calculate_interaction_zscores.R 54 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483
  1. suppressMessages({
  2. library("ggplot2")
  3. library("plotly")
  4. library("htmlwidgets")
  5. library("dplyr")
  6. library("rlang")
  7. library("ggthemes")
  8. library("data.table")
  9. library("future")
  10. library("furrr")
  11. library("purrr")
  12. })
  13. # These parallelization libraries are very noisy
  14. suppressPackageStartupMessages({
  15. library("future")
  16. library("furrr")
  17. library("purrr")
  18. })
  19. options(warn = 2)
  20. # Constants for configuration
  21. plot_width <- 14
  22. plot_height <- 9
  23. base_size <- 14
  24. parse_arguments <- function() {
  25. args <- if (interactive()) {
  26. c(
  27. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/20240116_jhartman2_DoxoHLD",
  28. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/apps/r/SGD_features.tab",
  29. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/easy/20240116_jhartman2_DoxoHLD/results_std.txt",
  30. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/20240822_jhartman2_DoxoHLD/exp1",
  31. "Experiment 1: Doxo versus HLD",
  32. 3,
  33. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/20240822_jhartman2_DoxoHLD/exp2",
  34. "Experiment 2: HLD versus Doxo",
  35. 3
  36. )
  37. } else {
  38. commandArgs(trailingOnly = TRUE)
  39. }
  40. out_dir <- normalizePath(args[1], mustWork = FALSE)
  41. sgd_gene_list <- normalizePath(args[2], mustWork = FALSE)
  42. easy_results_file <- normalizePath(args[3], mustWork = FALSE)
  43. # The remaining arguments should be in groups of 3
  44. exp_args <- args[-(1:3)]
  45. if (length(exp_args) %% 3 != 0) {
  46. stop("Experiment arguments should be in groups of 3: path, name, sd.")
  47. }
  48. # Extract the experiments into a list
  49. experiments <- list()
  50. for (i in seq(1, length(exp_args), by = 3)) {
  51. exp_name <- exp_args[i + 1]
  52. experiments[[exp_name]] <- list(
  53. path = normalizePath(exp_args[i], mustWork = FALSE),
  54. sd = as.numeric(exp_args[i + 2])
  55. )
  56. }
  57. # Extract the trailing number from each path
  58. trailing_numbers <- sapply(experiments, function(x) {
  59. path <- x$path
  60. nums <- gsub("[^0-9]", "", basename(path))
  61. as.integer(nums)
  62. })
  63. # Sort the experiments based on the trailing numbers
  64. sorted_experiments <- experiments[order(trailing_numbers)]
  65. list(
  66. out_dir = out_dir,
  67. sgd_gene_list = sgd_gene_list,
  68. easy_results_file = easy_results_file,
  69. experiments = sorted_experiments
  70. )
  71. }
  72. args <- parse_arguments()
  73. # Should we keep output in exp dirs or combine in the study output dir?
  74. # dir.create(file.path(args$out_dir, "zscores"), showWarnings = FALSE)
  75. # dir.create(file.path(args$out_dir, "zscores", "qc"), showWarnings = FALSE)
  76. theme_publication <- function(base_size = 14, base_family = "sans", legend_position = "bottom") {
  77. theme_foundation <- ggthemes::theme_foundation(base_size = base_size, base_family = base_family)
  78. theme_foundation %+replace%
  79. theme(
  80. plot.title = element_text(face = "bold", size = rel(1.6), hjust = 0.5),
  81. text = element_text(),
  82. panel.background = element_blank(),
  83. plot.background = element_blank(),
  84. panel.border = element_blank(),
  85. axis.title = element_text(face = "bold", size = rel(1.4)),
  86. axis.title.y = element_text(angle = 90, vjust = 2),
  87. # axis.title.x = element_text(vjust = -0.2), # TODO this causes errors
  88. axis.text = element_text(size = rel(1.2)),
  89. axis.line = element_line(colour = "black"),
  90. # axis.ticks = element_line(),
  91. panel.grid.major = element_line(colour = "#f0f0f0"),
  92. panel.grid.minor = element_blank(),
  93. legend.key = element_rect(colour = NA),
  94. legend.position = legend_position,
  95. legend.direction = ifelse(legend_position == "right", "vertical", "horizontal"),
  96. # legend.key.size = unit(0.5, "cm"),
  97. legend.spacing = unit(0, "cm"),
  98. legend.title = element_text(face = "italic", size = rel(1.3)),
  99. legend.text = element_text(size = rel(1.2)),
  100. plot.margin = unit(c(10, 5, 5, 5), "mm"),
  101. # strip.background = element_rect(colour = "#f0f0f0", fill = "#f0f0f0"),
  102. # strip.text = element_text(face = "bold")
  103. )
  104. }
  105. scale_fill_publication <- function(...) {
  106. discrete_scale("fill", "Publication", manual_pal(values = c(
  107. "#386cb0", "#fdb462", "#7fc97f", "#ef3b2c", "#662506",
  108. "#a6cee3", "#fb9a99", "#984ea3", "#ffff33"
  109. )), ...)
  110. }
  111. scale_colour_publication <- function(...) {
  112. discrete_scale("colour", "Publication", manual_pal(values = c(
  113. "#386cb0", "#fdb462", "#7fc97f", "#ef3b2c", "#662506",
  114. "#a6cee3", "#fb9a99", "#984ea3", "#ffff33"
  115. )), ...)
  116. }
  117. # Load the initial dataframe from the easy_results_file
  118. load_and_filter_data <- function(easy_results_file, sd = 3) {
  119. df <- read.delim(easy_results_file, skip = 2, as.is = TRUE, row.names = 1, strip.white = TRUE)
  120. df <- df %>%
  121. filter(!(.[[1]] %in% c("", "Scan"))) %>%
  122. filter(!is.na(ORF) & ORF != "" & !Gene %in% c("BLANK", "Blank", "blank") & Drug != "BMH21") %>%
  123. # Rename columns
  124. rename(L = l, num = Num., AUC = AUC96, scan = Scan, last_bg = LstBackgrd, first_bg = X1stBackgrd) %>%
  125. mutate(
  126. across(c(Col, Row, num, L, K, r, scan, AUC, last_bg, first_bg), as.numeric),
  127. delta_bg = last_bg - first_bg,
  128. delta_bg_tolerance = mean(delta_bg, na.rm = TRUE) + (sd * sd(delta_bg, na.rm = TRUE)),
