calculate_interaction_zscores.R 55 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509
  1. suppressMessages({
  2. library("ggplot2")
  3. library("plotly")
  4. library("htmlwidgets")
  5. library("htmltools")
  6. library("dplyr")
  7. library("rlang")
  8. library("ggthemes")
  9. library("data.table")
  10. library("gridExtra")
  11. library("future")
  12. library("furrr")
  13. library("purrr")
  14. })
  15. # These parallelization libraries are very noisy
  16. suppressPackageStartupMessages({
  17. library("future")
  18. library("furrr")
  19. library("purrr")
  20. })
  21. options(warn = 2)
  22. # Constants for configuration
  23. plot_width <- 14
  24. plot_height <- 9
  25. base_size <- 14
  26. parse_arguments <- function() {
  27. args <- if (interactive()) {
  28. c(
  29. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/20240116_jhartman2_DoxoHLD",
  30. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/apps/r/SGD_features.tab",
  31. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/easy/20240116_jhartman2_DoxoHLD/results_std.txt",
  32. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/20240822_jhartman2_DoxoHLD/exp1",
  33. "Experiment 1: Doxo versus HLD",
  34. 3,
  35. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/20240822_jhartman2_DoxoHLD/exp2",
  36. "Experiment 2: HLD versus Doxo",
  37. 3
  38. )
  39. } else {
  40. commandArgs(trailingOnly = TRUE)
  41. }
  42. out_dir <- normalizePath(args[1], mustWork = FALSE)
  43. sgd_gene_list <- normalizePath(args[2], mustWork = FALSE)
  44. easy_results_file <- normalizePath(args[3], mustWork = FALSE)
  45. # The remaining arguments should be in groups of 3
  46. exp_args <- args[-(1:3)]
  47. if (length(exp_args) %% 3 != 0) {
  48. stop("Experiment arguments should be in groups of 3: path, name, sd.")
  49. }
  50. # Extract the experiments into a list
  51. experiments <- list()
  52. for (i in seq(1, length(exp_args), by = 3)) {
  53. exp_name <- exp_args[i + 1]
  54. experiments[[exp_name]] <- list(
  55. path = normalizePath(exp_args[i], mustWork = FALSE),
  56. sd = as.numeric(exp_args[i + 2])
  57. )
  58. }
  59. # Extract the trailing number from each path
  60. trailing_numbers <- sapply(experiments, function(x) {
  61. path <- x$path
  62. nums <- gsub("[^0-9]", "", basename(path))
  63. as.integer(nums)
  64. })
  65. # Sort the experiments based on the trailing numbers
  66. sorted_experiments <- experiments[order(trailing_numbers)]
  67. list(
  68. out_dir = out_dir,
  69. sgd_gene_list = sgd_gene_list,
  70. easy_results_file = easy_results_file,
  71. experiments = sorted_experiments
  72. )
  73. }
  74. args <- parse_arguments()
  75. # Should we keep output in exp dirs or combine in the study output dir?
  76. # dir.create(file.path(args$out_dir, "zscores"), showWarnings = FALSE)
  77. # dir.create(file.path(args$out_dir, "zscores", "qc"), showWarnings = FALSE)
  78. theme_publication <- function(base_size = 14, base_family = "sans", legend_position = NULL) {
  79. # Ensure that legend_position has a valid value or default to "none"
  80. legend_position <- if (is.null(legend_position) || length(legend_position) == 0) "none" else legend_position
  81. theme_foundation <- ggthemes::theme_foundation(base_size = base_size, base_family = base_family)
  82. theme_foundation %+replace%
  83. theme(
  84. plot.title = element_text(face = "bold", size = rel(1.6), hjust = 0.5),
  85. text = element_text(),
  86. panel.background = element_blank(),
  87. plot.background = element_blank(),
  88. panel.border = element_blank(),
  89. axis.title = element_text(face = "bold", size = rel(1.4)),
  90. axis.title.y = element_text(angle = 90, vjust = 2),
  91. axis.text = element_text(size = rel(1.2)),
  92. axis.line = element_line(colour = "black"),
  93. panel.grid.major = element_line(colour = "#f0f0f0"),
  94. panel.grid.minor = element_blank(),
  95. legend.key = element_rect(colour = NA),
  96. legend.position = legend_position,
  97. legend.direction =
  98. if (legend_position == "right") {
  99. "vertical"
  100. } else if (legend_position == "bottom") {
  101. "horizontal"
  102. } else {
  103. NULL # No legend direction if position is "none" or other values
  104. },
  105. legend.spacing = unit(0, "cm"),
  106. legend.title = element_text(face = "italic", size = rel(1.3)),
  107. legend.text = element_text(size = rel(1.2)),
  108. plot.margin = unit(c(10, 5, 5, 5), "mm")
  109. )
  110. }
  111. scale_fill_publication <- function(...) {
  112. discrete_scale("fill", "Publication", manual_pal(values = c(
  113. "#386cb0", "#fdb462", "#7fc97f", "#ef3b2c", "#662506",
  114. "#a6cee3", "#fb9a99", "#984ea3", "#ffff33"
  115. )), ...)
  116. }
  117. scale_colour_publication <- function(...) {
  118. discrete_scale("colour", "Publication", manual_pal(values = c(
  119. "#386cb0", "#fdb462", "#7fc97f", "#ef3b2c", "#662506",
  120. "#a6cee3", "#fb9a99", "#984ea3", "#ffff33"
  121. )), ...)
  122. }
  123. # Load the initial dataframe from the easy_results_file
  124. load_and_filter_data <- function(easy_results_file, sd = 3) {
  125. df <- read.delim(easy_results_file, skip = 2, as.is = TRUE, row.names = 1, strip.white = TRUE)
  126. df <- df %>%
  127. filter(!(.[[1]] %in% c("", "Scan"))) %>%
  128. filter(!is.na(ORF) & ORF != "" & !Gene %in% c("BLANK", "Blank", "blank") & Drug != "BMH21") %>%
  129. # Rename columns
  130. rename(L = l, num = Num., AUC = AUC96, scan = Scan, last_bg = LstBackgrd, first_bg = X1stBackgrd) %>%
  131. mutate(
  132. across(c(Col, Row, num, L, K, r, scan, AUC, last_bg, first_bg), as.numeric),
  133. delta_bg = last_bg - first_bg,
  134. delta_bg_tolerance = mean(delta_bg, na.rm = TRUE) + (sd * sd(delta_bg, na.rm = TRUE)),
