calculate_interaction_zscores.R 54 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476
  1. suppressMessages({
  2. library("ggplot2")
  3. library("plotly")
  4. library("htmlwidgets")
  5. library("dplyr")
  6. library("rlang")
  7. library("ggthemes")
  8. library("data.table")
  9. library("future")
  10. library("furrr")
  11. library("purrr")
  12. })
  13. # These parallelization libraries are very noisy
  14. suppressPackageStartupMessages({
  15. library("future")
  16. library("furrr")
  17. library("purrr")
  18. })
  19. options(warn = 2)
  20. # Constants for configuration
  21. plot_width <- 14
  22. plot_height <- 9
  23. base_size <- 14
  24. parse_arguments <- function() {
  25. args <- if (interactive()) {
  26. c(
  27. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/20240116_jhartman2_DoxoHLD",
  28. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/apps/r/SGD_features.tab",
  29. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/easy/20240116_jhartman2_DoxoHLD/results_std.txt",
  30. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/20240822_jhartman2_DoxoHLD/exp1",
  31. "Experiment 1: Doxo versus HLD",
  32. 3,
  33. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/20240822_jhartman2_DoxoHLD/exp2",
  34. "Experiment 2: HLD versus Doxo",
  35. 3
  36. )
  37. } else {
  38. commandArgs(trailingOnly = TRUE)
  39. }
  40. out_dir <- normalizePath(args[1], mustWork = FALSE)
  41. sgd_gene_list <- normalizePath(args[2], mustWork = FALSE)
  42. easy_results_file <- normalizePath(args[3], mustWork = FALSE)
  43. # The remaining arguments should be in groups of 3
  44. exp_args <- args[-(1:3)]
  45. if (length(exp_args) %% 3 != 0) {
  46. stop("Experiment arguments should be in groups of 3: path, name, sd.")
  47. }
  48. # Extract the experiments into a list
  49. experiments <- list()
  50. for (i in seq(1, length(exp_args), by = 3)) {
  51. exp_name <- exp_args[i + 1]
  52. experiments[[exp_name]] <- list(
  53. path = normalizePath(exp_args[i], mustWork = FALSE),
  54. sd = as.numeric(exp_args[i + 2])
  55. )
  56. }
  57. # Extract the trailing number from each path
  58. trailing_numbers <- sapply(experiments, function(x) {
  59. path <- x$path
  60. nums <- gsub("[^0-9]", "", basename(path))
  61. as.integer(nums)
  62. })
  63. # Sort the experiments based on the trailing numbers
  64. sorted_experiments <- experiments[order(trailing_numbers)]
  65. list(
  66. out_dir = out_dir,
  67. sgd_gene_list = sgd_gene_list,
  68. easy_results_file = easy_results_file,
  69. experiments = sorted_experiments
  70. )
  71. }
  72. args <- parse_arguments()
  73. # Should we keep output in exp dirs or combine in the study output dir?
  74. # dir.create(file.path(args$out_dir, "zscores"), showWarnings = FALSE)
  75. # dir.create(file.path(args$out_dir, "zscores", "qc"), showWarnings = FALSE)
  76. theme_publication <- function(base_size = 14, base_family = "sans", legend_position = "bottom") {
  77. theme_foundation <- ggthemes::theme_foundation(base_size = base_size, base_family = base_family)
  78. theme_foundation %+replace%
  79. theme(
  80. plot.title = element_text(face = "bold", size = rel(1.2), hjust = 0.5),
  81. text = element_text(),
  82. panel.border = element_rect(colour = NA),
  83. axis.title = element_text(face = "bold", size = rel(1)),
  84. axis.title.y = element_text(angle = 90, vjust = 2, size = 18),
  85. axis.title.x = element_text(vjust = -0.2, size = 18),
  86. axis.line = element_line(colour = "black"),
  87. axis.text.x = element_text(size = 16),
  88. axis.text.y = element_text(size = 16),
  89. panel.grid.major = element_line(colour = "#f0f0f0"),
  90. panel.grid.minor = element_blank(),
  91. legend.key = element_rect(colour = NA),
  92. legend.position = legend_position,
  93. legend.direction = ifelse(legend_position == "right", "vertical", "horizontal"),
  94. plot.margin = unit(c(10, 5, 5, 5), "mm"),
  95. strip.background = element_rect(colour = "#f0f0f0", fill = "#f0f0f0"),
  96. strip.text = element_text(face = "bold")
  97. )
  98. }
  99. scale_fill_publication <- function(...) {
  100. discrete_scale("fill", "Publication", manual_pal(values = c(
  101. "#386cb0", "#fdb462", "#7fc97f", "#ef3b2c", "#662506",
  102. "#a6cee3", "#fb9a99", "#984ea3", "#ffff33"
  103. )), ...)
  104. }
  105. scale_colour_publication <- function(...) {
  106. discrete_scale("colour", "Publication", manual_pal(values = c(
  107. "#386cb0", "#fdb462", "#7fc97f", "#ef3b2c", "#662506",
  108. "#a6cee3", "#fb9a99", "#984ea3", "#ffff33"
  109. )), ...)
  110. }
  111. # Load the initial dataframe from the easy_results_file
  112. load_and_filter_data <- function(easy_results_file, sd = 3) {
  113. df <- read.delim(easy_results_file, skip = 2, as.is = TRUE, row.names = 1, strip.white = TRUE)
  114. df <- df %>%
  115. filter(!(.[[1]] %in% c("", "Scan"))) %>%
  116. filter(!is.na(ORF) & ORF != "" & !Gene %in% c("BLANK", "Blank", "blank") & Drug != "BMH21") %>%
  117. # Rename columns
  118. rename(L = l, num = Num., AUC = AUC96, scan = Scan, last_bg = LstBackgrd, first_bg = X1stBackgrd) %>%
  119. mutate(
  120. across(c(Col, Row, num, L, K, r, scan, AUC, last_bg, first_bg), as.numeric),
  121. delta_bg = last_bg - first_bg,
  122. delta_bg_tolerance = mean(delta_bg, na.rm = TRUE) + (sd * sd(delta_bg, na.rm = TRUE)),
