calculate_interaction_zscores.R 67 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787
  1. suppressMessages({
  2. library("ggplot2")
  3. library("plotly")
  4. library("htmlwidgets")
  5. library("htmltools")
  6. library("dplyr")
  7. library("rlang")
  8. library("ggthemes")
  9. library("data.table")
  10. library("grid")
  11. library("gridExtra")
  12. library("future")
  13. library("furrr")
  14. library("purrr")
  15. })
  16. # These parallelization libraries are very noisy
  17. suppressPackageStartupMessages({
  18. library("future")
  19. library("furrr")
  20. library("purrr")
  21. })
  22. # Turn all warnings into errors for development
  23. options(warn = 2)
  24. parse_arguments <- function() {
  25. args <- if (interactive()) {
  26. c(
  27. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/20240116_jhartman2_DoxoHLD",
  28. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/apps/r/SGD_features.tab",
  29. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/easy/20240116_jhartman2_DoxoHLD/results_std.txt",
  30. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/20240822_jhartman2_DoxoHLD/exp1",
  31. "Experiment 1: Doxo versus HLD",
  32. 3,
  33. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/20240822_jhartman2_DoxoHLD/exp2",
  34. "Experiment 2: HLD versus Doxo",
  35. 3
  36. )
  37. } else {
  38. commandArgs(trailingOnly = TRUE)
  39. }
  40. out_dir <- normalizePath(args[1], mustWork = FALSE)
  41. sgd_gene_list <- normalizePath(args[2], mustWork = FALSE)
  42. easy_results_file <- normalizePath(args[3], mustWork = FALSE)
  43. # The remaining arguments should be in groups of 3
  44. exp_args <- args[-(1:3)]
  45. if (length(exp_args) %% 3 != 0) {
  46. stop("Experiment arguments should be in groups of 3: path, name, sd.")
  47. }
  48. # Extract the experiments into a list
  49. experiments <- list()
  50. for (i in seq(1, length(exp_args), by = 3)) {
  51. exp_name <- exp_args[i + 1]
  52. experiments[[exp_name]] <- list(
  53. path = normalizePath(exp_args[i], mustWork = FALSE),
  54. sd = as.numeric(exp_args[i + 2])
  55. )
  56. }
  57. # Extract the trailing number from each path
  58. trailing_numbers <- sapply(experiments, function(x) {
  59. path <- x$path
  60. nums <- gsub("[^0-9]", "", basename(path))
  61. as.integer(nums)
  62. })
  63. # Sort the experiments based on the trailing numbers
  64. sorted_experiments <- experiments[order(trailing_numbers)]
  65. list(
  66. out_dir = out_dir,
  67. sgd_gene_list = sgd_gene_list,
  68. easy_results_file = easy_results_file,
  69. experiments = sorted_experiments
  70. )
  71. }
  72. args <- parse_arguments()
  73. # Should we keep output in exp dirs or combine in the study output dir?
  74. # dir.create(file.path(args$out_dir, "zscores"), showWarnings = FALSE)
  75. # dir.create(file.path(args$out_dir, "zscores", "qc"), showWarnings = FALSE)
  76. theme_publication <- function(base_size = 14, base_family = "sans", legend_position = NULL) {
  77. # Ensure that legend_position has a valid value or default to "none"
  78. legend_position <- if (is.null(legend_position) || length(legend_position) == 0) "none" else legend_position
  79. theme_foundation <- ggthemes::theme_foundation(base_size = base_size, base_family = base_family)
  80. theme_foundation %+replace%
  81. theme(
  82. plot.title = element_text(face = "bold", size = rel(1.6), hjust = 0.5),
  83. text = element_text(),
  84. panel.background = element_blank(),
  85. plot.background = element_blank(),
  86. panel.border = element_blank(),
  87. axis.title = element_text(face = "bold", size = rel(1.4)),
  88. axis.title.y = element_text(angle = 90, vjust = 2),
  89. axis.text = element_text(size = rel(1.2)),
  90. axis.line = element_line(colour = "black"),
  91. panel.grid.major = element_line(colour = "#f0f0f0"),
  92. panel.grid.minor = element_blank(),
  93. legend.key = element_rect(colour = NA),
  94. legend.position = legend_position,
  95. legend.direction =
  96. if (legend_position == "right") {
  97. "vertical"
  98. } else if (legend_position == "bottom") {
  99. "horizontal"
  100. } else {
  101. NULL # No legend direction if position is "none" or other values
  102. },
  103. legend.spacing = unit(0, "cm"),
  104. legend.title = element_text(face = "italic", size = rel(1.3)),
  105. legend.text = element_text(size = rel(1.2)),
  106. plot.margin = unit(c(10, 5, 5, 5), "mm")
  107. )
  108. }
  109. scale_fill_publication <- function(...) {
  110. discrete_scale("fill", "Publication", manual_pal(values = c(
  111. "#386cb0", "#fdb462", "#7fc97f", "#ef3b2c", "#662506",
  112. "#a6cee3", "#fb9a99", "#984ea3", "#ffff33"
  113. )), ...)
  114. }
  115. scale_colour_publication <- function(...) {
  116. discrete_scale("colour", "Publication", manual_pal(values = c(
  117. "#386cb0", "#fdb462", "#7fc97f", "#ef3b2c", "#662506",
  118. "#a6cee3", "#fb9a99", "#984ea3", "#ffff33"
  119. )), ...)
  120. }
  121. # Load the initial dataframe from the easy_results_file
  122. load_and_filter_data <- function(easy_results_file, sd = 3) {
  123. df <- read.delim(easy_results_file, skip = 2, as.is = TRUE, row.names = 1, strip.white = TRUE)
  124. df <- df %>%
  125. filter(!(.[[1]] %in% c("", "Scan"))) %>%
  126. filter(!is.na(ORF) & ORF != "" & !Gene %in% c("BLANK", "Blank", "blank") & Drug != "BMH21") %>%
  127. # Rename columns
  128. rename(L = l, num = Num., AUC = AUC96, scan = Scan, last_bg = LstBackgrd, first_bg = X1stBackgrd) %>%
  129. mutate(
  130. across(c(Col, Row, num, L, K, r, scan, AUC, last_bg, first_bg), as.numeric),
  131. delta_bg = last_bg - first_bg,
  132. delta_bg_tolerance = mean(delta_bg, na.rm = TRUE) + (sd * sd(delta_bg, na.rm = TRUE)),
  133. NG = if_else(L == 0 & !is.na(L), 1, 0),
  134. DB = if_else(delta_bg >= delta_bg_tolerance, 1, 0),
  135. SM = 0,
  136. OrfRep = if_else(ORF == "YDL227C", "YDL227C", OrfRep), # should these be hardcoded?
  137. conc_num = as.numeric(gsub("[^0-9\\.]", "", Conc)),
  138. conc_num_factor = as.numeric(as.factor(conc_num)) - 1, # for legacy purposes
  139. conc_num_factor_factor = as.factor(conc_num)
  140. )
  141. return(df)
  142. }
  143. update_gene_names <- function(df, sgd_gene_list) {
  144. genes <- read.delim(file = sgd_gene_list, quote = "", header = FALSE,
  145. colClasses = c(rep("NULL", 3), rep("character", 2), rep("NULL", 11)))
  146. gene_map <- setNames(genes$V5, genes$V4) # ORF to GeneName mapping
  147. df <- df %>%
  148. mutate(
  149. mapped_genes = gene_map[ORF],
  150. Gene = if_else(is.na(mapped_genes) | OrfRep == "YDL227C", Gene, mapped_genes),
  151. Gene = if_else(Gene == "" | Gene == "OCT1", OrfRep, Gene) # Handle invalid names
  152. )
  153. return(df)
  154. }
  155. calculate_summary_stats <- function(df, variables, group_vars) {
  156. summary_stats <- df %>%
  157. group_by(across(all_of(group_vars))) %>%
  158. summarise(
  159. N = n(),
  160. across(all_of(variables),
  161. list(
  162. mean = ~ mean(.x, na.rm = TRUE),
  163. median = ~ median(.x, na.rm = TRUE),
  164. max = ~ ifelse(all(is.na(.x)), NA, max(.x, na.rm = TRUE)),
  165. min = ~ ifelse(all(is.na(.x)), NA, min(.x, na.rm = TRUE)),
  166. sd = ~ sd(.x, na.rm = TRUE),
  167. se = ~ sd(.x, na.rm = TRUE) / sqrt(n() - 1)
  168. ),
  169. .names = "{.fn}_{.col}"
  170. ),
  171. .groups = "drop"
  172. )
  173. # Create a cleaned version of df that doesn't overlap with summary_stats
  174. df_cleaned <- df %>%
  175. select(-any_of(setdiff(intersect(names(df), names(summary_stats)), group_vars)))
  176. df_joined <- left_join(df_cleaned, summary_stats, by = group_vars)
  177. return(list(summary_stats = summary_stats, df_with_stats = df_joined))
  178. }
  179. calculate_interaction_scores <- function(df, df_bg, type, overlap_threshold = 2) {
  180. max_conc <- max(as.numeric(df$conc_num_factor), na.rm = TRUE)
  181. total_conc_num <- length(unique(df$conc_num))
  182. if (type == "reference") {
  183. bg_group_vars <- c("OrfRep", "Gene", "num", "Drug", "conc_num", "conc_num_factor", "conc_num_factor_factor")
  184. group_vars <- c("OrfRep", "Gene", "num", "Drug")
  185. } else if (type == "deletion") {
  186. bg_group_vars <- c("Drug", "conc_num", "conc_num_factor", "conc_num_factor_factor")
  187. group_vars <- c("OrfRep", "Gene", "Drug")
  188. }
  189. # This is a helper function to perform a linear regression and extract coefficients
  190. perform_lm <- function(data, response, predictor, max_conc) {
  191. valid_data <- data %>% filter(!is.na(data[[response]]))
  192. if (nrow(valid_data) > 1) {
  193. model <- lm(data[[response]] ~ data[[predictor]], data = valid_data)
  194. list(
  195. intercept = coef(model)[1],
  196. slope = coef(model)[2],
  197. r_squared = summary(model)$r.squared,
  198. score = max_conc * coef(model)[2] + coef(model)[1]