  135. NG = if_else(L == 0 & !is.na(L), 1, 0),
  136. DB = if_else(delta_bg >= delta_bg_tolerance, 1, 0),
  137. SM = 0,
  138. OrfRep = if_else(ORF == "YDL227C", "YDL227C", OrfRep), # should these be hardcoded?
  139. conc_num = as.numeric(gsub("[^0-9\\.]", "", Conc)),
  140. conc_num_factor = as.numeric(as.factor(conc_num)) - 1, # for legacy purposes
  141. conc_num_factor_factor = as.factor(conc_num)
  142. )
  143. return(df)
  144. }
  145. # Update Gene names using the SGD gene list
  146. update_gene_names <- function(df, sgd_gene_list) {
  147. # Load SGD gene list
  148. genes <- read.delim(file = sgd_gene_list,
  149. quote = "", header = FALSE,
  150. colClasses = c(rep("NULL", 3), rep("character", 2), rep("NULL", 11)))
  151. # Create a named vector for mapping ORF to GeneName
  152. gene_map <- setNames(genes$V5, genes$V4)
  153. # Vectorized match to find the GeneName from gene_map
  154. mapped_genes <- gene_map[df$ORF]
  155. # Replace NAs in mapped_genes with original Gene names (preserves existing Gene names if ORF is not found)
  156. updated_genes <- ifelse(is.na(mapped_genes) | df$OrfRep == "YDL227C", df$Gene, mapped_genes)
  157. # Ensure Gene is not left blank or incorrectly updated to "OCT1"
  158. df <- df %>%
  159. mutate(Gene = ifelse(updated_genes == "" | updated_genes == "OCT1", OrfRep, updated_genes))
  160. return(df)
  161. }
  162. calculate_summary_stats <- function(df, variables, group_vars) {
  163. summary_stats <- df %>%
  164. group_by(across(all_of(group_vars))) %>%
  165. summarise(
  166. N = n(),
  167. across(all_of(variables),
  168. list(
  169. mean = ~ mean(.x, na.rm = TRUE),
  170. median = ~ median(.x, na.rm = TRUE),
  171. max = ~ ifelse(all(is.na(.x)), NA, max(.x, na.rm = TRUE)),
  172. min = ~ ifelse(all(is.na(.x)), NA, min(.x, na.rm = TRUE)),
  173. sd = ~ sd(.x, na.rm = TRUE),
  174. se = ~ sd(.x, na.rm = TRUE) / sqrt(n() - 1)
  175. ),
  176. .names = "{.fn}_{.col}"
  177. ),
  178. .groups = "drop"
  179. )
  180. # Create a cleaned version of df that doesn't overlap with summary_stats
  181. cleaned_df <- df %>%
  182. select(-any_of(setdiff(intersect(names(df), names(summary_stats)), group_vars)))
  183. df_joined <- left_join(cleaned_df, summary_stats, by = group_vars)
  184. return(list(summary_stats = summary_stats, df_with_stats = df_joined))
  185. }
  186. calculate_interaction_scores <- function(df, max_conc, bg_stats, group_vars, overlap_threshold = 2) {
  187. # Calculate total concentration variables
  188. total_conc_num <- length(unique(df$conc_num))
  189. # Initial calculations
  190. calculations <- df %>%
  191. group_by(across(all_of(group_vars))) %>%
  192. mutate(
  193. NG = sum(NG, na.rm = TRUE),
  194. DB = sum(DB, na.rm = TRUE),
  195. SM = sum(SM, na.rm = TRUE),
  196. num_non_removed_concs = total_conc_num - sum(DB, na.rm = TRUE) - 1,
  197. # Calculate raw data
  198. Raw_Shift_L = first(mean_L) - bg_stats$mean_L,
  199. Raw_Shift_K = first(mean_K) - bg_stats$mean_K,
  200. Raw_Shift_r = first(mean_r) - bg_stats$mean_r,
  201. Raw_Shift_AUC = first(mean_AUC) - bg_stats$mean_AUC,
  202. Z_Shift_L = Raw_Shift_L / bg_stats$sd_L,
  203. Z_Shift_K = Raw_Shift_K / bg_stats$sd_K,
  204. Z_Shift_r = Raw_Shift_r / bg_stats$sd_r,
  205. Z_Shift_AUC = Raw_Shift_AUC / bg_stats$sd_AUC,
  206. # Expected values
  207. Exp_L = WT_L + Raw_Shift_L,
  208. Exp_K = WT_K + Raw_Shift_K,
  209. Exp_r = WT_r + Raw_Shift_r,
  210. Exp_AUC = WT_AUC + Raw_Shift_AUC,
  211. # Deltas
  212. Delta_L = mean_L - Exp_L,
  213. Delta_K = mean_K - Exp_K,
  214. Delta_r = mean_r - Exp_r,
  215. Delta_AUC = mean_AUC - Exp_AUC,
  216. Delta_L = if_else(NG == 1, mean_L - WT_L, Delta_L),
  217. Delta_K = if_else(NG == 1, mean_K - WT_K, Delta_K),
  218. Delta_r = if_else(NG == 1, mean_r - WT_r, Delta_r),
  219. Delta_AUC = if_else(NG == 1, mean_AUC - WT_AUC, Delta_AUC),
  220. Delta_L = if_else(SM == 1, mean_L - WT_L, Delta_L),
  221. # Calculate Z-scores
  222. Zscore_L = Delta_L / WT_sd_L,
  223. Zscore_K = Delta_K / WT_sd_K,
  224. Zscore_r = Delta_r / WT_sd_r,
  225. Zscore_AUC = Delta_AUC / WT_sd_AUC
  226. ) %>%
  227. group_modify(~ {
  228. # Perform linear models
  229. lm_L <- lm(Delta_L ~ conc_num_factor, data = .x)
  230. lm_K <- lm(Delta_K ~ conc_num_factor, data = .x)
  231. lm_r <- lm(Delta_r ~ conc_num_factor, data = .x)
  232. lm_AUC <- lm(Delta_AUC ~ conc_num_factor, data = .x)
  233. .x %>%
  234. mutate(
  235. lm_intercept_L = coef(lm_L)[1],
  236. lm_slope_L = coef(lm_L)[2],
  237. R_Squared_L = summary(lm_L)$r.squared,
  238. lm_Score_L = max_conc * lm_slope_L + lm_intercept_L,
  239. lm_intercept_K = coef(lm_K)[1],
  240. lm_slope_K = coef(lm_K)[2],
  241. R_Squared_K = summary(lm_K)$r.squared,
  242. lm_Score_K = max_conc * lm_slope_K + lm_intercept_K,
  243. lm_intercept_r = coef(lm_r)[1],
  244. lm_slope_r = coef(lm_r)[2],
  245. R_Squared_r = summary(lm_r)$r.squared,
  246. lm_Score_r = max_conc * lm_slope_r + lm_intercept_r,
  247. lm_intercept_AUC = coef(lm_AUC)[1],
  248. lm_slope_AUC = coef(lm_AUC)[2],
  249. R_Squared_AUC = summary(lm_AUC)$r.squared,
  250. lm_Score_AUC = max_conc * lm_slope_AUC + lm_intercept_AUC
  251. )
  252. }) %>%
  253. ungroup()
  254. # Summary statistics for lm scores
  255. lm_means_sds <- calculations %>%
  256. group_by(across(all_of(group_vars))) %>%
  257. summarise(
  258. mean_mean_L = mean(mean_L, na.rm = TRUE),
  259. mean_lm_L = mean(lm_Score_L, na.rm = TRUE),
  260. sd_lm_L = sd(lm_Score_L, na.rm = TRUE),
  261. mean_mean_K = mean(mean_K, na.rm = TRUE),
  262. mean_lm_K = mean(lm_Score_K, na.rm = TRUE),
  263. sd_lm_K = sd(lm_Score_K, na.rm = TRUE),
  264. mean_mean_r = mean(mean_r, na.rm = TRUE),
  265. mean_lm_r = mean(lm_Score_r, na.rm = TRUE),
  266. sd_lm_r = sd(lm_Score_r, na.rm = TRUE),
  267. mean_mean_AUC = mean(mean_AUC, na.rm = TRUE),
  268. mean_lm_AUC = mean(lm_Score_AUC, na.rm = TRUE),
  269. sd_lm_AUC = sd(lm_Score_AUC, na.rm = TRUE)
  270. )
  271. # Continue with gene Z-scores and interactions
  272. calculations <- calculations %>%
  273. left_join(lm_means_sds, by = group_vars) %>%
  274. group_by(across(all_of(group_vars))) %>%
  275. mutate(
  276. Z_lm_L = (lm_Score_L - mean_lm_L) / sd_lm_L,
  277. Z_lm_K = (lm_Score_K - mean_lm_K) / sd_lm_K,
  278. Z_lm_r = (lm_Score_r - mean_lm_r) / sd_lm_r,
  279. Z_lm_AUC = (lm_Score_AUC - mean_lm_AUC) / sd_lm_AUC
  280. )
  281. # Build summary stats (interactions)
  282. interactions <- calculations %>%
  283. group_by(across(all_of(group_vars))) %>%
  284. summarise(
  285. Avg_Zscore_L = sum(Zscore_L, na.rm = TRUE) / first(num_non_removed_concs),
  286. Avg_Zscore_K = sum(Zscore_K, na.rm = TRUE) / first(num_non_removed_concs),
  287. Avg_Zscore_r = sum(Zscore_r, na.rm = TRUE) / first(num_non_removed_concs),
  288. Avg_Zscore_AUC = sum(Zscore_AUC, na.rm = TRUE) / first(num_non_removed_concs),
  289. # Interaction Z-scores
