calculate_interaction_zscores.R 47 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203
  1. suppressMessages({
  2. library(ggplot2)
  3. library(plotly)
  4. library(htmlwidgets)
  5. library(dplyr)
  6. library(ggthemes)
  7. library(data.table)
  8. library(unix)
  9. })
  10. options(warn = 2)
  11. options(width = 10000)
  12. # Set the memory limit to 30GB (30 * 1024 * 1024 * 1024 bytes)
  13. soft_limit <- 30 * 1024 * 1024 * 1024
  14. hard_limit <- 30 * 1024 * 1024 * 1024
  15. rlimit_as(soft_limit, hard_limit)
  16. # Constants for configuration
  17. plot_width <- 14
  18. plot_height <- 9
  19. base_size <- 14
  20. parse_arguments <- function() {
  21. args <- if (interactive()) {
  22. c(
  23. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/20240116_jhartman2_DoxoHLD",
  24. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/apps/r/SGD_features.tab",
  25. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/easy/20240116_jhartman2_DoxoHLD/results_std.txt",
  26. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/20240822_jhartman2_DoxoHLD/exp1",
  27. "Experiment 1: Doxo versus HLD",
  28. 3,
  29. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/20240822_jhartman2_DoxoHLD/exp2",
  30. "Experiment 2: HLD versus Doxo",
  31. 3
  32. )
  33. } else {
  34. commandArgs(trailingOnly = TRUE)
  35. }
  36. # Extract paths, names, and standard deviations
  37. paths <- args[seq(4, length(args), by = 3)]
  38. names <- args[seq(5, length(args), by = 3)]
  39. sds <- as.numeric(args[seq(6, length(args), by = 3)])
  40. # Normalize paths
  41. normalized_paths <- normalizePath(paths, mustWork = FALSE)
  42. # Create named list of experiments
  43. experiments <- list()
  44. for (i in seq_along(paths)) {
  45. experiments[[names[i]]] <- list(
  46. path = normalized_paths[i],
  47. sd = sds[i]
  48. )
  49. }
  50. list(
  51. out_dir = normalizePath(args[1], mustWork = FALSE),
  52. sgd_gene_list = normalizePath(args[2], mustWork = FALSE),
  53. easy_results_file = normalizePath(args[3], mustWork = FALSE),
  54. experiments = experiments
  55. )
  56. }
  57. args <- parse_arguments()
  58. # Should we keep output in exp dirs or combine in the study output dir?
  59. # dir.create(file.path(args$out_dir, "zscores"), showWarnings = FALSE)
  60. # dir.create(file.path(args$out_dir, "zscores", "qc"), showWarnings = FALSE)
  61. # Define themes and scales
  62. theme_publication <- function(base_size = 14, base_family = "sans", legend_position = "bottom") {
  63. theme_foundation <- ggplot2::theme_grey(base_size = base_size, base_family = base_family)
  64. theme_foundation %+replace%
  65. theme(
  66. plot.title = element_text(face = "bold", size = rel(1.2), hjust = 0.5),
  67. text = element_text(),
  68. panel.background = element_rect(colour = NA),
  69. plot.background = element_rect(colour = NA),
  70. panel.border = element_rect(colour = NA),
  71. axis.title = element_text(face = "bold", size = rel(1)),
  72. axis.title.y = element_text(angle = 90, vjust = 2),
  73. axis.title.x = element_text(vjust = -0.2),
  74. axis.line = element_line(colour = "black"),
  75. panel.grid.major = element_line(colour = "#f0f0f0"),
  76. panel.grid.minor = element_blank(),
  77. legend.key = element_rect(colour = NA),
  78. legend.position = legend_position,
  79. legend.direction = ifelse(legend_position == "right", "vertical", "horizontal"),
  80. plot.margin = unit(c(10, 5, 5, 5), "mm"),
  81. strip.background = element_rect(colour = "#f0f0f0", fill = "#f0f0f0"),
  82. strip.text = element_text(face = "bold")
  83. )
  84. }
  85. scale_fill_publication <- function(...) {
  86. discrete_scale("fill", "Publication", manual_pal(values = c(
  87. "#386cb0", "#fdb462", "#7fc97f", "#ef3b2c", "#662506",
  88. "#a6cee3", "#fb9a99", "#984ea3", "#ffff33"
  89. )), ...)
  90. }
  91. scale_colour_publication <- function(...) {
  92. discrete_scale("colour", "Publication", manual_pal(values = c(
  93. "#386cb0", "#fdb462", "#7fc97f", "#ef3b2c", "#662506",
  94. "#a6cee3", "#fb9a99", "#984ea3", "#ffff33"
  95. )), ...)
  96. }
  97. # Load the initial dataframe from the easy_results_file
  98. load_and_process_data <- function(easy_results_file, sd = 3) {
  99. df <- read.delim(easy_results_file, skip = 2, as.is = TRUE, row.names = 1, strip.white = TRUE)
  100. df <- df %>%
  101. filter(!(.[[1]] %in% c("", "Scan"))) %>%
  102. filter(!is.na(ORF) & ORF != "" & !Gene %in% c("BLANK", "Blank", "blank") & Drug != "BMH21") %>%
  103. # Rename columns
  104. rename(L = l, num = Num., AUC = AUC96, scan = Scan, last_bg = LstBackgrd, first_bg = X1stBackgrd) %>%
  105. mutate(
  106. across(c(Col, Row, num, L, K, r, scan, AUC, last_bg, first_bg), as.numeric),
  107. delta_bg = last_bg - first_bg,
  108. delta_bg_tolerance = mean(delta_bg, na.rm = TRUE) + (sd * sd(delta_bg, na.rm = TRUE)),