  199. )
  200. } else {
  201. list(intercept = NA, slope = NA, r_squared = NA, score = NA)
  202. }
  203. }
  204. # Calculate WT statistics from df_bg
  205. wt_stats <- df_bg %>%
  206. group_by(across(all_of(bg_group_vars))) %>%
  207. summarise(
  208. WT_L = mean(mean_L, na.rm = TRUE),
  209. WT_sd_L = mean(sd_L, na.rm = TRUE),
  210. WT_K = mean(mean_K, na.rm = TRUE),
  211. WT_sd_K = mean(sd_K, na.rm = TRUE),
  212. WT_r = mean(mean_r, na.rm = TRUE),
  213. WT_sd_r = mean(sd_r, na.rm = TRUE),
  214. WT_AUC = mean(mean_AUC, na.rm = TRUE),
  215. WT_sd_AUC = mean(sd_AUC, na.rm = TRUE),
  216. .groups = "drop"
  217. )
  218. # Join WT statistics to df
  219. df <- df %>%
  220. left_join(wt_stats, by = bg_group_vars)
  221. # Compute mean values at zero concentration
  222. mean_zeroes <- df %>%
  223. filter(conc_num == 0) %>%
  224. group_by(across(all_of(group_vars))) %>%
  225. summarise(
  226. mean_L_zero = mean(mean_L, na.rm = TRUE),
  227. mean_K_zero = mean(mean_K, na.rm = TRUE),
  228. mean_r_zero = mean(mean_r, na.rm = TRUE),
  229. mean_AUC_zero = mean(mean_AUC, na.rm = TRUE),
  230. .groups = "drop"
  231. )
  232. df <- df %>%
  233. left_join(mean_zeroes, by = c(group_vars))
  234. # Calculate Raw Shifts and Z Shifts
  235. df <- df %>%
  236. mutate(
  237. Raw_Shift_L = mean_L_zero - WT_L,
  238. Raw_Shift_K = mean_K_zero - WT_K,
  239. Raw_Shift_r = mean_r_zero - WT_r,
  240. Raw_Shift_AUC = mean_AUC_zero - WT_AUC,
  241. Z_Shift_L = Raw_Shift_L / WT_sd_L,
  242. Z_Shift_K = Raw_Shift_K / WT_sd_K,
  243. Z_Shift_r = Raw_Shift_r / WT_sd_r,
  244. Z_Shift_AUC = Raw_Shift_AUC / WT_sd_AUC
  245. )
  246. calculations <- df %>%
  247. group_by(across(all_of(c(group_vars, "conc_num", "conc_num_factor", "conc_num_factor_factor")))) %>%
  248. mutate(
  249. NG_sum = sum(NG, na.rm = TRUE),
  250. DB_sum = sum(DB, na.rm = TRUE),
  251. SM_sum = sum(SM, na.rm = TRUE),
  252. # Expected values
  253. Exp_L = WT_L + Raw_Shift_L,
  254. Exp_K = WT_K + Raw_Shift_K,
  255. Exp_r = WT_r + Raw_Shift_r,
  256. Exp_AUC = WT_AUC + Raw_Shift_AUC,
  257. # Deltas
  258. Delta_L = mean_L - Exp_L,
  259. Delta_K = mean_K - Exp_K,
  260. Delta_r = mean_r - Exp_r,
  261. Delta_AUC = mean_AUC - Exp_AUC,
  262. # Adjust deltas for NG and SM
  263. Delta_L = if_else(NG == 1, mean_L - WT_L, Delta_L),
  264. Delta_K = if_else(NG == 1, mean_K - WT_K, Delta_K),
  265. Delta_r = if_else(NG == 1, mean_r - WT_r, Delta_r),
  266. Delta_AUC = if_else(NG == 1, mean_AUC - WT_AUC, Delta_AUC),
  267. Delta_L = if_else(SM == 1, mean_L - WT_L, Delta_L),
  268. # Calculate Z-scores
  269. Zscore_L = Delta_L / WT_sd_L,
  270. Zscore_K = Delta_K / WT_sd_K,
  271. Zscore_r = Delta_r / WT_sd_r,
  272. Zscore_AUC = Delta_AUC / WT_sd_AUC
  273. ) %>%
  274. ungroup() %>% # Ungroup before group_modify
  275. group_by(across(all_of(group_vars))) %>%
  276. group_modify(~ {
  277. lm_L <- perform_lm(.x, "Delta_L", "conc_num_factor", max_conc)
  278. lm_K <- perform_lm(.x, "Delta_K", "conc_num_factor", max_conc)
  279. lm_r <- perform_lm(.x, "Delta_r", "conc_num_factor", max_conc)
  280. lm_AUC <- perform_lm(.x, "Delta_AUC", "conc_num_factor", max_conc)
  281. .x %>%
  282. mutate(
  283. lm_intercept_L = lm_L$intercept,
  284. lm_slope_L = lm_L$slope,
  285. R_Squared_L = lm_L$r_squared,
  286. lm_Score_L = lm_L$score,
  287. lm_intercept_K = lm_K$intercept,
  288. lm_slope_K = lm_K$slope,
  289. R_Squared_K = lm_K$r_squared,
  290. lm_Score_K = lm_K$score,
  291. lm_intercept_r = lm_r$intercept,
  292. lm_slope_r = lm_r$slope,
  293. R_Squared_r = lm_r$r_squared,
  294. lm_Score_r = lm_r$score,
  295. lm_intercept_AUC = lm_AUC$intercept,
  296. lm_slope_AUC = lm_AUC$slope,
  297. R_Squared_AUC = lm_AUC$r_squared,
  298. lm_Score_AUC = lm_AUC$score
  299. )
  300. }) %>%
  301. ungroup()
  302. # For interaction plot error bars
  303. delta_means_sds <- calculations %>%
  304. group_by(across(all_of(group_vars))) %>%
  305. summarise(
  306. mean_Delta_L = mean(Delta_L, na.rm = TRUE),
  307. mean_Delta_K = mean(Delta_K, na.rm = TRUE),
  308. mean_Delta_r = mean(Delta_r, na.rm = TRUE),
  309. mean_Delta_AUC = mean(Delta_AUC, na.rm = TRUE),
  310. sd_Delta_L = sd(Delta_L, na.rm = TRUE),
  311. sd_Delta_K = sd(Delta_K, na.rm = TRUE),
  312. sd_Delta_r = sd(Delta_r, na.rm = TRUE),
  313. sd_Delta_AUC = sd(Delta_AUC, na.rm = TRUE),
  314. .groups = "drop"
  315. )
  316. calculations <- calculations %>%
  317. left_join(delta_means_sds, by = group_vars)
  318. # Summary statistics for lm scores
  319. calculations <- calculations %>%
  320. mutate(
  321. lm_mean_L = mean(lm_Score_L, na.rm = TRUE),
  322. lm_sd_L = sd(lm_Score_L, na.rm = TRUE),
  323. lm_mean_K = mean(lm_Score_K, na.rm = TRUE),
  324. lm_sd_K = sd(lm_Score_K, na.rm = TRUE),
  325. lm_mean_r = mean(lm_Score_r, na.rm = TRUE),
  326. lm_sd_r = sd(lm_Score_r, na.rm = TRUE),
  327. lm_mean_AUC = mean(lm_Score_AUC, na.rm = TRUE),
  328. lm_sd_AUC = sd(lm_Score_AUC, na.rm = TRUE),
  329. Z_lm_L = (lm_Score_L - lm_mean_L) / lm_sd_L,
  330. Z_lm_K = (lm_Score_K - lm_mean_K) / lm_sd_K,
  331. Z_lm_r = (lm_Score_r - lm_mean_r) / lm_sd_r,
  332. Z_lm_AUC = (lm_Score_AUC - lm_mean_AUC) / lm_sd_AUC
  333. )
  334. # Build summary stats (interactions)
  335. interactions <- calculations %>%
  336. group_by(across(all_of(group_vars))) %>%
  337. summarise(
  338. num_non_removed_concs = total_conc_num - sum(DB, na.rm = TRUE) - 1,
  339. Sum_Z_Score_L = sum(Zscore_L, na.rm = TRUE),
  340. Sum_Z_Score_K = sum(Zscore_K, na.rm = TRUE),
  341. Sum_Z_Score_r = sum(Zscore_r, na.rm = TRUE),
  342. Sum_Z_Score_AUC = sum(Zscore_AUC, na.rm = TRUE),
  343. Avg_Zscore_L = Sum_Z_Score_L / first(num_non_removed_concs),
  344. Avg_Zscore_K = Sum_Z_Score_K / first(num_non_removed_concs),
  345. Avg_Zscore_r = Sum_Z_Score_r / first(num_non_removed_concs),
  346. Avg_Zscore_AUC = Sum_Z_Score_AUC / first(num_non_removed_concs),
  347. # R_Squared
  348. R_Squared_L = first(R_Squared_L),
  349. R_Squared_K = first(R_Squared_K),
  350. R_Squared_r = first(R_Squared_r),
  351. R_Squared_AUC = first(R_Squared_AUC),
  352. # Interaction Z-scores
  353. Z_lm_L = first(Z_lm_L),
  354. Z_lm_K = first(Z_lm_K),
  355. Z_lm_r = first(Z_lm_r),
  356. Z_lm_AUC = first(Z_lm_AUC),
  357. # Raw Shifts
  358. Raw_Shift_L = first(Raw_Shift_L),
  359. Raw_Shift_K = first(Raw_Shift_K),
  360. Raw_Shift_r = first(Raw_Shift_r),
  361. Raw_Shift_AUC = first(Raw_Shift_AUC),
  362. # Z Shifts
  363. Z_Shift_L = first(Z_Shift_L),
  364. Z_Shift_K = first(Z_Shift_K),
  365. Z_Shift_r = first(Z_Shift_r),
  366. Z_Shift_AUC = first(Z_Shift_AUC),
  367. # Gene-Gene Interaction
  368. lm_Score_L = first(lm_Score_L),
  369. lm_Score_K = first(lm_Score_K),
  370. lm_Score_r = first(lm_Score_r),
  371. lm_Score_AUC = first(lm_Score_AUC),
  372. # NG, DB, SM values
  373. NG_sum_int = sum(NG),
  374. DB_sum_int = sum(DB),
  375. SM_sum_int = sum(SM),
  376. .groups = "drop"
  377. ) %>%
  378. arrange(desc(Z_lm_L), desc(NG_sum_int))
  379. # Deletion data ranking and linear modeling
  380. if (type == "deletion") {
  381. interactions <- interactions %>%
  382. mutate(
  383. Avg_Zscore_L_adjusted = ifelse(is.na(Avg_Zscore_L), 0.001, Avg_Zscore_L),
  384. Avg_Zscore_K_adjusted = ifelse(is.na(Avg_Zscore_K), 0.001, Avg_Zscore_K),
  385. Avg_Zscore_r_adjusted = ifelse(is.na(Avg_Zscore_r), 0.001, Avg_Zscore_r),
  386. Avg_Zscore_AUC_adjusted = ifelse(is.na(Avg_Zscore_AUC), 0.001, Avg_Zscore_AUC),
  387. Z_lm_L_adjusted = ifelse(is.na(Z_lm_L), 0.001, Z_lm_L),
  388. Z_lm_K_adjusted = ifelse(is.na(Z_lm_K), 0.001, Z_lm_K),
  389. Z_lm_r_adjusted = ifelse(is.na(Z_lm_r), 0.001, Z_lm_r),
  390. Z_lm_AUC_adjusted = ifelse(is.na(Z_lm_AUC), 0.001, Z_lm_AUC)
  391. ) %>%
  392. mutate(
  393. Rank_L = rank(Avg_Zscore_L_adjusted),
  394. Rank_K = rank(Avg_Zscore_K_adjusted),
  395. Rank_r = rank(Avg_Zscore_r_adjusted),
  396. Rank_AUC = rank(Avg_Zscore_AUC_adjusted),
  397. Rank_lm_L = rank(Z_lm_L_adjusted),
  398. Rank_lm_K = rank(Z_lm_K_adjusted),
  399. Rank_lm_r = rank(Z_lm_r_adjusted),
  400. Rank_lm_AUC = rank(Z_lm_AUC_adjusted)
  401. ) %>%
  402. mutate(
  403. lm_R_squared_rank_L = summary(lm(Rank_lm_L ~ Rank_L, data = .))$r.squared,
  404. lm_R_squared_rank_K = summary(lm(Rank_lm_K ~ Rank_K, data = .))$r.squared,
  405. lm_R_squared_rank_r = summary(lm(Rank_lm_r ~ Rank_r, data = .))$r.squared,
  406. lm_R_squared_rank_AUC = summary(lm(Rank_lm_AUC ~ Rank_AUC, data = .))$r.squared
  407. )
  408. # Add overlap threshold categories based on Z-lm and Avg-Z scores
  409. interactions <- interactions %>%
  410. filter(!is.na(Z_lm_L) | !is.na(Avg_Zscore_L)) %>%
  411. mutate(
  412. Overlap = case_when(
  413. Z_lm_L >= overlap_threshold & Avg_Zscore_L >= overlap_threshold ~ "Deletion Enhancer Both",