  290. Z_lm_L = first(Z_lm_L),
  291. Z_lm_K = first(Z_lm_K),
  292. Z_lm_r = first(Z_lm_r),
  293. Z_lm_AUC = first(Z_lm_AUC),
  294. # Raw Shifts
  295. Raw_Shift_L = first(Raw_Shift_L),
  296. Raw_Shift_K = first(Raw_Shift_K),
  297. Raw_Shift_r = first(Raw_Shift_r),
  298. Raw_Shift_AUC = first(Raw_Shift_AUC),
  299. # Z Shifts
  300. Z_Shift_L = first(Z_Shift_L),
  301. Z_Shift_K = first(Z_Shift_K),
  302. Z_Shift_r = first(Z_Shift_r),
  303. Z_Shift_AUC = first(Z_Shift_AUC),
  304. # NG, DB, SM values
  305. NG = first(NG),
  306. DB = first(DB),
  307. SM = first(SM)
  308. )
  309. # Creating the final calculations and interactions dataframes with only required columns for csv output
  310. calculations_df <- calculations %>%
  311. select(
  312. all_of(group_vars),
  313. conc_num, conc_num_factor, conc_num_factor_factor,
  314. N, NG, DB, SM,
  315. mean_L, median_L, sd_L, se_L,
  316. mean_K, median_K, sd_K, se_K,
  317. mean_r, median_r, sd_r, se_r,
  318. mean_AUC, median_AUC, sd_AUC, se_AUC,
  319. Raw_Shift_L, Raw_Shift_K, Raw_Shift_r, Raw_Shift_AUC,
  320. Z_Shift_L, Z_Shift_K, Z_Shift_r, Z_Shift_AUC,
  321. WT_L, WT_K, WT_r, WT_AUC,
  322. WT_sd_L, WT_sd_K, WT_sd_r, WT_sd_AUC,
  323. Exp_L, Exp_K, Exp_r, Exp_AUC,
  324. Delta_L, Delta_K, Delta_r, Delta_AUC,
  325. Zscore_L, Zscore_K, Zscore_r, Zscore_AUC
  326. )
  327. interactions_df <- interactions %>%
  328. select(
  329. all_of(group_vars),
  330. NG, DB, SM,
  331. Avg_Zscore_L, Avg_Zscore_K, Avg_Zscore_r, Avg_Zscore_AUC,
  332. Z_lm_L, Z_lm_K, Z_lm_r, Z_lm_AUC,
  333. Raw_Shift_L, Raw_Shift_K, Raw_Shift_r, Raw_Shift_AUC,
  334. Z_Shift_L, Z_Shift_K, Z_Shift_r, Z_Shift_AUC
  335. )
  336. calculations_no_overlap <- calculations %>%
  337. # DB, NG, SM are same as in interactions, the rest may be different and need to be checked
  338. select(-any_of(c(
  339. "DB", "NG", "SM",
  340. "Raw_Shift_L", "Raw_Shift_K", "Raw_Shift_r", "Raw_Shift_AUC",
  341. "Z_Shift_L", "Z_Shift_K", "Z_Shift_r", "Z_Shift_AUC",
  342. "Z_lm_L", "Z_lm_K", "Z_lm_r", "Z_lm_AUC"
  343. )))
  344. # Use left_join to avoid dimension mismatch issues
  345. full_data <- calculations_no_overlap %>%
  346. left_join(interactions, by = group_vars)
  347. # Return full_data and the two required dataframes (calculations and interactions)
  348. return(list(
  349. calculations = calculations_df,
  350. interactions = interactions_df,
  351. full_data = full_data
  352. ))
  353. }
  354. generate_and_save_plots <- function(out_dir, filename, plot_configs) {
  355. message("Generating ", filename, ".pdf and ", filename, ".html")
  356. # Check if we're dealing with multiple plot groups
  357. plot_groups <- if ("plots" %in% names(plot_configs)) {
  358. list(plot_configs) # Single group
  359. } else {
  360. plot_configs # Multiple groups
  361. }
  362. # Open the PDF device once for all plots
  363. pdf(file.path(out_dir, paste0(filename, ".pdf")), width = 16, height = 9)
  364. # Loop through each plot group
  365. for (group in plot_groups) {
  366. static_plots <- list()
  367. plotly_plots <- list()
  368. grid_layout <- group$grid_layout
  369. plots <- group$plots
  370. for (i in seq_along(plots)) {
  371. config <- plots[[i]]
  372. df <- config$df
  373. # Set up aes mapping based on plot type
  374. aes_mapping <- if (config$plot_type == "bar" || config$plot_type == "density") {
  375. if (!is.null(config$color_var)) {
  376. aes(x = .data[[config$x_var]], fill = .data[[config$color_var]], color = .data[[config$color_var]])
  377. } else {
  378. aes(x = .data[[config$x_var]])
  379. }
  380. } else {
  381. if (!is.null(config$y_var) && !is.null(config$color_var)) {
  382. aes(x = .data[[config$x_var]], y = .data[[config$y_var]], color = .data[[config$color_var]])
  383. } else if (!is.null(config$y_var)) {
  384. aes(x = .data[[config$x_var]], y = .data[[config$y_var]])
  385. } else {
  386. aes(x = .data[[config$x_var]])
  387. }
  388. }
  389. plot <- ggplot(df, aes_mapping) + theme_publication(legend_position = config$legend_position)
  390. # Add appropriate plot layer based on plot type
  391. plot <- switch(config$plot_type,
  392. "scatter" = generate_scatter_plot(plot, config),
  393. "box" = generate_boxplot(plot, config),
  394. "density" = plot + geom_density(),
  395. "bar" = plot + geom_bar(),
  396. plot # default (unused)
  397. )
  398. # Add labels and title
  399. if (!is.null(config$title)) plot <- plot + ggtitle(config$title)
  400. if (!is.null(config$x_label)) plot <- plot + xlab(config$x_label)
  401. if (!is.null(config$y_label)) plot <- plot + ylab(config$y_label)
  402. if (!is.null(config$coord_cartesian)) plot <- plot + coord_cartesian(ylim = config$coord_cartesian)
  403. # Add error bars if specified
  404. if (!is.null(config$error_bar) && config$error_bar) {
  405. error_bar_color <- config$error_bar_params$color %||% "red"
  406. y_mean_col <- paste0("mean_", config$y_var)
  407. y_sd_col <- paste0("sd_", config$y_var)
  408. if (!is.null(config$error_bar_params$center_point)) {
  409. plot <- plot + geom_point(aes(
  410. x = .data[[config$x_var]],
  411. y = .data[[y_mean_col]]),
  412. color = error_bar_color,
  413. shape = 16)
  414. }
  415. # Use error_bar_params if provided, otherwise calculate from mean and sd
  416. if (!is.null(config$error_bar_params$ymin) && !is.null(config$error_bar_params$ymax)) {
  417. plot <- plot + geom_errorbar(aes(
  418. ymin = config$error_bar_params$ymin,
  419. ymax = config$error_bar_params$ymax),
  420. color = error_bar_color)
  421. } else {
  422. plot <- plot + geom_errorbar(aes(
  423. ymin = .data[[y_mean_col]] - .data[[y_sd_col]],
  424. ymax = .data[[y_mean_col]] + .data[[y_sd_col]]),
  425. color = error_bar_color)
  426. }
  427. }
  428. # Convert ggplot to plotly for interactive version
  429. plotly_plot <- suppressWarnings(plotly::ggplotly(plot))
  430. # Store both static and interactive versions
  431. static_plots[[i]] <- plot
  432. plotly_plots[[i]] <- plotly_plot
  433. }
  434. # Print the plots in the current group to the PDF
  435. if (is.null(grid_layout)) {
  436. # Print each plot individually on separate pages if no grid layout is specified
  437. for (plot in static_plots) {
  438. print(plot)
  439. }
  440. } else {
  441. # Arrange plots in grid layout on a single page
  442. grid.arrange(
  443. grobs = static_plots,
  444. ncol = grid_layout$ncol,
  445. nrow = grid_layout$nrow
  446. )
  447. }
  448. # Add a new page for the next group, if it exists
  449. if (length(plot_groups) > 1) {
  450. grid.newpage()
  451. }
  452. }
  453. # Close the PDF device after all plots are done
  454. dev.off()
  455. # Save HTML file with interactive plots if needed
  456. # out_html_file <- file.path(out_dir, paste0(filename, ".html"))
  457. # message("Saving combined HTML file: ", out_html_file)
  458. # htmltools::save_html(