  109. NG = if_else(L == 0 & !is.na(L), 1, 0),
  110. DB = if_else(delta_bg >= delta_bg_tolerance, 1, 0),
  111. SM = 0,
  112. OrfRep = if_else(ORF == "YDL227C", "YDL227C", OrfRep), # should these be hardcoded?
  113. conc_num = as.numeric(gsub("[^0-9\\.]", "", Conc)),
  114. conc_num_factor = as.numeric(as.factor(conc_num)) - 1
  115. )
  116. return(df)
  117. }
  118. # Update Gene names using the SGD gene list
  119. update_gene_names <- function(df, sgd_gene_list) {
  120. # Load SGD gene list
  121. genes <- read.delim(file = sgd_gene_list,
  122. quote = "", header = FALSE,
  123. colClasses = c(rep("NULL", 3), rep("character", 2), rep("NULL", 11)))
  124. # Create a named vector for mapping ORF to GeneName
  125. gene_map <- setNames(genes$V5, genes$V4)
  126. # Vectorized match to find the GeneName from gene_map
  127. mapped_genes <- gene_map[df$ORF]
  128. # Replace NAs in mapped_genes with original Gene names (preserves existing Gene names if ORF is not found)
  129. updated_genes <- ifelse(is.na(mapped_genes) | df$OrfRep == "YDL227C", df$Gene, mapped_genes)
  130. # Ensure Gene is not left blank or incorrectly updated to "OCT1"
  131. df <- df %>%
  132. mutate(Gene = ifelse(updated_genes == "" | updated_genes == "OCT1", OrfRep, updated_genes))
  133. return(df)
  134. }
  135. # Calculate summary statistics for all variables
  136. calculate_summary_stats <- function(df, variables, group_vars = c("OrfRep", "conc_num", "conc_num_factor")) {
  137. # Summarize the variables within the grouped data
  138. summary_stats <- df %>%
  139. group_by(across(all_of(group_vars))) %>%
  140. summarise(
  141. N = sum(!is.na(L)),
  142. across(all_of(variables), list(
  143. mean = ~mean(., na.rm = TRUE),
  144. median = ~median(., na.rm = TRUE),
  145. max = ~ ifelse(all(is.na(.)), NA, max(., na.rm = TRUE)),
  146. min = ~ ifelse(all(is.na(.)), NA, min(., na.rm = TRUE)),
  147. sd = ~sd(., na.rm = TRUE),
  148. se = ~ ifelse(all(is.na(.)), NA, sd(., na.rm = TRUE) / sqrt(sum(!is.na(.)) - 1))
  149. ), .names = "{.fn}_{.col}")
  150. )
  151. # print(summary_stats)
  152. # Prevent .x and .y suffix issues by renaming columns
  153. df_cleaned <- df %>%
  154. select(-any_of(setdiff(names(summary_stats), group_vars))) # Avoid duplicate columns in the final join
  155. # Join the stats back to the original dataframe
  156. df_with_stats <- left_join(df_cleaned, summary_stats, by = group_vars)
  157. return(list(summary_stats = summary_stats, df_with_stats = df_with_stats))
  158. }
  159. calculate_interaction_scores <- function(df, max_conc, variables, group_vars = c("OrfRep", "Gene", "num")) {
  160. # Calculate total concentration variables
  161. total_conc_num <- length(unique(df$conc_num))
  162. num_non_removed_concs <- total_conc_num - sum(df$DB, na.rm = TRUE) - 1
  163. # Pull the background means and standard deviations from zero concentration
  164. bg_means <- list(
  165. L = df %>% filter(conc_num_factor == 0) %>% pull(mean_L) %>% first(),
  166. K = df %>% filter(conc_num_factor == 0) %>% pull(mean_K) %>% first(),
  167. r = df %>% filter(conc_num_factor == 0) %>% pull(mean_r) %>% first(),
  168. AUC = df %>% filter(conc_num_factor == 0) %>% pull(mean_AUC) %>% first()
  169. )
  170. bg_sd <- list(
  171. L = df %>% filter(conc_num_factor == 0) %>% pull(sd_L) %>% first(),
  172. K = df %>% filter(conc_num_factor == 0) %>% pull(sd_K) %>% first(),
  173. r = df %>% filter(conc_num_factor == 0) %>% pull(sd_r) %>% first(),
  174. AUC = df %>% filter(conc_num_factor == 0) %>% pull(sd_AUC) %>% first()
  175. )
  176. stats <- df %>%
  177. mutate(
  178. WT_L = mean_L,
  179. WT_K = mean_K,
  180. WT_r = mean_r,
  181. WT_AUC = mean_AUC,
  182. WT_sd_L = sd_L,
  183. WT_sd_K = sd_K,
  184. WT_sd_r = sd_r,
  185. WT_sd_AUC = sd_AUC
  186. ) %>%
  187. group_by(across(all_of(group_vars)), conc_num, conc_num_factor) %>%
  188. mutate(
  189. N = sum(!is.na(L)),
  190. NG = sum(NG, na.rm = TRUE),
  191. DB = sum(DB, na.rm = TRUE),
  192. SM = sum(SM, na.rm = TRUE),
  193. across(all_of(variables), list(
  194. mean = ~mean(., na.rm = TRUE),
  195. median = ~median(., na.rm = TRUE),
  196. max = ~ifelse(all(is.na(.)), NA, max(., na.rm = TRUE)),
  197. min = ~ifelse(all(is.na(.)), NA, min(., na.rm = TRUE)),
  198. sd = ~sd(., na.rm = TRUE),
  199. se = ~ifelse(sum(!is.na(.)) > 1, sd(., na.rm = TRUE) / sqrt(sum(!is.na(.)) - 1), NA)
  200. ), .names = "{.fn}_{.col}")
  201. ) %>%
  202. ungroup()
  203. stats <- stats %>%
  204. group_by(across(all_of(group_vars))) %>%
  205. mutate(
  206. Raw_Shift_L = mean_L[[1]] - bg_means$L,
  207. Raw_Shift_K = mean_K[[1]] - bg_means$K,
  208. Raw_Shift_r = mean_r[[1]] - bg_means$r,
  209. Raw_Shift_AUC = mean_AUC[[1]] - bg_means$AUC,
  210. Z_Shift_L = Raw_Shift_L[[1]] / bg_sd$L,
  211. Z_Shift_K = Raw_Shift_K[[1]] / bg_sd$K,
  212. Z_Shift_r = Raw_Shift_r[[1]] / bg_sd$r,
  213. Z_Shift_AUC = Raw_Shift_AUC[[1]] / bg_sd$AUC
  214. )
  215. stats <- stats %>%
  216. mutate(
  217. Exp_L = WT_L + Raw_Shift_L,
  218. Exp_K = WT_K + Raw_Shift_K,
  219. Exp_r = WT_r + Raw_Shift_r,
  220. Exp_AUC = WT_AUC + Raw_Shift_AUC,
  221. Delta_L = mean_L - Exp_L,
  222. Delta_K = mean_K - Exp_K,
  223. Delta_r = mean_r - Exp_r,
  224. Delta_AUC = mean_AUC - Exp_AUC
  225. )
  226. stats <- stats %>%
  227. mutate(
  228. Delta_L = if_else(NG == 1, mean_L - WT_L, Delta_L),
  229. Delta_K = if_else(NG == 1, mean_K - WT_K, Delta_K),
  230. Delta_r = if_else(NG == 1, mean_r - WT_r, Delta_r),
  231. Delta_AUC = if_else(NG == 1, mean_AUC - WT_AUC, Delta_AUC),
  232. Delta_L = if_else(SM == 1, mean_L - WT_L, Delta_L)
  233. )
  234. stats <- stats %>%
  235. mutate(
  236. Zscore_L = Delta_L / WT_sd_L,
  237. Zscore_K = Delta_K / WT_sd_K,
  238. Zscore_r = Delta_r / WT_sd_r,
  239. Zscore_AUC = Delta_AUC / WT_sd_AUC
  240. )
  241. # Create linear models with error handling for missing/insufficient data
  242. # This part is a PITA so best to contain it in its own function
  243. calculate_lm_values <- function(y, x) {
  244. if (length(unique(x)) > 1 && sum(!is.na(y)) > 1) {
  245. # Suppress warnings only for perfect fits or similar issues
  246. model <- suppressWarnings(lm(y ~ x))
  247. coefficients <- coef(model)
  248. r_squared <- tryCatch({
  249. summary(model)$r.squared
  250. }, warning = function(w) {
