calculate_interaction_zscores.R 47 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198
  1. suppressMessages({
  2. library(ggplot2)
  3. library(plotly)
  4. library(htmlwidgets)
  5. library(dplyr)
  6. library(ggthemes)
  7. library(data.table)
  8. library(unix)
  9. })
  10. options(warn = 2)
  11. options(width = 10000)
  12. # Set the memory limit to 30GB (30 * 1024 * 1024 * 1024 bytes)
  13. soft_limit <- 30 * 1024 * 1024 * 1024
  14. hard_limit <- 30 * 1024 * 1024 * 1024
  15. rlimit_as(soft_limit, hard_limit)
  16. # Constants for configuration
  17. plot_width <- 14
  18. plot_height <- 9
  19. base_size <- 14
  20. parse_arguments <- function() {
  21. args <- if (interactive()) {
  22. c(
  23. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/20240116_jhartman2_DoxoHLD",
  24. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/apps/r/SGD_features.tab",
  25. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/easy/20240116_jhartman2_DoxoHLD/results_std.txt",
  26. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/20240822_jhartman2_DoxoHLD/exp1",
  27. "Experiment 1: Doxo versus HLD",
  28. 3,
  29. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/20240822_jhartman2_DoxoHLD/exp2",
  30. "Experiment 2: HLD versus Doxo",
  31. 3
  32. )
  33. } else {
  34. commandArgs(trailingOnly = TRUE)
  35. }
  36. # Extract paths, names, and standard deviations
  37. paths <- args[seq(4, length(args), by = 3)]
  38. names <- args[seq(5, length(args), by = 3)]
  39. sds <- as.numeric(args[seq(6, length(args), by = 3)])
  40. # Normalize paths
  41. normalized_paths <- normalizePath(paths, mustWork = FALSE)
  42. # Create named list of experiments
  43. experiments <- list()
  44. for (i in seq_along(paths)) {
  45. experiments[[names[i]]] <- list(
  46. path = normalized_paths[i],
  47. sd = sds[i]
  48. )
  49. }
  50. list(
  51. out_dir = normalizePath(args[1], mustWork = FALSE),
  52. sgd_gene_list = normalizePath(args[2], mustWork = FALSE),
  53. easy_results_file = normalizePath(args[3], mustWork = FALSE),
  54. experiments = experiments
  55. )
  56. }
  57. args <- parse_arguments()
  58. # Should we keep output in exp dirs or combine in the study output dir?
  59. # dir.create(file.path(args$out_dir, "zscores"), showWarnings = FALSE)
  60. # dir.create(file.path(args$out_dir, "zscores", "qc"), showWarnings = FALSE)
  61. # Define themes and scales
  62. theme_publication <- function(base_size = 14, base_family = "sans", legend_position = "bottom") {
  63. theme_foundation <- ggplot2::theme_grey(base_size = base_size, base_family = base_family)
  64. theme_foundation %+replace%
  65. theme(
  66. plot.title = element_text(face = "bold", size = rel(1.2), hjust = 0.5),
  67. text = element_text(),
  68. panel.background = element_rect(colour = NA),
  69. plot.background = element_rect(colour = NA),
  70. panel.border = element_rect(colour = NA),
  71. axis.title = element_text(face = "bold", size = rel(1)),
  72. axis.title.y = element_text(angle = 90, vjust = 2),
  73. axis.title.x = element_text(vjust = -0.2),
  74. axis.line = element_line(colour = "black"),
  75. panel.grid.major = element_line(colour = "#f0f0f0"),
  76. panel.grid.minor = element_blank(),
  77. legend.key = element_rect(colour = NA),
  78. legend.position = legend_position,
  79. legend.direction = ifelse(legend_position == "right", "vertical", "horizontal"),
  80. plot.margin = unit(c(10, 5, 5, 5), "mm"),
  81. strip.background = element_rect(colour = "#f0f0f0", fill = "#f0f0f0"),
  82. strip.text = element_text(face = "bold")
  83. )
  84. }
  85. scale_fill_publication <- function(...) {
  86. discrete_scale("fill", "Publication", manual_pal(values = c(
  87. "#386cb0", "#fdb462", "#7fc97f", "#ef3b2c", "#662506",
  88. "#a6cee3", "#fb9a99", "#984ea3", "#ffff33"
  89. )), ...)
  90. }
  91. scale_colour_publication <- function(...) {
  92. discrete_scale("colour", "Publication", manual_pal(values = c(
  93. "#386cb0", "#fdb462", "#7fc97f", "#ef3b2c", "#662506",
  94. "#a6cee3", "#fb9a99", "#984ea3", "#ffff33"
  95. )), ...)
  96. }
  97. # Load the initial dataframe from the easy_results_file
  98. load_and_process_data <- function(easy_results_file, sd = 3) {
  99. df <- read.delim(easy_results_file, skip = 2, as.is = TRUE, row.names = 1, strip.white = TRUE)
  100. df <- df %>%
  101. filter(!(.[[1]] %in% c("", "Scan"))) %>%
  102. filter(!is.na(ORF) & ORF != "" & !Gene %in% c("BLANK", "Blank", "blank") & Drug != "BMH21") %>%
  103. # Rename columns
  104. rename(L = l, num = Num., AUC = AUC96, scan = Scan, last_bg = LstBackgrd, first_bg = X1stBackgrd) %>%
  105. mutate(
  106. across(c(Col, Row, num, L, K, r, scan, AUC, last_bg, first_bg), as.numeric),
  107. delta_bg = last_bg - first_bg,
  108. delta_bg_tolerance = mean(delta_bg, na.rm = TRUE) + (sd * sd(delta_bg, na.rm = TRUE)),
