factor",
  1123. position = "jitter",
  1124. tooltip_vars = c("OrfRep", "Gene", "delta_bg"),
  1125. annotations = list(
  1126. list(
  1127. x = median(df_na_l_outside_2sd_k_stats$delta_bg, na.rm = TRUE) / 2,
  1128. y = median(df_na_l_outside_2sd_k_stats$K, na.rm = TRUE) / 2,
  1129. label = paste("Total strains:", nrow(df_na_l_outside_2sd_k_stats))
  1130. )
  1131. ),
  1132. error_bar = FALSE,
  1133. legend_position = "right"
  1134. )
  1135. )
  1136. )
  1137. message("Generating quality control plots in parallel")
  1138. # future::plan(future::multicore, workers = parallel::detectCores())
  1139. future::plan(future::multisession, workers = 3) # generate 3 plots in parallel
  1140. plot_configs <- list(
  1141. list(out_dir = out_dir_qc, filename = "L_vs_K_before_quality_control",
  1142. plot_configs = l_vs_k_plot_configs),
  1143. list(out_dir = out_dir_qc, filename = "frequency_delta_background",
  1144. plot_configs = frequency_delta_bg_plot_configs),
  1145. list(out_dir = out_dir_qc, filename = "L_vs_K_above_threshold",
  1146. plot_configs = above_threshold_plot_configs),
  1147. list(out_dir = out_dir_qc, filename = "plate_analysis",
  1148. plot_configs = plate_analysis_plot_configs),
  1149. list(out_dir = out_dir_qc, filename = "plate_analysis_boxplots",
  1150. plot_configs = plate_analysis_boxplot_configs),
  1151. list(out_dir = out_dir_qc, filename = "plate_analysis_no_zeros",
  1152. plot_configs = plate_analysis_no_zeros_plot_configs),
  1153. list(out_dir = out_dir_qc, filename = "plate_analysis_no_zeros_boxplots",
  1154. plot_configs = plate_analysis_no_zeros_boxplot_configs),
  1155. list(out_dir = out_dir_qc, filename = "L_vs_K_for_strains_2SD_outside_mean_K",
  1156. plot_configs = l_outside_2sd_k_plot_configs),
  1157. list(out_dir = out_dir_qc, filename = "delta_background_vs_K_for_strains_2sd_outside_mean_K",
  1158. plot_configs = delta_bg_outside_2sd_k_plot_configs)
  1159. )
  1160. # Generating quality control plots in parallel
  1161. # furrr::future_map(plot_configs, function(config) {
  1162. # generate_and_save_plots(config$out_dir, config$filename, config$plot_configs)
  1163. # }, .options = furrr_options(seed = TRUE))
  1164. # Process background strains
  1165. bg_strains <- c("YDL227C")
  1166. lapply(bg_strains, function(strain) {
  1167. message("Processing background strain: ", strain)
  1168. # Handle missing data by setting zero values to NA
  1169. # and then removing any rows with NA in L col
  1170. df_bg <- df_na %>%
  1171. filter(OrfRep == strain) %>%
  1172. mutate(
  1173. L = if_else(L == 0, NA, L),
  1174. K = if_else(K == 0, NA, K),
  1175. r = if_else(r == 0, NA, r),
  1176. AUC = if_else(AUC == 0, NA, AUC)
  1177. ) %>%
  1178. filter(!is.na(L))
  1179. # Recalculate summary statistics for the background strain
  1180. message("Calculating summary statistics for background strain")
  1181. ss_bg <- calculate_summary_stats(df_bg, summary_vars, group_vars = c("OrfRep", "conc_num", "conc_num_factor", "conc_num_factor_factor"))
  1182. summary_stats_bg <- ss_bg$summary_stats
  1183. write.csv(summary_stats_bg,
  1184. file = file.path(out_dir, paste0("summary_stats_background_strain_", strain, ".csv")),
  1185. row.names = FALSE)
  1186. # Set the missing values to the highest theoretical value at each drug conc for L
  1187. # Leave other values as 0 for the max/min
  1188. df_reference <- df_na_stats %>% # formerly X2_RF
  1189. filter(OrfRep == strain) %>%
  1190. filter(!is.na(L)) %>%
  1191. group_by(conc_num, conc_num_factor, conc_num_factor_factor) %>%
  1192. mutate(
  1193. max_l_theoretical = max(max_L, na.rm = TRUE),
  1194. L = ifelse(L == 0 & !is.na(L) & conc_num > 0, max_l_theoretical, L),
  1195. SM = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, 1, 0),
  1196. L = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, max_l_theoretical, L)) %>%
  1197. ungroup()
  1198. # Ditto for deletion strains
  1199. df_deletion <- df_na_stats %>% # formerly X2
  1200. filter(OrfRep != strain) %>%
  1201. filter(!is.na(L)) %>%
  1202. mutate(SM = 0) %>%
  1203. group_by(conc_num, conc_num_factor, conc_num_factor_factor) %>%
  1204. mutate(
  1205. max_l_theoretical = max(max_L, na.rm = TRUE),
  1206. L = ifelse(L == 0 & !is.na(L) & conc_num > 0, max_l_theoretical, L),
  1207. SM = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, 1, SM),
  1208. L = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, max_l_theoretical, L)) %>%