  459. # htmltools::tagList(plotly_plots),
  460. # file = out_html_file
  461. # )
  462. }
  463. generate_scatter_plot <- function(plot, config) {
  464. # Define the points
  465. shape <- if (!is.null(config$shape)) config$shape else 3
  466. size <- if (!is.null(config$size)) config$size else 1.5
  467. position <-
  468. if (!is.null(config$position) && config$position == "jitter") {
  469. position_jitter(width = 0.3, height = 0.1)
  470. } else {
  471. "identity"
  472. }
  473. plot <- plot + geom_point(
  474. shape = shape,
  475. size = size,
  476. position = position
  477. )
  478. if (!is.null(config$cyan_points) && config$cyan_points) {
  479. plot <- plot + geom_point(
  480. aes(x = .data[[config$x_var]], y = .data[[config$y_var]]),
  481. color = "cyan",
  482. shape = 3,
  483. size = 0.5
  484. )
  485. }
  486. # Add Smooth Line if specified
  487. if (!is.null(config$smooth) && config$smooth) {
  488. smooth_color <- if (!is.null(config$smooth_color)) config$smooth_color else "blue"
  489. if (!is.null(config$lm_line)) {
  490. plot <- plot +
  491. geom_abline(
  492. intercept = config$lm_line$intercept,
  493. slope = config$lm_line$slope,
  494. color = smooth_color
  495. )
  496. } else {
  497. plot <- plot +
  498. geom_smooth(
  499. method = "lm",
  500. se = FALSE,
  501. color = smooth_color
  502. )
  503. }
  504. }
  505. # Add SD Bands if specified
  506. if (!is.null(config$sd_band)) {
  507. plot <- plot +
  508. annotate(
  509. "rect",
  510. xmin = -Inf, xmax = Inf,
  511. ymin = config$sd_band, ymax = Inf,
  512. fill = ifelse(!is.null(config$fill_positive), config$fill_positive, "#542788"),
  513. alpha = ifelse(!is.null(config$alpha_positive), config$alpha_positive, 0.3)
  514. ) +
  515. annotate(
  516. "rect",
  517. xmin = -Inf, xmax = Inf,
  518. ymin = -config$sd_band, ymax = -Inf,
  519. fill = ifelse(!is.null(config$fill_negative), config$fill_negative, "orange"),
  520. alpha = ifelse(!is.null(config$alpha_negative), config$alpha_negative, 0.3)
  521. ) +
  522. geom_hline(
  523. yintercept = c(-config$sd_band, config$sd_band),
  524. color = ifelse(!is.null(config$hl_color), config$hl_color, "gray")
  525. )
  526. }
  527. # Add Rectangles if specified
  528. if (!is.null(config$rectangles)) {
  529. for (rect in config$rectangles) {
  530. plot <- plot + annotate(
  531. "rect",
  532. xmin = rect$xmin,
  533. xmax = rect$xmax,
  534. ymin = rect$ymin,
  535. ymax = rect$ymax,
  536. fill = ifelse(is.null(rect$fill), NA, rect$fill),
  537. color = ifelse(is.null(rect$color), "black", rect$color),
  538. alpha = ifelse(is.null(rect$alpha), 0.1, rect$alpha)
  539. )
  540. }
  541. }
  542. # Customize X-axis if specified
  543. if (!is.null(config$x_breaks) && !is.null(config$x_labels) && !is.null(config$x_label)) {
  544. # Check if x_var is factor or character (for discrete x-axis)
  545. if (is.factor(plot$data[[config$x_var]]) || is.character(plot$data[[config$x_var]])) {
  546. plot <- plot +
  547. scale_x_discrete(
  548. name = config$x_label,
  549. breaks = config$x_breaks,
  550. labels = config$x_labels
  551. )
  552. } else {
  553. plot <- plot +
  554. scale_x_continuous(
  555. name = config$x_label,
  556. breaks = config$x_breaks,
  557. labels = config$x_labels
  558. )
  559. }
  560. }
  561. # Set Y-axis limits if specified
  562. if (!is.null(config$ylim_vals)) {
  563. plot <- plot + scale_y_continuous(limits = config$ylim_vals)
  564. }
  565. # Add annotations if specified
  566. if (!is.null(config$annotations)) {
  567. for (annotation in config$annotations) {
  568. plot <- plot +
  569. annotate(
  570. "text",
  571. x = annotation$x,
  572. y = annotation$y,
  573. label = annotation$label,
  574. hjust = ifelse(is.null(annotation$hjust), 0.5, annotation$hjust),
  575. vjust = ifelse(is.null(annotation$vjust), 0.5, annotation$vjust),
  576. size = ifelse(is.null(annotation$size), 6, annotation$size),
  577. color = ifelse(is.null(annotation$color), "black", annotation$color)
  578. )
  579. }
  580. }
  581. return(plot)
  582. }
  583. generate_boxplot <- function(plot, config) {
  584. # Convert x_var to a factor within aes mapping
  585. plot <- plot + geom_boxplot(aes(x = factor(.data[[config$x_var]])))
  586. # Customize X-axis if specified
  587. if (!is.null(config$x_breaks) && !is.null(config$x_labels) && !is.null(config$x_label)) {
  588. # Check if x_var is factor or character (for discrete x-axis)
  589. if (is.factor(plot$data[[config$x_var]]) || is.character(plot$data[[config$x_var]])) {
  590. plot <- plot +
  591. scale_x_discrete(
  592. name = config$x_label,
  593. breaks = config$x_breaks,
  594. labels = config$x_labels
  595. )
  596. } else {
  597. plot <- plot +
  598. scale_x_continuous(
  599. name = config$x_label,
  600. breaks = config$x_breaks,
  601. labels = config$x_labels
  602. )
  603. }
  604. }
  605. return(plot)
  606. }
  607. generate_plate_analysis_plot_configs <- function(variables, df_before = NULL, df_after = NULL,
  608. plot_type = "scatter", stages = c("before", "after")) {
  609. plot_configs <- list()
  610. for (var in variables) {
  611. for (stage in stages) {
  612. df_plot <- if (stage == "before") df_before else df_after
  613. # Check for non-finite values in the y-variable
  614. df_plot_filtered <- df_plot %>% filter(is.finite(!!sym(var)))
  615. # Adjust settings based on plot_type
  616. plot_config <- list(
  617. df = df_plot_filtered,
  618. x_var = "scan",
  619. y_var = var,
  620. plot_type = plot_type,
  621. title = paste("Plate analysis by Drug Conc for", var, stage, "quality control"),
  622. color_var = "conc_num_factor_factor",
  623. position = if (plot_type == "scatter") "jitter" else NULL,
  624. size = 0.2,
  625. error_bar = (plot_type == "scatter")
  626. )
  627. # Add config to plots list
  628. plot_configs <- append(plot_configs, list(plot_config))
  629. }
  630. }
  631. return(list(plots = plot_configs))
  632. }
  633. generate_interaction_plot_configs <- function(df, type) {
  634. # Set group_vars based on the type (reference or deletion)
  635. if (type == "reference") {
  636. group_vars <- c("OrfRep", "Gene", "num")
  637. } else if (type == "deletion") {
  638. group_vars <- c("OrfRep", "Gene")
  639. }
  640. # Define the limits for the plots
  641. limits_map <- list(
  642. L = c(0, 130),
  643. K = c(-20, 160),
  644. r = c(0, 1),
  645. AUC = c(0, 12500)
  646. )
  647. delta_limits_map <- list(
  648. L = c(-60, 60),
  649. K = c(-60, 60),
  650. r = c(-0.6, 0.6),
  651. AUC = c(-6000, 6000)
  652. )
  653. stats_plot_configs <- list()
  654. stats_boxplot_configs <- list()
  655. delta_plot_configs <- list()
  656. # Overall statistics plots
  657. OrfRep <- first(df$OrfRep) # this should correspond to the reference strain
  658. for (plot_type in c("scatter", "box")) {