  109. NG = if_else(L == 0 & !is.na(L), 1, 0),
  110. DB = if_else(delta_bg >= delta_bg_tolerance, 1, 0),
  111. SM = 0,
  112. OrfRep = if_else(ORF == "YDL227C", "YDL227C", OrfRep), # should these be hardcoded?
  113. conc_num = as.numeric(gsub("[^0-9\\.]", "", Conc)),
  114. conc_num_factor = as.numeric(as.factor(conc_num)) - 1
  115. )
  116. return(df)
  117. }
  118. # Update Gene names using the SGD gene list
  119. update_gene_names <- function(df, sgd_gene_list) {
  120. # Load SGD gene list
  121. genes <- read.delim(file = sgd_gene_list,
  122. quote = "", header = FALSE,
  123. colClasses = c(rep("NULL", 3), rep("character", 2), rep("NULL", 11)))
  124. # Create a named vector for mapping ORF to GeneName
  125. gene_map <- setNames(genes$V5, genes$V4)
  126. # Vectorized match to find the GeneName from gene_map
  127. mapped_genes <- gene_map[df$ORF]
  128. # Replace NAs in mapped_genes with original Gene names (preserves existing Gene names if ORF is not found)
  129. updated_genes <- ifelse(is.na(mapped_genes) | df$OrfRep == "YDL227C", df$Gene, mapped_genes)
  130. # Ensure Gene is not left blank or incorrectly updated to "OCT1"
  131. df <- df %>%
  132. mutate(Gene = ifelse(updated_genes == "" | updated_genes == "OCT1", OrfRep, updated_genes))
  133. return(df)
  134. }
  135. # Calculate summary statistics for all variables
  136. calculate_summary_stats <- function(df, variables, group_vars = c("OrfRep", "conc_num", "conc_num_factor")) {
  137. # Summarize the variables within the grouped data
  138. summary_stats <- df %>%
  139. group_by(across(all_of(group_vars))) %>%
  140. summarise(
  141. N = sum(!is.na(L)),
  142. across(all_of(variables), list(
  143. mean = ~mean(., na.rm = TRUE),
  144. median = ~median(., na.rm = TRUE),
  145. max = ~ ifelse(all(is.na(.)), NA, max(., na.rm = TRUE)),
  146. min = ~ ifelse(all(is.na(.)), NA, min(., na.rm = TRUE)),
  147. sd = ~sd(., na.rm = TRUE),
  148. se = ~ ifelse(all(is.na(.)), NA, sd(., na.rm = TRUE) / sqrt(sum(!is.na(.)) - 1))
  149. ), .names = "{.fn}_{.col}")
  150. )
  151. # print(summary_stats)
  152. # Prevent .x and .y suffix issues by renaming columns
  153. df_cleaned <- df %>%
  154. select(-any_of(setdiff(names(summary_stats), group_vars))) # Avoid duplicate columns in the final join
  155. # Join the stats back to the original dataframe
  156. df_with_stats <- left_join(df_cleaned, summary_stats, by = group_vars)
  157. return(list(summary_stats = summary_stats, df_with_stats = df_with_stats))
  158. }
  159. calculate_interaction_scores <- function(df, max_conc, variables, group_vars = c("OrfRep", "Gene", "num")) {
  160. # Calculate total concentration variables
  161. total_conc_num <- length(unique(df$conc_num))
  162. # Pull the background means and standard deviations from zero concentration
  163. bg_means <- list(
  164. L = df %>% filter(conc_num_factor == 0) %>% pull(mean_L) %>% first(),
  165. K = df %>% filter(conc_num_factor == 0) %>% pull(mean_K) %>% first(),
  166. r = df %>% filter(conc_num_factor == 0) %>% pull(mean_r) %>% first(),
  167. AUC = df %>% filter(conc_num_factor == 0) %>% pull(mean_AUC) %>% first()
  168. )
  169. bg_sd <- list(
  170. L = df %>% filter(conc_num_factor == 0) %>% pull(sd_L) %>% first(),
  171. K = df %>% filter(conc_num_factor == 0) %>% pull(sd_K) %>% first(),
  172. r = df %>% filter(conc_num_factor == 0) %>% pull(sd_r) %>% first(),
  173. AUC = df %>% filter(conc_num_factor == 0) %>% pull(sd_AUC) %>% first()
  174. )
  175. stats <- df %>%
  176. group_by(OrfRep, Gene, num, conc_num, conc_num_factor) %>%
  177. summarise(
  178. N = sum(!is.na(L)),
  179. NG = sum(NG, na.rm = TRUE),
  180. DB = sum(DB, na.rm = TRUE),
  181. SM = sum(SM, na.rm = TRUE),
  182. across(all_of(variables), list(
  183. mean = ~mean(., na.rm = TRUE),
  184. median = ~median(., na.rm = TRUE),
  185. max = ~ifelse(all(is.na(.)), NA, max(., na.rm = TRUE)),
  186. min = ~ifelse(all(is.na(.)), NA, min(., na.rm = TRUE)),
  187. sd = ~sd(., na.rm = TRUE),
  188. se = ~ifelse(sum(!is.na(.)) > 1, sd(., na.rm = TRUE) / sqrt(sum(!is.na(.)) - 1), NA)
  189. ), .names = "{.fn}_{.col}")
  190. )
  191. stats <- df %>%
  192. group_by(OrfRep, Gene, num) %>%
  193. mutate(
  194. WT_L = mean_L,
  195. WT_K = mean_K,
  196. WT_r = mean_r,
  197. WT_AUC = mean_AUC,
  198. WT_sd_L = sd_L,
  199. WT_sd_K = sd_K,
  200. WT_sd_r = sd_r,
  201. WT_sd_AUC = sd_AUC
  202. )
  203. stats <- stats %>%
  204. mutate(
  205. Raw_Shift_L = first(mean_L) - bg_means$L,
  206. Raw_Shift_K = first(mean_K) - bg_means$K,
  207. Raw_Shift_r = first(mean_r) - bg_means$r,
  208. Raw_Shift_AUC = first(mean_AUC) - bg_means$AUC,
  209. Z_Shift_L = first(Raw_Shift_L) / bg_sd$L,
  210. Z_Shift_K = first(Raw_Shift_K) / bg_sd$K,
  211. Z_Shift_r = first(Raw_Shift_r) / bg_sd$r,