  123. NG = if_else(L == 0 & !is.na(L), 1, 0),
  124. DB = if_else(delta_bg >= delta_bg_tolerance, 1, 0),
  125. SM = 0,
  126. OrfRep = if_else(ORF == "YDL227C", "YDL227C", OrfRep), # should these be hardcoded?
  127. conc_num = as.numeric(gsub("[^0-9\\.]", "", Conc)),
  128. conc_num_factor = factor(as.numeric(factor(conc_num)) - 1),
  129. conc_num_factor_num = as.numeric(conc_num_factor)
  130. )
  131. return(df)
  132. }
  133. # Update Gene names using the SGD gene list
  134. update_gene_names <- function(df, sgd_gene_list) {
  135. # Load SGD gene list
  136. genes <- read.delim(file = sgd_gene_list,
  137. quote = "", header = FALSE,
  138. colClasses = c(rep("NULL", 3), rep("character", 2), rep("NULL", 11)))
  139. # Create a named vector for mapping ORF to GeneName
  140. gene_map <- setNames(genes$V5, genes$V4)
  141. # Vectorized match to find the GeneName from gene_map
  142. mapped_genes <- gene_map[df$ORF]
  143. # Replace NAs in mapped_genes with original Gene names (preserves existing Gene names if ORF is not found)
  144. updated_genes <- ifelse(is.na(mapped_genes) | df$OrfRep == "YDL227C", df$Gene, mapped_genes)
  145. # Ensure Gene is not left blank or incorrectly updated to "OCT1"
  146. df <- df %>%
  147. mutate(Gene = ifelse(updated_genes == "" | updated_genes == "OCT1", OrfRep, updated_genes))
  148. return(df)
  149. }
  150. calculate_summary_stats <- function(df, variables, group_vars) {
  151. summary_stats <- df %>%
  152. group_by(across(all_of(group_vars))) %>%
  153. summarise(
  154. N = n(),
  155. across(all_of(variables),
  156. list(
  157. mean = ~mean(., na.rm = TRUE),
  158. median = ~median(., na.rm = TRUE),
  159. max = ~ifelse(all(is.na(.)), NA, max(., na.rm = TRUE)),
  160. min = ~ifelse(all(is.na(.)), NA, min(., na.rm = TRUE)),
  161. sd = ~sd(., na.rm = TRUE),
  162. se = ~sd(., na.rm = TRUE) / sqrt(N - 1) # TODO non-standard SE, needs explanation
  163. ),
  164. .names = "{.fn}_{.col}"
  165. ),
  166. .groups = "drop"
  167. )
  168. # Create a cleaned version of df that doesn't overlap with summary_stats
  169. cleaned_df <- df %>%
  170. select(-any_of(setdiff(intersect(names(df), names(summary_stats)), group_vars)))
  171. df_joined <- left_join(cleaned_df, summary_stats, by = group_vars)
  172. return(list(summary_stats = summary_stats, df_with_stats = df_joined))
  173. }
  174. calculate_interaction_scores <- function(df, max_conc, bg_stats,
  175. group_vars = c("OrfRep", "Gene", "num")) {
  176. # Calculate total concentration variables
  177. total_conc_num <- length(unique(df$conc_num))
  178. calculations <- df %>%
  179. group_by(across(all_of(group_vars))) %>%
  180. mutate(
  181. NG = sum(NG, na.rm = TRUE),
  182. DB = sum(DB, na.rm = TRUE),
  183. SM = sum(SM, na.rm = TRUE),
  184. num_non_removed_concs = total_conc_num - sum(DB, na.rm = TRUE) - 1,
  185. # Calculate raw data
  186. Raw_Shift_L = first(mean_L) - bg_stats$mean_L,
  187. Raw_Shift_K = first(mean_K) - bg_stats$mean_K,
  188. Raw_Shift_r = first(mean_r) - bg_stats$mean_r,
  189. Raw_Shift_AUC = first(mean_AUC) - bg_stats$mean_AUC,
  190. Z_Shift_L = first(Raw_Shift_L) / bg_stats$sd_L,
  191. Z_Shift_K = first(Raw_Shift_K) / bg_stats$sd_K,
  192. Z_Shift_r = first(Raw_Shift_r) / bg_stats$sd_r,
  193. Z_Shift_AUC = first(Raw_Shift_AUC) / bg_stats$sd_AUC,
  194. Exp_L = WT_L + Raw_Shift_L,
  195. Exp_K = WT_K + Raw_Shift_K,
  196. Exp_r = WT_r + Raw_Shift_r,
  197. Exp_AUC = WT_AUC + Raw_Shift_AUC,
  198. Delta_L = mean_L - Exp_L,
  199. Delta_K = mean_K - Exp_K,
  200. Delta_r = mean_r - Exp_r,
  201. Delta_AUC = mean_AUC - Exp_AUC,
  202. Delta_L = if_else(NG == 1, mean_L - WT_L, Delta_L),
  203. Delta_K = if_else(NG == 1, mean_K - WT_K, Delta_K),
  204. Delta_r = if_else(NG == 1, mean_r - WT_r, Delta_r),
  205. Delta_AUC = if_else(NG == 1, mean_AUC - WT_AUC, Delta_AUC),
  206. Delta_L = if_else(SM == 1, mean_L - WT_L, Delta_L),
  207. # Calculate Z-scores
  208. Zscore_L = Delta_L / WT_sd_L,
  209. Zscore_K = Delta_K / WT_sd_K,
  210. Zscore_r = Delta_r / WT_sd_r,
  211. Zscore_AUC = Delta_AUC / WT_sd_AUC,
  212. # Fit linear models and store in list-columns
  213. gene_lm_L = list(lm(Delta_L ~ conc_num_factor_num, data = pick(everything()))),
  214. gene_lm_K = list(lm(Delta_K ~ conc_num_factor_num, data = pick(everything()))),
  215. gene_lm_r = list(lm(Delta_r ~ conc_num_factor_num, data = pick(everything()))),
  216. gene_lm_AUC = list(lm(Delta_AUC ~ conc_num_factor_num, data = pick(everything()))),
  217. # Extract coefficients using purrr::map_dbl
  218. lm_intercept_L = map_dbl(gene_lm_L, ~ coef(.x)[1]),
  219. lm_slope_L = map_dbl(gene_lm_L, ~ coef(.x)[2]),
  220. lm_intercept_K = map_dbl(gene_lm_K, ~ coef(.x)[1]),
  221. lm_slope_K = map_dbl(gene_lm_K, ~ coef(.x)[2]),
  222. lm_intercept_r = map_dbl(gene_lm_r, ~ coef(.x)[1]),
  223. lm_slope_r = map_dbl(gene_lm_r, ~ coef(.x)[2]),
  224. lm_intercept_AUC = map_dbl(gene_lm_AUC, ~ coef(.x)[1]),
  225. lm_slope_AUC = map_dbl(gene_lm_AUC, ~ coef(.x)[2]),
  226. # Calculate lm_Score_* based on coefficients
  227. lm_Score_L = max_conc * lm_slope_L + lm_intercept_L,
  228. lm_Score_K = max_conc * lm_slope_K + lm_intercept_K,
  229. lm_Score_r = max_conc * lm_slope_r + lm_intercept_r,
  230. lm_Score_AUC = max_conc * lm_slope_AUC + lm_intercept_AUC,
  231. # Calculate R-squared values
  232. R_Squared_L = map_dbl(gene_lm_L, ~ summary(.x)$r.squared),
  233. R_Squared_K = map_dbl(gene_lm_K, ~ summary(.x)$r.squared),
  234. R_Squared_r = map_dbl(gene_lm_r, ~ summary(.x)$r.squared),
  235. R_Squared_AUC = map_dbl(gene_lm_AUC, ~ summary(.x)$r.squared)
  236. ) %>%
  237. ungroup()
  238. # Calculate overall mean and SD for lm_Score_* variables
  239. lm_means_sds <- calculations %>%
  240. summarise(
  241. lm_mean_L = mean(lm_Score_L, na.rm = TRUE),
  242. lm_sd_L = sd(lm_Score_L, na.rm = TRUE),
  243. lm_mean_K = mean(lm_Score_K, na.rm = TRUE),
  244. lm_sd_K = sd(lm_Score_K, na.rm = TRUE),
  245. lm_mean_r = mean(lm_Score_r, na.rm = TRUE),
  246. lm_sd_r = sd(lm_Score_r, na.rm = TRUE),
  247. lm_mean_AUC = mean(lm_Score_AUC, na.rm = TRUE),
  248. lm_sd_AUC = sd(lm_Score_AUC, na.rm = TRUE)
  249. )
  250. calculations <- calculations %>%
  251. mutate(
  252. Z_lm_L = (lm_Score_L - lm_means_sds$lm_mean_L) / lm_means_sds$lm_sd_L,
  253. Z_lm_K = (lm_Score_K - lm_means_sds$lm_mean_K) / lm_means_sds$lm_sd_K,
  254. Z_lm_r = (lm_Score_r - lm_means_sds$lm_mean_r) / lm_means_sds$lm_sd_r,
  255. Z_lm_AUC = (lm_Score_AUC - lm_means_sds$lm_mean_AUC) / lm_means_sds$lm_sd_AUC
  256. )
  257. # Summarize some of the stats
  258. interactions <- calculations %>%
  259. group_by(across(all_of(group_vars))) %>%
  260. mutate(
  261. # Calculate raw shifts
  262. Raw_Shift_L = first(Raw_Shift_L),
  263. Raw_Shift_K = first(Raw_Shift_K),
  264. Raw_Shift_r = first(Raw_Shift_r),
  265. Raw_Shift_AUC = first(Raw_Shift_AUC),
  266. # Calculate Z-shifts
  267. Z_Shift_L = first(Z_Shift_L),
  268. Z_Shift_K = first(Z_Shift_K),
  269. Z_Shift_r = first(Z_Shift_r),
  270. Z_Shift_AUC = first(Z_Shift_AUC),
  271. # Sum Z-scores
  272. Sum_Z_Score_L = sum(Zscore_L),
  273. Sum_Z_Score_K = sum(Zscore_K),
  274. Sum_Z_Score_r = sum(Zscore_r),
  275. Sum_Z_Score_AUC = sum(Zscore_AUC),
  276. # Calculate Average Z-scores
  277. Avg_Zscore_L = Sum_Z_Score_L / num_non_removed_concs,
  278. Avg_Zscore_K = Sum_Z_Score_K / num_non_removed_concs,
  279. Avg_Zscore_r = Sum_Z_Score_r / (total_conc_num - 1),
  280. Avg_Zscore_AUC = Sum_Z_Score_AUC / (total_conc_num - 1)
  281. ) %>%
  282. arrange(desc(Z_lm_L), desc(NG)) %>%
  283. ungroup()
  284. # Declare column order for output
  285. calculations <- calculations %>%
  286. select(
  287. "OrfRep", "Gene", "num", "conc_num", "conc_num_factor", "N",