  129. NG = if_else(L == 0 & !is.na(L), 1, 0),
  130. DB = if_else(delta_bg >= delta_bg_tolerance, 1, 0),
  131. SM = 0,
  132. OrfRep = if_else(ORF == "YDL227C", "YDL227C", OrfRep), # should these be hardcoded?
  133. conc_num = as.numeric(gsub("[^0-9\\.]", "", Conc)),
  134. conc_num_factor = factor(as.numeric(factor(conc_num)) - 1),
  135. conc_num_factor_num = as.numeric(conc_num_factor)
  136. )
  137. return(df)
  138. }
  139. # Update Gene names using the SGD gene list
  140. update_gene_names <- function(df, sgd_gene_list) {
  141. # Load SGD gene list
  142. genes <- read.delim(file = sgd_gene_list,
  143. quote = "", header = FALSE,
  144. colClasses = c(rep("NULL", 3), rep("character", 2), rep("NULL", 11)))
  145. # Create a named vector for mapping ORF to GeneName
  146. gene_map <- setNames(genes$V5, genes$V4)
  147. # Vectorized match to find the GeneName from gene_map
  148. mapped_genes <- gene_map[df$ORF]
  149. # Replace NAs in mapped_genes with original Gene names (preserves existing Gene names if ORF is not found)
  150. updated_genes <- ifelse(is.na(mapped_genes) | df$OrfRep == "YDL227C", df$Gene, mapped_genes)
  151. # Ensure Gene is not left blank or incorrectly updated to "OCT1"
  152. df <- df %>%
  153. mutate(Gene = ifelse(updated_genes == "" | updated_genes == "OCT1", OrfRep, updated_genes))
  154. return(df)
  155. }
  156. calculate_summary_stats <- function(df, variables, group_vars) {
  157. summary_stats <- df %>%
  158. group_by(across(all_of(group_vars))) %>%
  159. summarise(
  160. N = n(),
  161. across(all_of(variables),
  162. list(
  163. mean = ~mean(., na.rm = TRUE),
  164. median = ~median(., na.rm = TRUE),
  165. max = ~ifelse(all(is.na(.)), NA, max(., na.rm = TRUE)),
  166. min = ~ifelse(all(is.na(.)), NA, min(., na.rm = TRUE)),
  167. sd = ~sd(., na.rm = TRUE),
  168. se = ~sd(., na.rm = TRUE) / sqrt(N - 1) # Bessel's correction
  169. ),
  170. .names = "{.fn}_{.col}"
  171. ),
  172. .groups = "drop"
  173. )
  174. # Create a cleaned version of df that doesn't overlap with summary_stats
  175. cleaned_df <- df %>%
  176. select(-any_of(setdiff(intersect(names(df), names(summary_stats)), group_vars)))
  177. df_joined <- left_join(cleaned_df, summary_stats, by = group_vars)
  178. return(list(summary_stats = summary_stats, df_with_stats = df_joined))
  179. }
  180. calculate_interaction_scores <- function(df, max_conc, bg_stats,
  181. group_vars = c("OrfRep", "Gene", "num")) {
  182. # Calculate total concentration variables
  183. total_conc_num <- length(unique(df$conc_num))
  184. calculations <- df %>%
  185. group_by(across(all_of(group_vars))) %>%
  186. mutate(
  187. NG = sum(NG, na.rm = TRUE),
  188. DB = sum(DB, na.rm = TRUE),
  189. SM = sum(SM, na.rm = TRUE),
  190. num_non_removed_concs = total_conc_num - sum(DB, na.rm = TRUE) - 1,
  191. # Calculate raw data
  192. Raw_Shift_L = first(mean_L) - bg_stats$mean_L,
  193. Raw_Shift_K = first(mean_K) - bg_stats$mean_K,
  194. Raw_Shift_r = first(mean_r) - bg_stats$mean_r,
  195. Raw_Shift_AUC = first(mean_AUC) - bg_stats$mean_AUC,
  196. Z_Shift_L = first(Raw_Shift_L) / bg_stats$sd_L,
  197. Z_Shift_K = first(Raw_Shift_K) / bg_stats$sd_K,
  198. Z_Shift_r = first(Raw_Shift_r) / bg_stats$sd_r,
  199. Z_Shift_AUC = first(Raw_Shift_AUC) / bg_stats$sd_AUC,
  200. Exp_L = WT_L + Raw_Shift_L,
  201. Exp_K = WT_K + Raw_Shift_K,
  202. Exp_r = WT_r + Raw_Shift_r,
  203. Exp_AUC = WT_AUC + Raw_Shift_AUC,
  204. Delta_L = mean_L - Exp_L,
  205. Delta_K = mean_K - Exp_K,
  206. Delta_r = mean_r - Exp_r,
  207. Delta_AUC = mean_AUC - Exp_AUC,
  208. Delta_L = if_else(NG == 1, mean_L - WT_L, Delta_L),
  209. Delta_K = if_else(NG == 1, mean_K - WT_K, Delta_K),
  210. Delta_r = if_else(NG == 1, mean_r - WT_r, Delta_r),
  211. Delta_AUC = if_else(NG == 1, mean_AUC - WT_AUC, Delta_AUC),
  212. Delta_L = if_else(SM == 1, mean_L - WT_L, Delta_L),
  213. # Calculate Z-scores
  214. Zscore_L = Delta_L / WT_sd_L,
  215. Zscore_K = Delta_K / WT_sd_K,
  216. Zscore_r = Delta_r / WT_sd_r,
  217. Zscore_AUC = Delta_AUC / WT_sd_AUC,
  218. # Fit linear models and store in list-columns
  219. gene_lm_L = list(lm(Delta_L ~ conc_num_factor_num, data = pick(everything()))),
  220. gene_lm_K = list(lm(Delta_K ~ conc_num_factor_num, data = pick(everything()))),
  221. gene_lm_r = list(lm(Delta_r ~ conc_num_factor_num, data = pick(everything()))),
  222. gene_lm_AUC = list(lm(Delta_AUC ~ conc_num_factor_num, data = pick(everything()))),
  223. # Extract coefficients using purrr::map_dbl
  224. lm_intercept_L = map_dbl(gene_lm_L, ~ coef(.x)[1]),
  225. lm_slope_L = map_dbl(gene_lm_L, ~ coef(.x)[2]),
  226. lm_intercept_K = map_dbl(gene_lm_K, ~ coef(.x)[1]),
  227. lm_slope_K = map_dbl(gene_lm_K, ~ coef(.x)[2]),
  228. lm_intercept_r = map_dbl(gene_lm_r, ~ coef(.x)[1]),
  229. lm_slope_r = map_dbl(gene_lm_r, ~ coef(.x)[2]),
  230. lm_intercept_AUC = map_dbl(gene_lm_AUC, ~ coef(.x)[1]),
  231. lm_slope_AUC = map_dbl(gene_lm_AUC, ~ coef(.x)[2]),
  232. # Calculate lm_Score_* based on coefficients
  233. lm_Score_L = max_conc * lm_slope_L + lm_intercept_L,
  234. lm_Score_K = max_conc * lm_slope_K + lm_intercept_K,
  235. lm_Score_r = max_conc * lm_slope_r + lm_intercept_r,
  236. lm_Score_AUC = max_conc * lm_slope_AUC + lm_intercept_AUC,
  237. # Calculate R-squared values
  238. R_Squared_L = map_dbl(gene_lm_L, ~ summary(.x)$r.squared),
  239. R_Squared_K = map_dbl(gene_lm_K, ~ summary(.x)$r.squared),
  240. R_Squared_r = map_dbl(gene_lm_r, ~ summary(.x)$r.squared),
  241. R_Squared_AUC = map_dbl(gene_lm_AUC, ~ summary(.x)$r.squared)
  242. ) %>%
  243. ungroup()
  244. # Calculate overall mean and SD for lm_Score_* variables
  245. lm_means_sds <- calculations %>%
  246. summarise(
  247. lm_mean_L = mean(lm_Score_L, na.rm = TRUE),
  248. lm_sd_L = sd(lm_Score_L, na.rm = TRUE),
  249. lm_mean_K = mean(lm_Score_K, na.rm = TRUE),
  250. lm_sd_K = sd(lm_Score_K, na.rm = TRUE),
  251. lm_mean_r = mean(lm_Score_r, na.rm = TRUE),
  252. lm_sd_r = sd(lm_Score_r, na.rm = TRUE),
  253. lm_mean_AUC = mean(lm_Score_AUC, na.rm = TRUE),
  254. lm_sd_AUC = sd(lm_Score_AUC, na.rm = TRUE)
  255. )
  256. calculations <- calculations %>%
  257. mutate(
  258. Z_lm_L = (lm_Score_L - lm_means_sds$lm_mean_L) / lm_means_sds$lm_sd_L,
  259. Z_lm_K = (lm_Score_K - lm_means_sds$lm_mean_K) / lm_means_sds$lm_sd_K,
  260. Z_lm_r = (lm_Score_r - lm_means_sds$lm_mean_r) / lm_means_sds$lm_sd_r,
  261. Z_lm_AUC = (lm_Score_AUC - lm_means_sds$lm_mean_AUC) / lm_means_sds$lm_sd_AUC
  262. )
  263. # Summarize some of the stats
  264. interactions <- calculations %>%
  265. group_by(across(all_of(group_vars))) %>%
  266. mutate(
  267. # Calculate raw shifts
  268. Raw_Shift_L = first(Raw_Shift_L),
  269. Raw_Shift_K = first(Raw_Shift_K),
  270. Raw_Shift_r = first(Raw_Shift_r),
  271. Raw_Shift_AUC = first(Raw_Shift_AUC),
  272. # Calculate Z-shifts
  273. Z_Shift_L = first(Z_Shift_L),
  274. Z_Shift_K = first(Z_Shift_K),
  275. Z_Shift_r = first(Z_Shift_r),
  276. Z_Shift_AUC = first(Z_Shift_AUC),
  277. # Sum Z-scores
  278. Sum_Z_Score_L = sum(Zscore_L),
  279. Sum_Z_Score_K = sum(Zscore_K),
  280. Sum_Z_Score_r = sum(Zscore_r),
  281. Sum_Z_Score_AUC = sum(Zscore_AUC),
  282. # Calculate Average Z-scores
  283. Avg_Zscore_L = Sum_Z_Score_L / num_non_removed_concs,
  284. Avg_Zscore_K = Sum_Z_Score_K / num_non_removed_concs,
  285. Avg_Zscore_r = Sum_Z_Score_r / (total_conc_num - 1),
  286. Avg_Zscore_AUC = Sum_Z_Score_AUC / (total_conc_num - 1)
  287. ) %>%
  288. arrange(desc(Z_lm_L), desc(NG)) %>%
  289. ungroup()
  290. # Declare column order for output
  291. calculations <- calculations %>%
  292. select(
  293. "OrfRep", "Gene", "num", "conc_num", "conc_num_factor", "N",
