calculate_interaction_zscores.R 42 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038
  1. suppressMessages({
  2. library(ggplot2)
  3. library(plotly)
  4. library(htmlwidgets)
  5. library(dplyr)
  6. library(ggthemes)
  7. library(data.table)
  8. library(unix)
  9. })
  10. options(warn = 2)
  11. options(width = 10000)
  12. # Set the memory limit to 30GB (30 * 1024 * 1024 * 1024 bytes)
  13. soft_limit <- 30 * 1024 * 1024 * 1024
  14. hard_limit <- 30 * 1024 * 1024 * 1024
  15. rlimit_as(soft_limit, hard_limit)
  16. # Constants for configuration
  17. plot_width <- 14
  18. plot_height <- 9
  19. base_size <- 14
  20. parse_arguments <- function() {
  21. args <- if (interactive()) {
  22. c(
  23. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/20240116_jhartman2_DoxoHLD",
  24. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/apps/r/SGD_features.tab",
  25. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/easy/20240116_jhartman2_DoxoHLD/results_std.txt",
  26. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/20240822_jhartman2_DoxoHLD/exp1",
  27. "Experiment 1: Doxo versus HLD",
  28. 3,
  29. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/20240822_jhartman2_DoxoHLD/exp2",
  30. "Experiment 2: HLD versus Doxo",
  31. 3
  32. )
  33. } else {
  34. commandArgs(trailingOnly = TRUE)
  35. }
  36. # Extract paths, names, and standard deviations
  37. paths <- args[seq(4, length(args), by = 3)]
  38. names <- args[seq(5, length(args), by = 3)]
  39. sds <- as.numeric(args[seq(6, length(args), by = 3)])
  40. # Normalize paths
  41. normalized_paths <- normalizePath(paths, mustWork = FALSE)
  42. # Create named list of experiments
  43. experiments <- list()
  44. for (i in seq_along(paths)) {
  45. experiments[[names[i]]] <- list(
  46. path = normalized_paths[i],
  47. sd = sds[i]
  48. )
  49. }
  50. list(
  51. out_dir = normalizePath(args[1], mustWork = FALSE),
  52. sgd_gene_list = normalizePath(args[2], mustWork = FALSE),
  53. easy_results_file = normalizePath(args[3], mustWork = FALSE),
  54. experiments = experiments
  55. )
  56. }
  57. args <- parse_arguments()
  58. # Should we keep output in exp dirs or combine in the study output dir?
  59. # dir.create(file.path(args$out_dir, "zscores"), showWarnings = FALSE)
  60. # dir.create(file.path(args$out_dir, "zscores", "qc"), showWarnings = FALSE)
  61. # Define themes and scales
  62. theme_publication <- function(base_size = 14, base_family = "sans", legend_position = "bottom") {
  63. theme_foundation <- ggplot2::theme_grey(base_size = base_size, base_family = base_family)
  64. theme_foundation %+replace%
  65. theme(
  66. plot.title = element_text(face = "bold", size = rel(1.2), hjust = 0.5),
  67. text = element_text(),
  68. panel.background = element_rect(colour = NA),
  69. plot.background = element_rect(colour = NA),
  70. panel.border = element_rect(colour = NA),
  71. axis.title = element_text(face = "bold", size = rel(1)),
  72. axis.title.y = element_text(angle = 90, vjust = 2),
  73. axis.title.x = element_text(vjust = -0.2),
  74. axis.line = element_line(colour = "black"),
  75. panel.grid.major = element_line(colour = "#f0f0f0"),
  76. panel.grid.minor = element_blank(),
  77. legend.key = element_rect(colour = NA),
  78. legend.position = legend_position,
  79. legend.direction = ifelse(legend_position == "right", "vertical", "horizontal"),
  80. plot.margin = unit(c(10, 5, 5, 5), "mm"),
  81. strip.background = element_rect(colour = "#f0f0f0", fill = "#f0f0f0"),
  82. strip.text = element_text(face = "bold")
  83. )
  84. }
  85. scale_fill_publication <- function(...) {
  86. discrete_scale("fill", "Publication", manual_pal(values = c(
  87. "#386cb0", "#fdb462", "#7fc97f", "#ef3b2c", "#662506",
  88. "#a6cee3", "#fb9a99", "#984ea3", "#ffff33"
  89. )), ...)
  90. }
  91. scale_colour_publication <- function(...) {
  92. discrete_scale("colour", "Publication", manual_pal(values = c(
  93. "#386cb0", "#fdb462", "#7fc97f", "#ef3b2c", "#662506",
  94. "#a6cee3", "#fb9a99", "#984ea3", "#ffff33"
  95. )), ...)
  96. }
  97. # Load the initial dataframe from the easy_results_file
  98. load_and_process_data <- function(easy_results_file, sd = 3) {
  99. df <- read.delim(easy_results_file, skip = 2, as.is = TRUE, row.names = 1, strip.white = TRUE)
  100. df <- df %>%
  101. filter(!(.[[1]] %in% c("", "Scan"))) %>%
  102. filter(!is.na(ORF) & ORF != "" & !Gene %in% c("BLANK", "Blank", "blank") & Drug != "BMH21") %>%
  103. # Rename columns
  104. rename(L = l, num = Num., AUC = AUC96, scan = Scan, last_bg = LstBackgrd, first_bg = X1stBackgrd) %>%
  105. mutate(
  106. across(c(Col, Row, num, L, K, r, scan, AUC, last_bg, first_bg), as.numeric),
  107. delta_bg = last_bg - first_bg,
  108. delta_bg_tolerance = mean(delta_bg, na.rm = TRUE) + (sd * sd(delta_bg, na.rm = TRUE)),