  288. "mean_L", "mean_K", "mean_r", "mean_AUC",
  289. "median_L", "median_K", "median_r", "median_AUC",
  290. "sd_L", "sd_K", "sd_r", "sd_AUC",
  291. "se_L", "se_K", "se_r", "se_AUC",
  292. "Raw_Shift_L", "Raw_Shift_K", "Raw_Shift_r", "Raw_Shift_AUC",
  293. "Z_Shift_L", "Z_Shift_K", "Z_Shift_r", "Z_Shift_AUC",
  294. "WT_L", "WT_K", "WT_r", "WT_AUC",
  295. "WT_sd_L", "WT_sd_K", "WT_sd_r", "WT_sd_AUC",
  296. "Exp_L", "Exp_K", "Exp_r", "Exp_AUC",
  297. "Delta_L", "Delta_K", "Delta_r", "Delta_AUC",
  298. "Zscore_L", "Zscore_K", "Zscore_r", "Zscore_AUC",
  299. "NG", "SM", "DB")
  300. interactions <- interactions %>%
  301. select(
  302. "OrfRep", "Gene", "conc_num", "conc_num_factor", "num", "NG", "DB", "SM",
  303. "Raw_Shift_L", "Raw_Shift_K", "Raw_Shift_r", "Raw_Shift_AUC",
  304. "Z_Shift_L", "Z_Shift_K", "Z_Shift_r", "Z_Shift_AUC",
  305. "Sum_Z_Score_L", "Sum_Z_Score_K", "Sum_Z_Score_r", "Sum_Z_Score_AUC",
  306. "Avg_Zscore_L", "Avg_Zscore_K", "Avg_Zscore_r", "Avg_Zscore_AUC",
  307. "lm_Score_L", "lm_Score_K", "lm_Score_r", "lm_Score_AUC",
  308. "R_Squared_L", "R_Squared_K", "R_Squared_r", "R_Squared_AUC",
  309. "Z_lm_L", "Z_lm_K", "Z_lm_r", "Z_lm_AUC")
  310. cleaned_df <- df %>%
  311. select(-any_of(
  312. setdiff(intersect(names(df), names(interactions)),
  313. c("OrfRep", "Gene", "num", "conc_num", "conc_num_factor"))))
  314. interactions_joined <- left_join(cleaned_df, interactions, by = c("OrfRep", "Gene", "num", "conc_num", "conc_num_factor"))
  315. return(list(
  316. calculations = calculations,
  317. interactions = interactions,
  318. interactions_joined = interactions_joined))
  319. }
  320. generate_and_save_plots <- function(out_dir, filename, plot_configs, grid_layout = NULL) {
  321. message("Generating ", filename, ".pdf and ", filename, ".html")
  322. # Prepare lists to collect plots
  323. static_plots <- list()
  324. plotly_plots <- list()
  325. for (i in seq_along(plot_configs)) {
  326. config <- plot_configs[[i]]
  327. df <- config$df
  328. aes_mapping <- if (config$plot_type == "bar" || config$plot_type == "density") {
  329. if (is.null(config$color_var)) {
  330. aes(x = .data[[config$x_var]])
  331. } else {
  332. aes(x = .data[[config$x_var]], color = as.factor(.data[[config$color_var]]))
  333. }
  334. } else if (is.null(config$color_var)) {
  335. aes(x = .data[[config$x_var]], y = .data[[config$y_var]])
  336. } else {
  337. aes(x = .data[[config$x_var]], y = .data[[config$y_var]], color = as.factor(.data[[config$color_var]]))
  338. }
  339. # Start building the plot with aes_mapping
  340. plot_base <- ggplot(df, aes_mapping)
  341. # Use appropriate helper function based on plot type
  342. plot <- switch(config$plot_type,
  343. "scatter" = generate_scatter_plot(plot_base, config),
  344. "box" = generate_box_plot(plot_base, config),
  345. "density" = plot_base + geom_density(),
  346. "bar" = plot_base + geom_bar(),
  347. plot_base # default case if no type matches
  348. )
  349. # Apply additional settings
  350. if (!is.null(config$legend_position)) {
  351. plot <- plot + theme(legend.position = config$legend_position)
  352. }
  353. # Add title and labels
  354. if (!is.null(config$title)) {
  355. plot <- plot + ggtitle(config$title)
  356. }
  357. if (!is.null(config$x_label)) {
  358. plot <- plot + xlab(config$x_label)
  359. }
  360. if (!is.null(config$y_label)) {
  361. plot <- plot + ylab(config$y_label)
  362. }
  363. # Apply scale_color_discrete(guide = FALSE) when color_var is NULL
  364. if (is.null(config$color_var)) {
  365. plot <- plot + scale_color_discrete(guide = "none")
  366. }
  367. # Add interactive tooltips for plotly
  368. tooltip_vars <- c()
  369. if (config$plot_type == "scatter") {
  370. if (!is.null(config$delta_bg_point) && config$delta_bg_point) {
  371. tooltip_vars <- c(tooltip_vars, "OrfRep", "Gene", "delta_bg")
  372. } else if (!is.null(config$gene_point) && config$gene_point) {
  373. tooltip_vars <- c(tooltip_vars, "OrfRep", "Gene")
  374. } else if (!is.null(config$y_var) && !is.null(config$x_var)) {
  375. tooltip_vars <- c(config$x_var, config$y_var)
  376. }
  377. }
  378. # Convert to plotly object
  379. if (length(tooltip_vars) > 0) {
  380. plotly_plot <- ggplotly(plot, tooltip = tooltip_vars)
  381. } else {
  382. plotly_plot <- ggplotly(plot, tooltip = "none")
  383. }
  384. # Adjust legend position if specified
  385. if (!is.null(config$legend_position) && config$legend_position == "bottom") {
  386. plotly_plot <- plotly_plot %>% layout(legend = list(orientation = "h"))
  387. }
  388. # Add plots to lists
  389. static_plots[[i]] <- plot
  390. plotly_plots[[i]] <- plotly_plot
  391. }
  392. # Save static PDF plots
  393. pdf(file.path(out_dir, paste0(filename, ".pdf")), width = 14, height = 9)
  394. lapply(static_plots, print)
  395. dev.off()
  396. # Combine and save interactive HTML plots
  397. combined_plot <- subplot(
  398. plotly_plots,
  399. nrows = if (!is.null(grid_layout) && !is.null(grid_layout$nrow)) {
  400. grid_layout$nrow
  401. } else {
  402. # Calculate nrow based on the length of plotly_plots (default 1 row if only one plot)
  403. ceiling(length(plotly_plots) / ifelse(!is.null(grid_layout) && !is.null(grid_layout$ncol), grid_layout$ncol, 1))
  404. },
  405. margin = 0.05
  406. )
  407. saveWidget(combined_plot, file = file.path(out_dir, paste0(filename, ".html")), selfcontained = TRUE)
  408. }
  409. generate_scatter_plot <- function(plot, config) {
  410. shape <- if (!is.null(config$shape)) config$shape else 3
  411. size <- if (!is.null(config$size)) config$size else 0.1
  412. position <-
  413. if (!is.null(config$position) && config$position == "jitter") {
  414. position_jitter(width = 0.1, height = 0)
  415. } else {
  416. "identity"
  417. }
  418. plot <- plot + geom_point(
  419. shape = shape,
  420. size = size,
  421. position = position
  422. )
  423. if (!is.null(config$cyan_points) && config$cyan_points) {
  424. plot <- plot + geom_point(
  425. aes(x = .data[[config$x_var]], y = .data[[config$y_var]]),
  426. color = "cyan",
  427. shape = 3,
  428. size = 0.5
  429. )
  430. }
  431. # Add Smooth Line if specified
  432. if (!is.null(config$smooth) && config$smooth) {
  433. smooth_color <- if (!is.null(config$smooth_color)) config$smooth_color else "blue"
  434. if (!is.null(config$lm_line)) {
  435. plot <- plot +
  436. geom_abline(
  437. intercept = config$lm_line$intercept,
  438. slope = config$lm_line$slope,
  439. color = smooth_color
  440. )
  441. } else {
  442. plot <- plot +
  443. geom_smooth(
  444. method = "lm",
  445. se = FALSE,
  446. color = smooth_color
  447. )
  448. }
  449. }
  450. # Add SD Bands if specified
  451. if (!is.null(config$sd_band)) {
  452. plot <- plot +
  453. annotate(
  454. "rect",
  455. xmin = -Inf, xmax = Inf,
  456. ymin = config$sd_band, ymax = Inf,
  457. fill = ifelse(!is.null(config$fill_positive), config$fill_positive, "#542788"),
  458. alpha = ifelse(!is.null(config$alpha_positive), config$alpha_positive, 0.3)
  459. ) +
  460. annotate(
  461. "rect",
  462. xmin = -Inf, xmax = Inf,
  463. ymin = -config$sd_band, ymax = -Inf,
  464. fill = ifelse(!is.null(config$fill_negative), config$fill_negative, "orange"),
  465. alpha = ifelse(!is.null(config$alpha_negative), config$alpha_negative, 0.3)
  466. ) +
  467. geom_hline(
  468. yintercept = c(-config$sd_band, config$sd_band),
  469. color = ifelse(!is.null(config$hl_color), config$hl_color, "gray")
  470. )
  471. }
  472. # Add Rectangles if specified
  473. if (!is.null(config$rectangles)) {
  474. for (rect in config$rectangles) {
  475. plot <- plot + annotate(
  476. "rect",
  477. xmin = rect$xmin,