  212. Z_Shift_AUC = first(Raw_Shift_AUC) / bg_sd$AUC
  213. )
  214. stats <- stats %>%
  215. mutate(
  216. Exp_L = WT_L + Raw_Shift_L,
  217. Exp_K = WT_K + Raw_Shift_K,
  218. Exp_r = WT_r + Raw_Shift_r,
  219. Exp_AUC = WT_AUC + Raw_Shift_AUC,
  220. Delta_L = mean_L - Exp_L,
  221. Delta_K = mean_K - Exp_K,
  222. Delta_r = mean_r - Exp_r,
  223. Delta_AUC = mean_AUC - Exp_AUC
  224. )
  225. stats <- stats %>%
  226. mutate(
  227. Delta_L = if_else(NG == 1, mean_L - WT_L, Delta_L),
  228. Delta_K = if_else(NG == 1, mean_K - WT_K, Delta_K),
  229. Delta_r = if_else(NG == 1, mean_r - WT_r, Delta_r),
  230. Delta_AUC = if_else(NG == 1, mean_AUC - WT_AUC, Delta_AUC),
  231. Delta_L = if_else(SM == 1, mean_L - WT_L, Delta_L)
  232. )
  233. stats <- stats %>%
  234. mutate(
  235. Zscore_L = Delta_L / WT_sd_L,
  236. Zscore_K = Delta_K / WT_sd_K,
  237. Zscore_r = Delta_r / WT_sd_r,
  238. Zscore_AUC = Delta_AUC / WT_sd_AUC
  239. )
  240. # Calculate linear models
  241. lm_L <- lm(Delta_L ~ conc_num_factor, data = stats)
  242. lm_K <- lm(Delta_K ~ conc_num_factor, data = stats)
  243. lm_r <- lm(Delta_r ~ conc_num_factor, data = stats)
  244. lm_AUC <- lm(Delta_AUC ~ conc_num_factor, data = stats)
  245. interactions <- stats %>%
  246. transmute(
  247. OrfRep = first(OrfRep),
  248. Gene = first(Gene),
  249. Raw_Shift_L = first(Raw_Shift_L),
  250. Raw_Shift_K = first(Raw_Shift_K),
  251. Raw_Shift_r = first(Raw_Shift_r),
  252. Raw_Shift_AUC = first(Raw_Shift_AUC),
  253. Z_Shift_L = first(Z_Shift_L),
  254. Z_Shift_K = first(Z_Shift_K),
  255. Z_Shift_r = first(Z_Shift_r),
  256. Z_Shift_AUC = first(Z_Shift_AUC),
  257. Sum_Zscore_L = sum(Zscore_L, na.rm = TRUE),
  258. Sum_Zscore_K = sum(Zscore_K, na.rm = TRUE),
  259. Sum_Zscore_r = sum(Zscore_r, na.rm = TRUE),
  260. Sum_Zscore_AUC = sum(Zscore_AUC, na.rm = TRUE),
  261. lm_Score_L = max_conc * coef(lm_L)[2] + coef(lm_L)[1],
  262. lm_Score_K = max_conc * coef(lm_K)[2] + coef(lm_K)[1],
  263. lm_Score_r = max_conc * coef(lm_r)[2] + coef(lm_r)[1],
  264. lm_Score_AUC = max_conc * coef(lm_AUC)[2] + coef(lm_AUC)[1],
  265. R_Squared_L = summary(lm_L)$r.squared,
  266. R_Squared_K = summary(lm_K)$r.squared,
  267. R_Squared_r = summary(lm_r)$r.squared,
  268. R_Squared_AUC = summary(lm_AUC)$r.squared,
  269. NG = sum(NG, na.rm = TRUE),
  270. DB = sum(DB, na.rm = TRUE),
  271. SM = sum(SM, na.rm = TRUE)
  272. )
  273. num_non_removed_concs <- total_conc_num - sum(stats$DB, na.rm = TRUE) - 1
  274. interactions <- interactions %>%
  275. mutate(
  276. Avg_Zscore_L = Sum_Zscore_L / num_non_removed_concs,
  277. Avg_Zscore_K = Sum_Zscore_K / num_non_removed_concs,
  278. Avg_Zscore_r = Sum_Zscore_r / (total_conc_num - 1),
  279. Avg_Zscore_AUC = Sum_Zscore_AUC / (total_conc_num - 1),
  280. Z_lm_L = (lm_Score_L - mean(lm_Score_L, na.rm = TRUE)) / sd(lm_Score_L, na.rm = TRUE),
  281. Z_lm_K = (lm_Score_K - mean(lm_Score_K, na.rm = TRUE)) / sd(lm_Score_K, na.rm = TRUE),
  282. Z_lm_r = (lm_Score_r - mean(lm_Score_r, na.rm = TRUE)) / sd(lm_Score_r, na.rm = TRUE),
  283. Z_lm_AUC = (lm_Score_AUC - mean(lm_Score_AUC, na.rm = TRUE)) / sd(lm_Score_AUC, na.rm = TRUE)
  284. ) %>%
  285. arrange(desc(Z_lm_L)) %>%
  286. arrange(desc(NG))
  287. # Declare column order for output
  288. calculations <- stats %>%
  289. select(
  290. "OrfRep", "Gene", "conc_num", "conc_num_factor", "N",
  291. "mean_L", "mean_K", "mean_r", "mean_AUC",
  292. "median_L", "median_K", "median_r", "median_AUC",
  293. "sd_L", "sd_K", "sd_r", "sd_AUC",
  294. "se_L", "se_K", "se_r", "se_AUC",
  295. "Raw_Shift_L", "Raw_Shift_K", "Raw_Shift_r", "Raw_Shift_AUC",
  296. "Z_Shift_L", "Z_Shift_K", "Z_Shift_r", "Z_Shift_AUC",
  297. "WT_L", "WT_K", "WT_r", "WT_AUC",
  298. "WT_sd_L", "WT_sd_K", "WT_sd_r", "WT_sd_AUC",
  299. "Exp_L", "Exp_K", "Exp_r", "Exp_AUC",
  300. "Delta_L", "Delta_K", "Delta_r", "Delta_AUC",
  301. "Zscore_L", "Zscore_K", "Zscore_r", "Zscore_AUC",
  302. "NG", "SM", "DB")
  303. df <- df %>% select(-any_of(setdiff(names(calculations), c("OrfRep", "Gene", "num", "conc_num", "conc_num_factor"))))
  304. df <- left_join(df, calculations, by = c("OrfRep", "Gene", "num", "conc_num", "conc_num_factor"))
  305. # df <- df %>% select(-any_of(setdiff(names(interactions), group_vars)))
  306. # df <- left_join(df, interactions, by = group_vars)
  307. return(list(calculations = calculations, interactions = interactions, joined = df))
  308. }
  309. generate_and_save_plots <- function(output_dir, file_name, plot_configs, grid_layout = NULL) {
  310. message("Generating html and pdf plots for: ", file_name)
  311. plots <- lapply(plot_configs, function(config) {
  312. df <- config$df
  313. # print(df %>% select(any_of(c("OrfRep", "Plate", "scan", "Col", "Row", "num", "OrfRep", "conc_num", "conc_num_factor",