  109. NG = if_else(L == 0 & !is.na(L), 1, 0),
  110. DB = if_else(delta_bg >= delta_bg_tolerance, 1, 0),
  111. SM = 0,
  112. OrfRep = if_else(ORF == "YDL227C", "YDL227C", OrfRep), # should these be hardcoded?
  113. conc_num = as.numeric(gsub("[^0-9\\.]", "", Conc)),
  114. conc_num_factor = as.numeric(as.factor(conc_num)) - 1
  115. )
  116. return(df)
  117. }
  118. # Update Gene names using the SGD gene list
  119. update_gene_names <- function(df, sgd_gene_list) {
  120. # Load SGD gene list
  121. genes <- read.delim(file = sgd_gene_list,
  122. quote = "", header = FALSE,
  123. colClasses = c(rep("NULL", 3), rep("character", 2), rep("NULL", 11)))
  124. # Create a named vector for mapping ORF to GeneName
  125. gene_map <- setNames(genes$V5, genes$V4)
  126. # Vectorized match to find the GeneName from gene_map
  127. mapped_genes <- gene_map[df$ORF]
  128. # Replace NAs in mapped_genes with original Gene names (preserves existing Gene names if ORF is not found)
  129. updated_genes <- ifelse(is.na(mapped_genes) | df$OrfRep == "YDL227C", df$Gene, mapped_genes)
  130. # Ensure Gene is not left blank or incorrectly updated to "OCT1"
  131. df <- df %>%
  132. mutate(Gene = ifelse(updated_genes == "" | updated_genes == "OCT1", OrfRep, updated_genes))
  133. return(df)
  134. }
  135. # Calculate summary statistics for all variables
  136. calculate_summary_stats <- function(df, variables, group_vars = c("OrfRep", "conc_num", "conc_num_factor")) {
  137. # Summarize the variables within the grouped data
  138. summary_stats <- df %>%
  139. group_by(across(all_of(group_vars))) %>%
  140. summarise(
  141. N = sum(!is.na(L)),
  142. across(all_of(variables), list(
  143. mean = ~mean(., na.rm = TRUE),
  144. median = ~median(., na.rm = TRUE),
  145. max = ~ ifelse(all(is.na(.)), NA, max(., na.rm = TRUE)),
  146. min = ~ ifelse(all(is.na(.)), NA, min(., na.rm = TRUE)),
  147. sd = ~sd(., na.rm = TRUE),
  148. se = ~ ifelse(all(is.na(.)), NA, sd(., na.rm = TRUE) / sqrt(sum(!is.na(.)) - 1))
  149. ), .names = "{.fn}_{.col}")
  150. )
  151. print(summary_stats)
  152. # Prevent .x and .y suffix issues by renaming columns
  153. df_cleaned <- df %>%
  154. select(-any_of(setdiff(names(summary_stats), group_vars))) # Avoid duplicate columns in the final join
  155. # Join the stats back to the original dataframe
  156. df_with_stats <- left_join(df_cleaned, summary_stats, by = group_vars)
  157. return(list(summary_stats = summary_stats, df_with_stats = df_with_stats))
  158. }
  159. calculate_interaction_scores <- function(df, max_conc, variables, group_vars = c("OrfRep", "Gene", "num")) {
  160. # Calculate total concentration variables
  161. total_conc_num <- length(unique(df$conc_num))
  162. num_non_removed_concs <- total_conc_num - sum(df$DB, na.rm = TRUE) - 1
  163. # Pull the background means and standard deviations from zero concentration
  164. bg_means <- list(
  165. L = df %>% filter(conc_num_factor == 0) %>% pull(mean_L) %>% first(),
  166. K = df %>% filter(conc_num_factor == 0) %>% pull(mean_K) %>% first(),
  167. r = df %>% filter(conc_num_factor == 0) %>% pull(mean_r) %>% first(),
  168. AUC = df %>% filter(conc_num_factor == 0) %>% pull(mean_AUC) %>% first()
  169. )
  170. bg_sd <- list(
  171. L = df %>% filter(conc_num_factor == 0) %>% pull(sd_L) %>% first(),
  172. K = df %>% filter(conc_num_factor == 0) %>% pull(sd_K) %>% first(),
  173. r = df %>% filter(conc_num_factor == 0) %>% pull(sd_r) %>% first(),
  174. AUC = df %>% filter(conc_num_factor == 0) %>% pull(sd_AUC) %>% first()
  175. )
  176. calculations <- df %>%
  177. mutate(
  178. WT_L = df$mean_L,
  179. WT_K = df$mean_K,
  180. WT_r = df$mean_r,
  181. WT_AUC = df$mean_AUC,
  182. WT_sd_L = df$sd_L,
  183. WT_sd_K = df$sd_K,
  184. WT_sd_r = df$sd_r,
  185. WT_sd_AUC = df$sd_AUC
  186. ) %>%
  187. group_by(across(all_of(group_vars)), conc_num, conc_num_factor) %>%
  188. mutate(
  189. N = sum(!is.na(L)),
  190. NG = sum(NG, na.rm = TRUE),
  191. DB = sum(DB, na.rm = TRUE),
  192. SM = sum(SM, na.rm = TRUE),
  193. across(all_of(variables), list(
  194. mean = ~mean(., na.rm = TRUE),
  195. median = ~median(., na.rm = TRUE),
  196. max = ~max(., na.rm = TRUE),
  197. min = ~min(., na.rm = TRUE),
  198. sd = ~sd(., na.rm = TRUE),
  199. se = ~sd(., na.rm = TRUE) / sqrt(sum(!is.na(.)) - 1)
  200. ), .names = "{.fn}_{.col}")
  201. ) %>%
  202. ungroup()
  203. calculations <- calculations %>%
  204. group_by(across(all_of(group_vars))) %>%
  205. mutate(
  206. Raw_Shift_L = mean_L[[1]] - bg_means$L,
  207. Raw_Shift_K = mean_K[[1]] - bg_means$K,
  208. Raw_Shift_r = mean_r[[1]] - bg_means$r,
  209. Raw_Shift_AUC = mean_AUC[[1]] - bg_means$AUC,
  210. Z_Shift_L = Raw_Shift_L[[1]] / bg_sd$L,
  211. Z_Shift_K = Raw_Shift_K[[1]] / bg_sd$K,
  212. Z_Shift_r = Raw_Shift_r[[1]] / bg_sd$r,
  213. Z_Shift_AUC = Raw_Shift_AUC[[1]] / bg_sd$AUC
  214. )
  215. calculations <- calculations %>%
  216. mutate(
  217. Exp_L = WT_L + Raw_Shift_L,
  218. Delta_L = mean_L - Exp_L,
  219. Exp_K = WT_K + Raw_Shift_K,
  220. Delta_K = mean_K - Exp_K,
  221. Exp_r = WT_r + Raw_Shift_r,
  222. Delta_r = mean_r - Exp_r,
  223. Exp_AUC = WT_AUC + Raw_Shift_AUC,
  224. Delta_AUC = mean_AUC - Exp_AUC
  225. )
  226. calculations <- calculations %>%
  227. mutate(
  228. Delta_L = if_else(NG == 1, mean_L - WT_L, Delta_L),
  229. Delta_K = if_else(NG == 1, mean_K - WT_K, Delta_K),
  230. Delta_r = if_else(NG == 1, mean_r - WT_r, Delta_r),
  231. Delta_AUC = if_else(NG == 1, mean_AUC - WT_AUC, Delta_AUC),