  251. NA # Set r-squared to NA if there's a warning
  252. })
  253. return(list(intercept = coefficients[1], slope = coefficients[2], r_squared = r_squared))
  254. } else {
  255. return(list(intercept = NA, slope = NA, r_squared = NA))
  256. }
  257. }
  258. lms <- stats %>%
  259. group_by(across(all_of(group_vars))) %>%
  260. reframe(
  261. lm_L = list(calculate_lm_values(Delta_L, conc_num_factor)),
  262. lm_K = list(calculate_lm_values(Delta_K, conc_num_factor)),
  263. lm_r = list(calculate_lm_values(Delta_r, conc_num_factor)),
  264. lm_AUC = list(calculate_lm_values(Delta_AUC, conc_num_factor))
  265. )
  266. lms <- lms %>%
  267. mutate(
  268. lm_L_intercept = sapply(lm_L, `[[`, "intercept"),
  269. lm_L_slope = sapply(lm_L, `[[`, "slope"),
  270. lm_L_r_squared = sapply(lm_L, `[[`, "r_squared"),
  271. lm_K_intercept = sapply(lm_K, `[[`, "intercept"),
  272. lm_K_slope = sapply(lm_K, `[[`, "slope"),
  273. lm_K_r_squared = sapply(lm_K, `[[`, "r_squared"),
  274. lm_r_intercept = sapply(lm_r, `[[`, "intercept"),
  275. lm_r_slope = sapply(lm_r, `[[`, "slope"),
  276. lm_r_r_squared = sapply(lm_r, `[[`, "r_squared"),
  277. lm_AUC_intercept = sapply(lm_AUC, `[[`, "intercept"),
  278. lm_AUC_slope = sapply(lm_AUC, `[[`, "slope"),
  279. lm_AUC_r_squared = sapply(lm_AUC, `[[`, "r_squared")
  280. ) %>%
  281. select(-lm_L, -lm_K, -lm_r, -lm_AUC)
  282. stats <- stats %>%
  283. left_join(lms, by = group_vars) %>%
  284. mutate(
  285. lm_Score_L = lm_L_slope * max_conc + lm_L_intercept,
  286. lm_Score_K = lm_K_slope * max_conc + lm_K_intercept,
  287. lm_Score_r = lm_r_slope * max_conc + lm_r_intercept,
  288. lm_Score_AUC = lm_AUC_slope * max_conc + lm_AUC_intercept,
  289. R_Squared_L = lm_L_r_squared,
  290. R_Squared_K = lm_K_r_squared,
  291. R_Squared_r = lm_r_r_squared,
  292. R_Squared_AUC = lm_AUC_r_squared,
  293. Sum_Zscore_L = sum(Zscore_L, na.rm = TRUE),
  294. Sum_Zscore_K = sum(Zscore_K, na.rm = TRUE),
  295. Sum_Zscore_r = sum(Zscore_r, na.rm = TRUE),
  296. Sum_Zscore_AUC = sum(Zscore_AUC, na.rm = TRUE)
  297. )
  298. stats <- stats %>%
  299. mutate(
  300. Avg_Zscore_L = Sum_Zscore_L / num_non_removed_concs,
  301. Avg_Zscore_K = Sum_Zscore_K / num_non_removed_concs,
  302. Avg_Zscore_r = Sum_Zscore_r / (total_conc_num - 1),
  303. Avg_Zscore_AUC = Sum_Zscore_AUC / (total_conc_num - 1),
  304. Z_lm_L = (lm_Score_L - mean(lm_Score_L, na.rm = TRUE)) / sd(lm_Score_L, na.rm = TRUE),
  305. Z_lm_K = (lm_Score_K - mean(lm_Score_K, na.rm = TRUE)) / sd(lm_Score_K, na.rm = TRUE),
  306. Z_lm_r = (lm_Score_r - mean(lm_Score_r, na.rm = TRUE)) / sd(lm_Score_r, na.rm = TRUE),
  307. Z_lm_AUC = (lm_Score_AUC - mean(lm_Score_AUC, na.rm = TRUE)) / sd(lm_Score_AUC, na.rm = TRUE)
  308. )
  309. # Declare column order for output
  310. calculations <- stats %>%
  311. select("OrfRep", "Gene", "num", "conc_num", "conc_num_factor",
  312. "mean_L", "mean_K", "mean_r", "mean_AUC",
  313. "median_L", "median_K", "median_r", "median_AUC",
  314. "sd_L", "sd_K", "sd_r", "sd_AUC",
  315. "se_L", "se_K", "se_r", "se_AUC",
  316. "Raw_Shift_L", "Raw_Shift_K", "Raw_Shift_r", "Raw_Shift_AUC",
  317. "Z_Shift_L", "Z_Shift_K", "Z_Shift_r", "Z_Shift_AUC",
  318. "WT_L", "WT_K", "WT_r", "WT_AUC",
  319. "WT_sd_L", "WT_sd_K", "WT_sd_r", "WT_sd_AUC",
  320. "Exp_L", "Exp_K", "Exp_r", "Exp_AUC",
  321. "Delta_L", "Delta_K", "Delta_r", "Delta_AUC",
  322. "Zscore_L", "Zscore_K", "Zscore_r", "Zscore_AUC",
  323. "NG", "SM", "DB") %>%
  324. ungroup()
  325. interactions <- stats %>%
  326. select("OrfRep", "Gene", "num", "Raw_Shift_L", "Raw_Shift_K", "Raw_Shift_AUC", "Raw_Shift_r",
  327. "Z_Shift_L", "Z_Shift_K", "Z_Shift_r", "Z_Shift_AUC",
  328. "lm_Score_L", "lm_Score_K", "lm_Score_AUC", "lm_Score_r",
  329. "R_Squared_L", "R_Squared_K", "R_Squared_r", "R_Squared_AUC",
  330. "Sum_Zscore_L", "Sum_Zscore_K", "Sum_Zscore_r", "Sum_Zscore_AUC",
  331. "Avg_Zscore_L", "Avg_Zscore_K", "Avg_Zscore_r", "Avg_Zscore_AUC",
  332. "Z_lm_L", "Z_lm_K", "Z_lm_r", "Z_lm_AUC",
  333. "NG", "SM", "DB") %>%
  334. arrange(desc(lm_Score_L)) %>%
  335. arrange(desc(NG)) %>%
  336. ungroup()
  337. return(list(calculations = calculations, interactions = interactions))
  338. }
  339. generate_and_save_plots <- function(output_dir, file_name, plot_configs, grid_layout = NULL) {
  340. message("Generating html and pdf plots for: ", file_name, ".pdf|html")
  341. plots <- lapply(plot_configs, function(config) {
  342. df <- config$df
  343. # print(df %>% select(any_of(c("OrfRep", "Plate", "scan", "Col", "Row", "num", "OrfRep", "conc_num", "conc_num_factor",
  344. # "delta_bg_tolerance", "delta_bg", "Gene", "L", "K", "r", "AUC", "NG", "DB"))), n = 5)
  345. # Define aes mapping based on the presence of y_var
  346. aes_mapping <- if (is.null(config$y_var)) {
  347. aes(x = !!sym(config$x_var), color = as.factor(!!sym(config$color_var)))
  348. } else {
  349. aes(x = !!sym(config$x_var), y = !!sym(config$y_var), color = as.factor(!!sym(config$color_var)))
  350. }
  351. plot <- ggplot(df, aes_mapping)
  352. # Use appropriate helper function based on plot type
  353. plot <- switch(config$plot_type,
  354. "scatter" = generate_scatter_plot(plot, config),
  355. "rank" = generate_rank_plot(plot, config),
  356. "correlation" = generate_correlation_plot(plot, config),
  357. "box" = generate_box_plot(plot, config),
  358. "density" = plot + geom_density(),
  359. "bar" = plot + geom_bar(),
  360. plot # default case if no type matches
  361. )
  362. return(plot)
  363. })
  364. # PDF saving logic
  365. pdf(file.path(output_dir, paste0(file_name, ".pdf")), width = 14, height = 9)
  366. lapply(plots, print)
  367. dev.off()
  368. # HTML saving logic
  369. plotly_plots <- lapply(plots, function(plot) {
  370. config <- plot$labels$config
  371. if (!is.null(config$legend_position) && config$legend_position == "bottom") {
  372. suppressWarnings(ggplotly(plot, tooltip = "text") %>% layout(legend = list(orientation = "h")))
  373. } else {
  374. ggplotly(plot, tooltip = "text")
  375. }
  376. })
  377. combined_plot <- subplot(plotly_plots, nrows = grid_layout$nrow %||% length(plots), margin = 0.05)
  378. saveWidget(combined_plot, file = file.path(output_dir, paste0(file_name, ".html")), selfcontained = TRUE)
  379. }