  314. # "delta_bg_tolerance", "delta_bg", "Gene", "L", "K", "r", "AUC", "NG", "DB"))), n = 5)
  315. # Plots are testy about missing aesthetics, so handle them here
  316. aes_mapping <-
  317. if (is.null(config$color_var)) {
  318. if (is.null(config$y_var)) {
  319. aes(x = !!sym(config$x_var))
  320. } else {
  321. aes(x = !!sym(config$x_var), y = !!sym(config$y_var))
  322. }
  323. } else {
  324. if (is.null(config$y_var)) {
  325. aes(x = !!sym(config$x_var), color = as.factor(!!sym(config$color_var)))
  326. } else {
  327. aes(x = !!sym(config$x_var), y = !!sym(config$y_var), color = as.factor(!!sym(config$color_var)))
  328. }
  329. }
  330. # Start building the plot
  331. plot <- ggplot(df, aes_mapping)
  332. # Use appropriate helper function based on plot type
  333. plot <- switch(config$plot_type,
  334. "scatter" = generate_scatter_plot(plot, config),
  335. "rank" = generate_rank_plot(plot, config),
  336. "correlation" = generate_correlation_plot(plot, config),
  337. "box" = generate_box_plot(plot, config),
  338. "density" = plot + geom_density(),
  339. "bar" = plot + geom_bar(),
  340. plot # default case if no type matches
  341. )
  342. return(plot)
  343. })
  344. # PDF saving logic
  345. pdf(file.path(output_dir, paste0(file_name, ".pdf")), width = 14, height = 9)
  346. lapply(plots, print)
  347. dev.off()
  348. # HTML saving logic
  349. plotly_plots <- lapply(plots, function(plot) {
  350. config <- plot$config
  351. if (!is.null(config$legend_position) && config$legend_position == "bottom") {
  352. suppressWarnings(ggplotly(plot, tooltip = "text") %>% layout(legend = list(orientation = "h")))
  353. } else {
  354. ggplotly(plot, tooltip = "text")
  355. }
  356. })
  357. combined_plot <- subplot(plotly_plots, nrows = grid_layout$nrow %||% length(plots), margin = 0.05)
  358. saveWidget(combined_plot, file = file.path(output_dir, paste0(file_name, ".html")), selfcontained = TRUE)
  359. }
  360. generate_scatter_plot <- function(plot, config) {
  361. # Add the interactive text aesthetics to the scatter points
  362. plot <-
  363. if (!is.null(config$delta_bg_point) && config$delta_bg_point) {
  364. plot + geom_point(aes(text = paste("ORF:", OrfRep, "Gene:", Gene, "delta_bg:", delta_bg)),
  365. shape = config$shape %||% 3, size = config$size %||% 0.2)
  366. } else if (!is.null(config$gene_point) && config$gene_point) {
  367. plot + geom_point(aes(text = paste("ORF:", OrfRep, "Gene:", Gene)),
  368. shape = config$shape %||% 3, size = config$size %||% 0.2, position = "jitter")
  369. } else {
  370. plot + geom_point(shape = config$shape %||% 3, size = config$size %||% 0.2,
  371. position = config$position %||% "identity")
  372. }
  373. # Add smooth line if specified
  374. if (!is.null(config$add_smooth) && config$add_smooth) {
  375. plot <- if (!is.null(config$lm_line)) {
  376. plot + geom_abline(intercept = config$lm_line$intercept, slope = config$lm_line$slope)
  377. } else {
  378. plot + geom_smooth(method = "lm", se = FALSE)
  379. }
  380. }
  381. # Add error bars if specified
  382. if (!is.null(config$error_bar) && config$error_bar) {
  383. y_mean_col <- paste0("mean_", config$y_var)
  384. y_sd_col <- paste0("sd_", config$y_var)
  385. plot <- plot + geom_errorbar(aes(
  386. ymin = !!sym(y_mean_col) - !!sym(y_sd_col),
  387. ymax = !!sym(y_mean_col) + !!sym(y_sd_col)
  388. ), alpha = 0.3)
  389. }
  390. # Add x-axis customization if specified
  391. if (!is.null(config$x_breaks) && !is.null(config$x_labels) && !is.null(config$x_label)) {
  392. plot <- plot + scale_x_continuous(
  393. name = config$x_label,
  394. breaks = config$x_breaks,
  395. labels = config$x_labels)
  396. }
  397. # Add y-axis limits if specified
  398. if (!is.null(config$ylim_vals)) {
  399. plot <- plot + scale_y_continuous(limits = config$ylim_vals)
  400. }
  401. # Add Cartesian coordinates customization if specified
  402. if (!is.null(config$coord_cartesian)) {
  403. plot <- plot + coord_cartesian(ylim = config$coord_cartesian)
  404. }
  405. return(plot)
  406. }
  407. generate_rank_plot <- function(plot, config) {
  408. plot <- plot + geom_point(size = config$size %||% 0.1, shape = config$shape %||% 3)
  409. if (!is.null(config$sd_band)) {
  410. for (i in seq_len(config$sd_band)) {
  411. plot <- plot +
  412. annotate("rect", xmin = -Inf, xmax = Inf, ymin = i, ymax = Inf, fill = "#542788", alpha = 0.3) +
  413. annotate("rect", xmin = -Inf, xmax = Inf, ymin = -i, ymax = -Inf, fill = "orange", alpha = 0.3) +
  414. geom_hline(yintercept = c(-i, i), color = "gray")
  415. }
  416. }
  417. if (!is.null(config$enhancer_label)) {
  418. plot <- plot + annotate("text", x = config$enhancer_label$x, y = config$enhancer_label$y, label = config$enhancer_label$label)