  232. Delta_L = if_else(SM == 1, mean_L - WT_L, Delta_L)
  233. )
  234. interactions <- calculations %>%
  235. mutate(
  236. lm_L = lm(Delta_L ~ conc_num_factor),
  237. lm_K = lm(Delta_K ~ conc_num_factor),
  238. lm_r = lm(Delta_r ~ conc_num_factor),
  239. lm_AUC = lm(Delta_AUC ~ conc_num_factor),
  240. Zscore_L = Delta_L / WT_sd_L,
  241. Zscore_K = Delta_K / WT_sd_K,
  242. Zscore_r = Delta_r / WT_sd_r,
  243. Zscore_AUC = Delta_AUC / WT_sd_AUC
  244. )
  245. interactions <- interactions %>%
  246. mutate(
  247. lm_Score_L = max_conc * coef(lm_L)[2] + coef(lm_L)[1],
  248. lm_Score_K = max_conc * coef(lm_K)[2] + coef(lm_K)[1],
  249. lm_Score_r = max_conc * coef(lm_r)[2] + coef(lm_r)[1],
  250. lm_Score_AUC = max_conc * coef(lm_AUC)[2] + coef(lm_AUC)[1],
  251. r_squared_L = summary(lm_L)$r.squared,
  252. r_squared_K = summary(lm_K)$r.squared,
  253. r_squared_r = summary(lm_r)$r.squared,
  254. r_squared_AUC = summary(lm_AUC)$r.squared,
  255. Sum_Zscore_L = sum(Zscore_L, na.rm = TRUE),
  256. Sum_Zscore_K = sum(Zscore_K, na.rm = TRUE),
  257. Sum_Zscore_r = sum(Zscore_r, na.rm = TRUE),
  258. Sum_Zscore_AUC = sum(Zscore_AUC, na.rm = TRUE)
  259. )
  260. interactions <- interactions %>%
  261. mutate(
  262. Avg_Zscore_L = Sum_Zscore_L / num_non_removed_concs,
  263. Avg_Zscore_K = Sum_Zscore_K / num_non_removed_concs,
  264. Avg_Zscore_r = Sum_Zscore_r / (total_conc_num - 1),
  265. Avg_Zscore_AUC = Sum_Zscore_AUC / (total_conc_num - 1),
  266. Z_lm_L = (lm_Score_L - mean(lm_Score_L, na.rm = TRUE)) / sd(lm_Score_L, na.rm = TRUE),
  267. Z_lm_K = (lm_Score_K - mean(lm_Score_K, na.rm = TRUE)) / sd(lm_Score_K, na.rm = TRUE),
  268. Z_lm_r = (lm_Score_r - mean(lm_Score_r, na.rm = TRUE)) / sd(lm_Score_r, na.rm = TRUE),
  269. Z_lm_AUC = (lm_Score_AUC - mean(lm_Score_AUC, na.rm = TRUE)) / sd(lm_Score_AUC, na.rm = TRUE)
  270. )
  271. calculations <- calculations %>%
  272. select("OrfRep", "Gene", "num", "conc_num", "conc_num_factor",
  273. "mean_L", "mean_K", "mean_r", "mean_AUC",
  274. "median_L", "median_K", "median_r", "median_AUC",
  275. "sd_L", "sd_K", "sd_r", "sd_AUC",
  276. "se_L", "se_K", "se_r", "se_AUC",
  277. "Raw_Shift_L", "Raw_Shift_K", "Raw_Shift_r", "Raw_Shift_AUC",
  278. "Z_Shift_L", "Z_Shift_K", "Z_Shift_r", "Z_Shift_AUC",
  279. "WT_L", "WT_K", "WT_r", "WT_AUC", "WT_sd_L", "WT_sd_K", "WT_sd_r", "WT_sd_AUC",
  280. "Exp_L", "Exp_K", "Exp_r", "Exp_AUC", "Delta_L", "Delta_K", "Delta_r", "Delta_AUC",
  281. "Zscore_L", "Zscore_K", "Zscore_r", "Zscore_AUC",
  282. "NG", "SM", "DB") %>%
  283. ungroup()
  284. # Arrange results by Z_lm_L and NG
  285. interactions <- interactions %>%
  286. select("OrfRep", "Gene", "num", "Raw_Shift_L", "Raw_Shift_K", "Raw_Shift_AUC", "Raw_Shift_r",
  287. "Z_Shift_L", "Z_Shift_K", "Z_Shift_r", "Z_Shift_AUC",
  288. "lm_Score_L", "lm_Score_K", "lm_Score_AUC", "lm_Score_r",
  289. "R_Squared_L", "R_Squared_K", "R_Squared_r", "R_Squared_AUC",
  290. "Sum_Z_Score_L", "Sum_Z_Score_K", "Sum_Z_Score_r", "Sum_Z_Score_AUC",
  291. "Avg_Zscore_L", "Avg_Zscore_K", "Avg_Zscore_r", "Avg_Zscore_AUC",
  292. "Z_lm_L", "Z_lm_K", "Z_lm_r", "Z_lm_AUC",
  293. "NG", "SM", "DB") %>%
  294. arrange(desc(lm_Score_L)) %>%
  295. arrange(desc(NG)) %>%
  296. ungroup()
  297. return(list(calculations = calculations, interactions = interaction))
  298. }
  299. generate_and_save_plots <- function(output_dir, file_name, plot_configs, grid_layout = NULL) {
  300. message("Generating html and pdf plots for: ", file_name)
  301. plots <- lapply(plot_configs, function(config) {
  302. df <- config$df
  303. # Check if y_var is NULL and adjust the aes mapping
  304. aes_mapping <- if (is.null(config$y_var)) {
  305. aes(x = !!sym(config$x_var), color = as.factor(!!sym(config$color_var)))
  306. } else {
  307. aes(x = !!sym(config$x_var), y = !!sym(config$y_var), color = as.factor(!!sym(config$color_var)))
  308. }
  309. plot <- ggplot(df, aes_mapping)
  310. # Handle plot types like "rank", "correlation", and default scatter/box/density
  311. if (config$plot_type == "rank") {
  312. plot <- plot + geom_point(size = 0.1, shape = 3)
  313. if (!is.null(config$sd_band)) {
  314. for (i in seq_len(config$sd_band)) {
  315. plot <- plot +
  316. annotate("rect", xmin = -Inf, xmax = Inf, ymin = i, ymax = Inf, fill = "#542788", alpha = 0.3) +
  317. annotate("rect", xmin = -Inf, xmax = Inf, ymin = -i, ymax = -Inf, fill = "orange", alpha = 0.3) +
  318. geom_hline(yintercept = c(-i, i), color = "gray")
  319. }
  320. }
  321. if (!is.null(config$enhancer_label)) {
  322. plot <- plot + annotate("text", x = config$enhancer_label$x, y = config$enhancer_label$y,
  323. label = config$enhancer_label$label) +
  324. annotate("text", x = config$suppressor_label$x, y = config$suppressor_label$y, label = config$suppressor_label$label)
  325. }
  326. } else if (config$plot_type == "correlation") {
  327. plot <- plot + geom_point(shape = 3, color = "gray70") + geom_smooth(method = "lm", color = "tomato3") +
  328. annotate("text", x = 0, y = 0, label = config$correlation_text)
  329. } else {
  330. # Adjust based on plot types that may or may not need y_var
  331. if (config$plot_type == "box") {
  332. plot <- plot + geom_boxplot()
  333. } else if (config$plot_type == "density") {
  334. plot <- plot + geom_density()
  335. } else if (config$plot_type == "bar") {
  336. plot <- plot + geom_bar()
  337. } else {
  338. plot <- plot + geom_point(shape = 3) + geom_smooth(method = "lm", se = FALSE)
  339. }
  340. }
  341. # Add error bars for "delta_bg" or general cases