  294. "mean_L", "mean_K", "mean_r", "mean_AUC",
  295. "median_L", "median_K", "median_r", "median_AUC",
  296. "sd_L", "sd_K", "sd_r", "sd_AUC",
  297. "se_L", "se_K", "se_r", "se_AUC",
  298. "Raw_Shift_L", "Raw_Shift_K", "Raw_Shift_r", "Raw_Shift_AUC",
  299. "Z_Shift_L", "Z_Shift_K", "Z_Shift_r", "Z_Shift_AUC",
  300. "WT_L", "WT_K", "WT_r", "WT_AUC",
  301. "WT_sd_L", "WT_sd_K", "WT_sd_r", "WT_sd_AUC",
  302. "Exp_L", "Exp_K", "Exp_r", "Exp_AUC",
  303. "Delta_L", "Delta_K", "Delta_r", "Delta_AUC",
  304. "Zscore_L", "Zscore_K", "Zscore_r", "Zscore_AUC",
  305. "NG", "SM", "DB")
  306. interactions <- interactions %>%
  307. select(
  308. "OrfRep", "Gene", "conc_num", "conc_num_factor", "num", "NG", "DB", "SM",
  309. "Raw_Shift_L", "Raw_Shift_K", "Raw_Shift_r", "Raw_Shift_AUC",
  310. "Z_Shift_L", "Z_Shift_K", "Z_Shift_r", "Z_Shift_AUC",
  311. "Sum_Z_Score_L", "Sum_Z_Score_K", "Sum_Z_Score_r", "Sum_Z_Score_AUC",
  312. "Avg_Zscore_L", "Avg_Zscore_K", "Avg_Zscore_r", "Avg_Zscore_AUC",
  313. "lm_Score_L", "lm_Score_K", "lm_Score_r", "lm_Score_AUC",
  314. "R_Squared_L", "R_Squared_K", "R_Squared_r", "R_Squared_AUC",
  315. "Z_lm_L", "Z_lm_K", "Z_lm_r", "Z_lm_AUC")
  316. cleaned_df <- df %>%
  317. select(-any_of(
  318. setdiff(intersect(names(df), names(interactions)),
  319. c("OrfRep", "Gene", "num", "conc_num", "conc_num_factor"))))
  320. interactions_joined <- left_join(cleaned_df, interactions, by = c("OrfRep", "Gene", "num", "conc_num", "conc_num_factor"))
  321. return(list(
  322. calculations = calculations,
  323. interactions = interactions,
  324. interactions_joined = interactions_joined))
  325. }
  326. generate_and_save_plots <- function(out_dir, filename, plot_configs, grid_layout = NULL) {
  327. message("Generating ", filename, ".pdf and ", filename, ".html")
  328. # Prepare lists to collect plots
  329. static_plots <- list()
  330. plotly_plots <- list()
  331. for (i in seq_along(plot_configs)) {
  332. config <- plot_configs[[i]]
  333. df <- config$df
  334. # Create the base plot
  335. aes_mapping <- if (config$plot_type == "bar") {
  336. if (!is.null(config$color_var)) {
  337. aes(x = .data[[config$x_var]], fill = as.factor(.data[[config$color_var]]), color = as.factor(.data[[config$color_var]]))
  338. } else {
  339. aes(x = .data[[config$x_var]])
  340. }
  341. } else if (config$plot_type == "density") {
  342. if (!is.null(config$color_var)) {
  343. aes(x = .data[[config$x_var]], color = as.factor(.data[[config$color_var]]))
  344. } else {
  345. aes(x = .data[[config$x_var]])
  346. }
  347. } else {
  348. if (!is.null(config$color_var)) {
  349. aes(x = .data[[config$x_var]], y = .data[[config$y_var]], color = as.factor(.data[[config$color_var]]))
  350. } else {
  351. aes(x = .data[[config$x_var]], y = .data[[config$y_var]])
  352. }
  353. }
  354. plot <- ggplot(df, aes_mapping)
  355. # Apply theme_publication with legend_position from config
  356. legend_position <- if (!is.null(config$legend_position)) config$legend_position else "bottom"
  357. plot <- plot + theme_publication(legend_position = legend_position)
  358. # Use appropriate helper function based on plot type
  359. plot <- switch(config$plot_type,
  360. "scatter" = generate_scatter_plot(plot, config),
  361. "box" = generate_box_plot(plot, config),
  362. "density" = plot + geom_density(),
  363. "bar" = plot + geom_bar(),
  364. plot # default case if no type matches
  365. )
  366. # Add title and labels
  367. if (!is.null(config$title)) {
  368. plot <- plot + ggtitle(config$title)
  369. }
  370. if (!is.null(config$x_label)) {
  371. plot <- plot + xlab(config$x_label)
  372. }
  373. if (!is.null(config$y_label)) {
  374. plot <- plot + ylab(config$y_label)
  375. }
  376. # Add cartesian coordinates if specified
  377. if (!is.null(config$coord_cartesian)) {
  378. plot <- plot + coord_cartesian(ylim = config$coord_cartesian)
  379. }
  380. # Apply scale_color_discrete(guide = FALSE) when color_var is NULL
  381. if (is.null(config$color_var)) {
  382. plot <- plot + scale_color_discrete(guide = "none")
  383. }
  384. # Add interactive tooltips for plotly
  385. tooltip_vars <- c()
  386. if (config$plot_type == "scatter") {
  387. if (!is.null(config$delta_bg_point) && config$delta_bg_point) {
  388. tooltip_vars <- c(tooltip_vars, "OrfRep", "Gene", "delta_bg")
  389. } else if (!is.null(config$gene_point) && config$gene_point) {
  390. tooltip_vars <- c(tooltip_vars, "OrfRep", "Gene")
  391. } else if (!is.null(config$y_var) && !is.null(config$x_var)) {
  392. tooltip_vars <- c(config$x_var, config$y_var)
  393. }
  394. }
  395. # Convert to plotly object and suppress warnings here
  396. plotly_plot <- suppressWarnings({
  397. if (length(tooltip_vars) > 0) {
  398. ggplotly(plot, tooltip = tooltip_vars)
  399. } else {
  400. ggplotly(plot, tooltip = "none")
  401. }
  402. })
  403. # Adjust legend position if specified
  404. if (!is.null(config$legend_position) && config$legend_position == "bottom") {
  405. plotly_plot <- plotly_plot %>% layout(legend = list(orientation = "h"))
  406. }
  407. # Add plots to lists
  408. static_plots[[i]] <- plot
  409. plotly_plots[[i]] <- plotly_plot
  410. }
  411. # Save static PDF plot(s)
  412. pdf(file.path(out_dir, paste0(filename, ".pdf")), width = 14, height = 9)
  413. lapply(static_plots, print)
  414. dev.off()
  415. # Combine and save interactive HTML plot(s)
  416. combined_plot <- subplot(
  417. plotly_plots,
  418. nrows = if (!is.null(grid_layout) && !is.null(grid_layout$nrow)) {
  419. grid_layout$nrow
  420. } else {
  421. # Calculate nrow based on the length of plotly_plots
  422. ceiling(length(plotly_plots) / ifelse(!is.null(grid_layout) && !is.null(grid_layout$ncol), grid_layout$ncol, 1))
  423. },
  424. margin = 0.05
  425. )
  426. # Save combined html plot(s)
  427. saveWidget(combined_plot, file = file.path(out_dir, paste0(filename, ".html")), selfcontained = TRUE)
  428. }
  429. generate_scatter_plot <- function(plot, config) {
  430. # Define the points
  431. shape <- if (!is.null(config$shape)) config$shape else 3
  432. size <- if (!is.null(config$size)) config$size else 1.5
  433. position <-
  434. if (!is.null(config$position) && config$position == "jitter") {
  435. position_jitter(width = 0.1, height = 0)
  436. } else {
  437. "identity"
  438. }
  439. plot <- plot + geom_point(
  440. shape = shape,
  441. size = size,
  442. position = position
  443. )
  444. if (!is.null(config$cyan_points) && config$cyan_points) {
  445. plot <- plot + geom_point(
  446. aes(x = .data[[config$x_var]], y = .data[[config$y_var]]),
  447. color = "cyan",
  448. shape = 3,
  449. size = 0.5
  450. )
  451. }
  452. # Add Smooth Line if specified
  453. if (!is.null(config$smooth) && config$smooth) {
  454. smooth_color <- if (!is.null(config$smooth_color)) config$smooth_color else "blue"
  455. if (!is.null(config$lm_line)) {
  456. plot <- plot +
  457. geom_abline(
  458. intercept = config$lm_line$intercept,
  459. slope = config$lm_line$slope,
  460. color = smooth_color
  461. )
  462. } else {
  463. plot <- plot +
  464. geom_smooth(
  465. method = "lm",
  466. se = FALSE,
  467. color = smooth_color
  468. )
  469. }
  470. }
  471. # Add SD Bands if specified
  472. if (!is.null(config$sd_band)) {
  473. plot <- plot +
  474. annotate(
  475. "rect",
  476. xmin = -Inf, xmax = Inf,
  477. ymin = config$sd_band, ymax = Inf,
  478. fill = ifelse(!is.null(config$fill_positive), config$fill_positive, "#542788"),
  479. alpha = ifelse(!is.null(config$alpha_positive), config$alpha_positive, 0.3)
  480. ) +
  481. annotate(
  482. "rect",
  483. xmin = -Inf, xmax = Inf,
  484. ymin = -config$sd_band, ymax = -Inf,