  380. generate_scatter_plot <- function(plot, config, interactive = FALSE) {
  381. # Determine the base aesthetics
  382. aes_params <- aes(
  383. x = !!sym(config$x_var),
  384. y = !!sym(config$y_var),
  385. color = as.factor(!!sym(config$color_var)))
  386. # Add the interactive `text` aesthetic if `interactive` is TRUE
  387. if (interactive) {
  388. if (!is.null(config$delta_bg_point) && config$delta_bg_point) {
  389. aes_params$text <- paste("ORF:", OrfRep, "Gene:", Gene, "delta_bg:", delta_bg)
  390. } else if (!is.null(config$gene_point) && config$gene_point) {
  391. aes_params$text <- paste("ORF:", OrfRep, "Gene:", Gene)
  392. }
  393. }
  394. # Add the base geom_point layer
  395. plot <- plot + geom_point(
  396. aes_params, shape = config$shape %||% 3,
  397. size = config$size %||% 0.2,
  398. position = if (!is.null(config$position) && config$position == "jitter") "jitter" else "identity")
  399. # Add smooth line if specified
  400. if (!is.null(config$add_smooth) && config$add_smooth) {
  401. plot <- if (!is.null(config$lm_line)) {
  402. plot + geom_abline(intercept = config$lm_line$intercept, slope = config$lm_line$slope)
  403. } else {
  404. plot + geom_smooth(method = "lm", se = FALSE)
  405. }
  406. }
  407. # Add x-axis customization if specified
  408. if (!is.null(config$x_breaks) && !is.null(config$x_labels) && !is.null(config$x_label)) {
  409. plot <- plot + scale_x_continuous(
  410. name = config$x_label,
  411. breaks = config$x_breaks,
  412. labels = config$x_labels)
  413. }
  414. # Add y-axis limits if specified
  415. if (!is.null(config$ylim_vals)) {
  416. plot <- plot + scale_y_continuous(limits = config$ylim_vals)
  417. }
  418. # Add Cartesian coordinates customization if specified
  419. if (!is.null(config$coord_cartesian)) {
  420. plot <- plot + coord_cartesian(ylim = config$coord_cartesian)
  421. }
  422. return(plot)
  423. }
  424. generate_rank_plot <- function(plot, config) {
  425. plot <- plot + geom_point(size = config$size %||% 0.1, shape = config$shape %||% 3)
  426. if (!is.null(config$sd_band)) {
  427. for (i in seq_len(config$sd_band)) {
  428. plot <- plot +
  429. annotate("rect", xmin = -Inf, xmax = Inf, ymin = i, ymax = Inf, fill = "#542788", alpha = 0.3) +
  430. annotate("rect", xmin = -Inf, xmax = Inf, ymin = -i, ymax = -Inf, fill = "orange", alpha = 0.3) +
  431. geom_hline(yintercept = c(-i, i), color = "gray")
  432. }
  433. }
  434. if (!is.null(config$enhancer_label)) {
  435. plot <- plot + annotate("text", x = config$enhancer_label$x, y = config$enhancer_label$y, label = config$enhancer_label$label)
  436. }
  437. if (!is.null(config$suppressor_label)) {
  438. plot <- plot + annotate("text", x = config$suppressor_label$x, y = config$suppressor_label$y, label = config$suppressor_label$label)
  439. }
  440. return(plot)
  441. }
  442. generate_correlation_plot <- function(plot, config) {
  443. plot <- plot + geom_point(shape = config$shape %||% 3, color = "gray70") +
  444. geom_abline(intercept = config$lm_line$intercept, slope = config$lm_line$slope, color = "tomato3") +
  445. annotate("text", x = config$annotate_position$x, y = config$annotate_position$y, label = config$correlation_text)
  446. if (!is.null(config$rect)) {
  447. plot <- plot + geom_rect(aes(xmin = config$rect$xmin, xmax = config$rect$xmax, ymin = config$rect$ymin, ymax = config$rect$ymax),
  448. color = "grey20", size = 0.25, alpha = 0.1, fill = NA, inherit.aes = FALSE)
  449. }
  450. return(plot)
  451. }
  452. generate_box_plot <- function(plot, config) {
  453. plot <- plot + geom_boxplot()
  454. if (!is.null(config$x_breaks) && !is.null(config$x_labels) && !is.null(config$x_label)) {
  455. plot <- plot + scale_x_discrete(
  456. name = config$x_label,
  457. breaks = config$x_breaks,
  458. labels = config$x_labels
  459. )
  460. }
  461. if (!is.null(config$coord_cartesian)) {
  462. plot <- plot + coord_cartesian(ylim = config$coord_cartesian)
  463. }
  464. return(plot)
  465. }
  466. generate_interaction_plot_configs <- function(df, variables) {
  467. configs <- list()
  468. # Define common y-limits and other attributes for each variable dynamically
  469. limits_map <- list(L = c(-65, 65), K = c(-65, 65), r = c(-0.65, 0.65), AUC = c(-6500, 6500))
  470. # Define annotation positions based on the variable being plotted
  471. annotation_positions <- list(
  472. L = list(ZShift = 45, lm_ZScore = 25, NG = -25, DB = -35, SM = -45),
  473. K = list(ZShift = 45, lm_ZScore = 25, NG = -25, DB = -35, SM = -45),
  474. r = list(ZShift = 0.45, lm_ZScore = 0.25, NG = -0.25, DB = -0.35, SM = -0.45),
  475. AUC = list(ZShift = 4500, lm_ZScore = 2500, NG = -2500, DB = -3500, SM = -4500)
  476. )
  477. # Define which annotations to include for each plot
  478. annotation_labels <- list(
  479. ZShift = function(df, var) paste("ZShift =", round(df[[paste0("Z_Shift_", var)]], 2)),
  480. lm_ZScore = function(df, var) paste("lm ZScore =", round(df[[paste0("Z_lm_", var)]], 2)),
  481. NG = function(df, var) paste("NG =", df$NG),
  482. DB = function(df, var) paste("DB =", df$DB),
  483. SM = function(df, var) paste("SM =", df$SM)
  484. )
  485. for (variable in variables) {
  486. # Dynamically generate the names of the columns
  487. var_info <- list(
  488. ylim = limits_map[[variable]],
  489. lm_model = df[[paste0("lm_", variable)]][[1]], # Access the precomputed linear model
  490. sd_col = paste0("WT_sd_", variable),
  491. delta_var = paste0("Delta_", variable)
  492. )
  493. # Extract the precomputed linear model coefficients
  494. lm_line <- list(
  495. intercept = coef(var_info$lm_model)[1],
  496. slope = coef(var_info$lm_model)[2]
  497. )
  498. # Dynamically create annotations based on variable
  499. annotations <- lapply(names(annotation_positions[[variable]]), function(annotation_name) {
  500. y_pos <- annotation_positions[[variable]][[annotation_name]]
  501. label <- annotation_labels[[annotation_name]](df, variable)
  502. list(x = 1, y = y_pos, label = label)
  503. })
  504. # Add scatter plot configuration for this variable
  505. configs[[length(configs) + 1]] <- list(
  506. df = df,
  507. x_var = "conc_num_factor",
  508. y_var = var_info$delta_var,
  509. plot_type = "scatter",
  510. title = sprintf("%s %s", df$OrfRep[1], df$Gene[1]),
  511. ylim_vals = var_info$ylim,