  342. if (!is.null(config$error_bar) && config$error_bar) {
  343. y_mean_col <- paste0("mean_", config$y_var)
  344. y_sd_col <- paste0("sd_", config$y_var)
  345. plot <- plot + geom_errorbar(aes(ymin = !!sym(y_mean_col) - !!sym(y_sd_col),
  346. ymax = !!sym(y_mean_col) + !!sym(y_sd_col)), width = 0.1) +
  347. geom_point(aes(y = !!sym(y_mean_col)), size = 0.6)
  348. }
  349. # Apply y-limits if provided
  350. if (!is.null(config$ylim_vals)) {
  351. plot <- plot + coord_cartesian(ylim = config$ylim_vals)
  352. }
  353. # Apply labels, titles, and legends
  354. plot <- plot + ggtitle(config$title) +
  355. theme_publication(legend_position = if (!is.null(config$legend_position)) config$legend_position else "bottom") +
  356. xlab(config$x_label %||% "") + ylab(config$y_label %||% "")
  357. # Add annotations if available
  358. if (!is.null(config$annotations)) {
  359. plot <- plot + geom_text(aes(x = config$annotations$x, y = config$annotations$y, label = config$annotations$label))
  360. }
  361. return(plot)
  362. })
  363. # Save the plots
  364. pdf(file.path(output_dir, paste0(file_name, ".pdf")), width = 14, height = 9)
  365. lapply(plots, print)
  366. dev.off()
  367. plotly_plots <- lapply(plots, function(plot) suppressWarnings(ggplotly(plot) %>% layout(legend = list(orientation = "h"))))
  368. # Handle grid layout
  369. combined_plot <- subplot(plotly_plots, nrows = if (!is.null(grid_layout)) grid_layout$nrow else length(plots), margin = 0.05)
  370. saveWidget(combined_plot, file = file.path(output_dir, paste0(file_name, ".html")), selfcontained = TRUE)
  371. }
  372. generate_interaction_plot_configs <- function(df, variables) {
  373. configs <- list()
  374. for (variable in variables) {
  375. # Define the y-limits based on the variable being plotted
  376. ylim_vals <- switch(variable,
  377. "L" = c(-65, 65),
  378. "K" = c(-65, 65),
  379. "r" = c(-0.65, 0.65),
  380. "AUC" = c(-6500, 6500)
  381. )
  382. # Dynamically generate the column names for standard deviation and delta
  383. wt_sd_col <- paste0("WT_sd_", variable)
  384. delta_var <- paste0("Delta_", variable)
  385. z_shift <- paste0("Z_Shift_", variable)
  386. z_lm <- paste0("Z_lm_", variable)
  387. # Set annotations for ZShift, Z lm Score, NG, DB, SM
  388. annotations <- list(
  389. list(x = 1, y = ifelse(variable == "L", 45, ifelse(variable == "K", 45,
  390. ifelse(variable == "r", 0.45, 4500))), label = paste("ZShift =", round(df[[z_shift]], 2))),
  391. list(x = 1, y = ifelse(variable == "L", 25, ifelse(variable == "K", 25,
  392. ifelse(variable == "r", 0.25, 2500))), label = paste("lm ZScore =", round(df[[z_lm]], 2))),
  393. list(x = 1, y = ifelse(variable == "L", -25, ifelse(variable == "K", -25,
  394. ifelse(variable == "r", -0.25, -2500))), label = paste("NG =", df$NG)),
  395. list(x = 1, y = ifelse(variable == "L", -35, ifelse(variable == "K", -35,
  396. ifelse(variable == "r", -0.35, -3500))), label = paste("DB =", df$DB)),
  397. list(x = 1, y = ifelse(variable == "L", -45, ifelse(variable == "K", -45,
  398. ifelse(variable == "r", -0.45, -4500))), label = paste("SM =", df$SM))
  399. )
  400. # Add scatter plot configuration for this variable
  401. configs[[length(configs) + 1]] <- list(
  402. df = df,
  403. x_var = "conc_num_factor",
  404. y_var = delta_var,
  405. plot_type = "scatter",
  406. title = sprintf("%s %s", df$OrfRep[1], df$Gene[1]),
  407. ylim_vals = ylim_vals,
  408. annotations = annotations,
  409. error_bar = list(
  410. ymin = 0 - (2 * df[[wt_sd_col]][1]),
  411. ymax = 0 + (2 * df[[wt_sd_col]][1])
  412. ),
  413. x_breaks = unique(df$conc_num_factor),
  414. x_labels = unique(as.character(df$conc_num)),
  415. x_label = unique(df$Drug[1])
  416. )
  417. # Add box plot configuration for this variable
  418. configs[[length(configs) + 1]] <- list(
  419. df = df,
  420. x_var = "conc_num_factor",
  421. y_var = variable,
  422. plot_type = "box",
  423. title = sprintf("%s %s (Boxplot)", df$OrfRep[1], df$Gene[1]),
  424. ylim_vals = ylim_vals,
  425. annotations = annotations,
  426. error_bar = FALSE, # Boxplots typically don't need error bars
  427. x_breaks = unique(df$conc_num_factor),
  428. x_labels = unique(as.character(df$conc_num)),
  429. x_label = unique(df$Drug[1])
  430. )
  431. }
  432. return(configs)
  433. }
  434. # Adjust missing values and calculate ranks
  435. adjust_missing_and_rank <- function(df, variables) {
  436. # Adjust missing values in Avg_Zscore and Z_lm columns, and apply rank to the specified variables
  437. df <- df %>%
  438. mutate(across(all_of(variables), list(
  439. Avg_Zscore = ~ if_else(is.na(get(paste0("Avg_Zscore_", cur_column()))), 0.001, get(paste0("Avg_Zscore_", cur_column()))),
  440. Z_lm = ~ if_else(is.na(get(paste0("Z_lm_", cur_column()))), 0.001, get(paste0("Z_lm_", cur_column()))),
  441. Rank = ~ rank(get(paste0("Avg_Zscore_", cur_column()))),
  442. Rank_lm = ~ rank(get(paste0("Z_lm_", cur_column())))
  443. ), .names = "{fn}_{col}"))
  444. return(df)
  445. }
  446. generate_rank_plot_configs <- function(df, rank_var, zscore_var, var, is_lm = FALSE) {
  447. configs <- list()
  448. # Adjust titles for _lm plots if is_lm is TRUE
  449. plot_title_prefix <- if (is_lm) "Interaction Z score vs. Rank for" else "Average Z score vs. Rank for"
  450. # Annotated version (with text)
  451. for (sd_band in c(1, 2, 3)) {
  452. configs[[length(configs) + 1]] <- list(
  453. df = df,
  454. x_var = rank_var,
  455. y_var = zscore_var,
  456. plot_type = "rank",