  659. for (var in names(limits_map)) {
  660. y_limits <- limits_map[[var]]
  661. # Use the pre-calculated lm intercept and slope from the dataframe
  662. lm_intercept_col <- paste0("lm_intercept_", var)
  663. lm_slope_col <- paste0("lm_slope_", var)
  664. # Ensure no NA or invalid values in lm_line calculations
  665. intercept_value <- mean(df[[lm_intercept_col]], na.rm = TRUE)
  666. slope_value <- mean(df[[lm_slope_col]], na.rm = TRUE)
  667. # Common plot configuration
  668. plot_config <- list(
  669. df = df,
  670. x_var = "conc_num_factor_factor",
  671. y_var = var,
  672. shape = 16,
  673. x_label = unique(df$Drug)[1],
  674. coord_cartesian = y_limits,
  675. x_breaks = unique(df$conc_num_factor_factor),
  676. x_labels = as.character(unique(df$conc_num)),
  677. lm_line = list(
  678. intercept = intercept_value,
  679. slope = slope_value
  680. )
  681. )
  682. # Add specific configurations for scatter and box plots
  683. if (plot_type == "scatter") {
  684. plot_config$plot_type <- "scatter"
  685. plot_config$title <- sprintf("%s Scatter RF for %s with SD", OrfRep, var)
  686. plot_config$error_bar = TRUE
  687. plot_config$error_bar_params <- list(
  688. color = "red",
  689. center_point = TRUE
  690. )
  691. plot_config$position <- "jitter"
  692. # Append to scatter plot configurations
  693. stats_plot_configs <- append(stats_plot_configs, list(plot_config))
  694. } else if (plot_type == "box") {
  695. plot_config$plot_type <- "box"
  696. plot_config$title <- sprintf("%s Boxplot RF for %s with SD", OrfRep, var)
  697. plot_config$position <- "dodge" # Boxplots don't need jitter, use dodge instead
  698. # Append to boxplot configurations
  699. stats_boxplot_configs <- append(stats_boxplot_configs, list(plot_config))
  700. }
  701. }
  702. }
  703. # Delta interaction plots
  704. grouped_data <- df %>%
  705. group_by(across(all_of(group_vars))) %>%
  706. group_split()
  707. for (group_data in grouped_data) {
  708. OrfRep <- first(group_data$OrfRep)
  709. Gene <- first(group_data$Gene)
  710. num <- if ("num" %in% names(group_data)) first(group_data$num) else ""
  711. if (type == "reference") {
  712. OrfRepTitle <- paste(OrfRep, Gene, num, sep = "_")
  713. } else if (type == "deletion") {
  714. OrfRepTitle <- OrfRep
  715. }
  716. for (var in names(delta_limits_map)) {
  717. y_limits <- delta_limits_map[[var]]
  718. y_span <- y_limits[2] - y_limits[1]
  719. # Error bars
  720. WT_sd_value <- first(group_data[[paste0("WT_sd_", var)]], default = 0)
  721. # Z_Shift and lm values
  722. Z_Shift_value <- round(first(group_data[[paste0("Z_Shift_", var)]], default = 0), 2)
  723. Z_lm_value <- round(first(group_data[[paste0("Z_lm_", var)]], default = 0), 2)
  724. R_squared_value <- round(first(group_data[[paste0("R_Squared_", var)]], default = 0), 2)
  725. # NG, DB, SM values
  726. NG_value <- first(group_data$NG, default = 0)
  727. DB_value <- first(group_data$DB, default = 0)
  728. SM_value <- first(group_data$SM, default = 0)
  729. annotations <- list(
  730. list(x = 1, y = y_limits[2] - 0.2 * y_span, label = paste("ZShift =", Z_Shift_value)),
  731. list(x = 1, y = y_limits[2] - 0.3 * y_span, label = paste("lm ZScore =", Z_lm_value)),
  732. list(x = 1, y = y_limits[2] - 0.4 * y_span, label = paste("R-squared =", R_squared_value)),
  733. list(x = 1, y = y_limits[1] + 0.2 * y_span, label = paste("NG =", NG_value)),
  734. list(x = 1, y = y_limits[1] + 0.1 * y_span, label = paste("DB =", DB_value)),
  735. list(x = 1, y = y_limits[1], label = paste("SM =", SM_value))
  736. )
  737. # lm_line for delta plots
  738. lm_intercept_value <- first(group_data[[lm_intercept_col]], default = 0)
  739. lm_slope_value <- first(group_data[[lm_slope_col]], default = 0)
  740. plot_config <- list(
  741. df = group_data,
  742. plot_type = "scatter",
  743. x_var = "conc_num_factor_factor",
  744. y_var = var,
  745. x_label = unique(group_data$Drug)[1],
  746. title = paste(OrfRepTitle, Gene, num, sep = " "),
  747. coord_cartesian = y_limits,
  748. annotations = annotations,
  749. error_bar = TRUE,
  750. error_bar_params = list(
  751. ymin = 0 - (2 * WT_sd_value),
  752. ymax = 0 + (2 * WT_sd_value),
  753. color = "black"
  754. ),
  755. smooth = TRUE,
  756. x_breaks = unique(group_data$conc_num_factor_factor),
  757. x_labels = as.character(unique(group_data$conc_num)),
  758. ylim_vals = y_limits,
  759. lm_line = list(
  760. intercept = lm_intercept_value,
  761. slope = lm_slope_value
  762. )
  763. )
  764. delta_plot_configs <- append(delta_plot_configs, list(plot_config))
  765. }
  766. }
  767. # Calculate dynamic grid layout
  768. grid_ncol <- 4
  769. num_plots <- length(delta_plot_configs)
  770. grid_nrow <- ceiling(num_plots / grid_ncol)
  771. return(list(
  772. list(grid_layout = list(ncol = 2, nrow = 2), plots = stats_plot_configs),
  773. list(grid_layout = list(ncol = 2, nrow = 2), plots = stats_boxplot_configs),
  774. list(grid_layout = list(ncol = 4, nrow = grid_nrow), plots = delta_plot_configs)
  775. ))
  776. }
  777. generate_rank_plot_configs <- function(df, variables, is_lm = FALSE, adjust = FALSE, overlap_color = FALSE) {
  778. sd_bands <- c(1, 2, 3)
  779. plot_configs <- list()
  780. variables <- c("L", "K")
  781. # Adjust (if necessary) and rank columns
  782. for (variable in variables) {
  783. if (adjust) {
  784. df[[paste0("Avg_Zscore_", variable)]] <- ifelse(is.na(df[[paste0("Avg_Zscore_", variable)]]), 0.001, df[[paste0("Avg_Zscore_", variable)]])
  785. df[[paste0("Z_lm_", variable)]] <- ifelse(is.na(df[[paste0("Z_lm_", variable)]]), 0.001, df[[paste0("Z_lm_", variable)]])
  786. }
  787. df[[paste0("Rank_", variable)]] <- rank(df[[paste0("Avg_Zscore_", variable)]], na.last = "keep")
  788. df[[paste0("Rank_lm_", variable)]] <- rank(df[[paste0("Z_lm_", variable)]], na.last = "keep")
  789. }
  790. # Helper function to create a plot configuration
  791. create_plot_config <- function(variable, rank_var, zscore_var, y_label, sd_band, with_annotations = TRUE) {
  792. num_enhancers <- sum(df[[zscore_var]] >= sd_band, na.rm = TRUE)
  793. num_suppressors <- sum(df[[zscore_var]] <= -sd_band, na.rm = TRUE)
  794. # Default plot config
  795. plot_config <- list(
  796. df = df,
  797. x_var = rank_var,
  798. y_var = zscore_var,
  799. plot_type = "scatter",
  800. title = paste(y_label, "vs. Rank for", variable, "above", sd_band),
  801. sd_band = sd_band,
  802. fill_positive = "#542788",
  803. fill_negative = "orange",
  804. alpha_positive = 0.3,
  805. alpha_negative = 0.3,
  806. annotations = NULL,
  807. shape = 3,
  808. size = 0.1,
  809. y_label = y_label,
  810. x_label = "Rank",
  811. legend_position = "none"
  812. )
  813. if (with_annotations) {
  814. # Add specific annotations for plots with annotations
  815. plot_config$annotations <- list(
  816. list(
  817. x = median(df[[rank_var]], na.rm = TRUE),