  414. Z_lm_L <= -overlap_threshold & Avg_Zscore_L <= -overlap_threshold ~ "Deletion Suppressor Both",
  415. Z_lm_L >= overlap_threshold & Avg_Zscore_L <= overlap_threshold ~ "Deletion Enhancer lm only",
  416. Z_lm_L <= overlap_threshold & Avg_Zscore_L >= overlap_threshold ~ "Deletion Enhancer Avg Zscore only",
  417. Z_lm_L <= -overlap_threshold & Avg_Zscore_L >= -overlap_threshold ~ "Deletion Suppressor lm only",
  418. Z_lm_L >= -overlap_threshold & Avg_Zscore_L <= -overlap_threshold ~ "Deletion Suppressor Avg Zscore only",
  419. Z_lm_L >= overlap_threshold & Avg_Zscore_L <= -overlap_threshold ~ "Deletion Enhancer lm, Deletion Suppressor Avg Zscore",
  420. Z_lm_L <= -overlap_threshold & Avg_Zscore_L >= overlap_threshold ~ "Deletion Suppressor lm, Deletion Enhancer Avg Zscore",
  421. TRUE ~ "No Effect"
  422. ),
  423. # For rank plots
  424. lm_L = perform_lm(., "Z_lm_L", "Avg_Zscore_L", max_conc),
  425. lm_K = perform_lm(., "Z_lm_K", "Avg_Zscore_K", max_conc),
  426. lm_r = perform_lm(., "Z_lm_r", "Avg_Zscore_r", max_conc),
  427. lm_AUC = perform_lm(., "Z_lm_AUC", "Avg_Zscore_AUC", max_conc),
  428. # For correlation plots
  429. Z_lm_K_L = perform_lm(., "Z_lm_K", "Z_lm_L", max_conc),
  430. Z_lm_r_L = perform_lm(., "Z_lm_r", "Z_lm_L", max_conc),
  431. Z_lm_R_AUC_L = perform_lm(., "Z_lm_AUC", "Z_lm_L", max_conc),
  432. Z_lm_R_r_K = perform_lm(., "Z_lm_r", "Z_lm_K", max_conc),
  433. Z_lm_R_AUC_K = perform_lm(., "Z_lm_AUC", "Z_lm_K", max_conc),
  434. Z_lm_R_AUC_r = perform_lm(., "Z_lm_AUC", "Z_lm_r", max_conc),
  435. # Extract coefficients and statistics for each model
  436. lm_rank_intercept_L = lm_L$intercept,
  437. lm_rank_slope_L = lm_L$slope,
  438. R_Squared_L = lm_L$r_squared,
  439. lm_Score_L = lm_L$score,
  440. lm_intercept_K = lm_K$intercept,
  441. lm_slope_K = lm_K$slope,
  442. R_Squared_K = lm_K$r_squared,
  443. lm_Score_K = lm_K$score,
  444. lm_intercept_r = lm_r$intercept,
  445. lm_slope_r = lm_r$slope,
  446. R_Squared_r = lm_r$r_squared,
  447. lm_Score_r = lm_r$score,
  448. lm_intercept_AUC = lm_AUC$intercept,
  449. lm_slope_AUC = lm_AUC$slope,
  450. R_Squared_AUC = lm_AUC$r_squared,
  451. lm_Score_AUC = lm_AUC$score,
  452. Z_lm_intercept_K_L = Z_lm_K_L$intercept,
  453. Z_lm_slope_K_L = Z_lm_K_L$slope,
  454. Z_lm_R_squared_K_L = Z_lm_K_L$r_squared,
  455. Z_lm_Score_K_L = Z_lm_K_L$score,
  456. Z_lm_intercept_r_L = Z_lm_r_L$intercept,
  457. Z_lm_slope_r_L = Z_lm_r_L$slope,
  458. Z_lm_R_squared_r_L = Z_lm_r_L$r_squared,
  459. Z_lm_Score_r_L = Z_lm_r_L$score,
  460. Z_lm_intercept_R_AUC_L = Z_lm_R_AUC_L$intercept,
  461. Z_lm_slope_R_AUC_L = Z_lm_R_AUC_L$slope,
  462. Z_lm_R_squared_R_AUC_L = Z_lm_R_AUC_L$r_squared,
  463. Z_lm_Score_R_AUC_L = Z_lm_R_AUC_L$score,
  464. Z_lm_intercept_R_r_K = Z_lm_R_r_K$intercept,
  465. Z_lm_slope_R_r_K = Z_lm_R_r_K$slope,
  466. Z_lm_R_squared_R_r_K = Z_lm_R_r_K$r_squared,
  467. Z_lm_Score_R_r_K = Z_lm_R_r_K$score,
  468. Z_lm_intercept_R_AUC_K = Z_lm_R_AUC_K$intercept,
  469. Z_lm_slope_R_AUC_K = Z_lm_R_AUC_K$slope,
  470. Z_lm_R_squared_R_AUC_K = Z_lm_R_AUC_K$r_squared,
  471. Z_lm_Score_R_AUC_K = Z_lm_R_AUC_K$score,
  472. Z_lm_intercept_R_AUC_r = Z_lm_R_AUC_r$intercept,
  473. Z_lm_slope_R_AUC_r = Z_lm_R_AUC_r$slope,
  474. Z_lm_R_squared_R_AUC_r = Z_lm_R_AUC_r$r_squared,
  475. Z_lm_Score_R_AUC_r = Z_lm_R_AUC_r$score
  476. ) %>%
  477. # Drop the lm objects and keep only the lm results
  478. select(
  479. -lm_L, -lm_K, -lm_r, -lm_AUC, -Z_lm_K_L, -Z_lm_r_L, -Z_lm_R_AUC_L,
  480. -Z_lm_R_r_K, -Z_lm_R_AUC_K, -Z_lm_R_AUC_r
  481. )
  482. } # end deletion-specific block
  483. # Create the final calculations and interactions dataframes with only required columns for csv output
  484. df_calculations <- calculations %>%
  485. select(
  486. all_of(group_vars),
  487. conc_num, conc_num_factor, conc_num_factor_factor, N,
  488. mean_L, median_L, sd_L, se_L,
  489. mean_K, median_K, sd_K, se_K,
  490. mean_r, median_r, sd_r, se_r,
  491. mean_AUC, median_AUC, sd_AUC, se_AUC,
  492. Raw_Shift_L, Raw_Shift_K, Raw_Shift_r, Raw_Shift_AUC,
  493. Z_Shift_L, Z_Shift_K, Z_Shift_r, Z_Shift_AUC,
  494. WT_L, WT_K, WT_r, WT_AUC,
  495. WT_sd_L, WT_sd_K, WT_sd_r, WT_sd_AUC,
  496. Exp_L, Exp_K, Exp_r, Exp_AUC,
  497. Delta_L, Delta_K, Delta_r, Delta_AUC,
  498. mean_Delta_L, mean_Delta_K, mean_Delta_r, mean_Delta_AUC,
  499. Zscore_L, Zscore_K, Zscore_r, Zscore_AUC,
  500. NG_sum, DB_sum, SM_sum
  501. ) %>%
  502. rename(NG = NG_sum, DB = DB_sum, SM = SM_sum)
  503. df_interactions <- interactions %>%
  504. select(
  505. all_of(group_vars),
  506. Avg_Zscore_L, Avg_Zscore_K, Avg_Zscore_r, Avg_Zscore_AUC,
  507. Sum_Z_Score_L, Sum_Z_Score_K, Sum_Z_Score_r, Sum_Z_Score_AUC,
  508. Z_lm_L, Z_lm_K, Z_lm_r, Z_lm_AUC,
  509. Raw_Shift_L, Raw_Shift_K, Raw_Shift_r, Raw_Shift_AUC,
  510. Z_Shift_L, Z_Shift_K, Z_Shift_r, Z_Shift_AUC,
  511. lm_Score_L, lm_Score_K, lm_Score_r, lm_Score_AUC,
  512. R_Squared_L, R_Squared_K, R_Squared_r, R_Squared_AUC,
  513. NG_sum_int, DB_sum_int, SM_sum_int
  514. ) %>%
  515. rename(NG = NG_sum_int, DB = DB_sum_int, SM = SM_sum_int)
  516. # Avoid column collision on left join for overlapping variables
  517. calculations_no_overlap <- calculations %>%
  518. select(-any_of(c("DB", "NG", "SM",
  519. # Don't need these anywhere so easier to remove
  520. "Raw_Shift_L", "Raw_Shift_K", "Raw_Shift_r", "Raw_Shift_AUC",
  521. "R_Squared_L", "R_Squared_K", "R_Squared_r", "R_Squared_AUC",
  522. # we need these for the interactions but the original code has the same names in both datasets
  523. "Z_Shift_L", "Z_Shift_K", "Z_Shift_r", "Z_Shift_AUC",
  524. "Z_lm_L", "Z_lm_K", "Z_lm_r", "Z_lm_AUC"
  525. )))
  526. full_data <- calculations_no_overlap %>%
  527. left_join(interactions, by = group_vars)
  528. # Return final dataframes
  529. return(list(
  530. calculations = df_calculations,
  531. interactions = df_interactions,
  532. full_data = full_data
  533. ))
  534. }
  535. generate_and_save_plots <- function(out_dir, filename, plot_configs, page_width = 12, page_height = 8) {
  536. message("Generating ", filename, ".pdf and ", filename, ".html")
  537. plot_groups <- if ("plots" %in% names(plot_configs)) {
  538. list(plot_configs) # Single group
  539. } else {
  540. plot_configs # Multiple groups
  541. }
  542. pdf(file.path(out_dir, paste0(filename, ".pdf")), width = page_width, height = page_height)
  543. for (group in plot_groups) {
  544. static_plots <- list()
  545. plotly_plots <- list()
  546. for (i in seq_along(group$plots)) {
  547. config <- group$plots[[i]]
  548. df <- config$df
  549. # Filter NAs
  550. if (!is.null(config$filter_na) && config$filter_na) {
  551. df <- df %>%
  552. filter(!is.na(!!sym(config$y_var)))
  553. }
  554. # TODO for now skip all NA plots NA data
  555. # Eventually add to own or filter_na block so we can handle selectively
  556. if (nrow(df) == 0) {
  557. message("Insufficient data for plot:", config$title)
  558. next # skip plot if insufficient data is available
  559. }
  560. # Create initial aes mappings for all plot types
  561. aes_mapping <- aes(x = !!sym(config$x_var)) # required
  562. if (!is.null(config$y_var)) {
  563. aes_mapping <- modifyList(aes_mapping, aes(y = !!sym(config$y_var))) # optional for density/bar plots
  564. }
  565. if (!is.null(config$color_var)) {
  566. aes_mapping <- modifyList(aes_mapping, aes(color = !!sym(config$color_var))) # dynamic color_var
  567. } else if (!is.null(config$color)) {
  568. aes_mapping <- modifyList(aes_mapping, aes(color = config$color)) # static color
  569. }
  570. if (config$plot_type == "bar" && !is.null(config$color_var)) {
  571. aes_mapping <- modifyList(aes_mapping, aes(fill = !!sym(config$color_var))) # only fill bar plots
  572. }
  573. # Begin plot generation
  574. plot <- ggplot(df, aes_mapping) + theme_publication(legend_position = config$legend_position)
  575. plot <- switch(config$plot_type,
  576. "scatter" = generate_scatter_plot(plot, config),
  577. "box" = generate_boxplot(plot, config),
  578. "density" = plot + geom_density(),
  579. "bar" = plot + geom_bar(),
  580. plot # default
  581. )
  582. if (!is.null(config$title)) {
  583. plot <- plot + ggtitle(config$title)
  584. if (!is.null(config$title_size)) {
  585. plot <- plot + theme(plot.title = element_text(size = config$title_size))
  586. }
  587. }
  588. if (!is.null(config$x_label)) plot <- plot + xlab(config$x_label)
  589. if (!is.null(config$y_label)) plot <- plot + ylab(config$y_label)
  590. if (!is.null(config$coord_cartesian)) plot <- plot + coord_cartesian(ylim = config$coord_cartesian)
  591. #plotly_plot <- suppressWarnings(plotly::ggplotly(plot))
  592. static_plots[[i]] <- plot
  593. #plotly_plots[[i]] <- plotly_plot