  457. title = paste(plot_title_prefix, var, "above", sd_band, "SD"),
  458. sd_band = sd_band,
  459. enhancer_label = list(
  460. x = nrow(df) / 2, y = 10,
  461. label = paste("Deletion Enhancers =", nrow(df[df[[zscore_var]] >= sd_band, ]))
  462. ),
  463. suppressor_label = list(
  464. x = nrow(df) / 2, y = -10,
  465. label = paste("Deletion Suppressors =", nrow(df[df[[zscore_var]] <= -sd_band, ]))
  466. )
  467. )
  468. return(configs)
  469. }
  470. # Non-annotated version (_notext)
  471. for (sd_band in c(1, 2, 3)) {
  472. configs[[length(configs) + 1]] <- list(
  473. df = df,
  474. x_var = rank_var,
  475. y_var = zscore_var,
  476. plot_type = "rank",
  477. title = paste(plot_title_prefix, var, "above", sd_band, "SD"),
  478. sd_band = sd_band,
  479. enhancer_label = NULL, # No annotations for _notext
  480. suppressor_label = NULL # No annotations for _notext
  481. )
  482. }
  483. return(configs)
  484. }
  485. generate_correlation_plot_configs <- function(df, variables) {
  486. configs <- list()
  487. for (variable in variables) {
  488. z_lm_var <- paste0("Z_lm_", variable)
  489. avg_zscore_var <- paste0("Avg_Zscore_", variable)
  490. lm_r_squared_col <- paste0("lm_R_squared_", variable)
  491. configs[[length(configs) + 1]] <- list(
  492. df = df,
  493. x_var = avg_zscore_var,
  494. y_var = z_lm_var,
  495. plot_type = "correlation",
  496. title = paste("Avg Zscore vs lm", variable),
  497. color_var = "Overlap",
  498. correlation_text = paste("R-squared =", round(df[[lm_r_squared_col]][1], 2)),
  499. legend_position = "right"
  500. )
  501. }
  502. return(configs)
  503. }
  504. main <- function() {
  505. lapply(names(args$experiments), function(exp_name) {
  506. exp <- args$experiments[[exp_name]]
  507. exp_path <- exp$path
  508. exp_sd <- exp$sd
  509. out_dir <- file.path(exp_path, "zscores")
  510. out_dir_qc <- file.path(exp_path, "zscores", "qc")
  511. dir.create(out_dir, recursive = TRUE, showWarnings = FALSE)
  512. dir.create(out_dir_qc, recursive = TRUE, showWarnings = FALSE)
  513. summary_vars <- c("L", "K", "r", "AUC", "delta_bg") # fields to filter and calculate summary stats across
  514. group_vars <- c("OrfRep", "conc_num", "conc_num_factor") # default fields to group by
  515. print_vars <- c("OrfRep", "Plate", "scan", "Col", "Row", "num", "OrfRep", "conc_num", "conc_num_factor",
  516. "delta_bg_tolerance", "delta_bg", "Gene", "L", "K", "r", "AUC", "NG", "DB")
  517. message("Loading and filtering data")
  518. df <- load_and_process_data(args$easy_results_file, sd = exp_sd)
  519. df <- update_gene_names(df, args$sgd_gene_list)
  520. df <- as_tibble(df)
  521. # Filter rows that are above tolerance for quality control plots
  522. df_above_tolerance <- df %>% filter(DB == 1)
  523. # Set L, r, K, AUC (and delta_bg?) to NA for rows that are above tolerance
  524. df_na <- df %>% mutate(across(all_of(summary_vars), ~ ifelse(DB == 1, NA, .)))
  525. # Remove rows with 0 values in L
  526. df_no_zeros <- df_na %>% filter(L > 0)
  527. # Set some constants
  528. max_conc <- max(df$conc_num_factor)
  529. l_half_median <- (median(df_above_tolerance$L, na.rm = TRUE)) / 2
  530. k_half_median <- (median(df_above_tolerance$K, na.rm = TRUE)) / 2
  531. message("Calculating summary statistics before quality control")
  532. ss <- calculate_summary_stats(df, summary_vars, group_vars = group_vars)
  533. df_ss <- ss$summary_stats
  534. df_stats <- ss$df_with_stats
  535. df_filtered_stats <- df_stats %>%
  536. {
  537. non_finite_rows <- filter(., if_any(c(L), ~ !is.finite(.)))
  538. if (nrow(non_finite_rows) > 0) {
  539. message("Removed the following non-finite rows:")
  540. print(non_finite_rows %>% select(any_of(print_vars)), n = 200)
  541. }
  542. filter(., if_all(c(L), is.finite))
  543. }
  544. message("Calculating summary statistics after quality control")
  545. ss <- calculate_summary_stats(df_na, summary_vars, group_vars = group_vars)
  546. df_na_ss <- ss$summary_stats
  547. df_na_stats <- ss$df_with_stats
  548. write.csv(df_na_ss, file = file.path(out_dir, "summary_stats_all_strains.csv"), row.names = FALSE)
  549. # Filter out non-finite rows for plotting
  550. df_na_filtered_stats <- df_na_stats %>%
  551. {
  552. non_finite_rows <- filter(., if_any(c(L), ~ !is.finite(.)))
  553. if (nrow(non_finite_rows) > 0) {
  554. message("Removed the following non-finite rows:")
  555. print(non_finite_rows %>% select(any_of(print_vars)), n = 200)
  556. }
  557. filter(., if_all(c(L), is.finite))
  558. }
  559. message("Calculating summary statistics after quality control excluding zero values")
  560. ss <- calculate_summary_stats(df_no_zeros, summary_vars, group_vars = group_vars)
  561. df_no_zeros_stats <- ss$df_with_stats
  562. df_no_zeros_filtered_stats <- df_no_zeros_stats %>%
  563. {
  564. non_finite_rows <- filter(., if_any(c(L), ~ !is.finite(.)))
  565. if (nrow(non_finite_rows) > 0) {
  566. message("Removed the following non-finite rows:")
  567. print(non_finite_rows %>% select(any_of(print_vars)), n = 200)
  568. }
  569. filter(., if_all(c(L), is.finite))
  570. }
  571. message("Filtering by 2SD of K")
  572. df_na_within_2sd_k <- df_na_stats %>%
  573. filter(K >= (mean_K - 2 * sd_K) & K <= (mean_K + 2 * sd_K))
  574. df_na_outside_2sd_k <- df_na_stats %>%
  575. filter(K < (mean_K - 2 * sd_K) | K > (mean_K + 2 * sd_K))
  576. message("Calculating summary statistics for L within 2SD of K")
  577. # TODO We're omitting the original z_max calculation, not sure if needed?