  818. y = max(df[[zscore_var]], na.rm = TRUE) * 0.9,
  819. label = paste("Deletion Enhancers =", num_enhancers)
  820. ),
  821. list(
  822. x = median(df[[rank_var]], na.rm = TRUE),
  823. y = min(df[[zscore_var]], na.rm = TRUE) * 0.9,
  824. label = paste("Deletion Suppressors =", num_suppressors)
  825. )
  826. )
  827. }
  828. return(plot_config)
  829. }
  830. # Generate plots for each variable
  831. for (variable in variables) {
  832. rank_var <- if (is_lm) paste0("Rank_lm_", variable) else paste0("Rank_", variable)
  833. zscore_var <- if (is_lm) paste0("Z_lm_", variable) else paste0("Avg_Zscore_", variable)
  834. y_label <- if (is_lm) paste("Int Z score", variable) else paste("Avg Z score", variable)
  835. # Loop through SD bands
  836. for (sd_band in sd_bands) {
  837. # Create plot with annotations
  838. plot_configs[[length(plot_configs) + 1]] <- create_plot_config(variable, rank_var, zscore_var, y_label, sd_band, with_annotations = TRUE)
  839. # Create plot without annotations
  840. plot_configs[[length(plot_configs) + 1]] <- create_plot_config(variable, rank_var, zscore_var, y_label, sd_band, with_annotations = FALSE)
  841. }
  842. }
  843. # Calculate dynamic grid layout based on the number of plots
  844. grid_ncol <- 3
  845. num_plots <- length(plot_configs)
  846. grid_nrow <- ceiling(num_plots / grid_ncol) # Automatically calculate the number of rows
  847. return(list(grid_layout = list(ncol = grid_ncol, nrow = grid_nrow), plots = plot_configs))
  848. }
  849. generate_correlation_plot_configs <- function(df, correlation_stats) {
  850. # Define relationships for different-variable correlations
  851. relationships <- list(
  852. list(x = "L", y = "K"),
  853. list(x = "L", y = "r"),
  854. list(x = "L", y = "AUC"),
  855. list(x = "K", y = "r"),
  856. list(x = "K", y = "AUC"),
  857. list(x = "r", y = "AUC")
  858. )
  859. plot_configs <- list()
  860. # Iterate over the option to highlight cyan points (TRUE/FALSE)
  861. highlight_cyan_options <- c(FALSE, TRUE)
  862. for (highlight_cyan in highlight_cyan_options) {
  863. for (rel in relationships) {
  864. # Extract relevant variable names for Z_lm values
  865. x_var <- paste0("Z_lm_", rel$x)
  866. y_var <- paste0("Z_lm_", rel$y)
  867. # Access the correlation statistics from the correlation_stats list
  868. relationship_name <- paste0(rel$x, "_vs_", rel$y) # Example: L_vs_K
  869. stats <- correlation_stats[[relationship_name]]
  870. intercept <- stats$intercept
  871. slope <- stats$slope
  872. r_squared <- stats$r_squared
  873. # Generate the label for the plot
  874. plot_label <- paste("Interaction", rel$x, "vs.", rel$y)
  875. # Construct plot config
  876. plot_config <- list(
  877. df = df,
  878. x_var = x_var,
  879. y_var = y_var,
  880. plot_type = "scatter",
  881. title = plot_label,
  882. annotations = list(
  883. list(
  884. x = mean(df[[x_var]], na.rm = TRUE),
  885. y = mean(df[[y_var]], na.rm = TRUE),
  886. label = paste("R-squared =", round(r_squared, 3))
  887. )
  888. ),
  889. smooth = TRUE,
  890. smooth_color = "tomato3",
  891. lm_line = list(
  892. intercept = intercept,
  893. slope = slope
  894. ),
  895. shape = 3,
  896. size = 0.5,
  897. color_var = "Overlap",
  898. cyan_points = highlight_cyan # Include cyan points or not based on the loop
  899. )
  900. plot_configs <- append(plot_configs, list(plot_config))
  901. }
  902. }
  903. return(list(plots = plot_configs))
  904. }
  905. main <- function() {
  906. lapply(names(args$experiments), function(exp_name) {
  907. exp <- args$experiments[[exp_name]]
  908. exp_path <- exp$path
  909. exp_sd <- exp$sd
  910. out_dir <- file.path(exp_path, "zscores")
  911. out_dir_qc <- file.path(exp_path, "zscores", "qc")
  912. dir.create(out_dir, recursive = TRUE, showWarnings = FALSE)
  913. dir.create(out_dir_qc, recursive = TRUE, showWarnings = FALSE)
  914. summary_vars <- c("L", "K", "r", "AUC", "delta_bg") # fields to filter and calculate summary stats across
  915. interaction_vars <- c("L", "K", "r", "AUC") # fields to calculate interaction z-scores
  916. message("Loading and filtering data for experiment: ", exp_name)
  917. df <- load_and_filter_data(args$easy_results_file, sd = exp_sd) %>%
  918. update_gene_names(args$sgd_gene_list) %>%
  919. as_tibble()
  920. # Filter rows above delta background tolerance
  921. df_above_tolerance <- df %>% filter(DB == 1)
  922. df_na <- df %>% mutate(across(all_of(summary_vars), ~ ifelse(DB == 1, NA, .))) # formerly X
  923. df_no_zeros <- df_na %>% filter(L > 0) # formerly X_noZero
  924. # Save some constants
  925. max_conc <- max(df$conc_num_factor)
  926. message("Calculating summary statistics before quality control")
  927. df_stats <- calculate_summary_stats(
  928. df = df,
  929. variables = summary_vars,
  930. group_vars = c("conc_num", "conc_num_factor", "conc_num_factor_factor"))$df_with_stats
  931. message("Calculating summary statistics after quality control")
  932. ss <- calculate_summary_stats(
  933. df = df_na,
  934. variables = summary_vars,
  935. group_vars = c("conc_num", "conc_num_factor", "conc_num_factor_factor"))
  936. df_na_ss <- ss$summary_stats
  937. df_na_stats <- ss$df_with_stats
  938. write.csv(df_na_ss, file = file.path(out_dir, "summary_stats_all_strains.csv"), row.names = FALSE)
  939. # For plotting (ggplot warns on NAs)
  940. df_na_stats_filtered <- df_na_stats %>% filter(if_all(all_of(summary_vars), is.finite))
  941. df_na_stats <- df_na_stats %>%
  942. mutate(
  943. WT_L = mean_L,
  944. WT_K = mean_K,
  945. WT_r = mean_r,
  946. WT_AUC = mean_AUC,
  947. WT_sd_L = sd_L,
  948. WT_sd_K = sd_K,
  949. WT_sd_r = sd_r,
  950. WT_sd_AUC = sd_AUC
  951. )
  952. # Pull the background means and standard deviations from zero concentration for interactions
  953. bg_stats <- df_na_stats %>%
  954. filter(conc_num == 0) %>%
  955. summarise(
  956. mean_L = first(mean_L),
  957. mean_K = first(mean_K),
  958. mean_r = first(mean_r),
  959. mean_AUC = first(mean_AUC),
  960. sd_L = first(sd_L),
  961. sd_K = first(sd_K),
  962. sd_r = first(sd_r),
  963. sd_AUC = first(sd_AUC)
  964. )
  965. message("Calculating summary statistics after quality control excluding zero values")
  966. df_no_zeros_stats <- calculate_summary_stats(
  967. df = df_no_zeros,
  968. variables = summary_vars,
  969. group_vars = c("conc_num", "conc_num_factor", "conc_num_factor_factor")
  970. )$df_with_stats
  971. message("Filtering by 2SD of K")
  972. df_na_within_2sd_k <- df_na_stats %>%
  973. filter(K >= (mean_K - 2 * sd_K) & K <= (mean_K + 2 * sd_K))
  974. df_na_outside_2sd_k <- df_na_stats %>%
  975. filter(K < (mean_K - 2 * sd_K) | K > (mean_K + 2 * sd_K))
  976. message("Calculating summary statistics for L within 2SD of K")
  977. # TODO We're omitting the original z_max calculation, not sure if needed?