  478. xmax = rect$xmax,
  479. ymin = rect$ymin,
  480. ymax = rect$ymax,
  481. fill = ifelse(is.null(rect$fill), NA, rect$fill),
  482. color = ifelse(is.null(rect$color), "black", rect$color),
  483. alpha = ifelse(is.null(rect$alpha), 0.1, rect$alpha)
  484. )
  485. }
  486. }
  487. # Add Error Bars if specified
  488. if (!is.null(config$error_bar) && config$error_bar && !is.null(config$y_var)) {
  489. y_mean_col <- paste0("mean_", config$y_var)
  490. y_sd_col <- paste0("sd_", config$y_var)
  491. plot <- plot +
  492. geom_errorbar(
  493. aes(
  494. ymin = !!sym(y_mean_col) - !!sym(y_sd_col),
  495. ymax = !!sym(y_mean_col) + !!sym(y_sd_col)
  496. ),
  497. alpha = 0.3
  498. )
  499. }
  500. # Customize X-axis if specified
  501. if (!is.null(config$x_breaks) && !is.null(config$x_labels) && !is.null(config$x_label)) {
  502. plot <- plot +
  503. scale_x_discrete(
  504. name = config$x_label,
  505. breaks = config$x_breaks,
  506. labels = config$x_labels
  507. )
  508. }
  509. # Apply coord_cartesian if specified
  510. if (!is.null(config$coord_cartesian)) {
  511. plot <- plot + coord_cartesian(ylim = config$coord_cartesian)
  512. }
  513. # Set Y-axis limits if specified
  514. if (!is.null(config$ylim_vals)) {
  515. plot <- plot + scale_y_continuous(limits = config$ylim_vals)
  516. }
  517. # Add Annotations if specified
  518. if (!is.null(config$annotations)) {
  519. for (annotation in config$annotations) {
  520. plot <- plot +
  521. annotate(
  522. "text",
  523. x = annotation$x,
  524. y = annotation$y,
  525. label = annotation$label,
  526. hjust = ifelse(is.null(annotation$hjust), 0.5, annotation$hjust),
  527. vjust = ifelse(is.null(annotation$vjust), 0.5, annotation$vjust),
  528. size = ifelse(is.null(annotation$size), 4, annotation$size),
  529. color = ifelse(is.null(annotation$color), "black", annotation$color)
  530. )
  531. }
  532. }
  533. # Add Title if specified
  534. if (!is.null(config$title)) {
  535. plot <- plot + ggtitle(config$title)
  536. }
  537. # Adjust Legend Position if specified
  538. if (!is.null(config$legend_position)) {
  539. plot <- plot + theme(legend.position = config$legend_position)
  540. }
  541. return(plot)
  542. }
  543. generate_box_plot <- function(plot, config) {
  544. plot <- plot + geom_boxplot()
  545. if (!is.null(config$x_breaks) && !is.null(config$x_labels) && !is.null(config$x_label)) {
  546. plot <- plot + scale_x_discrete(
  547. name = config$x_label,
  548. breaks = config$x_breaks,
  549. labels = config$x_labels
  550. )
  551. }
  552. if (!is.null(config$coord_cartesian)) {
  553. plot <- plot + coord_cartesian(ylim = config$coord_cartesian)
  554. }
  555. return(plot)
  556. }
  557. generate_plate_analysis_plot_configs <- function(variables, stages = c("before", "after"),
  558. df_before = NULL, df_after = NULL, plot_type = "scatter") {
  559. plots <- list()
  560. for (var in variables) {
  561. for (stage in stages) {
  562. df_plot <- if (stage == "before") df_before else df_after
  563. # Check for non-finite values in the y-variable
  564. df_plot_filtered <- df_plot %>%
  565. filter(is.finite(!!sym(var)))
  566. # Count removed rows
  567. removed_rows <- nrow(df_plot) - nrow(df_plot_filtered)
  568. if (removed_rows > 0) {
  569. message(sprintf("Removed %d non-finite values for variable %s during stage %s", removed_rows, var, stage))
  570. }
  571. # Adjust settings based on plot_type
  572. if (plot_type == "scatter") {
  573. error_bar <- TRUE
  574. position <- "jitter"
  575. } else if (plot_type == "box") {
  576. error_bar <- FALSE
  577. position <- NULL
  578. }
  579. config <- list(
  580. df = df_plot,
  581. x_var = "scan",
  582. y_var = var,
  583. plot_type = plot_type,
  584. title = paste("Plate analysis by Drug Conc for", var, stage, "quality control"),
  585. error_bar = error_bar,
  586. color_var = "conc_num_factor",
  587. position = position
  588. )
  589. plots <- append(plots, list(config))
  590. }
  591. }
  592. return(plots)
  593. }
  594. generate_interaction_plot_configs <- function(df, limits_map = NULL) {
  595. # Default limits_map if not provided
  596. if (is.null(limits_map)) {
  597. limits_map <- list(
  598. L = c(-65, 65),
  599. K = c(-65, 65),
  600. r = c(-0.65, 0.65),
  601. AUC = c(-6500, 6500)
  602. )
  603. }
  604. # Filter data
  605. df_filtered <- df
  606. for (var in names(limits_map)) {
  607. df_filtered <- df_filtered %>%
  608. filter(!is.na(!!sym(var)) &
  609. !!sym(var) >= limits_map[[var]][1] &
  610. !!sym(var) <= limits_map[[var]][2])
  611. }
  612. configs <- list()
  613. for (var in names(limits_map)) {
  614. y_range <- limits_map[[var]]
  615. # Calculate annotation positions
  616. y_min <- min(y_range)
  617. y_max <- max(y_range)
  618. y_span <- y_max - y_min
  619. annotation_positions <- list(
  620. ZShift = y_max - 0.1 * y_span,
  621. lm_ZScore = y_max - 0.2 * y_span,
  622. NG = y_min + 0.2 * y_span,
  623. DB = y_min + 0.1 * y_span,
  624. SM = y_min + 0.05 * y_span
  625. )
  626. # Prepare linear model line
  627. lm_line <- list(
  628. intercept = df_filtered[[paste0("lm_intercept_", var)]],
  629. slope = df_filtered[[paste0("lm_slope_", var)]]
  630. )
  631. # Calculate x-axis position for annotations
  632. num_levels <- length(levels(df_filtered$conc_num_factor))
  633. x_pos <- (1 + num_levels) / 2
  634. # Generate annotations
  635. annotations <- lapply(names(annotation_positions), function(annotation_name) {
  636. label <- switch(annotation_name,
  637. ZShift = paste("ZShift =", round(df_filtered[[paste0("Z_Shift_", var)]], 2)),
  638. lm_ZScore = paste("lm ZScore =", round(df_filtered[[paste0("Z_lm_", var)]], 2)),
  639. NG = paste("NG =", df_filtered$NG),
  640. DB = paste("DB =", df_filtered$DB),
  641. SM = paste("SM =", df_filtered$SM),
  642. NULL
  643. )
  644. if (!is.null(label)) {
  645. list(x = x_pos, y = annotation_positions[[annotation_name]], label = label)
  646. } else {
  647. NULL
  648. }
  649. })
  650. annotations <- Filter(Negate(is.null), annotations)
  651. # Shared plot settings
  652. plot_settings <- list(
  653. df = df_filtered,
  654. x_var = "conc_num_factor",
  655. y_var = var,
  656. ylim_vals = y_range,
  657. annotations = annotations,
  658. lm_line = lm_line,
  659. x_breaks = levels(df_filtered$conc_num_factor),
  660. x_labels = levels(df_filtered$conc_num_factor),
  661. x_label = unique(df_filtered$Drug[1]),
  662. coord_cartesian = y_range
  663. )
  664. # Scatter plot config
  665. configs[[length(configs) + 1]] <- modifyList(plot_settings, list(
  666. plot_type = "scatter",
  667. title = sprintf("%s %s", df_filtered$OrfRep[1], df_filtered$Gene[1]),
  668. error_bar = TRUE,
  669. position = "jitter"
  670. ))
  671. # Box plot config
  672. configs[[length(configs) + 1]] <- modifyList(plot_settings, list(
  673. plot_type = "box",
  674. title = sprintf("%s %s (box plot)", df_filtered$OrfRep[1], df_filtered$Gene[1]),
  675. error_bar = FALSE
  676. ))
  677. }
  678. return(configs)
  679. }
  680. generate_rank_plot_configs <- function(df, variables, is_lm = FALSE, adjust = FALSE, overlap_color = FALSE) {
  681. sd_bands <- c(1, 2, 3)
  682. avg_zscore_cols <- paste0("Avg_Zscore_", variables)
  683. z_lm_cols <- paste0("Z_lm_", variables)
  684. rank_avg_zscore_cols <- paste0("Rank_", variables)
  685. rank_z_lm_cols <- paste0("Rank_lm_", variables)
  686. configs <- list()
  687. if (adjust) {
  688. message("Replacing NA with 0.001 for Avg_Zscore_ and Z_lm_ columns for ranks")
  689. df <- df %>%
  690. mutate(
  691. across(all_of(avg_zscore_cols), ~ifelse(is.na(.), 0.001, .)),
  692. across(all_of(z_lm_cols), ~ifelse(is.na(.), 0.001, .))