  578. ss <- calculate_summary_stats(df_na_within_2sd_k, "L", group_vars = c("conc_num", "conc_num_factor"))
  579. l_within_2sd_k_ss <- ss$summary_stats
  580. df_na_l_within_2sd_k_stats <- ss$df_with_stats
  581. write.csv(l_within_2sd_k_ss,
  582. file = file.path(out_dir_qc, "max_observed_L_vals_for_spots_within_2sd_K.csv"), row.names = FALSE)
  583. message("Calculating summary statistics for L outside 2SD of K")
  584. ss <- calculate_summary_stats(df_na_outside_2sd_k, "L", group_vars = c("conc_num", "conc_num_factor"))
  585. l_outside_2sd_k_ss <- ss$summary_stats
  586. df_na_l_outside_2sd_k_stats <- ss$df_with_stats
  587. write.csv(l_outside_2sd_k_ss,
  588. file = file.path(out_dir, "max_observed_L_vals_for_spots_outside_2sd_K.csv"), row.names = FALSE)
  589. # Each plots list corresponds to a file
  590. message("Generating QC plot configurations")
  591. l_vs_k_plots <- list(
  592. list(
  593. df = df,
  594. x_var = "L",
  595. y_var = "K",
  596. plot_type = "scatter",
  597. title = "Raw L vs K before quality control",
  598. color_var = "conc_num",
  599. legend_position = "right"
  600. )
  601. )
  602. above_threshold_plots <- list(
  603. list(
  604. df = df_above_tolerance,
  605. x_var = "L",
  606. y_var = "K",
  607. plot_type = "scatter",
  608. title = paste("Raw L vs K for strains above delta background threshold of",
  609. df_above_tolerance$delta_bg_tolerance[[1]], "or above"),
  610. color_var = "conc_num",
  611. annotations = list(
  612. x = l_half_median,
  613. y = k_half_median,
  614. label = paste("Strains above delta background tolerance =", nrow(df_above_tolerance))
  615. ),
  616. error_bar = FALSE,
  617. legend_position = "right"
  618. )
  619. )
  620. frequency_delta_bg_plots <- list(
  621. list(df = df_filtered_stats, x_var = "delta_bg", y_var = NULL, plot_type = "density",
  622. title = "Plate analysis by Drug Conc for delta background before quality control",
  623. color_var = "conc_num",
  624. x_label = "Delta Background",
  625. y_label = "Density",
  626. error_bar = FALSE,
  627. legend_position = "right"),
  628. list(df = df_filtered_stats, x_var = "delta_bg", y_var = NULL, plot_type = "bar",
  629. title = "Plate analysis by Drug Conc for delta background before quality control",
  630. color_var = "conc_num",
  631. x_label = "Delta Background",
  632. y_label = "Count",
  633. error_bar = FALSE,
  634. legend_position = "right")
  635. )
  636. plate_analysis_plots <- list()
  637. for (var in summary_vars) {
  638. for (stage in c("before", "after")) {
  639. if (stage == "before") {
  640. df_plot <- df_filtered_stats
  641. } else {
  642. df_plot <- df_na_filtered_stats
  643. }
  644. config <- list(
  645. df = df_plot,
  646. x_var = "scan",
  647. y_var = var,
  648. plot_type = "scatter",
  649. title = paste("Plate analysis by Drug Conc for", var, stage, "quality control"),
  650. error_bar = TRUE, color_var = "conc_num")
  651. plate_analysis_plots <- append(plate_analysis_plots, list(config))
  652. }
  653. }
  654. plate_analysis_boxplots <- list()
  655. for (var in summary_vars) {
  656. for (stage in c("before", "after")) {
  657. if (stage == "before") {
  658. df_plot <- df_filtered_stats
  659. } else {
  660. df_plot <- df_na_filtered_stats
  661. }
  662. config <- list(
  663. df = df_plot,
  664. x_var = "scan",
  665. y_var = var,
  666. plot_type = "box",
  667. title = paste("Plate analysis by Drug Conc for", var, stage, "quality control"),
  668. error_bar = FALSE, color_var = "conc_num")
  669. plate_analysis_boxplots <- append(plate_analysis_boxplots, list(config))
  670. }
  671. }
  672. plate_analysis_no_zeros_plots <- list()
  673. for (var in summary_vars) {
  674. config <- list(
  675. df = df_no_zeros_filtered_stats,
  676. x_var = "scan",
  677. y_var = var,
  678. plot_type = "scatter",
  679. title = paste("Plate analysis by Drug Conc for", var, "after quality control"),
  680. error_bar = TRUE,
  681. color_var = "conc_num")
  682. plate_analysis_no_zeros_plots <- append(plate_analysis_no_zeros_plots, list(config))
  683. }
  684. plate_analysis_no_zeros_boxplots <- list()
  685. for (var in summary_vars) {
  686. # Create the plot configuration
  687. config <- list(
  688. df = df_no_zeros_filtered_stats,
  689. x_var = "scan",
  690. y_var = var,
  691. plot_type = "box",
  692. title = paste("Plate analysis by Drug Conc for", var, "after quality control"),
  693. error_bar = FALSE,
  694. color_var = "conc_num"
  695. )
  696. plate_analysis_no_zeros_boxplots <- append(plate_analysis_no_zeros_boxplots, list(config))
  697. }
  698. l_outside_2sd_k_plots <- list(
  699. list(
  700. df = df_na_l_outside_2sd_k_stats,
  701. x_var = "L",
  702. y_var = "K",
  703. plot_type = "scatter",
  704. title = "Raw L vs K for strains falling outside 2SD of the K mean at each Conc",
  705. color_var = "conc_num",
  706. legend_position = "right"
  707. )
  708. )
  709. delta_bg_outside_2sd_k_plots <- list(
  710. list(
  711. df = df_na_l_outside_2sd_k_stats,
  712. x_var = "delta_bg",
  713. y_var = "K",
  714. plot_type = "scatter",
  715. title = "Delta Background vs K for strains falling outside 2SD of the K mean at each Conc",
  716. color_var = "conc_num",
  717. legend_position = "right"
  718. )