  1209. ungroup()
  1210. message("Calculating reference strain interaction scores")
  1211. df_reference_stats <- calculate_summary_stats(
  1212. df = df_reference,
  1213. variables = interaction_vars,
  1214. group_vars = c("OrfRep", "Gene", "num", "conc_num", "conc_num_factor")
  1215. )$df_with_stats
  1216. reference_results <- calculate_interaction_scores(df_reference_stats, max_conc, bg_stats, group_vars = c("OrfRep", "Gene", "num"))
  1217. zscore_calculations_reference <- reference_results$calculations
  1218. zscore_interactions_reference <- reference_results$interactions
  1219. zscore_interactions_reference_joined <- reference_results$full_data
  1220. message("Calculating deletion strain(s) interactions scores")
  1221. df_deletion_stats <- calculate_summary_stats(
  1222. df = df_deletion,
  1223. variables = interaction_vars,
  1224. group_vars = c("OrfRep", "Gene", "conc_num", "conc_num_factor")
  1225. )$df_with_stats
  1226. deletion_results <- calculate_interaction_scores(df_deletion_stats, max_conc, bg_stats, group_vars = c("OrfRep", "Gene"))
  1227. zscore_calculations <- deletion_results$calculations
  1228. zscore_interactions <- deletion_results$interactions
  1229. zscore_interactions_joined <- deletion_results$full_data
  1230. # Writing Z-Scores to file
  1231. write.csv(zscore_calculations_reference, file = file.path(out_dir, "zscore_calculations_reference.csv"), row.names = FALSE)
  1232. write.csv(zscore_calculations, file = file.path(out_dir, "zscore_calculations.csv"), row.names = FALSE)
  1233. write.csv(zscore_interactions_reference, file = file.path(out_dir, "zscore_interactions_reference.csv"), row.names = FALSE)
  1234. write.csv(zscore_interactions, file = file.path(out_dir, "zscore_interactions.csv"), row.names = FALSE)
  1235. # Create interaction plots
  1236. message("Generating reference interaction plots")
  1237. reference_plot_configs <- generate_interaction_plot_configs(zscore_interactions_reference_joined, "reference")
  1238. generate_and_save_plots(out_dir, "interaction_plots_reference", reference_plot_configs)
  1239. message("Generating deletion interaction plots")
  1240. deletion_plot_configs <- generate_interaction_plot_configs(zscore_interactions_joined, "deletion")
  1241. generate_and_save_plots(out_dir, "interaction_plots", deletion_plot_configs)
  1242. # Define conditions for enhancers and suppressors
  1243. # TODO Add to study config?
  1244. threshold <- 2
  1245. enhancer_condition_L <- zscore_interactions$Avg_Zscore_L >= threshold
  1246. suppressor_condition_L <- zscore_interactions$Avg_Zscore_L <= -threshold
  1247. enhancer_condition_K <- zscore_interactions$Avg_Zscore_K >= threshold
  1248. suppressor_condition_K <- zscore_interactions$Avg_Zscore_K <= -threshold
  1249. # Subset data
  1250. enhancers_L <- zscore_interactions[enhancer_condition_L, ]
  1251. suppressors_L <- zscore_interactions[suppressor_condition_L, ]
  1252. enhancers_K <- zscore_interactions[enhancer_condition_K, ]
  1253. suppressors_K <- zscore_interactions[suppressor_condition_K, ]
  1254. # Save enhancers and suppressors
  1255. message("Writing enhancer/suppressor csv files")
  1256. write.csv(enhancers_L, file = file.path(out_dir, "zscore_interactions_deletion_enhancers_L.csv"), row.names = FALSE)
  1257. write.csv(suppressors_L, file = file.path(out_dir, "zscore_interactions_deletion_suppressors_L.csv"), row.names = FALSE)
  1258. write.csv(enhancers_K, file = file.path(out_dir, "zscore_interactions_deletion_enhancers_K.csv"), row.names = FALSE)
  1259. write.csv(suppressors_K, file = file.path(out_dir, "zscore_interactions_deletion_suppressors_K.csv"), row.names = FALSE)
  1260. # Combine conditions for enhancers and suppressors
  1261. enhancers_and_suppressors_L <- zscore_interactions[enhancer_condition_L | suppressor_condition_L, ]
  1262. enhancers_and_suppressors_K <- zscore_interactions[enhancer_condition_K | suppressor_condition_K, ]
  1263. # Save combined enhancers and suppressors
  1264. write.csv(enhancers_and_suppressors_L,
  1265. file = file.path(out_dir, "zscore_interactions_deletion_enhancers_and_suppressors_L.csv"), row.names = FALSE)
  1266. write.csv(enhancers_and_suppressors_K,
  1267. file = file.path(out_dir, "zscore_interaction_deletion_enhancers_and_suppressors_K.csv"), row.names = FALSE)
  1268. # Handle linear model based enhancers and suppressors
  1269. lm_threshold <- 2 # TODO add to study config?