  693. )
  694. }
  695. message("Calculating ranks for Avg_Zscore and Z_lm columns")
  696. rank_col_mapping <- setNames(rank_avg_zscore_cols, avg_zscore_cols)
  697. df_ranked <- df %>%
  698. mutate(across(all_of(avg_zscore_cols), ~rank(., na.last = "keep"), .names = "{rank_col_mapping[.col]}"))
  699. rank_lm_col_mapping <- setNames(rank_z_lm_cols, z_lm_cols)
  700. df_ranked <- df_ranked %>%
  701. mutate(across(all_of(z_lm_cols), ~rank(., na.last = "keep"), .names = "{rank_lm_col_mapping[.col]}"))
  702. # SD-based plots for L and K
  703. for (variable in c("L", "K")) {
  704. if (is_lm) {
  705. rank_var <- paste0("Rank_lm_", variable)
  706. zscore_var <- paste0("Z_lm_", variable)
  707. y_label <- paste("Int Z score", variable)
  708. } else {
  709. rank_var <- paste0("Rank_", variable)
  710. zscore_var <- paste0("Avg_Zscore_", variable)
  711. y_label <- paste("Avg Z score", variable)
  712. }
  713. for (sd_band in sd_bands) {
  714. num_enhancers <- sum(df_ranked[[zscore_var]] >= sd_band, na.rm = TRUE)
  715. num_suppressors <- sum(df_ranked[[zscore_var]] <= -sd_band, na.rm = TRUE)
  716. # Annotated plot configuration
  717. configs[[length(configs) + 1]] <- list(
  718. df = df_ranked,
  719. x_var = rank_var,
  720. y_var = zscore_var,
  721. plot_type = "scatter",
  722. title = paste(y_label, "vs. Rank for", variable, "above", sd_band, "SD"),
  723. sd_band = sd_band,
  724. fill_positive = "#542788",
  725. fill_negative = "orange",
  726. alpha_positive = 0.3,
  727. alpha_negative = 0.3,
  728. annotations = list(
  729. list(
  730. x = median(df_ranked[[rank_var]], na.rm = TRUE),
  731. y = 10,
  732. label = paste("Deletion Enhancers =", num_enhancers),
  733. hjust = 0.5,
  734. vjust = 1
  735. ),
  736. list(
  737. x = median(df_ranked[[rank_var]], na.rm = TRUE),
  738. y = -10,
  739. label = paste("Deletion Suppressors =", num_suppressors),
  740. hjust = 0.5,
  741. vjust = 0
  742. )
  743. ),
  744. shape = 3,
  745. size = 0.1,
  746. y_label = y_label,
  747. x_label = "Rank",
  748. legend_position = "none"
  749. )
  750. # Non-Annotated Plot Configuration
  751. configs[[length(configs) + 1]] <- list(
  752. df = df_ranked,
  753. x_var = rank_var,
  754. y_var = zscore_var,
  755. plot_type = "scatter",
  756. title = paste(y_label, "vs. Rank for", variable, "above", sd_band, "SD No Annotations"),
  757. sd_band = sd_band,
  758. fill_positive = "#542788",
  759. fill_negative = "orange",
  760. alpha_positive = 0.3,
  761. alpha_negative = 0.3,
  762. annotations = NULL,
  763. shape = 3,
  764. size = 0.1,
  765. y_label = y_label,
  766. x_label = "Rank",
  767. legend_position = "none"
  768. )
  769. }
  770. }
  771. # Avg ZScore and Rank Avg ZScore Plots for r, L, K, and AUC
  772. for (variable in variables) {
  773. for (plot_type in c("Avg Zscore vs lm", "Rank Avg Zscore vs lm")) {
  774. title <- paste(plot_type, variable)
  775. # Define specific variables based on plot type
  776. if (plot_type == "Avg Zscore vs lm") {
  777. x_var <- paste0("Avg_Zscore_", variable)
  778. y_var <- paste0("Z_lm_", variable)
  779. rectangles <- list(
  780. list(xmin = -2, xmax = 2, ymin = -2, ymax = 2,
  781. fill = NA, color = "grey20", alpha = 0.1
  782. )
  783. )
  784. } else if (plot_type == "Rank Avg Zscore vs lm") {
  785. x_var <- paste0("Rank_", variable)
  786. y_var <- paste0("Rank_lm_", variable)
  787. rectangles <- NULL
  788. }
  789. # Fit the linear model
  790. lm_model <- lm(as.formula(paste(y_var, "~", x_var)), data = df_ranked)
  791. # Extract intercept and slope from the model coefficients
  792. intercept <- coef(lm_model)[1]
  793. slope <- coef(lm_model)[2]
  794. configs[[length(configs) + 1]] <- list(
  795. df = df_ranked,
  796. x_var = x_var,
  797. y_var = y_var,
  798. plot_type = "scatter",
  799. title = title,
  800. annotations = list(
  801. list(
  802. x = median(df_ranked[[rank_var]], na.rm = TRUE),
  803. y = 10,
  804. label = paste("Deletion Enhancers =", num_enhancers),
  805. hjust = 0.5,
  806. vjust = 1
  807. ),
  808. list(
  809. x = median(df_ranked[[rank_var]], na.rm = TRUE),
  810. y = -10,
  811. label = paste("Deletion Suppressors =", num_suppressors),
  812. hjust = 0.5,
  813. vjust = 0
  814. )
  815. ),
  816. shape = 3,
  817. size = 0.1,
  818. smooth = TRUE,
  819. smooth_color = "black",
  820. lm_line = list(intercept = intercept, slope = slope),
  821. legend_position = "right",
  822. color_var = if (overlap_color) "Overlap" else NULL,
  823. x_label = x_var,
  824. y_label = y_var,
  825. rectangles = rectangles
  826. )
  827. }
  828. }
  829. return(configs)
  830. }
  831. generate_correlation_plot_configs <- function(df) {
  832. # Define relationships for plotting
  833. relationships <- list(
  834. list(x = "Z_lm_L", y = "Z_lm_K", label = "Interaction L vs. Interaction K"),
  835. list(x = "Z_lm_L", y = "Z_lm_r", label = "Interaction L vs. Interaction r"),
  836. list(x = "Z_lm_L", y = "Z_lm_AUC", label = "Interaction L vs. Interaction AUC"),
  837. list(x = "Z_lm_K", y = "Z_lm_r", label = "Interaction K vs. Interaction r"),
  838. list(x = "Z_lm_K", y = "Z_lm_AUC", label = "Interaction K vs. Interaction AUC"),
  839. list(x = "Z_lm_r", y = "Z_lm_AUC", label = "Interaction r vs. Interaction AUC")
  840. )
  841. configs <- list()
  842. for (rel in relationships) {
  843. # Fit linear model
  844. lm_model <- lm(as.formula(paste(rel$y, "~", rel$x)), data = df)
  845. lm_summary <- summary(lm_model)
  846. # Construct plot configuration
  847. config <- list(
  848. df = df,
  849. x_var = rel$x,
  850. y_var = rel$y,
  851. plot_type = "scatter",
  852. title = rel$label,
  853. x_label = paste("z-score", gsub("Z_lm_", "", rel$x)),
  854. y_label = paste("z-score", gsub("Z_lm_", "", rel$y)),
  855. annotations = list(
  856. list(
  857. x = Inf,
  858. y = Inf,
  859. label = paste("R-squared =", round(lm_summary$r.squared, 3)),
  860. hjust = 1.1,
  861. vjust = 2,
  862. size = 4,
  863. color = "black"
  864. )
  865. ),
  866. smooth = TRUE,
  867. smooth_color = "tomato3",
  868. lm_line = list(intercept = coef(lm_model)[1], slope = coef(lm_model)[2]),
  869. legend_position = "right",
  870. shape = 3,
  871. size = 0.5,
  872. color_var = "Overlap",
  873. rectangles = list(
  874. list(
  875. xmin = -2, xmax = 2, ymin = -2, ymax = 2,
  876. fill = NA, color = "grey20", alpha = 0.1
  877. )
  878. ),
  879. cyan_points = TRUE
  880. )
  881. configs[[length(configs) + 1]] <- config
  882. }
  883. return(configs)
  884. }
  885. main <- function() {
  886. lapply(names(args$experiments), function(exp_name) {
  887. exp <- args$experiments[[exp_name]]
  888. exp_path <- exp$path
  889. exp_sd <- exp$sd
  890. out_dir <- file.path(exp_path, "zscores")
  891. out_dir_qc <- file.path(exp_path, "zscores", "qc")
  892. dir.create(out_dir, recursive = TRUE, showWarnings = FALSE)
  893. dir.create(out_dir_qc, recursive = TRUE, showWarnings = FALSE)