  512. annotations = annotations,
  513. lm_line = lm_line, # Precomputed linear model
  514. error_bar = list(
  515. ymin = 0 - (2 * df[[var_info$sd_col]][1]),
  516. ymax = 0 + (2 * df[[var_info$sd_col]][1])
  517. ),
  518. x_breaks = unique(df$conc_num_factor),
  519. x_labels = unique(as.character(df$conc_num)),
  520. x_label = unique(df$Drug[1]),
  521. shape = 3,
  522. size = 0.6,
  523. position = "jitter",
  524. coord_cartesian = c(0, max(var_info$ylim)) # You can customize this per plot as needed
  525. )
  526. # Add box plot configuration for this variable
  527. configs[[length(configs) + 1]] <- list(
  528. df = df,
  529. x_var = "conc_num_factor",
  530. y_var = variable,
  531. plot_type = "box",
  532. title = sprintf("%s %s (Boxplot)", df$OrfRep[1], df$Gene[1]),
  533. ylim_vals = var_info$ylim,
  534. annotations = annotations,
  535. error_bar = FALSE, # Boxplots typically don't need error bars
  536. x_breaks = unique(df$conc_num_factor),
  537. x_labels = unique(as.character(df$conc_num)),
  538. x_label = unique(df$Drug[1]),
  539. coord_cartesian = c(0, max(var_info$ylim)) # Customize this as needed
  540. )
  541. }
  542. return(configs)
  543. }
  544. # Adjust missing values and calculate ranks
  545. adjust_missing_and_rank <- function(df, variables) {
  546. # Adjust missing values in Avg_Zscore and Z_lm columns, and apply rank to the specified variables
  547. df <- df %>%
  548. mutate(across(all_of(variables), list(
  549. Avg_Zscore = ~ if_else(is.na(get(paste0("Avg_Zscore_", cur_column()))), 0.001, get(paste0("Avg_Zscore_", cur_column()))),
  550. Z_lm = ~ if_else(is.na(get(paste0("Z_lm_", cur_column()))), 0.001, get(paste0("Z_lm_", cur_column()))),
  551. Rank = ~ rank(get(paste0("Avg_Zscore_", cur_column()))),
  552. Rank_lm = ~ rank(get(paste0("Z_lm_", cur_column())))
  553. ), .names = "{fn}_{col}"))
  554. return(df)
  555. }
  556. generate_rank_plot_configs <- function(df, rank_var, zscore_var, var, is_lm = FALSE) {
  557. configs <- list()
  558. # Adjust titles for _lm plots if is_lm is TRUE
  559. plot_title_prefix <- if (is_lm) "Interaction Z score vs. Rank for" else "Average Z score vs. Rank for"
  560. # Annotated version (with text)
  561. for (sd_band in c(1, 2, 3)) {
  562. configs[[length(configs) + 1]] <- list(
  563. df = df,
  564. x_var = rank_var,
  565. y_var = zscore_var,
  566. plot_type = "rank",
  567. title = paste(plot_title_prefix, var, "above", sd_band, "SD"),
  568. sd_band = sd_band,
  569. enhancer_label = list(
  570. x = nrow(df) / 2, y = 10,
  571. label = paste("Deletion Enhancers =", nrow(df[df[[zscore_var]] >= sd_band, ]))
  572. ),
  573. suppressor_label = list(
  574. x = nrow(df) / 2, y = -10,
  575. label = paste("Deletion Suppressors =", nrow(df[df[[zscore_var]] <= -sd_band, ]))
  576. ),
  577. shape = 3,
  578. size = 0.1
  579. )
  580. }
  581. # Non-annotated version (_notext)
  582. for (sd_band in c(1, 2, 3)) {
  583. configs[[length(configs) + 1]] <- list(
  584. df = df,
  585. x_var = rank_var,
  586. y_var = zscore_var,
  587. plot_type = "rank",
  588. title = paste(plot_title_prefix, var, "above", sd_band, "SD"),
  589. sd_band = sd_band,
  590. enhancer_label = NULL, # No annotations for _notext
  591. suppressor_label = NULL, # No annotations for _notext
  592. shape = 3,
  593. size = 0.1,
  594. position = "jitter"
  595. )
  596. }
  597. return(configs)
  598. }
  599. generate_correlation_plot_configs <- function(df, variables) {
  600. configs <- list()
  601. for (variable in variables) {
  602. z_lm_var <- paste0("Z_lm_", variable)
  603. avg_zscore_var <- paste0("Avg_Zscore_", variable)
  604. lm_r_squared_col <- paste0("lm_R_squared_", variable)
  605. configs[[length(configs) + 1]] <- list(
  606. df = df,
  607. x_var = avg_zscore_var,
  608. y_var = z_lm_var,
  609. plot_type = "correlation",
  610. title = paste("Avg Zscore vs lm", variable),
  611. color_var = "Overlap",
  612. correlation_text = paste("R-squared =", round(df[[lm_r_squared_col]][1], 2)),
  613. shape = 3,
  614. geom_smooth = TRUE,
  615. rect = list(xmin = -2, xmax = 2, ymin = -2, ymax = 2), # To add the geom_rect layer
  616. annotate_position = list(x = 0, y = 0), # Position for the R-squared text
  617. legend_position = "right"
  618. )
  619. }
  620. return(configs)
  621. }
  622. main <- function() {
  623. lapply(names(args$experiments), function(exp_name) {
  624. exp <- args$experiments[[exp_name]]
  625. exp_path <- exp$path
  626. exp_sd <- exp$sd
  627. out_dir <- file.path(exp_path, "zscores")
  628. out_dir_qc <- file.path(exp_path, "zscores", "qc")
  629. dir.create(out_dir, recursive = TRUE, showWarnings = FALSE)
  630. dir.create(out_dir_qc, recursive = TRUE, showWarnings = FALSE)
  631. summary_vars <- c("L", "K", "r", "AUC", "delta_bg") # fields to filter and calculate summary stats across
  632. group_vars <- c("OrfRep", "conc_num", "conc_num_factor") # default fields to group by
  633. orf_group_vars <- c("OrfRep", "Gene", "num")
  634. print_vars <- c("OrfRep", "Plate", "scan", "Col", "Row", "num", "OrfRep", "conc_num", "conc_num_factor",
  635. "delta_bg_tolerance", "delta_bg", "Gene", "L", "K", "r", "AUC", "NG", "DB")
  636. message("Loading and filtering data")
  637. df <- load_and_process_data(args$easy_results_file, sd = exp_sd)
  638. df <- update_gene_names(df, args$sgd_gene_list)
  639. df <- as_tibble(df)
  640. # Filter rows that are above tolerance for quality control plots
  641. df_above_tolerance <- df %>% filter(DB == 1)
  642. # Set L, r, K, AUC (and delta_bg?) to NA for rows that are above tolerance
  643. df_na <- df %>% mutate(across(all_of(summary_vars), ~ ifelse(DB == 1, NA, .)))
  644. # Remove rows with 0 values in L
  645. df_no_zeros <- df_na %>% filter(L > 0)
  646. # Save some constants
  647. max_conc <- max(df$conc_num_factor)
  648. l_half_median <- (median(df_above_tolerance$L, na.rm = TRUE)) / 2
  649. k_half_median <- (median(df_above_tolerance$K, na.rm = TRUE)) / 2
  650. message("Calculating summary statistics before quality control")
  651. ss <- calculate_summary_stats(df, summary_vars, group_vars = group_vars)
  652. # df_ss <- ss$summary_stats
  653. df_stats <- ss$df_with_stats
  654. df_filtered_stats <- df_stats %>%
  655. {
  656. non_finite_rows <- filter(., if_any(c(L), ~ !is.finite(.)))