  594. }
  595. grid_layout <- group$grid_layout
  596. if (!is.null(grid_layout)) {
  597. if (is.null(grid_layout$ncol)) {
  598. grid_layout$ncol <- 1
  599. }
  600. if (!is.null(grid_layout$ncol) && is.null(grid_layout$nrow)) {
  601. num_plots <- length(static_plots)
  602. grid_layout$nrow <- ceiling(num_plots / grid_layout$ncol)
  603. }
  604. # total_spots <- grid_layout$nrow * grid_layout$ncol
  605. # num_plots <- length(static_plots)
  606. # if (num_plots < total_spots) {
  607. # message("Filling ", total_spots - num_plots, " empty spots with nullGrob()")
  608. # static_plots <- c(static_plots, replicate(total_spots - num_plots, nullGrob(), simplify = FALSE))
  609. # }
  610. grid.arrange(
  611. grobs = static_plots,
  612. ncol = grid_layout$ncol,
  613. nrow = grid_layout$nrow
  614. )
  615. } else {
  616. for (plot in static_plots) {
  617. print(plot)
  618. }
  619. }
  620. }
  621. dev.off()
  622. # out_html_file <- file.path(out_dir, paste0(filename, ".html"))
  623. # message("Saving combined HTML file: ", out_html_file)
  624. # htmltools::save_html(
  625. # htmltools::tagList(plotly_plots),
  626. # file = out_html_file
  627. # )
  628. }
  629. generate_scatter_plot <- function(plot, config) {
  630. # Define the points
  631. shape <- if (!is.null(config$shape)) config$shape else 3
  632. size <- if (!is.null(config$size)) config$size else 1.5
  633. position <-
  634. if (!is.null(config$position) && config$position == "jitter") {
  635. position_jitter(width = 0.4, height = 0.1)
  636. } else {
  637. "identity"
  638. }
  639. plot <- plot + geom_point(
  640. shape = shape,
  641. size = size,
  642. position = position
  643. )
  644. # Add a cyan point for the reference data for correlation plots
  645. if (!is.null(config$cyan_points) && config$cyan_points) {
  646. plot <- plot + geom_point(
  647. aes(x = !!sym(config$x_var), y = !!sym(config$y_var)),
  648. data = config$df_reference,
  649. color = "cyan",
  650. shape = 3,
  651. size = 0.5
  652. )
  653. }
  654. # Add error bars if specified
  655. if (!is.null(config$error_bar) && config$error_bar) {
  656. # Check if custom columns are provided for y_mean and y_sd, or use the defaults
  657. y_mean_col <- if (!is.null(config$error_bar_params$y_mean_col)) {
  658. config$error_bar_params$y_mean_col
  659. } else {
  660. paste0("mean_", config$y_var)
  661. }
  662. y_sd_col <- if (!is.null(config$error_bar_params$y_sd_col)) {
  663. config$error_bar_params$y_sd_col
  664. } else {
  665. paste0("sd_", config$y_var)
  666. }
  667. # Use rlang to handle custom error bar calculations
  668. if (!is.null(config$error_bar_params$custom_error_bar)) {
  669. custom_ymin_expr <- rlang::parse_expr(config$error_bar_params$custom_error_bar$ymin)
  670. custom_ymax_expr <- rlang::parse_expr(config$error_bar_params$custom_error_bar$ymax)
  671. plot <- plot + geom_errorbar(
  672. aes(
  673. ymin = !!custom_ymin_expr,
  674. ymax = !!custom_ymax_expr
  675. ),
  676. color = config$error_bar_params$color,
  677. linewidth = ifelse(is.null(config$error_bar_params$linewidth), 0.1, config$error_bar_params$linewidth)
  678. )
  679. } else {
  680. # If no custom error bar formula, use the default or dynamic ones
  681. if (!is.null(config$color_var) && config$color_var %in% colnames(config$df)) {
  682. # Only use color_var if it's present in the dataframe
  683. plot <- plot + geom_errorbar(
  684. aes(
  685. ymin = !!sym(y_mean_col) - !!sym(y_sd_col),
  686. ymax = !!sym(y_mean_col) + !!sym(y_sd_col),
  687. color = !!sym(config$color_var)
  688. ),
  689. linewidth = 0.1
  690. )
  691. } else {
  692. # If color_var is missing, fall back to a default color or none
  693. plot <- plot + geom_errorbar(
  694. aes(
  695. ymin = !!sym(y_mean_col) - !!sym(y_sd_col),
  696. ymax = !!sym(y_mean_col) + !!sym(y_sd_col)
  697. ),
  698. color = config$error_bar_params$color, # use the provided color or default
  699. linewidth = ifelse(is.null(config$error_bar_params$linewidth), 0.1, config$error_bar_params$linewidth)
  700. )
  701. }
  702. }
  703. # Add the center point if the option is provided
  704. if (!is.null(config$error_bar_params$mean_point) && config$error_bar_params$mean_point) {
  705. if (!is.null(config$error_bar_params$color)) {
  706. plot <- plot + geom_point(
  707. aes(x = !!sym(config$x_var), y = !!sym(y_mean_col)),
  708. color = config$error_bar_params$color,
  709. shape = 16
  710. )
  711. } else {
  712. plot <- plot + geom_point(
  713. aes(x = !!sym(config$x_var), y = !!sym(y_mean_col)),
  714. shape = 16
  715. )
  716. }
  717. }
  718. }
  719. # Add linear regression line if specified
  720. if (!is.null(config$lm_line)) {
  721. # Extract necessary values
  722. intercept <- config$lm_line$intercept # required
  723. slope <- config$lm_line$slope # required
  724. xmin <- ifelse(!is.null(config$lm_line$xmin), config$lm_line$xmin, min(as.numeric(config$df[[config$x_var]])))
  725. xmax <- ifelse(!is.null(config$lm_line$xmax), config$lm_line$xmax, max(as.numeric(config$df[[config$x_var]])))
  726. color <- ifelse(!is.null(config$lm_line$color), config$lm_line$color, "blue")
  727. linewidth <- ifelse(!is.null(config$lm_line$linewidth), config$lm_line$linewidth, 1)
  728. ymin <- intercept + slope * xmin
  729. ymax <- intercept + slope * xmax
  730. # Ensure y-values are within y-limits (if any)
  731. if (!is.null(config$ylim_vals)) {
  732. ymin_within_limits <- ymin >= config$ylim_vals[1] && ymin <= config$ylim_vals[2]
  733. ymax_within_limits <- ymax >= config$ylim_vals[1] && ymax <= config$ylim_vals[2]
  734. # Adjust or skip based on whether the values fall within limits
  735. if (ymin_within_limits && ymax_within_limits) {
  736. plot <- plot + annotate(
  737. "segment",
  738. x = xmin,
  739. xend = xmax,
  740. y = ymin,
  741. yend = ymax,
  742. color = color,
  743. linewidth = linewidth,
  744. )
  745. } else {
  746. message("Skipping linear regression line due to y-values outside of limits")
  747. }
  748. } else {
  749. # If no y-limits are provided, proceed with the annotation
  750. plot <- plot + annotate(
  751. "segment",
  752. x = xmin,
  753. xend = xmax,
  754. y = ymin,
  755. yend = ymax,
  756. color = color,
  757. linewidth = linewidth
  758. )
  759. }
  760. }
  761. # Add SD Bands if specified
  762. if (!is.null(config$sd_band)) {
  763. plot <- plot +
  764. annotate(
  765. "rect",
  766. xmin = -Inf, xmax = Inf,
  767. ymin = config$sd_band, ymax = Inf,
  768. fill = ifelse(!is.null(config$fill_positive), config$fill_positive, "#542788"),
  769. alpha = ifelse(!is.null(config$alpha_positive), config$alpha_positive, 0.3)
  770. ) +
  771. annotate(
  772. "rect",
  773. xmin = -Inf, xmax = Inf,
  774. ymin = -config$sd_band, ymax = -Inf,
  775. fill = ifelse(!is.null(config$fill_negative), config$fill_negative, "orange"),
  776. alpha = ifelse(!is.null(config$alpha_negative), config$alpha_negative, 0.3)
  777. ) +
  778. geom_hline(
  779. yintercept = c(-config$sd_band, config$sd_band),
  780. color = ifelse(!is.null(config$hl_color), config$hl_color, "black")
  781. )
  782. }
  783. # # Add rectangles if specified
  784. # if (!is.null(config$rectangles)) {
  785. # for (rect in config$rectangles) {
  786. # plot <- plot + annotate(
  787. # "rect",
  788. # xmin = rect$xmin,
  789. # xmax = rect$xmax,
  790. # ymin = rect$ymin,
  791. # ymax = rect$ymax,
  792. # fill = ifelse(is.null(rect$fill), NA, rect$fill),
  793. # color = ifelse(is.null(rect$color), "black", rect$color),
  794. # alpha = ifelse(is.null(rect$alpha), 0.1, rect$alpha)
  795. # )
  796. # }
  797. # }
  798. # Customize X-axis if specified
  799. if (!is.null(config$x_breaks) && !is.null(config$x_labels) && !is.null(config$x_label)) {
  800. # Check if x_var is factor or character (for discrete x-axis)
  801. if (is.factor(plot$data[[config$x_var]]) || is.character(plot$data[[config$x_var]])) {
  802. plot <- plot +
  803. scale_x_discrete(
  804. name = config$x_label,
  805. breaks = config$x_breaks,
  806. labels = config$x_labels
  807. )
  808. } else {
  809. plot <- plot +
  810. scale_x_continuous(
  811. name = config$x_label,
  812. breaks = config$x_breaks,
  813. labels = config$x_labels
  814. )
  815. }
  816. }
  817. # Set Y-axis limits if specified
  818. if (!is.null(config$ylim_vals)) {
  819. plot <- plot + scale_y_continuous(limits = config$ylim_vals)
  820. }
  821. return(plot)
  822. }
  823. generate_boxplot <- function(plot, config) {
  824. # Convert x_var to a factor within aes mapping
  825. plot <- plot + geom_boxplot(aes(x = factor(!!sym(config$x_var))))
  826. # Customize X-axis if specified
  827. if (!is.null(config$x_breaks) && !is.null(config$x_labels) && !is.null(config$x_label)) {