  485. fill = ifelse(!is.null(config$fill_negative), config$fill_negative, "orange"),
  486. alpha = ifelse(!is.null(config$alpha_negative), config$alpha_negative, 0.3)
  487. ) +
  488. geom_hline(
  489. yintercept = c(-config$sd_band, config$sd_band),
  490. color = ifelse(!is.null(config$hl_color), config$hl_color, "gray")
  491. )
  492. }
  493. # Add Rectangles if specified
  494. if (!is.null(config$rectangles)) {
  495. for (rect in config$rectangles) {
  496. plot <- plot + annotate(
  497. "rect",
  498. xmin = rect$xmin,
  499. xmax = rect$xmax,
  500. ymin = rect$ymin,
  501. ymax = rect$ymax,
  502. fill = ifelse(is.null(rect$fill), NA, rect$fill),
  503. color = ifelse(is.null(rect$color), "black", rect$color),
  504. alpha = ifelse(is.null(rect$alpha), 0.1, rect$alpha)
  505. )
  506. }
  507. }
  508. # Add Error Bars if specified
  509. if (!is.null(config$error_bar) && config$error_bar && !is.null(config$y_var)) {
  510. y_mean_col <- paste0("mean_", config$y_var)
  511. y_se_col <- paste0("se_", config$y_var)
  512. plot <- plot +
  513. geom_errorbar(
  514. aes(
  515. ymin = !!sym(y_mean_col) - !!sym(y_se_col),
  516. ymax = !!sym(y_mean_col) + !!sym(y_se_col)
  517. ),
  518. alpha = 0.3
  519. )
  520. }
  521. # Customize X-axis if specified
  522. if (!is.null(config$x_breaks) && !is.null(config$x_labels) && !is.null(config$x_label)) {
  523. plot <- plot +
  524. scale_x_discrete(
  525. name = config$x_label,
  526. breaks = config$x_breaks,
  527. labels = config$x_labels
  528. )
  529. }
  530. # Set Y-axis limits if specified
  531. if (!is.null(config$ylim_vals)) {
  532. plot <- plot + scale_y_continuous(limits = config$ylim_vals)
  533. }
  534. # Add annotations if specified
  535. if (!is.null(config$annotations)) {
  536. for (annotation in config$annotations) {
  537. plot <- plot +
  538. annotate(
  539. "text",
  540. x = annotation$x,
  541. y = annotation$y,
  542. label = annotation$label,
  543. hjust = ifelse(is.null(annotation$hjust), 0.5, annotation$hjust),
  544. vjust = ifelse(is.null(annotation$vjust), 0.5, annotation$vjust),
  545. size = ifelse(is.null(annotation$size), 6, annotation$size),
  546. color = ifelse(is.null(annotation$color), "black", annotation$color)
  547. )
  548. }
  549. }
  550. return(plot)
  551. }
  552. generate_box_plot <- function(plot, config) {
  553. plot <- plot + geom_boxplot()
  554. if (!is.null(config$x_breaks) && !is.null(config$x_labels) && !is.null(config$x_label)) {
  555. plot <- plot + scale_x_discrete(
  556. name = config$x_label,
  557. breaks = config$x_breaks,
  558. labels = config$x_labels
  559. )
  560. }
  561. return(plot)
  562. }
  563. generate_plate_analysis_plot_configs <- function(variables, stages = c("before", "after"),
  564. df_before = NULL, df_after = NULL, plot_type = "scatter") {
  565. plots <- list()
  566. for (var in variables) {
  567. for (stage in stages) {
  568. df_plot <- if (stage == "before") df_before else df_after
  569. # Check for non-finite values in the y-variable
  570. df_plot_filtered <- df_plot %>%
  571. filter(is.finite(!!sym(var)))
  572. # Count removed rows
  573. removed_rows <- nrow(df_plot) - nrow(df_plot_filtered)
  574. if (removed_rows > 0) {
  575. message(sprintf("Removed %d non-finite values for variable %s during stage %s", removed_rows, var, stage))
  576. }
  577. # Adjust settings based on plot_type
  578. if (plot_type == "scatter") {
  579. error_bar <- TRUE
  580. position <- "jitter"
  581. } else if (plot_type == "box") {
  582. error_bar <- FALSE
  583. position <- NULL
  584. }
  585. config <- list(
  586. df = df_plot,
  587. x_var = "scan",
  588. y_var = var,
  589. plot_type = plot_type,
  590. title = paste("Plate analysis by Drug Conc for", var, stage, "quality control"),
  591. error_bar = error_bar,
  592. color_var = "conc_num",
  593. position = position,
  594. size = 0.2
  595. )
  596. plots <- append(plots, list(config))
  597. }
  598. }
  599. return(plots)
  600. }
  601. generate_interaction_plot_configs <- function(df, limits_map = NULL) {
  602. # Default limits_map if not provided
  603. if (is.null(limits_map)) {
  604. limits_map <- list(
  605. L = c(-65, 65),
  606. K = c(-65, 65),
  607. r = c(-0.65, 0.65),
  608. AUC = c(-6500, 6500)
  609. )
  610. }
  611. # Filter data
  612. df_filtered <- df
  613. for (var in names(limits_map)) {
  614. df_filtered <- df_filtered %>%
  615. filter(!is.na(!!sym(var)) &
  616. !!sym(var) >= limits_map[[var]][1] &
  617. !!sym(var) <= limits_map[[var]][2])
  618. }
  619. configs <- list()
  620. for (var in names(limits_map)) {
  621. y_range <- limits_map[[var]]
  622. # Calculate annotation positions
  623. y_min <- min(y_range)
  624. y_max <- max(y_range)
  625. y_span <- y_max - y_min
  626. annotation_positions <- list(
  627. ZShift = y_max - 0.1 * y_span,
  628. lm_ZScore = y_max - 0.2 * y_span,
  629. NG = y_min + 0.2 * y_span,
  630. DB = y_min + 0.1 * y_span,
  631. SM = y_min + 0.05 * y_span
  632. )
  633. # Prepare linear model line
  634. lm_line <- list(
  635. intercept = df_filtered[[paste0("lm_intercept_", var)]],
  636. slope = df_filtered[[paste0("lm_slope_", var)]]
  637. )
  638. # Calculate x-axis position for annotations
  639. num_levels <- length(levels(df_filtered$conc_num_factor))
  640. x_pos <- (1 + num_levels) / 2
  641. # Generate annotations
  642. annotations <- lapply(names(annotation_positions), function(annotation_name) {
  643. label <- switch(annotation_name,
  644. ZShift = paste("ZShift =", round(df_filtered[[paste0("Z_Shift_", var)]], 2)),
  645. lm_ZScore = paste("lm ZScore =", round(df_filtered[[paste0("Z_lm_", var)]], 2)),
  646. NG = paste("NG =", df_filtered$NG),
  647. DB = paste("DB =", df_filtered$DB),
  648. SM = paste("SM =", df_filtered$SM),
  649. NULL
  650. )
  651. if (!is.null(label)) {
  652. list(x = x_pos, y = annotation_positions[[annotation_name]], label = label)
  653. } else {
  654. NULL
  655. }
  656. })
  657. annotations <- Filter(Negate(is.null), annotations)
  658. # Shared plot settings
  659. plot_settings <- list(
  660. df = df_filtered,
  661. x_var = "conc_num_factor",
  662. y_var = var,
  663. ylim_vals = y_range,
  664. annotations = annotations,
  665. lm_line = lm_line,
  666. x_breaks = levels(df_filtered$conc_num_factor),
  667. x_labels = levels(df_filtered$conc_num_factor),
  668. x_label = unique(df_filtered$Drug[1]),
  669. coord_cartesian = y_range,
  670. )
  671. # Scatter plot config
  672. configs[[length(configs) + 1]] <- modifyList(plot_settings, list(
  673. plot_type = "scatter",
  674. title = sprintf("%s %s", df_filtered$OrfRep[1], df_filtered$Gene[1]),
  675. error_bar = TRUE,
  676. position = "jitter",
  677. size = 1
  678. ))
  679. # Box plot config
  680. configs[[length(configs) + 1]] <- modifyList(plot_settings, list(
  681. plot_type = "box",
  682. title = sprintf("%s %s (box plot)", df_filtered$OrfRep[1], df_filtered$Gene[1]),
  683. error_bar = FALSE
  684. ))
  685. }
  686. return(configs)
  687. }
  688. generate_rank_plot_configs <- function(df, variables, is_lm = FALSE, adjust = FALSE, overlap_color = FALSE) {
  689. sd_bands <- c(1, 2, 3)
  690. avg_zscore_cols <- paste0("Avg_Zscore_", variables)
  691. z_lm_cols <- paste0("Z_lm_", variables)
  692. rank_avg_zscore_cols <- paste0("Rank_", variables)
  693. rank_z_lm_cols <- paste0("Rank_lm_", variables)
  694. configs <- list()
  695. if (adjust) {
  696. message("Replacing NA with 0.001 for Avg_Zscore_ and Z_lm_ columns for ranks")
  697. df <- df %>%
  698. mutate(
  699. across(all_of(avg_zscore_cols), ~ifelse(is.na(.), 0.001, .)),
  700. across(all_of(z_lm_cols), ~ifelse(is.na(.), 0.001, .))