  657. if (nrow(non_finite_rows) > 0) {
  658. message("Removed the following non-finite rows:")
  659. print(non_finite_rows %>% select(any_of(print_vars)), n = 200)
  660. }
  661. filter(., if_all(c(L), is.finite))
  662. }
  663. message("Calculating summary statistics after quality control")
  664. ss <- calculate_summary_stats(df_na, summary_vars, group_vars = group_vars)
  665. df_na_ss <- ss$summary_stats
  666. df_na_stats <- ss$df_with_stats
  667. write.csv(df_na_ss, file = file.path(out_dir, "summary_stats_all_strains.csv"), row.names = FALSE)
  668. # Filter out non-finite rows for plotting
  669. df_na_filtered_stats <- df_na_stats %>%
  670. {
  671. non_finite_rows <- filter(., if_any(c(L), ~ !is.finite(.)))
  672. if (nrow(non_finite_rows) > 0) {
  673. message("Removed the following non-finite rows:")
  674. print(non_finite_rows %>% select(any_of(print_vars)), n = 200)
  675. }
  676. filter(., if_all(c(L), is.finite))
  677. }
  678. message("Calculating summary statistics after quality control excluding zero values")
  679. ss <- calculate_summary_stats(df_no_zeros, summary_vars, group_vars = group_vars)
  680. df_no_zeros_stats <- ss$df_with_stats
  681. df_no_zeros_filtered_stats <- df_no_zeros_stats %>%
  682. {
  683. non_finite_rows <- filter(., if_any(c(L), ~ !is.finite(.)))
  684. if (nrow(non_finite_rows) > 0) {
  685. message("Removed the following non-finite rows:")
  686. print(non_finite_rows %>% select(any_of(print_vars)), n = 200)
  687. }
  688. filter(., if_all(c(L), is.finite))
  689. }
  690. message("Filtering by 2SD of K")
  691. df_na_within_2sd_k <- df_na_stats %>%
  692. filter(K >= (mean_K - 2 * sd_K) & K <= (mean_K + 2 * sd_K))
  693. df_na_outside_2sd_k <- df_na_stats %>%
  694. filter(K < (mean_K - 2 * sd_K) | K > (mean_K + 2 * sd_K))
  695. message("Calculating summary statistics for L within 2SD of K")
  696. # TODO We're omitting the original z_max calculation, not sure if needed?
  697. ss <- calculate_summary_stats(df_na_within_2sd_k, "L", group_vars = c("conc_num", "conc_num_factor"))
  698. l_within_2sd_k_ss <- ss$summary_stats
  699. df_na_l_within_2sd_k_stats <- ss$df_with_stats
  700. write.csv(l_within_2sd_k_ss,
  701. file = file.path(out_dir_qc, "max_observed_L_vals_for_spots_within_2sd_K.csv"), row.names = FALSE)
  702. message("Calculating summary statistics for L outside 2SD of K")
  703. ss <- calculate_summary_stats(df_na_outside_2sd_k, "L", group_vars = c("conc_num", "conc_num_factor"))
  704. l_outside_2sd_k_ss <- ss$summary_stats
  705. df_na_l_outside_2sd_k_stats <- ss$df_with_stats
  706. write.csv(l_outside_2sd_k_ss,
  707. file = file.path(out_dir, "max_observed_L_vals_for_spots_outside_2sd_K.csv"), row.names = FALSE)
  708. # Each plots list corresponds to a file
  709. message("Generating quality control plot configurations")
  710. l_vs_k_plots <- list(
  711. list(
  712. df = df,
  713. x_var = "L",
  714. y_var = "K",
  715. plot_type = "scatter",
  716. delta_bg_point = TRUE,
  717. title = "Raw L vs K before quality control",
  718. color_var = "conc_num",
  719. error_bar = FALSE,
  720. legend_position = "right"
  721. )
  722. )
  723. frequency_delta_bg_plots <- list(
  724. list(
  725. df = df_filtered_stats,
  726. x_var = "delta_bg",
  727. y_var = NULL,
  728. plot_type = "density",
  729. title = "Plate analysis by Drug Conc for Delta Background before quality control",
  730. color_var = "conc_num",
  731. x_label = "Delta Background",
  732. y_label = "Density",
  733. error_bar = FALSE,
  734. legend_position = "right"),
  735. list(
  736. df = df_filtered_stats,
  737. x_var = "delta_bg",
  738. y_var = NULL,
  739. plot_type = "bar",
  740. title = "Plate analysis by Drug Conc for Delta Background before quality control",
  741. color_var = "conc_num",
  742. x_label = "Delta Background",
  743. y_label = "Count",
  744. error_bar = FALSE,
  745. legend_position = "right")
  746. )
  747. above_threshold_plots <- list(
  748. list(
  749. df = df_above_tolerance,
  750. x_var = "L",
  751. y_var = "K",
  752. plot_type = "scatter",
  753. delta_bg_point = TRUE,
  754. title = paste("Raw L vs K for strains above Delta Background threshold of",
  755. df_above_tolerance$delta_bg_tolerance[[1]], "or above"),
  756. color_var = "conc_num",
  757. position = "jitter",
  758. annotations = list(
  759. x = l_half_median,
  760. y = k_half_median,
  761. label = paste("# strains above Delta Background tolerance =", nrow(df_above_tolerance))
  762. ),
  763. error_bar = FALSE,
  764. legend_position = "right"
  765. )
  766. )
  767. plate_analysis_plots <- list()
  768. for (var in summary_vars) {
  769. for (stage in c("before", "after")) {
  770. if (stage == "before") {
  771. df_plot <- df_filtered_stats
  772. } else {
  773. df_plot <- df_na_filtered_stats
  774. }
  775. config <- list(
  776. df = df_plot,
  777. x_var = "scan",
  778. y_var = var,
  779. plot_type = "scatter",
  780. title = paste("Plate analysis by Drug Conc for", var, stage, "quality control"),
  781. error_bar = TRUE,
  782. color_var = "conc_num",
  783. position = "jitter")
  784. plate_analysis_plots <- append(plate_analysis_plots, list(config))
  785. }
  786. }
  787. plate_analysis_boxplots <- list()
  788. for (var in summary_vars) {
  789. for (stage in c("before", "after")) {
  790. if (stage == "before") {
  791. df_plot <- df_filtered_stats
  792. } else {
  793. df_plot <- df_na_filtered_stats
  794. }
  795. config <- list(
  796. df = df_plot,
  797. x_var = "scan",
  798. y_var = var,
  799. plot_type = "box",
  800. title = paste("Plate analysis by Drug Conc for", var, stage, "quality control"),
  801. error_bar = FALSE, color_var = "conc_num")
  802. plate_analysis_boxplots <- append(plate_analysis_boxplots, list(config))
  803. }
  804. }
  805. plate_analysis_no_zeros_plots <- list()
  806. for (var in summary_vars) {
  807. config <- list(
  808. df = df_no_zeros_filtered_stats,
  809. x_var = "scan",
  810. y_var = var,
  811. plot_type = "scatter",
  812. title = paste("Plate analysis by Drug Conc for", var, "after quality control"),
  813. error_bar = TRUE,
  814. color_var = "conc_num",
  815. position = "jitter")
  816. plate_analysis_no_zeros_plots <- append(plate_analysis_no_zeros_plots, list(config))
  817. }
  818. plate_analysis_no_zeros_boxplots <- list()
  819. for (var in summary_vars) {
  820. config <- list(
  821. df = df_no_zeros_filtered_stats,
  822. x_var = "scan",
  823. y_var = var,
  824. plot_type = "box",