  828. # Check if x_var is factor or character (for discrete x-axis)
  829. if (is.factor(plot$data[[config$x_var]]) || is.character(plot$data[[config$x_var]])) {
  830. plot <- plot +
  831. scale_x_discrete(
  832. name = config$x_label,
  833. breaks = config$x_breaks,
  834. labels = config$x_labels
  835. )
  836. } else {
  837. plot <- plot +
  838. scale_x_continuous(
  839. name = config$x_label,
  840. breaks = config$x_breaks,
  841. labels = config$x_labels
  842. )
  843. }
  844. }
  845. return(plot)
  846. }
  847. generate_plate_analysis_plot_configs <- function(variables, df_before = NULL, df_after = NULL,
  848. plot_type = "scatter", stages = c("before", "after")) {
  849. plot_configs <- list()
  850. for (var in variables) {
  851. for (stage in stages) {
  852. df_plot <- if (stage == "before") df_before else df_after
  853. # Check for non-finite values in the y-variable
  854. # df_plot_filtered <- df_plot %>% filter(is.finite(!!sym(var)))
  855. # Adjust settings based on plot_type
  856. plot_config <- list(
  857. df = df_plot,
  858. x_var = "scan",
  859. y_var = var,
  860. plot_type = plot_type,
  861. title = paste("Plate analysis by Drug Conc for", var, stage, "quality control"),
  862. color_var = "conc_num_factor_factor",
  863. size = 0.2,
  864. error_bar = (plot_type == "scatter"),
  865. legend_position = "bottom",
  866. filter_na = TRUE
  867. )
  868. # Add config to plots list
  869. plot_configs <- append(plot_configs, list(plot_config))
  870. }
  871. }
  872. return(list(plots = plot_configs))
  873. }
  874. generate_interaction_plot_configs <- function(df_summary, df_interactions, type) {
  875. # Define the y-limits for the plots
  876. limits_map <- list(
  877. L = c(0, 130),
  878. K = c(-20, 160),
  879. r = c(0, 1),
  880. AUC = c(0, 12500)
  881. )
  882. stats_plot_configs <- list()
  883. stats_boxplot_configs <- list()
  884. delta_plot_configs <- list()
  885. # Overall statistics plots
  886. OrfRep <- first(df_summary$OrfRep) # this should correspond to the reference strain
  887. for (plot_type in c("scatter", "box")) {
  888. for (var in names(limits_map)) {
  889. y_limits <- limits_map[[var]]
  890. y_span <- y_limits[2] - y_limits[1]
  891. # Common plot configuration
  892. plot_config <- list(
  893. df = df_summary,
  894. plot_type = plot_type,
  895. x_var = "conc_num_factor_factor",
  896. y_var = var,
  897. shape = 16,
  898. x_label = paste0("[", unique(df_summary$Drug)[1], "]"),
  899. coord_cartesian = y_limits,
  900. x_breaks = unique(df_summary$conc_num_factor_factor),
  901. x_labels = as.character(unique(df_summary$conc_num))
  902. )
  903. # Add specific configurations for scatter and box plots
  904. if (plot_type == "scatter") {
  905. plot_config$title <- sprintf("%s Scatter RF for %s with SD", OrfRep, var)
  906. plot_config$error_bar <- TRUE
  907. plot_config$error_bar_params <- list(
  908. color = "red",
  909. mean_point = TRUE,
  910. y_mean_col = paste0("mean_mean_", var),
  911. y_sd_col = paste0("mean_sd_", var)
  912. )
  913. plot_config$position <- "jitter"
  914. annotations <- list(
  915. list(x = 0.25, y = y_limits[1] + 0.08 * y_span, label = " NG =", size = 4),
  916. list(x = 0.25, y = y_limits[1] + 0.04 * y_span, label = " DB =", size = 4),
  917. list(x = 0.25, y = y_limits[1], label = " SM =", size = 4)
  918. )
  919. for (x_val in unique(df_summary$conc_num_factor_factor)) {
  920. current_df <- df_summary %>% filter(!!sym(plot_config$x_var) == x_val)
  921. annotations <- append(annotations, list(
  922. list(x = x_val, y = y_limits[1] + 0.08 * y_span, label = first(current_df$NG, default = 0), size = 4),
  923. list(x = x_val, y = y_limits[1] + 0.04 * y_span, label = first(current_df$DB, default = 0), size = 4),
  924. list(x = x_val, y = y_limits[1], label = first(current_df$SM, default = 0), size = 4)
  925. ))
  926. }
  927. plot_config$annotations <- annotations
  928. stats_plot_configs <- append(stats_plot_configs, list(plot_config))
  929. } else if (plot_type == "box") {
  930. plot_config$title <- sprintf("%s Box RF for %s with SD", OrfRep, var)
  931. plot_config$position <- "dodge"
  932. stats_boxplot_configs <- append(stats_boxplot_configs, list(plot_config))
  933. }
  934. }
  935. }
  936. # Delta interaction plots
  937. delta_limits_map <- list(
  938. L = c(-60, 60),
  939. K = c(-60, 60),
  940. r = c(-0.6, 0.6),
  941. AUC = c(-6000, 6000)
  942. )
  943. # Select the data grouping by data type
  944. if (type == "reference") {
  945. group_vars <- c("OrfRep", "Gene", "num")
  946. } else if (type == "deletion") {
  947. group_vars <- c("OrfRep", "Gene")
  948. }
  949. grouped_data <- df_interactions %>%
  950. group_by(across(all_of(group_vars))) %>%
  951. group_split()
  952. for (group_data in grouped_data) {
  953. # Build the plot title
  954. OrfRep <- first(group_data$OrfRep)
  955. Gene <- first(group_data$Gene)
  956. if (type == "reference") {
  957. num <- if ("num" %in% names(group_data)) first(group_data$num) else ""
  958. OrfRepTitle <- paste(OrfRep, Gene, num, sep = "_")
  959. } else if (type == "deletion") {
  960. OrfRepTitle <- OrfRep
  961. }
  962. for (var in names(delta_limits_map)) {
  963. y_limits <- delta_limits_map[[var]]
  964. y_span <- y_limits[2] - y_limits[1]
  965. y_var_name <- paste0("Delta_", var)
  966. # Anti-filter to select out-of-bounds rows
  967. out_of_bounds <- group_data %>%
  968. filter(is.na(!!sym(y_var_name)) |
  969. !!sym(y_var_name) < y_limits[1] |
  970. !!sym(y_var_name) > y_limits[2])
  971. if (nrow(out_of_bounds) > 0) {
  972. message(sprintf("Filtered %d row(s) from '%s' because %s is outside of y-limits: [%f, %f]",
  973. nrow(out_of_bounds), OrfRepTitle, y_var_name, y_limits[1], y_limits[2]
  974. ))
  975. }
  976. # Do the actual filtering
  977. group_data_filtered <- group_data %>%
  978. filter(!is.na(!!sym(y_var_name)) &
  979. !!sym(y_var_name) >= y_limits[1] &
  980. !!sym(y_var_name) <= y_limits[2])
  981. if (nrow(group_data_filtered) == 0) {
  982. message("Insufficient data for plot: ", OrfRepTitle, " ", var)
  983. next # skip plot if insufficient data is available
  984. }
  985. WT_sd_value <- first(group_data_filtered[[paste0("WT_sd_", var)]], default = 0)
  986. Z_Shift_value <- round(first(group_data_filtered[[paste0("Z_Shift_", var)]], default = 0), 2)
  987. Z_lm_value <- round(first(group_data_filtered[[paste0("Z_lm_", var)]], default = 0), 2)
  988. R_squared_value <- round(first(group_data_filtered[[paste0("R_Squared_", var)]], default = 0), 2)
  989. NG_value <- first(group_data_filtered$NG, default = 0)
  990. DB_value <- first(group_data_filtered$DB, default = 0)
  991. SM_value <- first(group_data_filtered$SM, default = 0)
  992. lm_intercept_col <- paste0("lm_intercept_", var)
  993. lm_slope_col <- paste0("lm_slope_", var)
  994. lm_intercept <- first(group_data_filtered[[lm_intercept_col]], default = 0)
  995. lm_slope <- first(group_data_filtered[[lm_slope_col]], default = 0)
  996. plot_config <- list(
  997. df = group_data_filtered,
  998. plot_type = "scatter",
  999. x_var = "conc_num_factor_factor",
  1000. y_var = y_var_name,
  1001. x_label = paste0("[", unique(df_summary$Drug)[1], "]"),
  1002. shape = 16,
  1003. title = paste(OrfRepTitle, Gene, sep = " "),
  1004. title_size = rel(1.4),
  1005. coord_cartesian = y_limits,
  1006. annotations = list(
  1007. list(x = 1, y = y_limits[2] - 0.1 * y_span, label = paste(" ZShift =", round(Z_Shift_value, 2))),
  1008. list(x = 1, y = y_limits[2] - 0.2 * y_span, label = paste(" lm ZScore =", round(Z_lm_value, 2))),
  1009. # list(x = 1, y = y_limits[2] - 0.3 * y_span, label = paste(" R-squared =", round(R_squared_value, 2))),
  1010. list(x = 1, y = y_limits[1] + 0.1 * y_span, label = paste("NG =", NG_value)),
  1011. list(x = 1, y = y_limits[1] + 0.05 * y_span, label = paste("DB =", DB_value)),
  1012. list(x = 1, y = y_limits[1], label = paste("SM =", SM_value))
  1013. ),
  1014. error_bar = TRUE,
  1015. error_bar_params = list(
  1016. custom_error_bar = list(
  1017. ymin = paste0("0 - 2 * WT_sd_", var),
  1018. ymax = paste0("0 + 2 * WT_sd_", var)
  1019. ),
  1020. color = "gray70",
  1021. linewidth = 0.5
  1022. ),
  1023. x_breaks = unique(group_data_filtered$conc_num_factor_factor),
  1024. x_labels = as.character(unique(group_data_filtered$conc_num)),
  1025. ylim_vals = y_limits,
  1026. lm_line = list(
  1027. intercept = lm_intercept,
  1028. slope = lm_slope,
  1029. color = "blue",
  1030. linewidth = 0.8
  1031. )
  1032. )
  1033. delta_plot_configs <- append(delta_plot_configs, list(plot_config))
  1034. }
  1035. }
  1036. # Group delta plots in chunks of 12 per page
  1037. chunk_size <- 12