  978. ss <- calculate_summary_stats(df_na_within_2sd_k, "L", group_vars = c("conc_num", "conc_num_factor", "conc_num_factor_factor"))$summary_stats
  979. write.csv(ss,
  980. file = file.path(out_dir_qc, "max_observed_L_vals_for_spots_within_2sd_K.csv"),
  981. row.names = FALSE)
  982. message("Calculating summary statistics for L outside 2SD of K")
  983. ss <- calculate_summary_stats(df_na_outside_2sd_k, "L", group_vars = c("conc_num", "conc_num_factor", "conc_num_factor_factor"))
  984. df_na_l_outside_2sd_k_stats <- ss$df_with_stats
  985. write.csv(ss$summary_stats,
  986. file = file.path(out_dir, "max_observed_L_vals_for_spots_outside_2sd_K.csv"),
  987. row.names = FALSE)
  988. # Each list of plots corresponds to a file
  989. l_vs_k_plot_configs <- list(
  990. plots = list(
  991. list(
  992. df = df,
  993. x_var = "L",
  994. y_var = "K",
  995. plot_type = "scatter",
  996. tooltip_vars = c("OrfRep", "Gene", "delta_bg"),
  997. title = "Raw L vs K before quality control",
  998. color_var = "conc_num_factor_factor",
  999. error_bar = FALSE,
  1000. legend_position = "right"
  1001. )
  1002. )
  1003. )
  1004. frequency_delta_bg_plot_configs <- list(
  1005. plots = list(
  1006. list(
  1007. df = df_stats,
  1008. x_var = "delta_bg",
  1009. y_var = NULL,
  1010. plot_type = "density",
  1011. title = "Density plot for Delta Background by [Drug] (All Data)",
  1012. color_var = "conc_num_factor_factor",
  1013. x_label = "Delta Background",
  1014. y_label = "Density",
  1015. error_bar = FALSE,
  1016. legend_position = "right"
  1017. ),
  1018. list(
  1019. df = df_stats,
  1020. x_var = "delta_bg",
  1021. y_var = NULL,
  1022. plot_type = "bar",
  1023. title = "Bar plot for Delta Background by [Drug] (All Data)",
  1024. color_var = "conc_num_factor_factor",
  1025. x_label = "Delta Background",
  1026. y_label = "Count",
  1027. error_bar = FALSE,
  1028. legend_position = "right"
  1029. )
  1030. )
  1031. )
  1032. above_threshold_plot_configs <- list(
  1033. plots = list(
  1034. list(
  1035. df = df_above_tolerance,
  1036. x_var = "L",
  1037. y_var = "K",
  1038. plot_type = "scatter",
  1039. tooltip_vars = c("OrfRep", "Gene", "delta_bg"),
  1040. title = paste("Raw L vs K for strains above Delta Background threshold of",
  1041. round(df_above_tolerance$delta_bg_tolerance[[1]], 3), "or above"),
  1042. color_var = "conc_num_factor_factor",
  1043. position = "jitter",
  1044. annotations = list(
  1045. list(
  1046. x = median(df_above_tolerance$L, na.rm = TRUE) / 2,
  1047. y = median(df_above_tolerance$K, na.rm = TRUE) / 2,
  1048. label = paste("# strains above Delta Background tolerance =", nrow(df_above_tolerance))
  1049. )
  1050. ),
  1051. error_bar = FALSE,
  1052. legend_position = "right"
  1053. )
  1054. )
  1055. )
  1056. plate_analysis_plot_configs <- generate_plate_analysis_plot_configs(
  1057. variables = summary_vars,
  1058. df_before = df_stats,
  1059. df_after = df_na_stats_filtered
  1060. )
  1061. plate_analysis_boxplot_configs <- generate_plate_analysis_plot_configs(
  1062. variables = summary_vars,
  1063. df_before = df_stats,
  1064. df_after = df_na_stats_filtered,
  1065. plot_type = "box"
  1066. )
  1067. plate_analysis_no_zeros_plot_configs <- generate_plate_analysis_plot_configs(
  1068. variables = summary_vars,
  1069. stages = c("after"), # Only after QC
  1070. df_after = df_no_zeros_stats
  1071. )
  1072. plate_analysis_no_zeros_boxplot_configs <- generate_plate_analysis_plot_configs(
  1073. variables = summary_vars,
  1074. stages = c("after"), # Only after QC
  1075. df_after = df_no_zeros_stats,
  1076. plot_type = "box"
  1077. )
  1078. l_outside_2sd_k_plot_configs <- list(
  1079. plots = list(
  1080. list(
  1081. df = df_na_l_outside_2sd_k_stats,
  1082. x_var = "L",
  1083. y_var = "K",
  1084. plot_type = "scatter",
  1085. title = "Raw L vs K for strains falling outside 2SD of the K mean at each Conc",
  1086. color_var = "conc_num_factor_factor",
  1087. position = "jitter",
  1088. tooltip_vars = c("OrfRep", "Gene", "delta_bg"),
  1089. annotations = list(
  1090. list(
  1091. x = median(df_na_l_outside_2sd_k_stats$L, na.rm = TRUE) / 2,
  1092. y = median(df_na_l_outside_2sd_k_stats$K, na.rm = TRUE) / 2,
  1093. label = paste("Total strains:", nrow(df_na_l_outside_2sd_k_stats))
  1094. )
  1095. ),
  1096. error_bar = FALSE,
  1097. legend_position = "right"
  1098. )
  1099. )
  1100. )
  1101. delta_bg_outside_2sd_k_plot_configs <- list(
  1102. plots = list(
  1103. list(
  1104. df = df_na_l_outside_2sd_k_stats,
  1105. x_var = "delta_bg",
  1106. y_var = "K",
  1107. plot_type = "scatter",
  1108. title = "Delta Background vs K for strains falling outside 2SD of the K mean at each Conc",
  1109. color_var = "conc_num_factor_factor",
  1110. position = "jitter",
  1111. tooltip_vars = c("OrfRep", "Gene", "delta_bg"),
  1112. annotations = list(
  1113. list(
  1114. x = median(df_na_l_outside_2sd_k_stats$delta_bg, na.rm = TRUE) / 2,
  1115. y = median(df_na_l_outside_2sd_k_stats$K, na.rm = TRUE) / 2,
  1116. label = paste("Total strains:", nrow(df_na_l_outside_2sd_k_stats))
  1117. )
  1118. ),
  1119. error_bar = FALSE,
  1120. legend_position = "right"
  1121. )
  1122. )
  1123. )
  1124. message("Generating quality control plots in parallel")
  1125. # future::plan(future::multicore, workers = parallel::detectCores())
  1126. future::plan(future::multisession, workers = 3) # generate 3 plots in parallel
  1127. plot_configs <- list(
  1128. list(out_dir = out_dir_qc, filename = "L_vs_K_before_quality_control",
  1129. plot_configs = l_vs_k_plot_configs),
  1130. list(out_dir = out_dir_qc, filename = "frequency_delta_background",
  1131. plot_configs = frequency_delta_bg_plot_configs),
  1132. list(out_dir = out_dir_qc, filename = "L_vs_K_above_threshold",
  1133. plot_configs = above_threshold_plot_configs),
  1134. list(out_dir = out_dir_qc, filename = "plate_analysis",
  1135. plot_configs = plate_analysis_plot_configs),
  1136. list(out_dir = out_dir_qc, filename = "plate_analysis_boxplots",
  1137. plot_configs = plate_analysis_boxplot_configs),
  1138. list(out_dir = out_dir_qc, filename = "plate_analysis_no_zeros",
  1139. plot_configs = plate_analysis_no_zeros_plot_configs),
  1140. list(out_dir = out_dir_qc, filename = "plate_analysis_no_zeros_boxplots",
  1141. plot_configs = plate_analysis_no_zeros_boxplot_configs),
  1142. list(out_dir = out_dir_qc, filename = "L_vs_K_for_strains_2SD_outside_mean_K",
  1143. plot_configs = l_outside_2sd_k_plot_configs),
  1144. list(out_dir = out_dir_qc, filename = "delta_background_vs_K_for_strains_2sd_outside_mean_K",
  1145. plot_configs = delta_bg_outside_2sd_k_plot_configs)
  1146. )
  1147. # Generating quality control plots in parallel
  1148. # furrr::future_map(plot_configs, function(config) {
  1149. # generate_and_save_plots(config$out_dir, config$filename, config$plot_configs)
  1150. # }, .options = furrr_options(seed = TRUE))
  1151. # Process background strains
  1152. bg_strains <- c("YDL227C")
  1153. lapply(bg_strains, function(strain) {
  1154. message("Processing background strain: ", strain)
  1155. # Handle missing data by setting zero values to NA
  1156. # and then removing any rows with NA in L col
  1157. df_bg <- df_na %>%
  1158. filter(OrfRep == strain) %>%
  1159. mutate(
  1160. L = if_else(L == 0, NA, L),
  1161. K = if_else(K == 0, NA, K),
  1162. r = if_else(r == 0, NA, r),
  1163. AUC = if_else(AUC == 0, NA, AUC)
  1164. ) %>%
  1165. filter(!is.na(L))
  1166. # Recalculate summary statistics for the background strain
  1167. message("Calculating summary statistics for background strain")
  1168. ss_bg <- calculate_summary_stats(df_bg, summary_vars, group_vars = c("OrfRep", "conc_num", "conc_num_factor", "conc_num_factor_factor"))
  1169. summary_stats_bg <- ss_bg$summary_stats
  1170. write.csv(summary_stats_bg,
  1171. file = file.path(out_dir, paste0("summary_stats_background_strain_", strain, ".csv")),
  1172. row.names = FALSE)
  1173. # Set the missing values to the highest theoretical value at each drug conc for L
  1174. # Leave other values as 0 for the max/min
  1175. df_reference <- df_na_stats %>% # formerly X2_RF
  1176. filter(OrfRep == strain) %>%
  1177. filter(!is.na(L)) %>%
  1178. group_by(conc_num, conc_num_factor, conc_num_factor_factor) %>%
  1179. mutate(
  1180. max_l_theoretical = max(max_L, na.rm = TRUE),
  1181. L = ifelse(L == 0 & !is.na(L) & conc_num > 0, max_l_theoretical, L),
  1182. SM = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, 1, 0),
  1183. L = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, max_l_theoretical, L)) %>%
  1184. ungroup()
  1185. # Ditto for deletion strains
  1186. df_deletion <- df_na_stats %>% # formerly X2
  1187. filter(OrfRep != strain) %>%
  1188. filter(!is.na(L)) %>%
  1189. mutate(SM = 0) %>%
  1190. group_by(conc_num, conc_num_factor, conc_num_factor_factor) %>%
  1191. mutate(
  1192. max_l_theoretical = max(max_L, na.rm = TRUE),
  1193. L = ifelse(L == 0 & !is.na(L) & conc_num > 0, max_l_theoretical, L),
  1194. SM = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, 1, SM),
  1195. L = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, max_l_theoretical, L)) %>%
  1196. ungroup()
  1197. message("Calculating reference strain interaction scores")
  1198. df_reference_stats <- calculate_summary_stats(
  1199. df = df_reference,
  1200. variables = interaction_vars,
  1201. group_vars = c("OrfRep", "Gene", "num", "conc_num", "conc_num_factor")
  1202. )$df_with_stats
  1203. reference_results <- calculate_interaction_scores(df_reference_stats, max_conc, bg_stats, group_vars = c("OrfRep", "Gene", "num"))
  1204. zscore_calculations_reference <- reference_results$calculations
  1205. zscore_interactions_reference <- reference_results$interactions
  1206. zscore_interactions_reference_joined <- reference_results$full_data
  1207. message("Calculating deletion strain(s) interactions scores")
  1208. df_deletion_stats <- calculate_summary_stats(
  1209. df = df_deletion,
  1210. variables = interaction_vars,
  1211. group_vars = c("OrfRep", "Gene", "conc_num", "conc_num_factor")
  1212. )$df_with_stats
  1213. deletion_results <- calculate_interaction_scores(df_deletion_stats, max_conc, bg_stats, group_vars = c("OrfRep", "Gene"))
  1214. zscore_calculations <- deletion_results$calculations
  1215. zscore_interactions <- deletion_results$interactions
  1216. zscore_interactions_joined <- deletion_results$full_data
  1217. # Writing Z-Scores to file
  1218. write.csv(zscore_calculations_reference, file = file.path(out_dir, "zscore_calculations_reference.csv"), row.names = FALSE)
  1219. write.csv(zscore_calculations, file = file.path(out_dir, "zscore_calculations.csv"), row.names = FALSE)
  1220. write.csv(zscore_interactions_reference, file = file.path(out_dir, "zscore_interactions_reference.csv"), row.names = FALSE)
  1221. write.csv(zscore_interactions, file = file.path(out_dir, "zscore_interactions.csv"), row.names = FALSE)
  1222. # Create interaction plots
  1223. message("Generating reference interaction plots")
  1224. reference_plot_configs <- generate_interaction_plot_configs(zscore_interactions_reference_joined, "reference")
  1225. generate_and_save_plots(out_dir, "interaction_plots_reference", reference_plot_configs)
  1226. message("Generating deletion interaction plots")
  1227. deletion_plot_configs <- generate_interaction_plot_configs(zscore_interactions_joined, "deletion")
  1228. generate_and_save_plots(out_dir, "interaction_plots", deletion_plot_configs)
  1229. # Define conditions for enhancers and suppressors
  1230. # TODO Add to study config?