  825. title = paste("Plate analysis by Drug Conc for", var, "after quality control"),
  826. error_bar = FALSE,
  827. color_var = "conc_num"
  828. )
  829. plate_analysis_no_zeros_boxplots <- append(plate_analysis_no_zeros_boxplots, list(config))
  830. }
  831. l_outside_2sd_k_plots <- list(
  832. list(
  833. df = df_na_l_outside_2sd_k_stats,
  834. x_var = "L",
  835. y_var = "K",
  836. plot_type = "scatter",
  837. delta_bg_point = TRUE,
  838. title = "Raw L vs K for strains falling outside 2SD of the K mean at each Conc",
  839. color_var = "conc_num",
  840. position = "jitter",
  841. legend_position = "right"
  842. )
  843. )
  844. delta_bg_outside_2sd_k_plots <- list(
  845. list(
  846. df = df_na_l_outside_2sd_k_stats,
  847. x_var = "delta_bg",
  848. y_var = "K",
  849. plot_type = "scatter",
  850. gene_point = TRUE,
  851. title = "Delta Background vs K for strains falling outside 2SD of the K mean at each Conc",
  852. color_var = "conc_num",
  853. position = "jitter",
  854. legend_position = "right"
  855. )
  856. )
  857. message("Generating quality control plots")
  858. generate_and_save_plots(out_dir_qc, "L_vs_K_before_quality_control", l_vs_k_plots)
  859. generate_and_save_plots(out_dir_qc, "frequency_delta_background", frequency_delta_bg_plots)
  860. generate_and_save_plots(out_dir_qc, "L_vs_K_above_threshold", above_threshold_plots)
  861. generate_and_save_plots(out_dir_qc, "plate_analysis", plate_analysis_plots)
  862. generate_and_save_plots(out_dir_qc, "plate_analysis_boxplots", plate_analysis_boxplots)
  863. generate_and_save_plots(out_dir_qc, "plate_analysis_no_zeros", plate_analysis_no_zeros_plots)
  864. generate_and_save_plots(out_dir_qc, "plate_analysis_no_zeros_boxplots", plate_analysis_no_zeros_boxplots)
  865. generate_and_save_plots(out_dir_qc, "L_vs_K_for_strains_2SD_outside_mean_K", l_outside_2sd_k_plots)
  866. generate_and_save_plots(out_dir_qc, "delta_background_vs_K_for_strains_2sd_outside_mean_K", delta_bg_outside_2sd_k_plots)
  867. # Clean up
  868. rm(df, df_above_tolerance, df_no_zeros, df_no_zeros_stats, df_no_zeros_filtered_stats, ss)
  869. gc()
  870. # TODO: Originally this filtered L NA's
  871. # Let's try to avoid for now since stats have already been calculated
  872. # Process background strains
  873. bg_strains <- c("YDL227C")
  874. lapply(bg_strains, function(strain) {
  875. message("Processing background strain: ", strain)
  876. # Handle missing data by setting zero values to NA
  877. # and then removing any rows with NA in L col
  878. df_bg <- df_na %>%
  879. filter(OrfRep == strain) %>%
  880. mutate(
  881. L = if_else(L == 0, NA, L),
  882. K = if_else(K == 0, NA, K),
  883. r = if_else(r == 0, NA, r),
  884. AUC = if_else(AUC == 0, NA, AUC)
  885. ) %>%
  886. filter(!is.na(L))
  887. # Recalculate summary statistics for the background strain
  888. message("Calculating summary statistics for background strain")
  889. ss_bg <- calculate_summary_stats(df_bg, summary_vars, group_vars = group_vars)
  890. summary_stats_bg <- ss_bg$summary_stats
  891. # df_bg_stats <- ss_bg$df_with_stats
  892. write.csv(summary_stats_bg,
  893. file = file.path(out_dir, paste0("SummaryStats_BackgroundStrains_", strain, ".csv")),
  894. row.names = FALSE)
  895. # Filter reference and deletion strains
  896. # Formerly X2_RF (reference strains)
  897. df_reference <- df_na_stats %>%
  898. filter(OrfRep == strain) %>%
  899. mutate(SM = 0)
  900. # Formerly X2 (deletion strains)
  901. df_deletion <- df_na_stats %>%
  902. filter(OrfRep != strain) %>%
  903. mutate(SM = 0)
  904. # Set the missing values to the highest theoretical value at each drug conc for L
  905. # Leave other values as 0 for the max/min
  906. reference_strain <- df_reference %>%
  907. group_by(conc_num) %>%
  908. mutate(
  909. max_l_theoretical = max(max_L, na.rm = TRUE),
  910. L = ifelse(L == 0 & !is.na(L) & conc_num > 0, max_l_theoretical, L),
  911. SM = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, 1, SM),
  912. L = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, max_l_theoretical, L)) %>%
  913. ungroup()
  914. # Ditto for deletion strains
  915. deletion_strains <- df_deletion %>%
  916. group_by(conc_num) %>%
  917. mutate(
  918. max_l_theoretical = max(max_L, na.rm = TRUE),
  919. L = ifelse(L == 0 & !is.na(L) & conc_num > 0, max_l_theoretical, L),
  920. SM = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, 1, SM),
  921. L = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, max_l_theoretical, L)) %>%
  922. ungroup()
  923. # Calculate interactions
  924. interaction_vars <- c("L", "K", "r", "AUC")
  925. message("Calculating interaction scores")
  926. # print("Reference strain:")
  927. # print(head(reference_strain))
  928. reference_results <- calculate_interaction_scores(reference_strain, max_conc, interaction_vars, group_vars = orf_group_vars)
  929. # print("Deletion strains:")
  930. # print(head(deletion_strains))
  931. deletion_results <- calculate_interaction_scores(deletion_strains, max_conc, interaction_vars, group_vars = orf_group_vars)
  932. zscores_calculations_reference <- reference_results$calculations
  933. zscores_interactions_reference <- reference_results$interactions
  934. zscores_calculations <- deletion_results$calculations
  935. zscores_interactions <- deletion_results$interactions
  936. # Writing Z-Scores to file
  937. write.csv(zscores_calculations_reference, file = file.path(out_dir, "RF_ZScores_Calculations.csv"), row.names = FALSE)
  938. write.csv(zscores_calculations, file = file.path(out_dir, "ZScores_Calculations.csv"), row.names = FALSE)
  939. write.csv(zscores_interactions_reference, file = file.path(out_dir, "RF_ZScores_Interaction.csv"), row.names = FALSE)
  940. write.csv(zscores_interactions, file = file.path(out_dir, "ZScores_Interaction.csv"), row.names = FALSE)
  941. # Create interaction plots
  942. message("Generating interaction plot configurations")
  943. reference_plot_configs <- generate_interaction_plot_configs(df_reference, interaction_vars)
  944. deletion_plot_configs <- generate_interaction_plot_configs(df_deletion, interaction_vars)
  945. message("Generating interaction plots")
  946. generate_and_save_plots(out_dir, "RF_interactionPlots", reference_plot_configs, grid_layout = list(ncol = 4, nrow = 3))
  947. generate_and_save_plots(out_dir, "InteractionPlots", deletion_plot_configs, grid_layout = list(ncol = 4, nrow = 3))
  948. # Define conditions for enhancers and suppressors
  949. # TODO Add to study config file?