  1038. delta_plot_chunks <- split(delta_plot_configs, ceiling(seq_along(delta_plot_configs) / chunk_size))
  1039. return(c(
  1040. list(list(grid_layout = list(ncol = 2), plots = stats_plot_configs)),
  1041. list(list(grid_layout = list(ncol = 2), plots = stats_boxplot_configs)),
  1042. lapply(delta_plot_chunks, function(chunk) list(grid_layout = list(ncol = 4), plots = chunk))
  1043. ))
  1044. }
  1045. generate_rank_plot_configs <- function(df, is_lm = FALSE, filter_na = FALSE, overlap_color = FALSE) {
  1046. sd_bands <- c(1, 2, 3)
  1047. plot_configs <- list()
  1048. variables <- c("L", "K")
  1049. # Helper function to create a rank plot configuration
  1050. create_plot_config <- function(variable, rank_var, zscore_var, y_label, sd_band, filter_na, with_annotations = TRUE) {
  1051. num_enhancers <- sum(df[[zscore_var]] >= sd_band, na.rm = TRUE)
  1052. num_suppressors <- sum(df[[zscore_var]] <= -sd_band, na.rm = TRUE)
  1053. # Default plot config
  1054. plot_config <- list(
  1055. df = df,
  1056. x_var = rank_var,
  1057. y_var = zscore_var,
  1058. x_label = "Rank",
  1059. y_label = y_label,
  1060. plot_type = "scatter",
  1061. title = paste(y_label, "vs. Rank for", variable, "above", sd_band, "SD"),
  1062. sd_band = sd_band,
  1063. fill_positive = "#542788",
  1064. fill_negative = "orange",
  1065. alpha_positive = 0.3,
  1066. alpha_negative = 0.3,
  1067. shape = 3,
  1068. size = 0.1,
  1069. filter_na = filter_na,
  1070. legend_position = "none"
  1071. )
  1072. # Selectively add annotations
  1073. if (with_annotations) {
  1074. plot_config$annotations <- list(
  1075. list(
  1076. x = nrow(df) / 2,
  1077. y = 10,
  1078. label = paste("Deletion Enhancers =", num_enhancers)
  1079. ),
  1080. list(
  1081. x = nrow(df) / 2,
  1082. y = -10,
  1083. label = paste("Deletion Suppressors =", num_suppressors)
  1084. )
  1085. )
  1086. }
  1087. return(plot_config)
  1088. }
  1089. # Generate plots for each variable
  1090. for (variable in variables) {
  1091. rank_var <- if (is_lm) paste0("Rank_lm_", variable) else paste0("Rank_", variable)
  1092. zscore_var <- if (is_lm) paste0("Z_lm_", variable) else paste0("Avg_Zscore_", variable)
  1093. y_label <- if (is_lm) paste("Int Z score", variable) else paste("Avg Z score", variable)
  1094. # Loop through SD bands
  1095. for (sd_band in sd_bands) {
  1096. # Create plot with annotations
  1097. plot_configs[[length(plot_configs) + 1]] <-
  1098. create_plot_config(variable, rank_var, zscore_var, y_label, sd_band, filter_na, with_annotations = TRUE)
  1099. # Create plot without annotations
  1100. plot_configs[[length(plot_configs) + 1]] <-
  1101. create_plot_config(variable, rank_var, zscore_var, y_label, sd_band, filter_na, with_annotations = FALSE)
  1102. }
  1103. }
  1104. # Group delta plots in chunks of 6 per page
  1105. chunk_size <- 6
  1106. plot_chunks <- split(plot_configs, ceiling(seq_along(plot_configs) / chunk_size))
  1107. return(c(
  1108. lapply(plot_chunks, function(chunk) list(grid_layout = list(ncol = 3), plots = chunk))
  1109. ))
  1110. }
  1111. generate_correlation_plot_configs <- function(df, df_reference) {
  1112. # Define relationships for different-variable correlations
  1113. relationships <- list(
  1114. list(x = "L", y = "K"), # x-var is predictor, y-var is reponse
  1115. list(x = "L", y = "r"),
  1116. list(x = "L", y = "AUC"),
  1117. list(x = "K", y = "r"),
  1118. list(x = "K", y = "AUC"),
  1119. list(x = "r", y = "AUC")
  1120. )
  1121. # Filter both dataframes for missing linear model zscores for plotting
  1122. df <- df %>%
  1123. filter(!is.na(Z_lm_L))
  1124. df_reference <- df_reference %>%
  1125. filter(!is.na(Z_lm_L))
  1126. plot_configs <- list()
  1127. # Iterate over the option to highlight cyan points (TRUE/FALSE)
  1128. highlight_cyan_options <- c(FALSE, TRUE)
  1129. for (highlight_cyan in highlight_cyan_options) {
  1130. for (rel in relationships) {
  1131. # Extract relevant variable names for Z_lm values
  1132. x_var <- paste0("Z_lm_", rel$x) # predictor
  1133. y_var <- paste0("Z_lm_", rel$y) # response
  1134. # Find the max and min of both dataframes for printing linear regression line
  1135. xmin <- min(c(min(df[[x_var]], na.rm = TRUE), min(df_reference[[x_var]], na.rm = TRUE)), na.rm = TRUE)
  1136. xmax <- max(c(max(df[[x_var]], na.rm = TRUE), max(df_reference[[x_var]], na.rm = TRUE)), na.rm = TRUE)
  1137. # Extract the R-squared, intercept, and slope from the df (first value)
  1138. intercept <- df[[paste0("Z_lm_intercept_", rel$y, "_", rel$x)]][1]
  1139. slope <- df[[paste0("Z_lm_slope_", rel$y, "_", rel$x)]][1]
  1140. r_squared <- df[[paste0("Z_lm_R_squared_", rel$y, "_", rel$x)]][1]
  1141. # Generate the label for the plot
  1142. plot_label <- paste("Interaction", rel$x, "vs.", rel$y)
  1143. # Construct plot config
  1144. plot_config <- list(
  1145. df = df,
  1146. df_reference = df_reference,
  1147. x_var = x_var,
  1148. y_var = y_var,
  1149. plot_type = "scatter",
  1150. title = plot_label,
  1151. annotations = list(
  1152. list(
  1153. x = mean(df[[x_var]], na.rm = TRUE),
  1154. y = mean(df[[y_var]], na.rm = TRUE),
  1155. label = paste("R-squared =", round(r_squared, 3))
  1156. )
  1157. ),
  1158. lm_line = list(
  1159. intercept = intercept,
  1160. slope = slope,
  1161. color = "tomato3",
  1162. linewidth = 0.8,
  1163. xmin = xmin,
  1164. xmax = xmax
  1165. ),
  1166. color = "gray70",
  1167. filter_na = TRUE,
  1168. cyan_points = highlight_cyan # include cyan points or not based on the loop
  1169. )
  1170. plot_configs <- append(plot_configs, list(plot_config))
  1171. }
  1172. }
  1173. return(list(plots = plot_configs))
  1174. }
  1175. main <- function() {
  1176. lapply(names(args$experiments), function(exp_name) {
  1177. exp <- args$experiments[[exp_name]]
  1178. exp_path <- exp$path
  1179. exp_sd <- exp$sd
  1180. out_dir <- file.path(exp_path, "zscores")
  1181. out_dir_qc <- file.path(exp_path, "zscores", "qc")
  1182. dir.create(out_dir, recursive = TRUE, showWarnings = FALSE)
  1183. dir.create(out_dir_qc, recursive = TRUE, showWarnings = FALSE)
  1184. # Each list of plots corresponds to a separate file
  1185. message("Loading and filtering data for experiment: ", exp_name)
  1186. df <- load_and_filter_data(args$easy_results_file, sd = exp_sd) %>%
  1187. update_gene_names(args$sgd_gene_list) %>%
  1188. as_tibble()
  1189. l_vs_k_plot_configs <- list(
  1190. plots = list(
  1191. list(
  1192. df = df,
  1193. x_var = "L",
  1194. y_var = "K",
  1195. plot_type = "scatter",
  1196. tooltip_vars = c("OrfRep", "Gene", "delta_bg"),
  1197. title = "Raw L vs K before quality control",
  1198. color_var = "conc_num_factor_factor",
  1199. error_bar = FALSE,
  1200. legend_position = "right"
  1201. )
  1202. )
  1203. )
  1204. message("Calculating summary statistics before quality control")
  1205. df_stats <- calculate_summary_stats( # formerly X_stats_ALL
  1206. df = df,
  1207. variables = c("L", "K", "r", "AUC", "delta_bg"),
  1208. group_vars = c("conc_num", "conc_num_factor_factor"))$df_with_stats
  1209. frequency_delta_bg_plot_configs <- list(
  1210. plots = list(
  1211. list(
  1212. df = df_stats,
  1213. x_var = "delta_bg",
  1214. y_var = NULL,
  1215. plot_type = "density",
  1216. title = "Density plot for Delta Background by [Drug] (All Data)",
  1217. color_var = "conc_num_factor_factor",
  1218. x_label = "Delta Background",
  1219. y_label = "Density",
  1220. error_bar = FALSE,
  1221. legend_position = "right"
  1222. ),
  1223. list(
  1224. df = df_stats,
  1225. x_var = "delta_bg",
  1226. y_var = NULL,
  1227. plot_type = "bar",
  1228. title = "Bar plot for Delta Background by [Drug] (All Data)",
  1229. color_var = "conc_num_factor_factor",
  1230. x_label = "Delta Background",
  1231. y_label = "Count",
  1232. error_bar = FALSE,
  1233. legend_position = "right"
  1234. )
  1235. )
  1236. )
  1237. message("Filtering rows above delta background tolerance for plotting")
  1238. df_above_tolerance <- df %>% filter(DB == 1)
  1239. above_threshold_plot_configs <- list(
  1240. plots = list(
  1241. list(
  1242. df = df_above_tolerance,
  1243. x_var = "L",
  1244. y_var = "K",
  1245. plot_type = "scatter",
  1246. tooltip_vars = c("OrfRep", "Gene", "delta_bg"),
  1247. title = paste("Raw L vs K for strains above Delta Background threshold of",
  1248. round(df_above_tolerance$delta_bg_tolerance[[1]], 3), "or above"),
  1249. color_var = "conc_num_factor_factor",
  1250. position = "jitter",
  1251. annotations = list(
  1252. list(
  1253. x = median(df_above_tolerance$L, na.rm = TRUE) / 2,
  1254. y = median(df_above_tolerance$K, na.rm = TRUE) / 2,
  1255. label = paste("# strains above Delta Background tolerance =", nrow(df_above_tolerance))