  701. )
  702. }
  703. message("Calculating ranks for Avg_Zscore and Z_lm columns")
  704. rank_col_mapping <- setNames(rank_avg_zscore_cols, avg_zscore_cols)
  705. df_ranked <- df %>%
  706. mutate(across(all_of(avg_zscore_cols), ~rank(., na.last = "keep"), .names = "{rank_col_mapping[.col]}"))
  707. rank_lm_col_mapping <- setNames(rank_z_lm_cols, z_lm_cols)
  708. df_ranked <- df_ranked %>%
  709. mutate(across(all_of(z_lm_cols), ~rank(., na.last = "keep"), .names = "{rank_lm_col_mapping[.col]}"))
  710. # SD-based plots for L and K
  711. for (variable in c("L", "K")) {
  712. if (is_lm) {
  713. rank_var <- paste0("Rank_lm_", variable)
  714. zscore_var <- paste0("Z_lm_", variable)
  715. y_label <- paste("Int Z score", variable)
  716. } else {
  717. rank_var <- paste0("Rank_", variable)
  718. zscore_var <- paste0("Avg_Zscore_", variable)
  719. y_label <- paste("Avg Z score", variable)
  720. }
  721. for (sd_band in sd_bands) {
  722. num_enhancers <- sum(df_ranked[[zscore_var]] >= sd_band, na.rm = TRUE)
  723. num_suppressors <- sum(df_ranked[[zscore_var]] <= -sd_band, na.rm = TRUE)
  724. # Annotated plot configuration
  725. configs[[length(configs) + 1]] <- list(
  726. df = df_ranked,
  727. x_var = rank_var,
  728. y_var = zscore_var,
  729. plot_type = "scatter",
  730. title = paste(y_label, "vs. Rank for", variable, "above", sd_band, "SD"),
  731. sd_band = sd_band,
  732. fill_positive = "#542788",
  733. fill_negative = "orange",
  734. alpha_positive = 0.3,
  735. alpha_negative = 0.3,
  736. annotations = list(
  737. list(
  738. x = median(df_ranked[[rank_var]], na.rm = TRUE),
  739. y = 10,
  740. label = paste("Deletion Enhancers =", num_enhancers),
  741. hjust = 0.5,
  742. vjust = 1
  743. ),
  744. list(
  745. x = median(df_ranked[[rank_var]], na.rm = TRUE),
  746. y = -10,
  747. label = paste("Deletion Suppressors =", num_suppressors),
  748. hjust = 0.5,
  749. vjust = 0
  750. )
  751. ),
  752. shape = 3,
  753. size = 0.1,
  754. y_label = y_label,
  755. x_label = "Rank",
  756. legend_position = "none"
  757. )
  758. # Non-Annotated Plot Configuration
  759. configs[[length(configs) + 1]] <- list(
  760. df = df_ranked,
  761. x_var = rank_var,
  762. y_var = zscore_var,
  763. plot_type = "scatter",
  764. title = paste(y_label, "vs. Rank for", variable, "above", sd_band, "SD No Annotations"),
  765. sd_band = sd_band,
  766. fill_positive = "#542788",
  767. fill_negative = "orange",
  768. alpha_positive = 0.3,
  769. alpha_negative = 0.3,
  770. annotations = NULL,
  771. shape = 3,
  772. size = 0.1,
  773. y_label = y_label,
  774. x_label = "Rank",
  775. legend_position = "none"
  776. )
  777. }
  778. }
  779. # Avg ZScore and Rank Avg ZScore Plots for r, L, K, and AUC
  780. for (variable in variables) {
  781. for (plot_type in c("Avg Zscore vs lm", "Rank Avg Zscore vs lm")) {
  782. title <- paste(plot_type, variable)
  783. # Define specific variables based on plot type
  784. if (plot_type == "Avg Zscore vs lm") {
  785. x_var <- paste0("Avg_Zscore_", variable)
  786. y_var <- paste0("Z_lm_", variable)
  787. rectangles <- list(
  788. list(xmin = -2, xmax = 2, ymin = -2, ymax = 2,
  789. fill = NA, color = "grey20", alpha = 0.1
  790. )
  791. )
  792. } else if (plot_type == "Rank Avg Zscore vs lm") {
  793. x_var <- paste0("Rank_", variable)
  794. y_var <- paste0("Rank_lm_", variable)
  795. rectangles <- NULL
  796. }
  797. # Fit the linear model
  798. lm_model <- lm(as.formula(paste(y_var, "~", x_var)), data = df_ranked)
  799. # Extract intercept and slope from the model coefficients
  800. intercept <- coef(lm_model)[1]
  801. slope <- coef(lm_model)[2]
  802. configs[[length(configs) + 1]] <- list(
  803. df = df_ranked,
  804. x_var = x_var,
  805. y_var = y_var,
  806. plot_type = "scatter",
  807. title = title,
  808. annotations = list(
  809. list(
  810. x = median(df_ranked[[rank_var]], na.rm = TRUE),
  811. y = 10,
  812. label = paste("Deletion Enhancers =", num_enhancers),
  813. hjust = 0.5,
  814. vjust = 1
  815. ),
  816. list(
  817. x = median(df_ranked[[rank_var]], na.rm = TRUE),
  818. y = -10,
  819. label = paste("Deletion Suppressors =", num_suppressors),
  820. hjust = 0.5,
  821. vjust = 0
  822. )
  823. ),
  824. shape = 3,
  825. size = 0.25,
  826. smooth = TRUE,
  827. smooth_color = "black",
  828. lm_line = list(intercept = intercept, slope = slope),
  829. legend_position = "right",
  830. color_var = if (overlap_color) "Overlap" else NULL,
  831. x_label = x_var,
  832. y_label = y_var,
  833. rectangles = rectangles
  834. )
  835. }
  836. }
  837. return(configs)
  838. }
  839. generate_correlation_plot_configs <- function(df) {
  840. # Define relationships for plotting
  841. relationships <- list(
  842. list(x = "Z_lm_L", y = "Z_lm_K", label = "Interaction L vs. Interaction K"),
  843. list(x = "Z_lm_L", y = "Z_lm_r", label = "Interaction L vs. Interaction r"),
  844. list(x = "Z_lm_L", y = "Z_lm_AUC", label = "Interaction L vs. Interaction AUC"),
  845. list(x = "Z_lm_K", y = "Z_lm_r", label = "Interaction K vs. Interaction r"),
  846. list(x = "Z_lm_K", y = "Z_lm_AUC", label = "Interaction K vs. Interaction AUC"),
  847. list(x = "Z_lm_r", y = "Z_lm_AUC", label = "Interaction r vs. Interaction AUC")
  848. )
  849. configs <- list()
  850. for (rel in relationships) {
  851. # Fit linear model
  852. lm_model <- lm(as.formula(paste(rel$y, "~", rel$x)), data = df)
  853. lm_summary <- summary(lm_model)
  854. # Construct plot configuration
  855. config <- list(
  856. df = df,
  857. x_var = rel$x,
  858. y_var = rel$y,
  859. plot_type = "scatter",
  860. title = rel$label,
  861. x_label = paste("z-score", gsub("Z_lm_", "", rel$x)),
  862. y_label = paste("z-score", gsub("Z_lm_", "", rel$y)),
  863. annotations = list(
  864. list(
  865. x = Inf,
  866. y = Inf,
  867. label = paste("R-squared =", round(lm_summary$r.squared, 3)),
  868. hjust = 1.1,
  869. vjust = 2,
  870. size = 4,
  871. color = "black"
  872. )
  873. ),
  874. smooth = TRUE,
  875. smooth_color = "tomato3",
  876. lm_line = list(intercept = coef(lm_model)[1], slope = coef(lm_model)[2]),
  877. legend_position = "right",
  878. shape = 3,
  879. size = 0.5,
  880. color_var = "Overlap",
  881. rectangles = list(
  882. list(
  883. xmin = -2, xmax = 2, ymin = -2, ymax = 2,
  884. fill = NA, color = "grey20", alpha = 0.1
  885. )
  886. ),
  887. cyan_points = TRUE
  888. )
  889. configs[[length(configs) + 1]] <- config
  890. }
  891. return(configs)
  892. }
  893. main <- function() {
  894. lapply(names(args$experiments), function(exp_name) {
  895. exp <- args$experiments[[exp_name]]
  896. exp_path <- exp$path
  897. exp_sd <- exp$sd
  898. out_dir <- file.path(exp_path, "zscores")
  899. out_dir_qc <- file.path(exp_path, "zscores", "qc")
  900. dir.create(out_dir, recursive = TRUE, showWarnings = FALSE)
  901. dir.create(out_dir_qc, recursive = TRUE, showWarnings = FALSE)