  894. summary_vars <- c("L", "K", "r", "AUC", "delta_bg") # fields to filter and calculate summary stats across
  895. interaction_vars <- c("L", "K", "r", "AUC") # fields to calculate interaction z-scores
  896. print_vars <- c("OrfRep", "Plate", "scan", "Col", "Row", "num", "OrfRep", "conc_num", "conc_num_factor",
  897. "delta_bg_tolerance", "delta_bg", "Gene", "L", "K", "r", "AUC", "NG", "DB")
  898. message("Loading and filtering data for experiment: ", exp_name)
  899. df <- load_and_filter_data(args$easy_results_file, sd = exp_sd) %>%
  900. update_gene_names(args$sgd_gene_list) %>%
  901. as_tibble()
  902. # Filter rows above delta background tolerance
  903. df_above_tolerance <- df %>% filter(DB == 1)
  904. df_na <- df %>% mutate(across(all_of(summary_vars), ~ ifelse(DB == 1, NA, .))) # formerly X
  905. df_no_zeros <- df_na %>% filter(L > 0) # formerly X_noZero
  906. # Save some constants
  907. max_conc <- max(df$conc_num_factor_num)
  908. l_half_median <- (median(df_above_tolerance$L, na.rm = TRUE)) / 2
  909. k_half_median <- (median(df_above_tolerance$K, na.rm = TRUE)) / 2
  910. message("Calculating summary statistics before quality control")
  911. df_stats <- calculate_summary_stats(
  912. df = df,
  913. variables = summary_vars,
  914. group_vars = c("conc_num", "conc_num_factor"))$df_with_stats
  915. message("Calculating summary statistics after quality control")
  916. ss <- calculate_summary_stats(
  917. df = df_na,
  918. variables = summary_vars,
  919. group_vars = c("conc_num", "conc_num_factor"))
  920. df_na_ss <- ss$summary_stats
  921. df_na_stats <- ss$df_with_stats
  922. write.csv(df_na_ss, file = file.path(out_dir, "summary_stats_all_strains.csv"), row.names = FALSE)
  923. # For plotting (ggplot warns on NAs)
  924. df_na_stats_filtered <- df_na_stats %>% filter(if_all(all_of(summary_vars), is.finite))
  925. df_na_stats <- df_na_stats %>%
  926. mutate(
  927. WT_L = mean_L,
  928. WT_K = mean_K,
  929. WT_r = mean_r,
  930. WT_AUC = mean_AUC,
  931. WT_sd_L = sd_L,
  932. WT_sd_K = sd_K,
  933. WT_sd_r = sd_r,
  934. WT_sd_AUC = sd_AUC
  935. )
  936. # Pull the background means and standard deviations from zero concentration for interactions
  937. bg_stats <- df_na_stats %>%
  938. filter(conc_num == 0) %>%
  939. summarise(
  940. mean_L = first(mean_L),
  941. mean_K = first(mean_K),
  942. mean_r = first(mean_r),
  943. mean_AUC = first(mean_AUC),
  944. sd_L = first(sd_L),
  945. sd_K = first(sd_K),
  946. sd_r = first(sd_r),
  947. sd_AUC = first(sd_AUC)
  948. )
  949. message("Calculating summary statistics after quality control excluding zero values")
  950. df_no_zeros_stats <- calculate_summary_stats(
  951. df = df_no_zeros,
  952. variables = summary_vars,
  953. group_vars = c("conc_num", "conc_num_factor")
  954. )$df_with_stats
  955. message("Filtering by 2SD of K")
  956. df_na_within_2sd_k <- df_na_stats %>%
  957. filter(K >= (mean_K - 2 * sd_K) & K <= (mean_K + 2 * sd_K))
  958. df_na_outside_2sd_k <- df_na_stats %>%
  959. filter(K < (mean_K - 2 * sd_K) | K > (mean_K + 2 * sd_K))
  960. message("Calculating summary statistics for L within 2SD of K")
  961. # TODO We're omitting the original z_max calculation, not sure if needed?
  962. ss <- calculate_summary_stats(df_na_within_2sd_k, "L", group_vars = c("conc_num", "conc_num_factor"))$summary_stats
  963. write.csv(ss,
  964. file = file.path(out_dir_qc, "max_observed_L_vals_for_spots_within_2sd_K.csv"),
  965. row.names = FALSE)
  966. message("Calculating summary statistics for L outside 2SD of K")
  967. ss <- calculate_summary_stats(df_na_outside_2sd_k, "L", group_vars = c("conc_num", "conc_num_factor"))
  968. df_na_l_outside_2sd_k_stats <- ss$df_with_stats
  969. write.csv(ss$summary_stats,
  970. file = file.path(out_dir, "max_observed_L_vals_for_spots_outside_2sd_K.csv"),
  971. row.names = FALSE)
  972. # Each plots list corresponds to a file
  973. l_vs_k_plot_configs <- list(
  974. list(
  975. df = df,
  976. x_var = "L",
  977. y_var = "K",
  978. plot_type = "scatter",
  979. delta_bg_point = TRUE,
  980. title = "Raw L vs K before quality control",
  981. color_var = "conc_num_factor",
  982. error_bar = FALSE,
  983. legend_position = "right"
  984. )
  985. )
  986. frequency_delta_bg_plot_configs <- list(
  987. list(
  988. df = df_stats,
  989. x_var = "delta_bg",
  990. y_var = NULL,
  991. plot_type = "density",
  992. title = "Density plot for Delta Background by Conc All Data",
  993. color_var = "conc_num_factor",
  994. x_label = "Delta Background",
  995. y_label = "Density",
  996. error_bar = FALSE,
  997. legend_position = "right"),
  998. list(
  999. df = df_stats,
  1000. x_var = "delta_bg",
  1001. y_var = NULL,
  1002. plot_type = "bar",
  1003. title = "Bar plot for Delta Background by Conc All Data",
  1004. color_var = "conc_num_factor",
  1005. x_label = "Delta Background",
  1006. y_label = "Count",
  1007. error_bar = FALSE,
  1008. legend_position = "right")
  1009. )
  1010. above_threshold_plot_configs <- list(
  1011. list(
  1012. df = df_above_tolerance,
  1013. x_var = "L",
  1014. y_var = "K",
  1015. plot_type = "scatter",
  1016. delta_bg_point = TRUE,
  1017. title = paste("Raw L vs K for strains above Delta Background threshold of",
  1018. df_above_tolerance$delta_bg_tolerance[[1]], "or above"),
  1019. color_var = "conc_num_factor",
  1020. position = "jitter",
  1021. annotations = list(
  1022. list(
  1023. x = l_half_median,
  1024. y = k_half_median,
  1025. label = paste("# strains above Delta Background tolerance =", nrow(df_above_tolerance))
  1026. )
  1027. ),
  1028. error_bar = FALSE,
  1029. legend_position = "right"
  1030. )
  1031. )
  1032. plate_analysis_plot_configs <- generate_plate_analysis_plot_configs(
  1033. variables = summary_vars,
  1034. df_before = df_stats,
  1035. df_after = df_na_stats_filtered
  1036. )
  1037. plate_analysis_boxplot_configs <- generate_plate_analysis_plot_configs(
  1038. variables = summary_vars,
  1039. df_before = df_stats,
  1040. df_after = df_na_stats_filtered,
  1041. plot_type = "box"
  1042. )
  1043. plate_analysis_no_zeros_plot_configs <- generate_plate_analysis_plot_configs(
  1044. variables = summary_vars,
  1045. stages = c("after"), # Only after QC
  1046. df_after = df_no_zeros_stats
  1047. )
  1048. plate_analysis_no_zeros_boxplot_configs <- generate_plate_analysis_plot_configs(
  1049. variables = summary_vars,
  1050. stages = c("after"), # Only after QC
  1051. df_after = df_no_zeros_stats,
  1052. plot_type = "box"
  1053. )
  1054. l_outside_2sd_k_plot_configs <- list(
  1055. list(
  1056. df = df_na_l_outside_2sd_k_stats,
  1057. x_var = "L",
  1058. y_var = "K",
  1059. plot_type = "scatter",
  1060. delta_bg_point = TRUE,
  1061. title = "Raw L vs K for strains falling outside 2SD of the K mean at each Conc",
  1062. color_var = "conc_num_factor",