  1256. )
  1257. ),
  1258. error_bar = FALSE,
  1259. legend_position = "right"
  1260. )
  1261. )
  1262. )
  1263. message("Setting rows above delta background tolerance to NA")
  1264. df_na <- df %>% mutate(across(all_of(c("L", "K", "r", "AUC", "delta_bg")), ~ ifelse(DB == 1, NA, .))) # formerly X
  1265. message("Calculating summary statistics across all strains")
  1266. ss <- calculate_summary_stats(
  1267. df = df_na,
  1268. variables = c("L", "K", "r", "AUC", "delta_bg"),
  1269. group_vars = c("conc_num", "conc_num_factor_factor"))
  1270. df_na_ss <- ss$summary_stats
  1271. df_na_stats <- ss$df_with_stats # formerly X_stats_ALL
  1272. write.csv(df_na_ss, file = file.path(out_dir, "summary_stats_all_strains.csv"), row.names = FALSE)
  1273. # This can help bypass missing values ggplot warnings during testing
  1274. df_na_stats_filtered <- df_na_stats %>% filter(if_all(all_of(c("L", "K", "r", "AUC", "delta_bg")), is.finite))
  1275. message("Calculating summary statistics excluding zero values")
  1276. df_no_zeros <- df_na %>% filter(L > 0) # formerly X_noZero
  1277. df_no_zeros_stats <- calculate_summary_stats(
  1278. df = df_no_zeros,
  1279. variables = c("L", "K", "r", "AUC", "delta_bg"),
  1280. group_vars = c("conc_num", "conc_num_factor_factor")
  1281. )$df_with_stats
  1282. message("Filtering by 2SD of K")
  1283. df_na_within_2sd_k <- df_na_stats %>%
  1284. filter(K >= (mean_K - 2 * sd_K) & K <= (mean_K + 2 * sd_K))
  1285. df_na_outside_2sd_k <- df_na_stats %>%
  1286. filter(K < (mean_K - 2 * sd_K) | K > (mean_K + 2 * sd_K))
  1287. message("Calculating summary statistics for L within 2SD of K")
  1288. # TODO We're omitting the original z_max calculation, not sure if needed?
  1289. ss <- calculate_summary_stats(df_na_within_2sd_k, "L", # formerly X_stats_BY_L_within_2SD_K
  1290. group_vars = c("conc_num", "conc_num_factor_factor"))$summary_stats
  1291. write.csv(ss,
  1292. file = file.path(out_dir_qc, "max_observed_L_vals_for_spots_within_2SD_K.csv"),
  1293. row.names = FALSE)
  1294. message("Calculating summary statistics for L outside 2SD of K")
  1295. ss <- calculate_summary_stats(df_na_outside_2sd_k, "L", # formerly X_stats_BY_L_outside_2SD_K
  1296. group_vars = c("conc_num", "conc_num_factor_factor"))
  1297. df_na_l_outside_2sd_k_stats <- ss$df_with_stats
  1298. write.csv(ss$summary_stats,
  1299. file = file.path(out_dir, "max_observed_L_vals_for_spots_outside_2SD_K.csv"),
  1300. row.names = FALSE)
  1301. plate_analysis_plot_configs <- generate_plate_analysis_plot_configs(
  1302. variables = c("L", "K", "r", "AUC", "delta_bg"),
  1303. df_before = df_stats,
  1304. df_after = df_na_stats_filtered
  1305. )
  1306. plate_analysis_boxplot_configs <- generate_plate_analysis_plot_configs(
  1307. variables = c("L", "K", "r", "AUC", "delta_bg"),
  1308. df_before = df_stats,
  1309. df_after = df_na_stats_filtered,
  1310. plot_type = "box"
  1311. )
  1312. plate_analysis_no_zeros_plot_configs <- generate_plate_analysis_plot_configs(
  1313. variables = c("L", "K", "r", "AUC", "delta_bg"),
  1314. stages = c("after"), # Only after QC
  1315. df_after = df_no_zeros_stats
  1316. )
  1317. plate_analysis_no_zeros_boxplot_configs <- generate_plate_analysis_plot_configs(
  1318. variables = c("L", "K", "r", "AUC", "delta_bg"),
  1319. stages = c("after"), # Only after QC
  1320. df_after = df_no_zeros_stats,
  1321. plot_type = "box"
  1322. )
  1323. l_outside_2sd_k_plot_configs <- list(
  1324. plots = list(
  1325. list(
  1326. df = df_na_l_outside_2sd_k_stats,
  1327. x_var = "L",
  1328. y_var = "K",
  1329. plot_type = "scatter",
  1330. title = "Raw L vs K for strains falling outside 2 SD of the K mean at each Conc",
  1331. color_var = "conc_num_factor_factor",
  1332. position = "jitter",
  1333. tooltip_vars = c("OrfRep", "Gene", "delta_bg"),
  1334. annotations = list(
  1335. list(
  1336. x = median(df_na_l_outside_2sd_k_stats$L, na.rm = TRUE) / 2,
  1337. y = median(df_na_l_outside_2sd_k_stats$K, na.rm = TRUE) / 2,
  1338. label = paste("Total strains:", nrow(df_na_l_outside_2sd_k_stats))
  1339. )
  1340. ),
  1341. error_bar = FALSE,
  1342. legend_position = "right"
  1343. )
  1344. )
  1345. )
  1346. delta_bg_outside_2sd_k_plot_configs <- list(
  1347. plots = list(
  1348. list(
  1349. df = df_na_l_outside_2sd_k_stats,
  1350. x_var = "delta_bg",
  1351. x_label = "Delta Background",
  1352. y_var = "K",
  1353. plot_type = "scatter",
  1354. title = "Delta Background vs K for strains falling outside 2 SD of K",
  1355. color_var = "conc_num_factor_factor",
  1356. position = "jitter",
  1357. tooltip_vars = c("OrfRep", "Gene", "delta_bg"),
  1358. annotations = list(
  1359. list(
  1360. x = 0.05,
  1361. y = 0.95,
  1362. hjust = 0,
  1363. vjust = 1,
  1364. label = paste("Total strains:", nrow(df_na_l_outside_2sd_k_stats)),
  1365. size = 5
  1366. )
  1367. ),
  1368. error_bar = FALSE,
  1369. legend_position = "right"
  1370. )
  1371. )
  1372. )
  1373. message("Generating quality control plots in parallel")
  1374. # future::plan(future::multicore, workers = parallel::detectCores())
  1375. future::plan(future::multisession, workers = 3) # generate 3 plot files in parallel
  1376. plot_configs <- list(
  1377. list(out_dir = out_dir_qc, filename = "L_vs_K_before_quality_control",
  1378. plot_configs = l_vs_k_plot_configs, page_width = 12, page_height = 8),
  1379. list(out_dir = out_dir_qc, filename = "frequency_delta_background",
  1380. plot_configs = frequency_delta_bg_plot_configs, page_width = 12, page_height = 8),
  1381. list(out_dir = out_dir_qc, filename = "L_vs_K_above_threshold",
  1382. plot_configs = above_threshold_plot_configs, page_width = 12, page_height = 8),
  1383. list(out_dir = out_dir_qc, filename = "plate_analysis",
  1384. plot_configs = plate_analysis_plot_configs, page_width = 14, page_height = 9),
  1385. list(out_dir = out_dir_qc, filename = "plate_analysis_boxplots",
  1386. plot_configs = plate_analysis_boxplot_configs, page_width = 18, page_height = 9),
  1387. list(out_dir = out_dir_qc, filename = "plate_analysis_no_zeros",
  1388. plot_configs = plate_analysis_no_zeros_plot_configs, page_width = 14, page_height = 9),
  1389. list(out_dir = out_dir_qc, filename = "plate_analysis_no_zeros_boxplots",
  1390. plot_configs = plate_analysis_no_zeros_boxplot_configs, page_width = 18, page_height = 9),
  1391. list(out_dir = out_dir_qc, filename = "L_vs_K_for_strains_2SD_outside_mean_K",
  1392. plot_configs = l_outside_2sd_k_plot_configs, page_width = 10, page_height = 8),
  1393. list(out_dir = out_dir_qc, filename = "delta_background_vs_K_for_strains_2SD_outside_mean_K",
  1394. plot_configs = delta_bg_outside_2sd_k_plot_configs, page_width = 10, page_height = 8)
  1395. )
  1396. # Parallelize background and quality control plot generation
  1397. # furrr::future_map(plot_configs, function(config) {
  1398. # generate_and_save_plots(config$out_dir, config$filename, config$plot_configs,
  1399. # page_width = config$page_width, page_height = config$page_height)
  1400. # }, .options = furrr_options(seed = TRUE))
  1401. # Loop over background strains
  1402. # TODO currently only tested against one strain, if we want to do multiple strains we'll
  1403. # have to rename or group the output files by dir or something so they don't get clobbered
  1404. bg_strains <- c("YDL227C")
  1405. lapply(bg_strains, function(strain) {
  1406. message("Processing background strain: ", strain)
  1407. # Handle missing data by setting zero values to NA
  1408. # and then removing any rows with NA in L col
  1409. df_bg <- df_na %>%
  1410. filter(OrfRep == strain) %>%
  1411. mutate(
  1412. L = if_else(L == 0, NA, L),
  1413. K = if_else(K == 0, NA, K),
  1414. r = if_else(r == 0, NA, r),
  1415. AUC = if_else(AUC == 0, NA, AUC)
  1416. ) %>%
  1417. filter(!is.na(L))
  1418. message("Calculating background summary statistics")
  1419. ss_bg <- calculate_summary_stats(df_bg, c("L", "K", "r", "AUC", "delta_bg"), # formerly X_stats_BY
  1420. group_vars = c("OrfRep", "Drug", "conc_num", "conc_num_factor_factor"))
  1421. summary_stats_bg <- ss_bg$summary_stats
  1422. df_bg_stats <- ss_bg$df_with_stats
  1423. write.csv(
  1424. summary_stats_bg,
  1425. file = file.path(out_dir, paste0("summary_stats_background_strain_", strain, ".csv")),
  1426. row.names = FALSE)
  1427. message("Setting missing reference values to the highest theoretical value at each drug conc for L")
  1428. df_reference <- df_na_stats %>% # formerly X2_RF
  1429. filter(OrfRep == strain) %>%
  1430. filter(!is.na(L)) %>%
  1431. group_by(OrfRep, Drug, conc_num, conc_num_factor_factor) %>%
  1432. mutate(
  1433. max_l_theoretical = max(max_L, na.rm = TRUE),