  902. summary_vars <- c("L", "K", "r", "AUC", "delta_bg") # fields to filter and calculate summary stats across
  903. interaction_vars <- c("L", "K", "r", "AUC") # fields to calculate interaction z-scores
  904. print_vars <- c("OrfRep", "Plate", "scan", "Col", "Row", "num", "OrfRep", "conc_num", "conc_num_factor",
  905. "delta_bg_tolerance", "delta_bg", "Gene", "L", "K", "r", "AUC", "NG", "DB")
  906. message("Loading and filtering data for experiment: ", exp_name)
  907. df <- load_and_filter_data(args$easy_results_file, sd = exp_sd) %>%
  908. update_gene_names(args$sgd_gene_list) %>%
  909. as_tibble()
  910. # Filter rows above delta background tolerance
  911. df_above_tolerance <- df %>% filter(DB == 1)
  912. df_na <- df %>% mutate(across(all_of(summary_vars), ~ ifelse(DB == 1, NA, .))) # formerly X
  913. df_no_zeros <- df_na %>% filter(L > 0) # formerly X_noZero
  914. # Save some constants
  915. max_conc <- max(df$conc_num_factor_num)
  916. l_half_median <- (median(df_above_tolerance$L, na.rm = TRUE)) / 2
  917. k_half_median <- (median(df_above_tolerance$K, na.rm = TRUE)) / 2
  918. message("Calculating summary statistics before quality control")
  919. df_stats <- calculate_summary_stats(
  920. df = df,
  921. variables = summary_vars,
  922. group_vars = c("conc_num", "conc_num_factor"))$df_with_stats
  923. message("Calculating summary statistics after quality control")
  924. ss <- calculate_summary_stats(
  925. df = df_na,
  926. variables = summary_vars,
  927. group_vars = c("conc_num", "conc_num_factor"))
  928. df_na_ss <- ss$summary_stats
  929. df_na_stats <- ss$df_with_stats
  930. write.csv(df_na_ss, file = file.path(out_dir, "summary_stats_all_strains.csv"), row.names = FALSE)
  931. # For plotting (ggplot warns on NAs)
  932. df_na_stats_filtered <- df_na_stats %>% filter(if_all(all_of(summary_vars), is.finite))
  933. df_na_stats <- df_na_stats %>%
  934. mutate(
  935. WT_L = mean_L,
  936. WT_K = mean_K,
  937. WT_r = mean_r,
  938. WT_AUC = mean_AUC,
  939. WT_sd_L = sd_L,
  940. WT_sd_K = sd_K,
  941. WT_sd_r = sd_r,
  942. WT_sd_AUC = sd_AUC
  943. )
  944. # Pull the background means and standard deviations from zero concentration for interactions
  945. bg_stats <- df_na_stats %>%
  946. filter(conc_num == 0) %>%
  947. summarise(
  948. mean_L = first(mean_L),
  949. mean_K = first(mean_K),
  950. mean_r = first(mean_r),
  951. mean_AUC = first(mean_AUC),
  952. sd_L = first(sd_L),
  953. sd_K = first(sd_K),
  954. sd_r = first(sd_r),
  955. sd_AUC = first(sd_AUC)
  956. )
  957. message("Calculating summary statistics after quality control excluding zero values")
  958. df_no_zeros_stats <- calculate_summary_stats(
  959. df = df_no_zeros,
  960. variables = summary_vars,
  961. group_vars = c("conc_num", "conc_num_factor")
  962. )$df_with_stats
  963. message("Filtering by 2SD of K")
  964. df_na_within_2sd_k <- df_na_stats %>%
  965. filter(K >= (mean_K - 2 * sd_K) & K <= (mean_K + 2 * sd_K))
  966. df_na_outside_2sd_k <- df_na_stats %>%
  967. filter(K < (mean_K - 2 * sd_K) | K > (mean_K + 2 * sd_K))
  968. message("Calculating summary statistics for L within 2SD of K")
  969. # TODO We're omitting the original z_max calculation, not sure if needed?
  970. ss <- calculate_summary_stats(df_na_within_2sd_k, "L", group_vars = c("conc_num", "conc_num_factor"))$summary_stats
  971. write.csv(ss,
  972. file = file.path(out_dir_qc, "max_observed_L_vals_for_spots_within_2sd_K.csv"),
  973. row.names = FALSE)
  974. message("Calculating summary statistics for L outside 2SD of K")
  975. ss <- calculate_summary_stats(df_na_outside_2sd_k, "L", group_vars = c("conc_num", "conc_num_factor"))
  976. df_na_l_outside_2sd_k_stats <- ss$df_with_stats
  977. write.csv(ss$summary_stats,
  978. file = file.path(out_dir, "max_observed_L_vals_for_spots_outside_2sd_K.csv"),
  979. row.names = FALSE)
  980. # Each plots list corresponds to a file
  981. l_vs_k_plot_configs <- list(
  982. list(
  983. df = df,
  984. x_var = "L",
  985. y_var = "K",
  986. plot_type = "scatter",
  987. delta_bg_point = TRUE,
  988. title = "Raw L vs K before quality control",
  989. color_var = "conc_num",
  990. error_bar = FALSE,
  991. legend_position = "right"
  992. )
  993. )
  994. frequency_delta_bg_plot_configs <- list(
  995. list(
  996. df = df_stats,
  997. x_var = "delta_bg",
  998. y_var = NULL,
  999. plot_type = "density",
  1000. title = "Density plot for Delta Background by [Drug] (All Data)",
  1001. color_var = "conc_num",
  1002. x_label = "Delta Background",
  1003. y_label = "Density",
  1004. error_bar = FALSE,
  1005. legend_position = "right"),
  1006. list(
  1007. df = df_stats,
  1008. x_var = "delta_bg",
  1009. y_var = NULL,
  1010. plot_type = "bar",
  1011. title = "Bar plot for Delta Background by [Drug] (All Data)",
  1012. color_var = "conc_num",
  1013. x_label = "Delta Background",
  1014. y_label = "Count",
  1015. error_bar = FALSE,
  1016. legend_position = "right")
  1017. )
  1018. above_threshold_plot_configs <- list(
  1019. list(
  1020. df = df_above_tolerance,
  1021. x_var = "L",
  1022. y_var = "K",
  1023. plot_type = "scatter",
  1024. delta_bg_point = TRUE,
  1025. title = paste("Raw L vs K for strains above Delta Background threshold of",
  1026. round(df_above_tolerance$delta_bg_tolerance[[1]], 3), "or above"),
  1027. color_var = "conc_num",
  1028. position = "jitter",
  1029. annotations = list(
  1030. list(
  1031. x = l_half_median,
  1032. y = k_half_median,
  1033. label = paste("# strains above Delta Background tolerance =", nrow(df_above_tolerance))
  1034. )
  1035. ),
  1036. error_bar = FALSE,
  1037. legend_position = "right"
  1038. )
  1039. )
  1040. plate_analysis_plot_configs <- generate_plate_analysis_plot_configs(
  1041. variables = summary_vars,
  1042. df_before = df_stats,
  1043. df_after = df_na_stats_filtered
  1044. )
  1045. plate_analysis_boxplot_configs <- generate_plate_analysis_plot_configs(
  1046. variables = summary_vars,
  1047. df_before = df_stats,
  1048. df_after = df_na_stats_filtered,
  1049. plot_type = "box"
  1050. )
  1051. plate_analysis_no_zeros_plot_configs <- generate_plate_analysis_plot_configs(
  1052. variables = summary_vars,
  1053. stages = c("after"), # Only after QC
  1054. df_after = df_no_zeros_stats
  1055. )
  1056. plate_analysis_no_zeros_boxplot_configs <- generate_plate_analysis_plot_configs(
  1057. variables = summary_vars,
  1058. stages = c("after"), # Only after QC
  1059. df_after = df_no_zeros_stats,
  1060. plot_type = "box"
  1061. )
  1062. l_outside_2sd_k_plot_configs <- list(
  1063. list(
  1064. df = df_na_l_outside_2sd_k_stats,
  1065. x_var = "L",
  1066. y_var = "K",
  1067. plot_type = "scatter",
  1068. delta_bg_point = TRUE,
  1069. title = "Raw L vs K for strains falling outside 2SD of the K mean at each Conc",
  1070. color_var = "conc_num",