  419. }
  420. if (!is.null(config$suppressor_label)) {
  421. plot <- plot + annotate("text", x = config$suppressor_label$x, y = config$suppressor_label$y, label = config$suppressor_label$label)
  422. }
  423. return(plot)
  424. }
  425. generate_correlation_plot <- function(plot, config) {
  426. plot <- plot + geom_point(shape = config$shape %||% 3, color = "gray70") +
  427. geom_abline(intercept = config$lm_line$intercept, slope = config$lm_line$slope, color = "tomato3") +
  428. annotate("text", x = config$annotate_position$x, y = config$annotate_position$y, label = config$correlation_text)
  429. if (!is.null(config$rect)) {
  430. plot <- plot + geom_rect(aes(xmin = config$rect$xmin, xmax = config$rect$xmax, ymin = config$rect$ymin, ymax = config$rect$ymax),
  431. color = "grey20", size = 0.25, alpha = 0.1, fill = NA, inherit.aes = FALSE)
  432. }
  433. return(plot)
  434. }
  435. generate_box_plot <- function(plot, config) {
  436. plot <- plot + geom_boxplot()
  437. if (!is.null(config$x_breaks) && !is.null(config$x_labels) && !is.null(config$x_label)) {
  438. plot <- plot + scale_x_discrete(
  439. name = config$x_label,
  440. breaks = config$x_breaks,
  441. labels = config$x_labels
  442. )
  443. }
  444. if (!is.null(config$coord_cartesian)) {
  445. plot <- plot + coord_cartesian(ylim = config$coord_cartesian)
  446. }
  447. return(plot)
  448. }
  449. generate_interaction_plot_configs <- function(df, variables) {
  450. configs <- list()
  451. # Define common y-limits and other attributes for each variable dynamically
  452. limits_map <- list(L = c(-65, 65), K = c(-65, 65), r = c(-0.65, 0.65), AUC = c(-6500, 6500))
  453. # Define annotation positions based on the variable being plotted
  454. annotation_positions <- list(
  455. L = list(Z_Shift_L = 45, lm_ZScore = 25, NG = -25, DB = -35, SM = -45),
  456. K = list(Z_Shift_K = 45, lm_ZScore = 25, NG = -25, DB = -35, SM = -45),
  457. r = list(Z_Shift_r = 0.45, lm_ZScore = 0.25, NG = -0.25, DB = -0.35, SM = -0.45),
  458. AUC = list(Z_Shift_AUC = 4500, lm_ZScore = 2500, NG = -2500, DB = -3500, SM = -4500)
  459. )
  460. # Define which annotations to include for each plot
  461. annotation_labels <- list(
  462. ZShift = function(df, var) {
  463. val <- df[[paste0("Z_Shift_", var)]]
  464. if (is.numeric(val)) {
  465. paste("ZShift =", round(val, 2))
  466. } else {
  467. paste("ZShift =", val)
  468. }
  469. },
  470. lm_ZScore = function(df, var) {
  471. val <- df[[paste0("Z_lm_", var)]]
  472. if (is.numeric(val)) {
  473. paste("lm ZScore =", round(val, 2))
  474. } else {
  475. paste("lm ZScore =", val)
  476. }
  477. },
  478. NG = function(df, var) paste("NG =", df$NG),
  479. DB = function(df, var) paste("DB =", df$DB),
  480. SM = function(df, var) paste("SM =", df$SM)
  481. )
  482. for (variable in variables) {
  483. # Dynamically generate the names of the columns
  484. var_info <- list(
  485. ylim = limits_map[[variable]],
  486. lm_model = df[[paste0("lm_", variable)]][[1]],
  487. sd_col = paste0("WT_sd_", variable),
  488. delta_var = paste0("Delta_", variable)
  489. )
  490. # Extract the precomputed linear model coefficients
  491. lm_line <- list(
  492. intercept = coef(var_info$lm_model)[1],
  493. slope = coef(var_info$lm_model)[2]
  494. )
  495. # Dynamically create annotations based on variable
  496. annotations <- lapply(names(annotation_positions[[variable]]), function(annotation_name) {
  497. y_pos <- annotation_positions[[variable]][[annotation_name]]
  498. label <- annotation_labels[[annotation_name]](df, variable)
  499. list(x = 1, y = y_pos, label = label)
  500. })
  501. # Add scatter plot configuration for this variable
  502. configs[[length(configs) + 1]] <- list(
  503. df = df,
  504. x_var = "conc_num_factor",
  505. y_var = var_info$delta_var,
  506. plot_type = "scatter",
  507. title = sprintf("%s %s", df$OrfRep[1], df$Gene[1]),
  508. ylim_vals = var_info$ylim,
  509. annotations = annotations,
  510. lm_line = lm_line, # Precomputed linear model
  511. error_bar = TRUE,
  512. x_breaks = unique(df$conc_num_factor),
  513. x_labels = unique(as.character(df$conc_num)),
  514. x_label = unique(df$Drug[1]),
  515. shape = 3,
  516. size = 0.6,
  517. position = "jitter",
  518. coord_cartesian = c(0, max(var_info$ylim)) # You can customize this per plot as needed
  519. )
  520. # Add box plot configuration for this variable
  521. configs[[length(configs) + 1]] <- list(
  522. df = df,
  523. x_var = "conc_num_factor",
  524. y_var = variable,
  525. plot_type = "box",
  526. title = sprintf("%s %s (Boxplot)", df$OrfRep[1], df$Gene[1]),
  527. ylim_vals = var_info$ylim,
  528. annotations = annotations,