  1434. L = ifelse(L == 0 & !is.na(L) & conc_num > 0, max_l_theoretical, L),
  1435. SM = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, 1, 0),
  1436. L = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, max_l_theoretical, L)) %>%
  1437. ungroup()
  1438. message("Calculating reference strain summary statistics")
  1439. df_reference_summary_stats <- calculate_summary_stats( # formerly X_stats_X2_RF
  1440. df = df_reference,
  1441. variables = c("L", "K", "r", "AUC"),
  1442. group_vars = c("OrfRep", "Drug", "conc_num", "conc_num_factor_factor")
  1443. )$df_with_stats
  1444. # Summarise statistics for error bars
  1445. df_reference_summary_stats <- df_reference_summary_stats %>%
  1446. group_by(OrfRep, Drug, conc_num, conc_num_factor_factor) %>%
  1447. mutate(
  1448. mean_mean_L = first(mean_L),
  1449. mean_sd_L = first(sd_L),
  1450. mean_mean_K = first(mean_K),
  1451. mean_sd_K = first(sd_K),
  1452. mean_mean_r = first(mean_r),
  1453. mean_sd_r = first(sd_r),
  1454. mean_mean_AUC = first(mean_AUC),
  1455. mean_sd_AUC = first(sd_AUC),
  1456. .groups = "drop"
  1457. )
  1458. message("Calculating reference strain interaction summary statistics") # formerly X_stats_interaction
  1459. df_reference_interaction_stats <- calculate_summary_stats(
  1460. df = df_reference,
  1461. variables = c("L", "K", "r", "AUC"),
  1462. group_vars = c("OrfRep", "Gene", "num", "Drug", "conc_num", "conc_num_factor_factor")
  1463. )$df_with_stats
  1464. message("Calculating reference strain interaction scores")
  1465. reference_results <- calculate_interaction_scores(df_reference_interaction_stats, df_bg_stats, "reference")
  1466. df_reference_interactions_joined <- reference_results$full_data
  1467. df_reference_interactions <- reference_results$interactions
  1468. write.csv(reference_results$calculations, file = file.path(out_dir, "zscore_calculations_reference.csv"), row.names = FALSE)
  1469. write.csv(df_reference_interactions, file = file.path(out_dir, "zscore_interactions_reference.csv"), row.names = FALSE)
  1470. # message("Generating reference interaction plots")
  1471. # reference_plot_configs <- generate_interaction_plot_configs(df_reference_summary_stats, df_reference_interactions_joined, "reference")
  1472. # generate_and_save_plots(out_dir, "interaction_plots_reference", reference_plot_configs, page_width = 16, page_height = 16)
  1473. message("Setting missing deletion values to the highest theoretical value at each drug conc for L")
  1474. df_deletion <- df_na_stats %>% # formerly X2
  1475. filter(OrfRep != strain) %>%
  1476. filter(!is.na(L)) %>%
  1477. group_by(OrfRep, Gene, conc_num, conc_num_factor_factor) %>%
  1478. mutate(
  1479. max_l_theoretical = max(max_L, na.rm = TRUE),
  1480. L = ifelse(L == 0 & !is.na(L) & conc_num > 0, max_l_theoretical, L),
  1481. SM = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, 1, SM),
  1482. L = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, max_l_theoretical, L)) %>%
  1483. ungroup()
  1484. message("Calculating deletion strain(s) interaction summary statistics")
  1485. df_deletion_stats <- calculate_summary_stats(
  1486. df = df_deletion,
  1487. variables = c("L", "K", "r", "AUC"),
  1488. group_vars = c("OrfRep", "Gene", "Drug", "conc_num", "conc_num_factor_factor")
  1489. )$df_with_stats
  1490. message("Calculating deletion strain(s) interactions scores")
  1491. deletion_results <- calculate_interaction_scores(df_deletion_stats, df_bg_stats, "deletion")
  1492. df_interactions <- deletion_results$interactions
  1493. df_interactions_joined <- deletion_results$full_data
  1494. write.csv(deletion_results$calculations, file = file.path(out_dir, "zscore_calculations.csv"), row.names = FALSE)
  1495. write.csv(df_interactions, file = file.path(out_dir, "zscore_interactions.csv"), row.names = FALSE)
  1496. # message("Generating deletion interaction plots")
  1497. # deletion_plot_configs <- generate_interaction_plot_configs(df_reference_summary_stats, df_interactions_joined, "deletion")
  1498. # generate_and_save_plots(out_dir, "interaction_plots", deletion_plot_configs, page_width = 16, page_height = 16)
  1499. # message("Writing enhancer/suppressor csv files")
  1500. # interaction_threshold <- 2 # TODO add to study config?
  1501. # enhancer_condition_L <- df_interactions$Avg_Zscore_L >= interaction_threshold
  1502. # suppressor_condition_L <- df_interactions$Avg_Zscore_L <= -interaction_threshold
  1503. # enhancer_condition_K <- df_interactions$Avg_Zscore_K >= interaction_threshold
  1504. # suppressor_condition_K <- df_interactions$Avg_Zscore_K <= -interaction_threshold
  1505. # enhancers_L <- df_interactions[enhancer_condition_L, ]
  1506. # suppressors_L <- df_interactions[suppressor_condition_L, ]
  1507. # enhancers_K <- df_interactions[enhancer_condition_K, ]
  1508. # suppressors_K <- df_interactions[suppressor_condition_K, ]
  1509. # enhancers_and_suppressors_L <- df_interactions[enhancer_condition_L | suppressor_condition_L, ]
  1510. # enhancers_and_suppressors_K <- df_interactions[enhancer_condition_K | suppressor_condition_K, ]
  1511. # write.csv(enhancers_L, file = file.path(out_dir, "zscore_interactions_deletion_enhancers_L.csv"), row.names = FALSE)
  1512. # write.csv(suppressors_L, file = file.path(out_dir, "zscore_interactions_deletion_suppressors_L.csv"), row.names = FALSE)
  1513. # write.csv(enhancers_K, file = file.path(out_dir, "zscore_interactions_deletion_enhancers_K.csv"), row.names = FALSE)
  1514. # write.csv(suppressors_K, file = file.path(out_dir, "zscore_interactions_deletion_suppressors_K.csv"), row.names = FALSE)
  1515. # write.csv(enhancers_and_suppressors_L,
  1516. # file = file.path(out_dir, "zscore_interactions_deletion_enhancers_and_suppressors_L.csv"), row.names = FALSE)
  1517. # write.csv(enhancers_and_suppressors_K,
  1518. # file = file.path(out_dir, "zscore_interaction_deletion_enhancers_and_suppressors_K.csv"), row.names = FALSE)
  1519. # message("Writing linear model enhancer/suppressor csv files")
  1520. # lm_interaction_threshold <- 2 # TODO add to study config?
  1521. # enhancers_lm_L <- df_interactions[df_interactions$Z_lm_L >= lm_interaction_threshold, ]
  1522. # suppressors_lm_L <- df_interactions[df_interactions$Z_lm_L <= -lm_interaction_threshold, ]
  1523. # enhancers_lm_K <- df_interactions[df_interactions$Z_lm_K >= lm_interaction_threshold, ]
  1524. # suppressors_lm_K <- df_interactions[df_interactions$Z_lm_K <= -lm_interaction_threshold, ]
  1525. # write.csv(enhancers_lm_L, file = file.path(out_dir, "zscore_interactions_deletion_enhancers_lm_L.csv"), row.names = FALSE)
  1526. # write.csv(suppressors_lm_L, file = file.path(out_dir, "zscore_interactions_deletion_suppressors_lm_L.csv"), row.names = FALSE)
  1527. # write.csv(enhancers_lm_K, file = file.path(out_dir, "zscore_interactions_deletion_enhancers_lm_K.csv"), row.names = FALSE)
  1528. # write.csv(suppressors_lm_K, file = file.path(out_dir, "zscore_interactions_deletion_suppressors_lm_K.csv"), row.names = FALSE)
  1529. # message("Generating rank plots")
  1530. # rank_plot_configs <- generate_rank_plot_configs(
  1531. # df_interactions,
  1532. # is_lm = FALSE,
  1533. # )
  1534. # generate_and_save_plots(out_dir, "rank_plots", rank_plot_configs,
  1535. # page_width = 18, page_height = 12)
  1536. # message("Generating ranked linear model plots")
  1537. # rank_lm_plot_configs <- generate_rank_plot_configs(
  1538. # df_interactions,
  1539. # is_lm = TRUE,
  1540. # )
  1541. # generate_and_save_plots(out_dir, "rank_plots_lm", rank_lm_plot_configs,
  1542. # page_width = 18, page_height = 12)
  1543. # message("Generating overlapped ranked plots")
  1544. # rank_plot_filtered_configs <- generate_rank_plot_configs(
  1545. # df_interactions,
  1546. # is_lm = FALSE,
  1547. # filter_na = TRUE,
  1548. # overlap_color = TRUE
  1549. # )
  1550. # generate_and_save_plots(out_dir, "rank_plots_na_rm", rank_plot_filtered_configs,
  1551. # page_width = 18, page_height = 12)
  1552. # message("Generating overlapped ranked linear model plots")
  1553. # rank_plot_lm_filtered_configs <- generate_rank_plot_configs(
  1554. # df_interactions,
  1555. # is_lm = TRUE,
  1556. # filter_na = TRUE,
  1557. # overlap_color = TRUE
  1558. # )
  1559. # generate_and_save_plots(out_dir, "rank_plots_lm_na_rm", rank_plot_lm_filtered_configs,
  1560. # page_width = 18, page_height = 12)
  1561. message("Generating correlation curve parameter pair plots")
  1562. correlation_plot_configs <- generate_correlation_plot_configs(
  1563. df_interactions,
  1564. df_reference_interactions
  1565. )
  1566. generate_and_save_plots(out_dir, "correlation_cpps", correlation_plot_configs,
  1567. page_width = 10, page_height = 7)
  1568. })
  1569. })
  1570. }
  1571. main()