  1071. position = "jitter",
  1072. legend_position = "right"
  1073. )
  1074. )
  1075. delta_bg_outside_2sd_k_plot_configs <- list(
  1076. list(
  1077. df = df_na_l_outside_2sd_k_stats,
  1078. x_var = "delta_bg",
  1079. y_var = "K",
  1080. plot_type = "scatter",
  1081. gene_point = TRUE,
  1082. title = "Delta Background vs K for strains falling outside 2SD of the K mean at each Conc",
  1083. color_var = "conc_num",
  1084. position = "jitter",
  1085. legend_position = "right"
  1086. )
  1087. )
  1088. message("Generating quality control plots in parallel")
  1089. # future::plan(future::multicore, workers = parallel::detectCores())
  1090. future::plan(future::multisession, workers = 3) # generate 3 plots in parallel
  1091. plot_configs <- list(
  1092. list(out_dir = out_dir_qc, filename = "L_vs_K_before_quality_control",
  1093. plot_configs = l_vs_k_plot_configs),
  1094. list(out_dir = out_dir_qc, filename = "frequency_delta_background",
  1095. plot_configs = frequency_delta_bg_plot_configs),
  1096. list(out_dir = out_dir_qc, filename = "L_vs_K_above_threshold",
  1097. plot_configs = above_threshold_plot_configs),
  1098. list(out_dir = out_dir_qc, filename = "plate_analysis",
  1099. plot_configs = plate_analysis_plot_configs),
  1100. list(out_dir = out_dir_qc, filename = "plate_analysis_boxplots",
  1101. plot_configs = plate_analysis_boxplot_configs),
  1102. list(out_dir = out_dir_qc, filename = "plate_analysis_no_zeros",
  1103. plot_configs = plate_analysis_no_zeros_plot_configs),
  1104. list(out_dir = out_dir_qc, filename = "plate_analysis_no_zeros_boxplots",
  1105. plot_configs = plate_analysis_no_zeros_boxplot_configs),
  1106. list(out_dir = out_dir_qc, filename = "L_vs_K_for_strains_2SD_outside_mean_K",
  1107. plot_configs = l_outside_2sd_k_plot_configs),
  1108. list(out_dir = out_dir_qc, filename = "delta_background_vs_K_for_strains_2sd_outside_mean_K",
  1109. plot_configs = delta_bg_outside_2sd_k_plot_configs)
  1110. )
  1111. # Generating quality control plots in parallel
  1112. furrr::future_map(plot_configs, function(config) {
  1113. generate_and_save_plots(config$out_dir, config$filename, config$plot_configs)
  1114. }, .options = furrr_options(seed = TRUE))
  1115. # Process background strains
  1116. bg_strains <- c("YDL227C")
  1117. lapply(bg_strains, function(strain) {
  1118. message("Processing background strain: ", strain)
  1119. # Handle missing data by setting zero values to NA
  1120. # and then removing any rows with NA in L col
  1121. df_bg <- df_na %>%
  1122. filter(OrfRep == strain) %>%
  1123. mutate(
  1124. L = if_else(L == 0, NA, L),
  1125. K = if_else(K == 0, NA, K),
  1126. r = if_else(r == 0, NA, r),
  1127. AUC = if_else(AUC == 0, NA, AUC)
  1128. ) %>%
  1129. filter(!is.na(L))
  1130. # Recalculate summary statistics for the background strain
  1131. message("Calculating summary statistics for background strain")
  1132. ss_bg <- calculate_summary_stats(df_bg, summary_vars, group_vars = c("OrfRep", "conc_num", "conc_num_factor"))
  1133. summary_stats_bg <- ss_bg$summary_stats
  1134. write.csv(summary_stats_bg,
  1135. file = file.path(out_dir, paste0("summary_stats_background_strain_", strain, ".csv")),
  1136. row.names = FALSE)
  1137. # Set the missing values to the highest theoretical value at each drug conc for L
  1138. # Leave other values as 0 for the max/min
  1139. df_reference <- df_na_stats %>% # formerly X2_RF
  1140. filter(OrfRep == strain) %>%
  1141. filter(!is.na(L)) %>%
  1142. group_by(conc_num, conc_num_factor) %>%
  1143. mutate(
  1144. max_l_theoretical = max(max_L, na.rm = TRUE),
  1145. L = ifelse(L == 0 & !is.na(L) & conc_num > 0, max_l_theoretical, L),
  1146. SM = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, 1, 0),
  1147. L = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, max_l_theoretical, L)) %>%
  1148. ungroup()
  1149. # Ditto for deletion strains
  1150. df_deletion <- df_na_stats %>% # formerly X2
  1151. filter(OrfRep != strain) %>%
  1152. filter(!is.na(L)) %>%
  1153. mutate(SM = 0) %>%
  1154. group_by(conc_num, conc_num_factor) %>%
  1155. mutate(
  1156. max_l_theoretical = max(max_L, na.rm = TRUE),
  1157. L = ifelse(L == 0 & !is.na(L) & conc_num > 0, max_l_theoretical, L),
  1158. SM = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, 1, SM),
  1159. L = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, max_l_theoretical, L)) %>%
  1160. ungroup()
  1161. message("Calculating reference strain interaction scores")
  1162. df_reference_stats <- calculate_summary_stats(
  1163. df = df_reference,
  1164. variables = interaction_vars,
  1165. group_vars = c("OrfRep", "Gene", "num", "conc_num", "conc_num_factor")
  1166. )$df_with_stats
  1167. reference_results <- calculate_interaction_scores(df_reference_stats, max_conc, bg_stats, group_vars = c("OrfRep", "Gene", "num"))
  1168. zscore_calculations_reference <- reference_results$calculations
  1169. zscore_interactions_reference <- reference_results$interactions
  1170. zscore_interactions_reference_joined <- reference_results$interactions_joined
  1171. message("Calculating deletion strain(s) interactions scores")
  1172. df_deletion_stats <- calculate_summary_stats(
  1173. df = df_deletion,
  1174. variables = interaction_vars,
  1175. group_vars = c("OrfRep", "Gene", "conc_num", "conc_num_factor")
  1176. )$df_with_stats
  1177. deletion_results <- calculate_interaction_scores(df_deletion_stats, max_conc, bg_stats, group_vars = c("OrfRep"))
  1178. zscore_calculations <- deletion_results$calculations
  1179. zscore_interactions <- deletion_results$interactions
  1180. zscore_interactions_joined <- deletion_results$interactions_joined
  1181. # Writing Z-Scores to file
  1182. write.csv(zscore_calculations_reference, file = file.path(out_dir, "zscore_calculations_reference.csv"), row.names = FALSE)
  1183. write.csv(zscore_calculations, file = file.path(out_dir, "zscore_calculations.csv"), row.names = FALSE)
  1184. write.csv(zscore_interactions_reference, file = file.path(out_dir, "zscore_interactions_reference.csv"), row.names = FALSE)
  1185. write.csv(zscore_interactions, file = file.path(out_dir, "zscore_interactions.csv"), row.names = FALSE)
  1186. # Create interaction plots
  1187. message("Generating reference interaction plots")
  1188. reference_plot_configs <- generate_interaction_plot_configs(zscore_interactions_reference_joined)
  1189. generate_and_save_plots(out_dir, "interaction_plots_reference", reference_plot_configs, grid_layout = list(ncol = 4, nrow = 3))
  1190. message("Generating deletion interaction plots")
  1191. deletion_plot_configs <- generate_interaction_plot_configs(zscore_interactions_joined)
  1192. generate_and_save_plots(out_dir, "interaction_plots", deletion_plot_configs, grid_layout = list(ncol = 4, nrow = 3))
  1193. # Define conditions for enhancers and suppressors
  1194. # TODO Add to study config?