  529. error_bar = FALSE,
  530. x_breaks = unique(df$conc_num_factor),
  531. x_labels = unique(as.character(df$conc_num)),
  532. x_label = unique(df$Drug[1]),
  533. coord_cartesian = c(0, max(var_info$ylim)) # Customize this as needed
  534. )
  535. }
  536. return(configs)
  537. }
  538. # Adjust missing values and calculate ranks
  539. adjust_missing_and_rank <- function(df, variables) {
  540. # Adjust missing values in Avg_Zscore and Z_lm columns, and apply rank to the specified variables
  541. df <- df %>%
  542. mutate(across(all_of(variables), list(
  543. Avg_Zscore = ~ if_else(is.na(get(paste0("Avg_Zscore_", cur_column()))), 0.001, get(paste0("Avg_Zscore_", cur_column()))),
  544. Z_lm = ~ if_else(is.na(get(paste0("Z_lm_", cur_column()))), 0.001, get(paste0("Z_lm_", cur_column()))),
  545. Rank = ~ rank(get(paste0("Avg_Zscore_", cur_column()))),
  546. Rank_lm = ~ rank(get(paste0("Z_lm_", cur_column())))
  547. ), .names = "{fn}_{col}"))
  548. return(df)
  549. }
  550. generate_rank_plot_configs <- function(df, rank_var, zscore_var, var, is_lm = FALSE) {
  551. configs <- list()
  552. # Adjust titles for _lm plots if is_lm is TRUE
  553. plot_title_prefix <- if (is_lm) "Interaction Z score vs. Rank for" else "Average Z score vs. Rank for"
  554. # Annotated version (with text)
  555. for (sd_band in c(1, 2, 3)) {
  556. configs[[length(configs) + 1]] <- list(
  557. df = df,
  558. x_var = rank_var,
  559. y_var = zscore_var,
  560. plot_type = "rank",
  561. title = paste(plot_title_prefix, var, "above", sd_band, "SD"),
  562. sd_band = sd_band,
  563. enhancer_label = list(
  564. x = nrow(df) / 2, y = 10,
  565. label = paste("Deletion Enhancers =", nrow(df[df[[zscore_var]] >= sd_band, ]))
  566. ),
  567. suppressor_label = list(
  568. x = nrow(df) / 2, y = -10,
  569. label = paste("Deletion Suppressors =", nrow(df[df[[zscore_var]] <= -sd_band, ]))
  570. ),
  571. shape = 3,
  572. size = 0.1
  573. )
  574. }
  575. # Non-annotated version (_notext)
  576. for (sd_band in c(1, 2, 3)) {
  577. configs[[length(configs) + 1]] <- list(
  578. df = df,
  579. x_var = rank_var,
  580. y_var = zscore_var,
  581. plot_type = "rank",
  582. title = paste(plot_title_prefix, var, "above", sd_band, "SD"),
  583. sd_band = sd_band,
  584. enhancer_label = NULL, # No annotations for _notext
  585. suppressor_label = NULL, # No annotations for _notext
  586. shape = 3,
  587. size = 0.1,
  588. position = "jitter"
  589. )
  590. }
  591. return(configs)
  592. }
  593. generate_correlation_plot_configs <- function(df, variables) {
  594. configs <- list()
  595. for (variable in variables) {
  596. z_lm_var <- paste0("Z_lm_", variable)
  597. avg_zscore_var <- paste0("Avg_Zscore_", variable)
  598. lm_r_squared_col <- paste0("lm_R_squared_", variable)
  599. configs[[length(configs) + 1]] <- list(
  600. df = df,
  601. x_var = avg_zscore_var,
  602. y_var = z_lm_var,
  603. plot_type = "correlation",
  604. title = paste("Avg Zscore vs lm", variable),
  605. color_var = "Overlap",
  606. correlation_text = paste("R-squared =", round(df[[lm_r_squared_col]][1], 2)),
  607. shape = 3,
  608. geom_smooth = TRUE,
  609. rect = list(xmin = -2, xmax = 2, ymin = -2, ymax = 2), # To add the geom_rect layer
  610. annotate_position = list(x = 0, y = 0), # Position for the R-squared text
  611. legend_position = "right"
  612. )
  613. }
  614. return(configs)
  615. }
  616. main <- function() {
  617. lapply(names(args$experiments), function(exp_name) {
  618. exp <- args$experiments[[exp_name]]
  619. exp_path <- exp$path
  620. exp_sd <- exp$sd
  621. out_dir <- file.path(exp_path, "zscores")
  622. out_dir_qc <- file.path(exp_path, "zscores", "qc")
  623. dir.create(out_dir, recursive = TRUE, showWarnings = FALSE)
  624. dir.create(out_dir_qc, recursive = TRUE, showWarnings = FALSE)
  625. summary_vars <- c("L", "K", "r", "AUC", "delta_bg") # fields to filter and calculate summary stats across
  626. group_vars <- c("OrfRep", "conc_num", "conc_num_factor") # default fields to group by
  627. orf_group_vars <- c("OrfRep", "Gene", "num")
  628. print_vars <- c("OrfRep", "Plate", "scan", "Col", "Row", "num", "OrfRep", "conc_num", "conc_num_factor",
  629. "delta_bg_tolerance", "delta_bg", "Gene", "L", "K", "r", "AUC", "NG", "DB")
  630. message("Loading and filtering data")
  631. df <- load_and_process_data(args$easy_results_file, sd = exp_sd)
  632. df <- update_gene_names(df, args$sgd_gene_list)
  633. df <- as_tibble(df)
  634. # Filter rows that are above tolerance for quality control plots
  635. df_above_tolerance <- df %>% filter(DB == 1)
  636. # Set L, r, K, AUC (and delta_bg?) to NA for rows that are above tolerance
  637. df_na <- df %>% mutate(across(all_of(summary_vars), ~ ifelse(DB == 1, NA, .)))