  1231. threshold <- 2
  1232. enhancer_condition_L <- zscore_interactions$Avg_Zscore_L >= threshold
  1233. suppressor_condition_L <- zscore_interactions$Avg_Zscore_L <= -threshold
  1234. enhancer_condition_K <- zscore_interactions$Avg_Zscore_K >= threshold
  1235. suppressor_condition_K <- zscore_interactions$Avg_Zscore_K <= -threshold
  1236. # Subset data
  1237. enhancers_L <- zscore_interactions[enhancer_condition_L, ]
  1238. suppressors_L <- zscore_interactions[suppressor_condition_L, ]
  1239. enhancers_K <- zscore_interactions[enhancer_condition_K, ]
  1240. suppressors_K <- zscore_interactions[suppressor_condition_K, ]
  1241. # Save enhancers and suppressors
  1242. message("Writing enhancer/suppressor csv files")
  1243. write.csv(enhancers_L, file = file.path(out_dir, "zscore_interactions_deletion_enhancers_L.csv"), row.names = FALSE)
  1244. write.csv(suppressors_L, file = file.path(out_dir, "zscore_interactions_deletion_suppressors_L.csv"), row.names = FALSE)
  1245. write.csv(enhancers_K, file = file.path(out_dir, "zscore_interactions_deletion_enhancers_K.csv"), row.names = FALSE)
  1246. write.csv(suppressors_K, file = file.path(out_dir, "zscore_interactions_deletion_suppressors_K.csv"), row.names = FALSE)
  1247. # Combine conditions for enhancers and suppressors
  1248. enhancers_and_suppressors_L <- zscore_interactions[enhancer_condition_L | suppressor_condition_L, ]
  1249. enhancers_and_suppressors_K <- zscore_interactions[enhancer_condition_K | suppressor_condition_K, ]
  1250. # Save combined enhancers and suppressors
  1251. write.csv(enhancers_and_suppressors_L,
  1252. file = file.path(out_dir, "zscore_interactions_deletion_enhancers_and_suppressors_L.csv"), row.names = FALSE)
  1253. write.csv(enhancers_and_suppressors_K,
  1254. file = file.path(out_dir, "zscore_interaction_deletion_enhancers_and_suppressors_K.csv"), row.names = FALSE)
  1255. # Handle linear model based enhancers and suppressors
  1256. lm_threshold <- 2 # TODO add to study config?
  1257. enhancers_lm_L <- zscore_interactions[zscore_interactions$Z_lm_L >= lm_threshold, ]
  1258. suppressors_lm_L <- zscore_interactions[zscore_interactions$Z_lm_L <= -lm_threshold, ]
  1259. enhancers_lm_K <- zscore_interactions[zscore_interactions$Z_lm_K >= lm_threshold, ]
  1260. suppressors_lm_K <- zscore_interactions[zscore_interactions$Z_lm_K <= -lm_threshold, ]
  1261. # Save linear model based enhancers and suppressors
  1262. message("Writing linear model enhancer/suppressor csv files")
  1263. write.csv(enhancers_lm_L,
  1264. file = file.path(out_dir, "zscore_interactions_deletion_enhancers_lm_L.csv"), row.names = FALSE)
  1265. write.csv(suppressors_lm_L,
  1266. file = file.path(out_dir, "zscore_interactions_deletion_suppressors_lm_L.csv"), row.names = FALSE)
  1267. write.csv(enhancers_lm_K,
  1268. file = file.path(out_dir, "zscore_interactions_deletion_enhancers_lm_K.csv"), row.names = FALSE)
  1269. write.csv(suppressors_lm_K,
  1270. file = file.path(out_dir, "zscore_interactions_deletion_suppressors_lm_K.csv"), row.names = FALSE)
  1271. message("Generating rank plots")
  1272. rank_plot_configs <- generate_rank_plot_configs(
  1273. df = zscore_interactions_joined,
  1274. is_lm = FALSE,
  1275. adjust = TRUE
  1276. )
  1277. generate_and_save_plots(out_dir = out_dir, filename = "rank_plots",
  1278. plot_configs = rank_plot_configs)
  1279. message("Generating ranked linear model plots")
  1280. rank_lm_plot_configs <- generate_rank_plot_configs(
  1281. df = zscore_interactions_joined,
  1282. is_lm = TRUE,
  1283. adjust = TRUE
  1284. )
  1285. generate_and_save_plots(out_dir = out_dir, filename = "rank_plots_lm",
  1286. plot_configs = rank_lm_plot_configs)
  1287. message("Generating filtered ranked plots")
  1288. rank_plot_filtered_configs <- generate_rank_plot_configs(
  1289. df = zscore_interactions_filtered,
  1290. is_lm = FALSE,
  1291. adjust = FALSE,
  1292. overlap_color = TRUE
  1293. )
  1294. generate_and_save_plots(
  1295. out_dir = out_dir,
  1296. filename = "RankPlots_na_rm",
  1297. plot_configs = rank_plot_filtered_configs)
  1298. message("Generating filtered ranked linear model plots")
  1299. rank_plot_lm_filtered_configs <- generate_rank_plot_configs(
  1300. df = zscore_interactions_filtered,
  1301. is_lm = TRUE,
  1302. adjust = FALSE,
  1303. overlap_color = TRUE
  1304. )
  1305. generate_and_save_plots(
  1306. out_dir = out_dir,
  1307. filename = "rank_plots_lm_na_rm",
  1308. plot_configs = rank_plot_lm_filtered_configs)
  1309. message("Generating correlation curve parameter pair plots")
  1310. correlation_plot_configs <- generate_correlation_plot_configs(zscore_interactions_filtered)
  1311. generate_and_save_plots(
  1312. out_dir = out_dir,
  1313. filename = "correlation_cpps",
  1314. plot_configs = correlation_plot_configs,
  1315. )
  1316. })
  1317. })
  1318. }
  1319. main()
  1320. # For future simplification of joined dataframes
  1321. # df_joined <- left_join(cleaned_df, summary_stats, by = group_vars, suffix = c("_original", "_stats"))