  1195. threshold <- 2
  1196. enhancer_condition_L <- zscore_interactions$Avg_Zscore_L >= threshold
  1197. suppressor_condition_L <- zscore_interactions$Avg_Zscore_L <= -threshold
  1198. enhancer_condition_K <- zscore_interactions$Avg_Zscore_K >= threshold
  1199. suppressor_condition_K <- zscore_interactions$Avg_Zscore_K <= -threshold
  1200. # Subset data
  1201. enhancers_L <- zscore_interactions[enhancer_condition_L, ]
  1202. suppressors_L <- zscore_interactions[suppressor_condition_L, ]
  1203. enhancers_K <- zscore_interactions[enhancer_condition_K, ]
  1204. suppressors_K <- zscore_interactions[suppressor_condition_K, ]
  1205. # Save enhancers and suppressors
  1206. message("Writing enhancer/suppressor csv files")
  1207. write.csv(enhancers_L, file = file.path(out_dir, "zscore_interactions_deletion_enhancers_L.csv"), row.names = FALSE)
  1208. write.csv(suppressors_L, file = file.path(out_dir, "zscore_interactions_deletion_suppressors_L.csv"), row.names = FALSE)
  1209. write.csv(enhancers_K, file = file.path(out_dir, "zscore_interactions_deletion_enhancers_K.csv"), row.names = FALSE)
  1210. write.csv(suppressors_K, file = file.path(out_dir, "zscore_interactions_deletion_suppressors_K.csv"), row.names = FALSE)
  1211. # Combine conditions for enhancers and suppressors
  1212. enhancers_and_suppressors_L <- zscore_interactions[enhancer_condition_L | suppressor_condition_L, ]
  1213. enhancers_and_suppressors_K <- zscore_interactions[enhancer_condition_K | suppressor_condition_K, ]
  1214. # Save combined enhancers and suppressors
  1215. write.csv(enhancers_and_suppressors_L,
  1216. file = file.path(out_dir, "zscore_interactions_deletion_enhancers_and_suppressors_L.csv"), row.names = FALSE)
  1217. write.csv(enhancers_and_suppressors_K,
  1218. file = file.path(out_dir, "zscore_interaction_deletion_enhancers_and_suppressors_K.csv"), row.names = FALSE)
  1219. # Handle linear model based enhancers and suppressors
  1220. lm_threshold <- 2 # TODO add to study config?
  1221. enhancers_lm_L <- zscore_interactions[zscore_interactions$Z_lm_L >= lm_threshold, ]
  1222. suppressors_lm_L <- zscore_interactions[zscore_interactions$Z_lm_L <= -lm_threshold, ]
  1223. enhancers_lm_K <- zscore_interactions[zscore_interactions$Z_lm_K >= lm_threshold, ]
  1224. suppressors_lm_K <- zscore_interactions[zscore_interactions$Z_lm_K <= -lm_threshold, ]
  1225. # Save linear model based enhancers and suppressors
  1226. message("Writing linear model enhancer/suppressor csv files")
  1227. write.csv(enhancers_lm_L,
  1228. file = file.path(out_dir, "zscore_interactions_deletion_enhancers_lm_L.csv"), row.names = FALSE)
  1229. write.csv(suppressors_lm_L,
  1230. file = file.path(out_dir, "zscore_interactions_deletion_suppressors_lm_L.csv"), row.names = FALSE)
  1231. write.csv(enhancers_lm_K,
  1232. file = file.path(out_dir, "zscore_interactions_deletion_enhancers_lm_K.csv"), row.names = FALSE)
  1233. write.csv(suppressors_lm_K,
  1234. file = file.path(out_dir, "zscore_interactions_deletion_suppressors_lm_K.csv"), row.names = FALSE)
  1235. message("Generating rank plots")
  1236. rank_plot_configs <- generate_rank_plot_configs(
  1237. df = zscore_interactions_joined,
  1238. variables = interaction_vars,
  1239. is_lm = FALSE,
  1240. adjust = TRUE
  1241. )
  1242. generate_and_save_plots(out_dir = out_dir, filename = "rank_plots",
  1243. plot_configs = rank_plot_configs, grid_layout = list(ncol = 3, nrow = 2))
  1244. message("Generating ranked linear model plots")
  1245. rank_lm_plot_configs <- generate_rank_plot_configs(
  1246. df = zscore_interactions_joined,
  1247. variables = interaction_vars,
  1248. is_lm = TRUE,
  1249. adjust = TRUE
  1250. )
  1251. generate_and_save_plots(out_dir = out_dir, filename = "rank_plots_lm",
  1252. plot_configs = rank_lm_plot_configs, grid_layout = list(ncol = 3, nrow = 2))
  1253. message("Filtering and reranking plots")
  1254. interaction_threshold <- 2 # TODO add to study config?
  1255. # Formerly X_NArm
  1256. zscore_interactions_filtered <- zscore_interactions_joined %>%
  1257. filter(!is.na(Z_lm_L) & !is.na(Avg_Zscore_L)) %>%
  1258. mutate(
  1259. Overlap = case_when(
  1260. Z_lm_L >= interaction_threshold & Avg_Zscore_L >= interaction_threshold ~ "Deletion Enhancer Both",
  1261. Z_lm_L <= -interaction_threshold & Avg_Zscore_L <= -interaction_threshold ~ "Deletion Suppressor Both",
  1262. Z_lm_L >= interaction_threshold & Avg_Zscore_L <= interaction_threshold ~ "Deletion Enhancer lm only",
  1263. Z_lm_L <= interaction_threshold & Avg_Zscore_L >= interaction_threshold ~ "Deletion Enhancer Avg Zscore only",
  1264. Z_lm_L <= -interaction_threshold & Avg_Zscore_L >= -interaction_threshold ~ "Deletion Suppressor lm only",
  1265. Z_lm_L >= -interaction_threshold & Avg_Zscore_L <= -interaction_threshold ~ "Deletion Suppressor Avg Zscore only",
  1266. Z_lm_L >= interaction_threshold & Avg_Zscore_L <= -interaction_threshold ~ "Deletion Enhancer lm, Deletion Suppressor Avg Z score",
  1267. Z_lm_L <= -interaction_threshold & Avg_Zscore_L >= interaction_threshold ~ "Deletion Suppressor lm, Deletion Enhancer Avg Z score",
  1268. TRUE ~ "No Effect"
  1269. ),
  1270. lm_R_squared_L = summary(lm(Z_lm_L ~ Avg_Zscore_L))$r.squared,
  1271. lm_R_squared_K = summary(lm(Z_lm_K ~ Avg_Zscore_K))$r.squared,
  1272. lm_R_squared_r = summary(lm(Z_lm_r ~ Avg_Zscore_r))$r.squared,
  1273. lm_R_squared_AUC = summary(lm(Z_lm_AUC ~ Avg_Zscore_AUC))$r.squared
  1274. )
  1275. message("Generating filtered ranked plots")
  1276. rank_plot_filtered_configs <- generate_rank_plot_configs(
  1277. df = zscore_interactions_filtered,
  1278. variables = interaction_vars,
  1279. is_lm = FALSE,
  1280. adjust = FALSE,
  1281. overlap_color = TRUE
  1282. )
  1283. generate_and_save_plots(
  1284. out_dir = out_dir,
  1285. filename = "RankPlots_na_rm",
  1286. plot_configs = rank_plot_filtered_configs,
  1287. grid_layout = list(ncol = 3, nrow = 2))
  1288. message("Generating filtered ranked linear model plots")
  1289. rank_plot_lm_filtered_configs <- generate_rank_plot_configs(
  1290. df = zscore_interactions_filtered,
  1291. variables = interaction_vars,
  1292. is_lm = TRUE,
  1293. adjust = FALSE,
  1294. overlap_color = TRUE
  1295. )
  1296. generate_and_save_plots(
  1297. out_dir = out_dir,
  1298. filename = "rank_plots_lm_na_rm",
  1299. plot_configs = rank_plot_lm_filtered_configs,
  1300. grid_layout = list(ncol = 3, nrow = 2))
  1301. message("Generating correlation curve parameter pair plots")
  1302. correlation_plot_configs <- generate_correlation_plot_configs(zscore_interactions_filtered)
  1303. generate_and_save_plots(
  1304. out_dir = out_dir,
  1305. filename = "correlation_cpps",
  1306. plot_configs = correlation_plot_configs,
  1307. grid_layout = list(ncol = 2, nrow = 2))
  1308. })
  1309. })
  1310. }
  1311. main()