  719. )
  720. message("Generating QC plots")
  721. generate_and_save_plots(out_dir_qc, "L_vs_K_before_quality_control", l_vs_k_plots)
  722. generate_and_save_plots(out_dir_qc, "L_vs_K_above_threshold", above_threshold_plots)
  723. generate_and_save_plots(out_dir_qc, "frequency_delta_background", frequency_delta_bg_plots)
  724. generate_and_save_plots(out_dir_qc, "plate_analysis", plate_analysis_plots)
  725. generate_and_save_plots(out_dir_qc, "plate_analysis_boxplots", plate_analysis_boxplots)
  726. generate_and_save_plots(out_dir_qc, "plate_analysis_no_zeros", plate_analysis_no_zeros_plots)
  727. generate_and_save_plots(out_dir_qc, "plate_analysis_no_zeros_boxplots", plate_analysis_no_zeros_boxplots)
  728. generate_and_save_plots(out_dir_qc, "L_vs_K_for_strains_2SD_outside_mean_K", l_outside_2sd_k_plots)
  729. generate_and_save_plots(out_dir_qc, "delta_background_vs_K_for_strains_2sd_outside_mean_K", delta_bg_outside_2sd_k_plots)
  730. # Clean up
  731. rm(df, df_above_tolerance, df_no_zeros)
  732. # TODO: Originally this filtered L NA's
  733. # Let's try to avoid for now since stats have already been calculated
  734. # Process background strains
  735. bg_strains <- c("YDL227C")
  736. lapply(bg_strains, function(strain) {
  737. message("Processing background strain: ", strain)
  738. # Handle missing data by setting zero values to NA
  739. # and then removing any rows with NA in L col
  740. df_bg <- df_na %>%
  741. filter(OrfRep == strain) %>%
  742. mutate(
  743. L = if_else(L == 0, NA, L),
  744. K = if_else(K == 0, NA, K),
  745. r = if_else(r == 0, NA, r),
  746. AUC = if_else(AUC == 0, NA, AUC)
  747. ) %>%
  748. filter(!is.na(L))
  749. # Recalculate summary statistics for the background strain
  750. message("Calculating summary statistics for background strain")
  751. ss_bg <- calculate_summary_stats(df_bg, summary_vars, group_vars = group_vars)
  752. summary_stats_bg <- ss_bg$summary_stats
  753. # df_bg_stats <- ss_bg$df_with_stats
  754. write.csv(summary_stats_bg,
  755. file = file.path(out_dir, paste0("SummaryStats_BackgroundStrains_", strain, ".csv")),
  756. row.names = FALSE)
  757. # Filter reference and deletion strains
  758. # Formerly X2_RF (reference strains)
  759. df_reference <- df_na_stats %>%
  760. filter(OrfRep == strain) %>%
  761. mutate(SM = 0)
  762. # Formerly X2 (deletion strains)
  763. df_deletion <- df_na_stats %>%
  764. filter(OrfRep != strain) %>%
  765. mutate(SM = 0)
  766. # Set the missing values to the highest theoretical value at each drug conc for L
  767. # Leave other values as 0 for the max/min
  768. reference_strain <- df_reference %>%
  769. group_by(conc_num) %>%
  770. mutate(
  771. max_l_theoretical = max(max_L, na.rm = TRUE),
  772. L = ifelse(L == 0 & !is.na(L) & conc_num > 0, max_l_theoretical, L),
  773. SM = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, 1, SM),
  774. L = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, max_l_theoretical, L)) %>%
  775. ungroup()
  776. # Ditto for deletion strains
  777. deletion_strains <- df_deletion %>%
  778. group_by(conc_num) %>%
  779. mutate(
  780. max_l_theoretical = max(max_L, na.rm = TRUE),
  781. L = ifelse(L == 0 & !is.na(L) & conc_num > 0, max_l_theoretical, L),
  782. SM = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, 1, SM),
  783. L = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, max_l_theoretical, L)) %>%
  784. ungroup()
  785. # Calculate interactions
  786. interaction_vars <- c("L", "K", "r", "AUC")
  787. message("Calculating interaction scores")
  788. # print("Reference strain:")
  789. # print(head(reference_strain))
  790. reference_results <- calculate_interaction_scores(reference_strain, max_conc, interaction_vars)
  791. # print("Deletion strains:")
  792. # print(head(deletion_strains))
  793. deletion_results <- calculate_interaction_scores(deletion_strains, max_conc, interaction_vars)
  794. zscores_calculations_reference <- reference_results$calculations
  795. zscores_interactions_reference <- reference_results$interactions
  796. zscores_calculations <- deletion_results$calculations
  797. zscores_interactions <- deletion_results$interactions
  798. # Writing Z-Scores to file
  799. write.csv(zscores_calculations_reference, file = file.path(out_dir, "RF_ZScores_Calculations.csv"), row.names = FALSE)
  800. write.csv(zscores_calculations, file = file.path(out_dir, "ZScores_Calculations.csv"), row.names = FALSE)
  801. write.csv(zscores_interactions_reference, file = file.path(out_dir, "RF_ZScores_Interaction.csv"), row.names = FALSE)
  802. write.csv(zscores_interactions, file = file.path(out_dir, "ZScores_Interaction.csv"), row.names = FALSE)
  803. # Create interaction plots
  804. reference_plot_configs <- generate_interaction_plot_configs(df_reference, interaction_vars)
  805. deletion_plot_configs <- generate_interaction_plot_configs(df_deletion, interaction_vars)
  806. generate_and_save_plots(out_dir, "RF_interactionPlots", reference_plot_configs, grid_layout = list(ncol = 4, nrow = 3))
  807. generate_and_save_plots(out_dir, "InteractionPlots", deletion_plot_configs, grid_layout = list(ncol = 4, nrow = 3))
  808. # Define conditions for enhancers and suppressors
  809. # TODO Add to study config file?