  638. # Remove rows with 0 values in L
  639. df_no_zeros <- df_na %>% filter(L > 0)
  640. # Save some constants
  641. max_conc <- max(df$conc_num_factor)
  642. l_half_median <- (median(df_above_tolerance$L, na.rm = TRUE)) / 2
  643. k_half_median <- (median(df_above_tolerance$K, na.rm = TRUE)) / 2
  644. message("Calculating summary statistics before quality control")
  645. ss <- calculate_summary_stats(df, summary_vars, group_vars = group_vars)
  646. # df_ss <- ss$summary_stats
  647. df_stats <- ss$df_with_stats
  648. df_filtered_stats <- df_stats %>%
  649. {
  650. non_finite_rows <- filter(., if_any(c(L), ~ !is.finite(.)))
  651. if (nrow(non_finite_rows) > 0) {
  652. message("Filtering out the following non-finite rows:")
  653. print(non_finite_rows %>% select(any_of(print_vars)), n = 200)
  654. }
  655. filter(., if_all(c(L), is.finite))
  656. }
  657. message("Calculating summary statistics after quality control")
  658. ss <- calculate_summary_stats(df_na, summary_vars, group_vars = group_vars)
  659. df_na_ss <- ss$summary_stats
  660. df_na_stats <- ss$df_with_stats
  661. write.csv(df_na_ss, file = file.path(out_dir, "summary_stats_all_strains.csv"), row.names = FALSE)
  662. # Filter out non-finite rows for plotting
  663. df_na_filtered_stats <- df_na_stats %>%
  664. {
  665. non_finite_rows <- filter(., if_any(c(L), ~ !is.finite(.)))
  666. if (nrow(non_finite_rows) > 0) {
  667. message("Removed the following non-finite rows:")
  668. print(non_finite_rows %>% select(any_of(print_vars)), n = 200)
  669. }
  670. filter(., if_all(c(L), is.finite))
  671. }
  672. message("Calculating summary statistics after quality control excluding zero values")
  673. ss <- calculate_summary_stats(df_no_zeros, summary_vars, group_vars = group_vars)
  674. df_no_zeros_stats <- ss$df_with_stats
  675. df_no_zeros_filtered_stats <- df_no_zeros_stats %>%
  676. {
  677. non_finite_rows <- filter(., if_any(c(L), ~ !is.finite(.)))
  678. if (nrow(non_finite_rows) > 0) {
  679. message("Removed the following non-finite rows:")
  680. print(non_finite_rows %>% select(any_of(print_vars)), n = 200)
  681. }
  682. filter(., if_all(c(L), is.finite))
  683. }
  684. message("Filtering by 2SD of K")
  685. df_na_within_2sd_k <- df_na_stats %>%
  686. filter(K >= (mean_K - 2 * sd_K) & K <= (mean_K + 2 * sd_K))
  687. df_na_outside_2sd_k <- df_na_stats %>%
  688. filter(K < (mean_K - 2 * sd_K) | K > (mean_K + 2 * sd_K))
  689. message("Calculating summary statistics for L within 2SD of K")
  690. # TODO We're omitting the original z_max calculation, not sure if needed?