  950. threshold <- 2
  951. enhancer_condition_L <- zscores_interactions$Avg_Zscore_L >= threshold
  952. suppressor_condition_L <- zscores_interactions$Avg_Zscore_L <= -threshold
  953. enhancer_condition_K <- zscores_interactions$Avg_Zscore_K >= threshold
  954. suppressor_condition_K <- zscores_interactions$Avg_Zscore_K <= -threshold
  955. # Subset data
  956. enhancers_L <- zscores_interactions[enhancer_condition_L, ]
  957. suppressors_L <- zscores_interactions[suppressor_condition_L, ]
  958. enhancers_K <- zscores_interactions[enhancer_condition_K, ]
  959. suppressors_K <- zscores_interactions[suppressor_condition_K, ]
  960. # Save enhancers and suppressors
  961. message("Writing enhancer/suppressor csv files")
  962. write.csv(enhancers_L, file = file.path(out_dir, "ZScores_Interaction_Deletion_Enhancers_L.csv"), row.names = FALSE)
  963. write.csv(suppressors_L, file = file.path(out_dir, "ZScores_Interaction_Deletion_Suppressors_L.csv"), row.names = FALSE)
  964. write.csv(enhancers_K, file = file.path(out_dir, "ZScores_Interaction_Deletion_Enhancers_K.csv"), row.names = FALSE)
  965. write.csv(suppressors_K, file = file.path(out_dir, "ZScores_Interaction_Deletion_Suppressors_K.csv"), row.names = FALSE)
  966. # Combine conditions for enhancers and suppressors
  967. enhancers_and_suppressors_L <- zscores_interactions[enhancer_condition_L | suppressor_condition_L, ]
  968. enhancers_and_suppressors_K <- zscores_interactions[enhancer_condition_K | suppressor_condition_K, ]
  969. # Save combined enhancers and suppressors
  970. write.csv(enhancers_and_suppressors_L,
  971. file = file.path(out_dir, "ZScores_Interaction_Deletion_Enhancers_and_Suppressors_L.csv"), row.names = FALSE)
  972. write.csv(enhancers_and_suppressors_K,
  973. file = file.path(out_dir, "ZScores_Interaction_Deletion_Enhancers_and_Suppressors_K.csv"), row.names = FALSE)
  974. # Handle linear model based enhancers and suppressors
  975. lm_threshold <- 2
  976. enhancers_lm_L <- zscores_interactions[zscores_interactions$Z_lm_L >= lm_threshold, ]
  977. suppressors_lm_L <- zscores_interactions[zscores_interactions$Z_lm_L <= -lm_threshold, ]
  978. enhancers_lm_K <- zscores_interactions[zscores_interactions$Z_lm_K >= lm_threshold, ]
  979. suppressors_lm_K <- zscores_interactions[zscores_interactions$Z_lm_K <= -lm_threshold, ]
  980. # Save linear model based enhancers and suppressors
  981. message("Writing linear model enhancer/suppressor csv files")
  982. write.csv(enhancers_lm_L,
  983. file = file.path(out_dir, "ZScores_Interaction_Deletion_Enhancers_L_lm.csv"), row.names = FALSE)
  984. write.csv(suppressors_lm_L,
  985. file = file.path(out_dir, "ZScores_Interaction_Deletion_Suppressors_L_lm.csv"), row.names = FALSE)
  986. write.csv(enhancers_lm_K,
  987. file = file.path(out_dir, "ZScores_Interaction_Deletion_Enhancers_K_lm.csv"), row.names = FALSE)
  988. write.csv(suppressors_lm_K,
  989. file = file.path(out_dir, "ZScores_Interaction_Deletion_Suppressors_K_lm.csv"), row.names = FALSE)
  990. # TODO needs explanation
  991. zscores_interactions_adjusted <- adjust_missing_and_rank(zscores_interactions)
  992. rank_plot_configs <- c(
  993. generate_rank_plot_configs(zscores_interactions_adjusted, "Rank_L", "Avg_Zscore_L", "L"),
  994. generate_rank_plot_configs(zscores_interactions_adjusted, "Rank_K", "Avg_Zscore_K", "K")
  995. )
  996. generate_and_save_plots(output_dir = out_dir, file_name = "RankPlots",
  997. plot_configs = rank_plot_configs, grid_layout = list(ncol = 3, nrow = 2))
  998. rank_lm_plot_config <- c(
  999. generate_rank_plot_configs(zscores_interactions_adjusted, "Rank_lm_L", "Z_lm_L", "L", is_lm = TRUE),
  1000. generate_rank_plot_configs(zscores_interactions_adjusted, "Rank_lm_K", "Z_lm_K", "K", is_lm = TRUE)
  1001. )
  1002. generate_and_save_plots(output_dir = out_dir, file_name = "RankPlots_lm",
  1003. plot_configs = rank_lm_plot_config, grid_layout = list(ncol = 3, nrow = 2))
  1004. # Formerly X_NArm
  1005. zscores_interactions_filtered <- zscores_interactions %>%
  1006. group_by(across(all_of(orf_group_vars))) %>%
  1007. filter(!is.na(Z_lm_L) | !is.na(Avg_Zscore_L))
  1008. # Final filtered correlation calculations and plots
  1009. lm_results <- zscores_interactions_filtered %>%
  1010. summarise(
  1011. lm_R_squared_L = if (n() > 1) summary(lm(Z_lm_L ~ Avg_Zscore_L))$r.squared else NA,
  1012. lm_R_squared_K = if (n() > 1) summary(lm(Z_lm_K ~ Avg_Zscore_K))$r.squared else NA,
  1013. lm_R_squared_r = if (n() > 1) summary(lm(Z_lm_r ~ Avg_Zscore_r))$r.squared else NA,
  1014. lm_R_squared_AUC = if (n() > 1) summary(lm(Z_lm_AUC ~ Avg_Zscore_AUC))$r.squared else NA
  1015. )
  1016. zscores_interactions_filtered <- zscores_interactions_filtered %>%
  1017. left_join(lm_results, by = orf_group_vars) %>%
  1018. mutate(
  1019. Overlap = case_when(
  1020. Z_lm_L >= 2 & Avg_Zscore_L >= 2 ~ "Deletion Enhancer Both",
  1021. Z_lm_L <= -2 & Avg_Zscore_L <= -2 ~ "Deletion Suppressor Both",
  1022. Z_lm_L >= 2 & Avg_Zscore_L <= 2 ~ "Deletion Enhancer lm only",
  1023. Z_lm_L <= -2 & Avg_Zscore_L >= -2 ~ "Deletion Suppressor lm only",
  1024. Z_lm_L >= 2 & Avg_Zscore_L <= -2 ~ "Deletion Enhancer lm, Deletion Suppressor Avg Z score",
  1025. Z_lm_L <= -2 & Avg_Zscore_L >= 2 ~ "Deletion Suppressor lm, Deletion Enhancer Avg Z score",
  1026. TRUE ~ "No Effect"
  1027. )
  1028. ) %>%
  1029. ungroup()
  1030. rank_plot_configs <- c(
  1031. generate_rank_plot_configs(zscores_interactions_filtered, "Rank_L", "Avg_Zscore_L", "L"),
  1032. generate_rank_plot_configs(zscores_interactions_filtered, "Rank_K", "Avg_Zscore_K", "K")
  1033. )
  1034. generate_and_save_plots(output_dir = out_dir, file_name = "RankPlots",
  1035. plot_configs = rank_plot_configs, grid_layout = list(ncol = 3, nrow = 2))
  1036. rank_lm_plot_configs <- c(
  1037. generate_rank_plot_configs(zscores_interactions_filtered, "Rank_lm_L", "Z_lm_L", "L", is_lm = TRUE),
  1038. generate_rank_plot_configs(zscores_interactions_filtered, "Rank_lm_K", "Z_lm_K", "K", is_lm = TRUE)
  1039. )
  1040. generate_and_save_plots(output_dir = out_dir, file_name = "RankPlots_lm",
  1041. plot_configs = rank_lm_plot_configs, grid_layout = list(ncol = 3, nrow = 2))
  1042. correlation_plot_configs <- generate_correlation_plot_configs(zscores_interactions_filtered, interaction_vars)
  1043. generate_and_save_plots(output_dir = out_dir, file_name = "Avg_Zscore_vs_lm_NA_rm",
  1044. plot_configs = correlation_plot_configs, grid_layout = list(ncol = 2, nrow = 2))
  1045. })
  1046. })
  1047. }
  1048. main()