  1063. position = "jitter",
  1064. legend_position = "right"
  1065. )
  1066. )
  1067. delta_bg_outside_2sd_k_plot_configs <- list(
  1068. list(
  1069. df = df_na_l_outside_2sd_k_stats,
  1070. x_var = "delta_bg",
  1071. y_var = "K",
  1072. plot_type = "scatter",
  1073. gene_point = TRUE,
  1074. title = "Delta Background vs K for strains falling outside 2SD of the K mean at each Conc",
  1075. color_var = "conc_num_factor",
  1076. position = "jitter",
  1077. legend_position = "right"
  1078. )
  1079. )
  1080. message("Generating quality control plots in parallel")
  1081. # future::plan(future::multicore, workers = parallel::detectCores())
  1082. future::plan(future::multisession, workers = 3) # generate 3 plots in parallel
  1083. plot_configs <- list(
  1084. list(out_dir = out_dir_qc, filename = "L_vs_K_before_quality_control",
  1085. plot_configs = l_vs_k_plot_configs),
  1086. list(out_dir = out_dir_qc, filename = "frequency_delta_background",
  1087. plot_configs = frequency_delta_bg_plot_configs),
  1088. list(out_dir = out_dir_qc, filename = "L_vs_K_above_threshold",
  1089. plot_configs = above_threshold_plot_configs),
  1090. list(out_dir = out_dir_qc, filename = "plate_analysis",
  1091. plot_configs = plate_analysis_plot_configs),
  1092. list(out_dir = out_dir_qc, filename = "plate_analysis_boxplots",
  1093. plot_configs = plate_analysis_boxplot_configs),
  1094. list(out_dir = out_dir_qc, filename = "plate_analysis_no_zeros",
  1095. plot_configs = plate_analysis_no_zeros_plot_configs),
  1096. list(out_dir = out_dir_qc, filename = "plate_analysis_no_zeros_boxplots",
  1097. plot_configs = plate_analysis_no_zeros_boxplot_configs),
  1098. list(out_dir = out_dir_qc, name = "L_vs_K_for_strains_2SD_outside_mean_K",
  1099. plot_configs = l_outside_2sd_k_plot_configs),
  1100. list(out_dir = out_dir_qc, name = "delta_background_vs_K_for_strains_2sd_outside_mean_K",
  1101. plot_configs = delta_bg_outside_2sd_k_plot_configs)
  1102. )
  1103. # Generating quality control plots in parallel
  1104. furrr::future_map(plot_configs, function(config) {
  1105. generate_and_save_plots(config$out_dir, config$filename, config$plot_configs)
  1106. }, .options = furrr_options(seed = TRUE))
  1107. # Process background strains
  1108. bg_strains <- c("YDL227C")
  1109. lapply(bg_strains, function(strain) {
  1110. message("Processing background strain: ", strain)
  1111. # Handle missing data by setting zero values to NA
  1112. # and then removing any rows with NA in L col
  1113. df_bg <- df_na %>%
  1114. filter(OrfRep == strain) %>%
  1115. mutate(
  1116. L = if_else(L == 0, NA, L),
  1117. K = if_else(K == 0, NA, K),
  1118. r = if_else(r == 0, NA, r),
  1119. AUC = if_else(AUC == 0, NA, AUC)
  1120. ) %>%
  1121. filter(!is.na(L))
  1122. # Recalculate summary statistics for the background strain
  1123. message("Calculating summary statistics for background strain")
  1124. ss_bg <- calculate_summary_stats(df_bg, summary_vars, group_vars = c("OrfRep", "conc_num", "conc_num_factor"))
  1125. summary_stats_bg <- ss_bg$summary_stats
  1126. write.csv(summary_stats_bg,
  1127. file = file.path(out_dir, paste0("summary_stats_background_strain_", strain, ".csv")),
  1128. row.names = FALSE)
  1129. # Set the missing values to the highest theoretical value at each drug conc for L
  1130. # Leave other values as 0 for the max/min
  1131. df_reference <- df_na_stats %>% # formerly X2_RF
  1132. filter(OrfRep == strain) %>%
  1133. filter(!is.na(L)) %>%
  1134. group_by(conc_num, conc_num_factor) %>%
  1135. mutate(
  1136. max_l_theoretical = max(max_L, na.rm = TRUE),
  1137. L = ifelse(L == 0 & !is.na(L) & conc_num > 0, max_l_theoretical, L),
  1138. SM = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, 1, 0),
  1139. L = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, max_l_theoretical, L)) %>%
  1140. ungroup()
  1141. # Ditto for deletion strains
  1142. df_deletion <- df_na_stats %>% # formerly X2
  1143. filter(OrfRep != strain) %>%
  1144. filter(!is.na(L)) %>%
  1145. mutate(SM = 0) %>%
  1146. group_by(conc_num, conc_num_factor) %>%
  1147. mutate(
  1148. max_l_theoretical = max(max_L, na.rm = TRUE),
  1149. L = ifelse(L == 0 & !is.na(L) & conc_num > 0, max_l_theoretical, L),
  1150. SM = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, 1, SM),
  1151. L = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, max_l_theoretical, L)) %>%
  1152. ungroup()
  1153. message("Calculating reference strain interaction scores")
  1154. df_reference_stats <- calculate_summary_stats(
  1155. df = df_reference,
  1156. variables = interaction_vars,
  1157. group_vars = c("OrfRep", "Gene", "num", "conc_num", "conc_num_factor")
  1158. )$df_with_stats
  1159. reference_results <- calculate_interaction_scores(df_reference_stats, max_conc, bg_stats, group_vars = c("OrfRep", "Gene", "num"))
  1160. zscore_calculations_reference <- reference_results$calculations
  1161. zscore_interactions_reference <- reference_results$interactions
  1162. zscore_interactions_reference_joined <- reference_results$interactions_joined
  1163. message("Calculating deletion strain(s) interactions scores")
  1164. df_deletion_stats <- calculate_summary_stats(
  1165. df = df_deletion,
  1166. variables = interaction_vars,
  1167. group_vars = c("OrfRep", "Gene", "conc_num", "conc_num_factor")
  1168. )$df_with_stats
  1169. deletion_results <- calculate_interaction_scores(df_deletion_stats, max_conc, bg_stats, group_vars = c("OrfRep"))
  1170. zscore_calculations <- deletion_results$calculations
  1171. zscore_interactions <- deletion_results$interactions
  1172. zscore_interactions_joined <- deletion_results$interactions_joined
  1173. # Writing Z-Scores to file
  1174. write.csv(zscore_calculations_reference, file = file.path(out_dir, "zscore_calculations_reference.csv"), row.names = FALSE)
  1175. write.csv(zscore_calculations, file = file.path(out_dir, "zscore_calculations.csv"), row.names = FALSE)
  1176. write.csv(zscore_interactions_reference, file = file.path(out_dir, "zscore_interactions_reference.csv"), row.names = FALSE)
  1177. write.csv(zscore_interactions, file = file.path(out_dir, "zscore_interactions.csv"), row.names = FALSE)
  1178. # Create interaction plots
  1179. message("Generating reference interaction plots")
  1180. reference_plot_configs <- generate_interaction_plot_configs(zscore_interactions_reference_joined)
  1181. generate_and_save_plots(out_dir, "interaction_plots_reference", reference_plot_configs, grid_layout = list(ncol = 4, nrow = 3))
  1182. message("Generating deletion interaction plots")
  1183. deletion_plot_configs <- generate_interaction_plot_configs(zscore_interactions_joined)
  1184. generate_and_save_plots(out_dir, "interaction_plots", deletion_plot_configs, grid_layout = list(ncol = 4, nrow = 3))
  1185. # Define conditions for enhancers and suppressors
  1186. # TODO Add to study config?