  810. threshold <- 2
  811. enhancer_condition_L <- zscores_interactions$Avg_Zscore_L >= threshold
  812. suppressor_condition_L <- zscores_interactions$Avg_Zscore_L <= -threshold
  813. enhancer_condition_K <- zscores_interactions$Avg_Zscore_K >= threshold
  814. suppressor_condition_K <- zscores_interactions$Avg_Zscore_K <= -threshold
  815. # Subset data
  816. enhancers_L <- zscores_interactions[enhancer_condition_L, ]
  817. suppressors_L <- zscores_interactions[suppressor_condition_L, ]
  818. enhancers_K <- zscores_interactions[enhancer_condition_K, ]
  819. suppressors_K <- zscores_interactions[suppressor_condition_K, ]
  820. # Save enhancers and suppressors
  821. message("Writing enhancer/suppressor csv files")
  822. write.csv(enhancers_L, file = file.path(out_dir, "ZScores_Interaction_Deletion_Enhancers_L.csv"), row.names = FALSE)
  823. write.csv(suppressors_L, file = file.path(out_dir, "ZScores_Interaction_Deletion_Suppressors_L.csv"), row.names = FALSE)
  824. write.csv(enhancers_K, file = file.path(out_dir, "ZScores_Interaction_Deletion_Enhancers_K.csv"), row.names = FALSE)
  825. write.csv(suppressors_K, file = file.path(out_dir, "ZScores_Interaction_Deletion_Suppressors_K.csv"), row.names = FALSE)
  826. # Combine conditions for enhancers and suppressors
  827. enhancers_and_suppressors_L <- zscores_interactions[enhancer_condition_L | suppressor_condition_L, ]
  828. enhancers_and_suppressors_K <- zscores_interactions[enhancer_condition_K | suppressor_condition_K, ]
  829. # Save combined enhancers and suppressors
  830. write.csv(enhancers_and_suppressors_L,
  831. file = file.path(out_dir, "ZScores_Interaction_Deletion_Enhancers_and_Suppressors_L.csv"), row.names = FALSE)
  832. write.csv(enhancers_and_suppressors_K,
  833. file = file.path(out_dir, "ZScores_Interaction_Deletion_Enhancers_and_Suppressors_K.csv"), row.names = FALSE)
  834. # Handle linear model based enhancers and suppressors
  835. lm_threshold <- 2
  836. enhancers_lm_L <- zscores_interactions[zscores_interactions$Z_lm_L >= lm_threshold, ]
  837. suppressors_lm_L <- zscores_interactions[zscores_interactions$Z_lm_L <= -lm_threshold, ]
  838. enhancers_lm_K <- zscores_interactions[zscores_interactions$Z_lm_K >= lm_threshold, ]
  839. suppressors_lm_K <- zscores_interactions[zscores_interactions$Z_lm_K <= -lm_threshold, ]
  840. # Save linear model based enhancers and suppressors
  841. message("Writing linear model enhancer/suppressor csv files")
  842. write.csv(enhancers_lm_L,
  843. file = file.path(out_dir, "ZScores_Interaction_Deletion_Enhancers_L_lm.csv"), row.names = FALSE)
  844. write.csv(suppressors_lm_L,
  845. file = file.path(out_dir, "ZScores_Interaction_Deletion_Suppressors_L_lm.csv"), row.names = FALSE)
  846. write.csv(enhancers_lm_K,
  847. file = file.path(out_dir, "ZScores_Interaction_Deletion_Enhancers_K_lm.csv"), row.names = FALSE)
  848. write.csv(suppressors_lm_K,
  849. file = file.path(out_dir, "ZScores_Interaction_Deletion_Suppressors_K_lm.csv"), row.names = FALSE)
  850. # TODO needs explanation
  851. zscores_interactions_adjusted <- adjust_missing_and_rank(zscores_interactions)
  852. rank_plot_configs <- c(
  853. generate_rank_plot_configs(zscores_interactions_adjusted, "Rank_L", "Avg_Zscore_L", "L"),
  854. generate_rank_plot_configs(zscores_interactions_adjusted, "Rank_K", "Avg_Zscore_K", "K")
  855. )
  856. generate_and_save_plots(output_dir = out_dir, file_name = "RankPlots",
  857. plot_configs = rank_plot_configs, grid_layout = list(ncol = 3, nrow = 2))
  858. rank_lm_plot_config <- c(
  859. generate_rank_plot_configs(zscores_interactions_adjusted, "Rank_lm_L", "Z_lm_L", "L", is_lm = TRUE),
  860. generate_rank_plot_configs(zscores_interactions_adjusted, "Rank_lm_K", "Z_lm_K", "K", is_lm = TRUE)
  861. )
  862. generate_and_save_plots(output_dir = out_dir, file_name = "RankPlots_lm",
  863. plot_configs = rank_lm_plot_config, grid_layout = list(ncol = 3, nrow = 2))
  864. # Formerly X_NArm
  865. zscores_interactions_filtered <- zscores_interactions %>%
  866. group_by(across(all_of(group_vars))) %>%
  867. filter(!is.na(Z_lm_L) | !is.na(Avg_Zscore_L))
  868. # Final filtered correaltion calculations and plots
  869. zscores_interactions_filtered <- zscores_interactions_filtered %>%
  870. mutate(
  871. Overlap = case_when(
  872. Z_lm_L >= 2 & Avg_Zscore_L >= 2 ~ "Deletion Enhancer Both",
  873. Z_lm_L <= -2 & Avg_Zscore_L <= -2 ~ "Deletion Suppressor Both",
  874. Z_lm_L >= 2 & Avg_Zscore_L <= 2 ~ "Deletion Enhancer lm only",
  875. Z_lm_L <= -2 & Avg_Zscore_L >= -2 ~ "Deletion Suppressor lm only",
  876. Z_lm_L >= 2 & Avg_Zscore_L <= -2 ~ "Deletion Enhancer lm, Deletion Suppressor Avg Z score",
  877. Z_lm_L <= -2 & Avg_Zscore_L >= 2 ~ "Deletion Suppressor lm, Deletion Enhancer Avg Z score",
  878. TRUE ~ "No Effect"
  879. ),
  880. lm_R_squared_L = summary(lm(Z_lm_L ~ Avg_Zscore_L))$r.squared,
  881. lm_R_squared_K = summary(lm(Z_lm_K ~ Avg_Zscore_K))$r.squared,
  882. lm_R_squared_r = summary(lm(Z_lm_r ~ Avg_Zscore_r))$r.squared,
  883. lm_R_squared_AUC = summary(lm(Z_lm_AUC ~ Avg_Zscore_AUC))$r.squared
  884. ) %>%
  885. ungroup()
  886. rank_plot_configs <- c(
  887. generate_rank_plot_configs(zscores_interactions_filtered, "Rank_L", "Avg_Zscore_L", "L"),
  888. generate_rank_plot_configs(zscores_interactions_filtered, "Rank_K", "Avg_Zscore_K", "K")
  889. )
  890. generate_and_save_plots(output_dir = out_dir, file_name = "RankPlots",
  891. plot_configs = rank_plot_configs, grid_layout = list(ncol = 3, nrow = 2))
  892. rank_lm_plot_configs <- c(
  893. generate_rank_plot_configs(zscores_interactions_filtered, "Rank_lm_L", "Z_lm_L", "L", is_lm = TRUE),
  894. generate_rank_plot_configs(zscores_interactions_filtered, "Rank_lm_K", "Z_lm_K", "K", is_lm = TRUE)
  895. )
  896. generate_and_save_plots(output_dir = out_dir, file_name = "RankPlots_lm",
  897. plot_configs = rank_lm_plot_configs, grid_layout = list(ncol = 3, nrow = 2))
  898. correlation_plot_configs <- generate_correlation_plot_configs(zscores_interactions_filtered, interaction_vars)
  899. generate_and_save_plots(output_dir = out_dir, file_name = "Avg_Zscore_vs_lm_NA_rm",
  900. plot_configs = correlation_plot_configs, grid_layout = list(ncol = 2, nrow = 2))
  901. })
  902. })
  903. }
  904. main()