  1270. enhancers_lm_L <- zscore_interactions[zscore_interactions$Z_lm_L >= lm_threshold, ]
  1271. suppressors_lm_L <- zscore_interactions[zscore_interactions$Z_lm_L <= -lm_threshold, ]
  1272. enhancers_lm_K <- zscore_interactions[zscore_interactions$Z_lm_K >= lm_threshold, ]
  1273. suppressors_lm_K <- zscore_interactions[zscore_interactions$Z_lm_K <= -lm_threshold, ]
  1274. # Save linear model based enhancers and suppressors
  1275. message("Writing linear model enhancer/suppressor csv files")
  1276. write.csv(enhancers_lm_L,
  1277. file = file.path(out_dir, "zscore_interactions_deletion_enhancers_lm_L.csv"), row.names = FALSE)
  1278. write.csv(suppressors_lm_L,
  1279. file = file.path(out_dir, "zscore_interactions_deletion_suppressors_lm_L.csv"), row.names = FALSE)
  1280. write.csv(enhancers_lm_K,
  1281. file = file.path(out_dir, "zscore_interactions_deletion_enhancers_lm_K.csv"), row.names = FALSE)
  1282. write.csv(suppressors_lm_K,
  1283. file = file.path(out_dir, "zscore_interactions_deletion_suppressors_lm_K.csv"), row.names = FALSE)
  1284. message("Generating rank plots")
  1285. rank_plot_configs <- generate_rank_plot_configs(
  1286. df = zscore_interactions_joined,
  1287. is_lm = FALSE,
  1288. adjust = TRUE
  1289. )
  1290. generate_and_save_plots(out_dir = out_dir, filename = "rank_plots",
  1291. plot_configs = rank_plot_configs)
  1292. message("Generating ranked linear model plots")
  1293. rank_lm_plot_configs <- generate_rank_plot_configs(
  1294. df = zscore_interactions_joined,
  1295. is_lm = TRUE,
  1296. adjust = TRUE
  1297. )
  1298. generate_and_save_plots(out_dir = out_dir, filename = "rank_plots_lm",
  1299. plot_configs = rank_lm_plot_configs)
  1300. message("Generating filtered ranked plots")
  1301. rank_plot_filtered_configs <- generate_rank_plot_configs(
  1302. df = zscore_interactions_filtered,
  1303. is_lm = FALSE,
  1304. adjust = FALSE,
  1305. overlap_color = TRUE
  1306. )
  1307. generate_and_save_plots(
  1308. out_dir = out_dir,
  1309. filename = "RankPlots_na_rm",
  1310. plot_configs = rank_plot_filtered_configs)
  1311. message("Generating filtered ranked linear model plots")
  1312. rank_plot_lm_filtered_configs <- generate_rank_plot_configs(
  1313. df = zscore_interactions_filtered,
  1314. is_lm = TRUE,
  1315. adjust = FALSE,
  1316. overlap_color = TRUE
  1317. )
  1318. generate_and_save_plots(
  1319. out_dir = out_dir,
  1320. filename = "rank_plots_lm_na_rm",
  1321. plot_configs = rank_plot_lm_filtered_configs)
  1322. message("Generating correlation curve parameter pair plots")
  1323. correlation_plot_configs <- generate_correlation_plot_configs(zscore_interactions_filtered)
  1324. generate_and_save_plots(
  1325. out_dir = out_dir,
  1326. filename = "correlation_cpps",
  1327. plot_configs = correlation_plot_configs,
  1328. )
  1329. })
  1330. })
  1331. }
  1332. main()
  1333. # For future simplification of joined dataframes
  1334. # df_joined <- left_join(cleaned_df, summary_stats, by = group_vars, suffix = c("_original", "_stats"))