  1187. threshold <- 2
  1188. enhancer_condition_L <- zscore_interactions$Avg_Zscore_L >= threshold
  1189. suppressor_condition_L <- zscore_interactions$Avg_Zscore_L <= -threshold
  1190. enhancer_condition_K <- zscore_interactions$Avg_Zscore_K >= threshold
  1191. suppressor_condition_K <- zscore_interactions$Avg_Zscore_K <= -threshold
  1192. # Subset data
  1193. enhancers_L <- zscore_interactions[enhancer_condition_L, ]
  1194. suppressors_L <- zscore_interactions[suppressor_condition_L, ]
  1195. enhancers_K <- zscore_interactions[enhancer_condition_K, ]
  1196. suppressors_K <- zscore_interactions[suppressor_condition_K, ]
  1197. # Save enhancers and suppressors
  1198. message("Writing enhancer/suppressor csv files")
  1199. write.csv(enhancers_L, file = file.path(out_dir, "zscore_interactions_deletion_enhancers_L.csv"), row.names = FALSE)
  1200. write.csv(suppressors_L, file = file.path(out_dir, "zscore_interactions_deletion_suppressors_L.csv"), row.names = FALSE)
  1201. write.csv(enhancers_K, file = file.path(out_dir, "zscore_interactions_deletion_enhancers_K.csv"), row.names = FALSE)
  1202. write.csv(suppressors_K, file = file.path(out_dir, "zscore_interactions_deletion_suppressors_K.csv"), row.names = FALSE)
  1203. # Combine conditions for enhancers and suppressors
  1204. enhancers_and_suppressors_L <- zscore_interactions[enhancer_condition_L | suppressor_condition_L, ]
  1205. enhancers_and_suppressors_K <- zscore_interactions[enhancer_condition_K | suppressor_condition_K, ]
  1206. # Save combined enhancers and suppressors
  1207. write.csv(enhancers_and_suppressors_L,
  1208. file = file.path(out_dir, "zscore_interactions_deletion_enhancers_and_suppressors_L.csv"), row.names = FALSE)
  1209. write.csv(enhancers_and_suppressors_K,
  1210. file = file.path(out_dir, "zscore_interaction_deletion_enhancers_and_suppressors_K.csv"), row.names = FALSE)
  1211. # Handle linear model based enhancers and suppressors
  1212. lm_threshold <- 2 # TODO add to study config?
  1213. enhancers_lm_L <- zscore_interactions[zscore_interactions$Z_lm_L >= lm_threshold, ]
  1214. suppressors_lm_L <- zscore_interactions[zscore_interactions$Z_lm_L <= -lm_threshold, ]
  1215. enhancers_lm_K <- zscore_interactions[zscore_interactions$Z_lm_K >= lm_threshold, ]
  1216. suppressors_lm_K <- zscore_interactions[zscore_interactions$Z_lm_K <= -lm_threshold, ]
  1217. # Save linear model based enhancers and suppressors
  1218. message("Writing linear model enhancer/suppressor csv files")
  1219. write.csv(enhancers_lm_L,
  1220. file = file.path(out_dir, "zscore_interactions_deletion_enhancers_lm_L.csv"), row.names = FALSE)
  1221. write.csv(suppressors_lm_L,
  1222. file = file.path(out_dir, "zscore_interactions_deletion_suppressors_lm_L.csv"), row.names = FALSE)
  1223. write.csv(enhancers_lm_K,
  1224. file = file.path(out_dir, "zscore_interactions_deletion_enhancers_lm_K.csv"), row.names = FALSE)
  1225. write.csv(suppressors_lm_K,
  1226. file = file.path(out_dir, "zscore_interactions_deletion_suppressors_lm_K.csv"), row.names = FALSE)
  1227. message("Generating rank plots")
  1228. rank_plot_configs <- generate_rank_plot_configs(
  1229. df = zscore_interactions_joined,
  1230. variables = interaction_vars,
  1231. is_lm = FALSE,
  1232. adjust = TRUE
  1233. )
  1234. generate_and_save_plots(out_dir = out_dir, filename = "rank_plots",
  1235. plot_configs = rank_plot_configs, grid_layout = list(ncol = 3, nrow = 2))
  1236. message("Generating ranked linear model plots")
  1237. rank_lm_plot_configs <- generate_rank_plot_configs(
  1238. df = zscore_interactions_joined,
  1239. variables = interaction_vars,
  1240. is_lm = TRUE,
  1241. adjust = TRUE
  1242. )
  1243. generate_and_save_plots(out_dir = out_dir, filename = "rank_plots_lm",
  1244. plot_configs = rank_lm_plot_configs, grid_layout = list(ncol = 3, nrow = 2))
  1245. message("Filtering and reranking plots")
  1246. interaction_threshold <- 2 # TODO add to study config?
  1247. # Formerly X_NArm
  1248. zscore_interactions_filtered <- zscore_interactions_joined %>%
  1249. filter(!is.na(Z_lm_L) & !is.na(Avg_Zscore_L)) %>%
  1250. mutate(
  1251. Overlap = case_when(
  1252. Z_lm_L >= interaction_threshold & Avg_Zscore_L >= interaction_threshold ~ "Deletion Enhancer Both",
  1253. Z_lm_L <= -interaction_threshold & Avg_Zscore_L <= -interaction_threshold ~ "Deletion Suppressor Both",
  1254. Z_lm_L >= interaction_threshold & Avg_Zscore_L <= interaction_threshold ~ "Deletion Enhancer lm only",
  1255. Z_lm_L <= interaction_threshold & Avg_Zscore_L >= interaction_threshold ~ "Deletion Enhancer Avg Zscore only",
  1256. Z_lm_L <= -interaction_threshold & Avg_Zscore_L >= -interaction_threshold ~ "Deletion Suppressor lm only",
  1257. Z_lm_L >= -interaction_threshold & Avg_Zscore_L <= -interaction_threshold ~ "Deletion Suppressor Avg Zscore only",
  1258. Z_lm_L >= interaction_threshold & Avg_Zscore_L <= -interaction_threshold ~ "Deletion Enhancer lm, Deletion Suppressor Avg Z score",
  1259. Z_lm_L <= -interaction_threshold & Avg_Zscore_L >= interaction_threshold ~ "Deletion Suppressor lm, Deletion Enhancer Avg Z score",
  1260. TRUE ~ "No Effect"
  1261. ),
  1262. lm_R_squared_L = summary(lm(Z_lm_L ~ Avg_Zscore_L))$r.squared,
  1263. lm_R_squared_K = summary(lm(Z_lm_K ~ Avg_Zscore_K))$r.squared,
  1264. lm_R_squared_r = summary(lm(Z_lm_r ~ Avg_Zscore_r))$r.squared,
  1265. lm_R_squared_AUC = summary(lm(Z_lm_AUC ~ Avg_Zscore_AUC))$r.squared
  1266. )
  1267. message("Generating filtered ranked plots")
  1268. rank_plot_filtered_configs <- generate_rank_plot_configs(
  1269. df = zscore_interactions_filtered,
  1270. variables = interaction_vars,
  1271. is_lm = FALSE,
  1272. adjust = FALSE,
  1273. overlap_color = TRUE
  1274. )
  1275. generate_and_save_plots(
  1276. out_dir = out_dir,
  1277. filename = "RankPlots_na_rm",
  1278. plot_configs = rank_plot_filtered_configs,
  1279. grid_layout = list(ncol = 3, nrow = 2))
  1280. message("Generating filtered ranked linear model plots")
  1281. rank_plot_lm_filtered_configs <- generate_rank_plot_configs(
  1282. df = zscore_interactions_filtered,
  1283. variables = interaction_vars,
  1284. is_lm = TRUE,
  1285. adjust = FALSE,
  1286. overlap_color = TRUE
  1287. )
  1288. generate_and_save_plots(
  1289. out_dir = out_dir,
  1290. filename = "rank_plots_lm_na_rm",
  1291. plot_configs = rank_plot_lm_filtered_configs,
  1292. grid_layout = list(ncol = 3, nrow = 2))
  1293. message("Generating correlation curve parameter pair plots")
  1294. correlation_plot_configs <- generate_correlation_plot_configs(zscore_interactions_filtered)
  1295. generate_and_save_plots(
  1296. out_dir = out_dir,
  1297. filename = "correlation_cpps",
  1298. plot_configs = correlation_plot_configs,
  1299. grid_layout = list(ncol = 2, nrow = 2))
  1300. })
  1301. })
  1302. }
  1303. main()