  691. ss <- calculate_summary_stats(df_na_within_2sd_k, "L", group_vars = c("conc_num", "conc_num_factor"))
  692. l_within_2sd_k_ss <- ss$summary_stats
  693. df_na_l_within_2sd_k_stats <- ss$df_with_stats
  694. write.csv(l_within_2sd_k_ss,
  695. file = file.path(out_dir_qc, "max_observed_L_vals_for_spots_within_2sd_K.csv"), row.names = FALSE)
  696. message("Calculating summary statistics for L outside 2SD of K")
  697. ss <- calculate_summary_stats(df_na_outside_2sd_k, "L", group_vars = c("conc_num", "conc_num_factor"))
  698. l_outside_2sd_k_ss <- ss$summary_stats
  699. df_na_l_outside_2sd_k_stats <- ss$df_with_stats
  700. write.csv(l_outside_2sd_k_ss,
  701. file = file.path(out_dir, "max_observed_L_vals_for_spots_outside_2sd_K.csv"), row.names = FALSE)
  702. # Each plots list corresponds to a file
  703. message("Generating quality control plot configurations")
  704. l_vs_k_plots <- list(
  705. list(
  706. df = df,
  707. x_var = "L",
  708. y_var = "K",
  709. plot_type = "scatter",
  710. delta_bg_point = TRUE,
  711. title = "Raw L vs K before quality control",
  712. color_var = "conc_num",
  713. error_bar = FALSE,
  714. legend_position = "right"
  715. )
  716. )
  717. frequency_delta_bg_plots <- list(
  718. list(
  719. df = df_filtered_stats,
  720. x_var = "delta_bg",
  721. y_var = NULL,
  722. plot_type = "density",
  723. title = "Plate analysis by Drug Conc for Delta Background before quality control",
  724. color_var = "conc_num",
  725. x_label = "Delta Background",
  726. y_label = "Density",
  727. error_bar = FALSE,
  728. legend_position = "right"),
  729. list(
  730. df = df_filtered_stats,
  731. x_var = "delta_bg",
  732. y_var = NULL,
  733. plot_type = "bar",
  734. title = "Plate analysis by Drug Conc for Delta Background before quality control",
  735. color_var = "conc_num",
  736. x_label = "Delta Background",
  737. y_label = "Count",
  738. error_bar = FALSE,
  739. legend_position = "right")
  740. )
  741. above_threshold_plots <- list(
  742. list(
  743. df = df_above_tolerance,
  744. x_var = "L",
  745. y_var = "K",
  746. plot_type = "scatter",
  747. delta_bg_point = TRUE,
  748. title = paste("Raw L vs K for strains above Delta Background threshold of",
  749. df_above_tolerance$delta_bg_tolerance[[1]], "or above"),
  750. color_var = "conc_num",
  751. position = "jitter",
  752. annotations = list(
  753. x = l_half_median,
  754. y = k_half_median,
  755. label = paste("# strains above Delta Background tolerance =", nrow(df_above_tolerance))
  756. ),
  757. error_bar = FALSE,
  758. legend_position = "right"
  759. )
  760. )
  761. plate_analysis_plots <- list()
  762. for (var in summary_vars) {
  763. for (stage in c("before", "after")) {
  764. if (stage == "before") {
  765. df_plot <- df_filtered_stats
  766. } else {
  767. df_plot <- df_na_filtered_stats
  768. }
  769. config <- list(
  770. df = df_plot,
  771. x_var = "scan",
  772. y_var = var,
  773. plot_type = "scatter",
  774. title = paste("Plate analysis by Drug Conc for", var, stage, "quality control"),
  775. error_bar = TRUE,
  776. color_var = "conc_num",
  777. position = "jitter")
  778. plate_analysis_plots <- append(plate_analysis_plots, list(config))
  779. }
  780. }
  781. plate_analysis_boxplots <- list()
  782. for (var in summary_vars) {
  783. for (stage in c("before", "after")) {
  784. if (stage == "before") {
  785. df_plot <- df_filtered_stats
  786. } else {
  787. df_plot <- df_na_filtered_stats
  788. }
  789. config <- list(
  790. df = df_plot,
  791. x_var = "scan",
  792. y_var = var,
  793. plot_type = "box",
  794. title = paste("Plate analysis by Drug Conc for", var, stage, "quality control"),
  795. error_bar = FALSE,
  796. color_var = "conc_num")
  797. plate_analysis_boxplots <- append(plate_analysis_boxplots, list(config))
  798. }
  799. }
  800. plate_analysis_no_zeros_plots <- list()
  801. for (var in summary_vars) {
  802. config <- list(
  803. df = df_no_zeros_filtered_stats,
  804. x_var = "scan",
  805. y_var = var,
  806. plot_type = "scatter",
  807. title = paste("Plate analysis by Drug Conc for", var, "after quality control"),
  808. error_bar = TRUE,
  809. color_var = "conc_num",
  810. position = "jitter")
  811. plate_analysis_no_zeros_plots <- append(plate_analysis_no_zeros_plots, list(config))
  812. }
  813. plate_analysis_no_zeros_boxplots <- list()
  814. for (var in summary_vars) {
  815. config <- list(
  816. df = df_no_zeros_filtered_stats,
  817. x_var = "scan",
  818. y_var = var,
  819. plot_type = "box",
  820. title = paste("Plate analysis by Drug Conc for", var, "after quality control"),
  821. error_bar = FALSE,
  822. color_var = "conc_num"
  823. )
  824. plate_analysis_no_zeros_boxplots <- append(plate_analysis_no_zeros_boxplots, list(config))
  825. }
  826. l_outside_2sd_k_plots <- list(
  827. list(
  828. df = df_na_l_outside_2sd_k_stats,
  829. x_var = "L",
  830. y_var = "K",
  831. plot_type = "scatter",
  832. delta_bg_point = TRUE,
  833. title = "Raw L vs K for strains falling outside 2SD of the K mean at each Conc",
  834. color_var = "conc_num",
  835. position = "jitter",
  836. legend_position = "right"
  837. )
  838. )
  839. delta_bg_outside_2sd_k_plots <- list(
  840. list(
  841. df = df_na_l_outside_2sd_k_stats,
  842. x_var = "delta_bg",
  843. y_var = "K",
  844. plot_type = "scatter",
  845. gene_point = TRUE,
  846. title = "Delta Background vs K for strains falling outside 2SD of the K mean at each Conc",
  847. color_var = "conc_num",
  848. position = "jitter",
  849. legend_position = "right"
  850. )
  851. )
  852. message("Generating quality control plots")
  853. generate_and_save_plots(out_dir_qc, "L_vs_K_before_quality_control", l_vs_k_plots)
  854. generate_and_save_plots(out_dir_qc, "frequency_delta_background", frequency_delta_bg_plots)
  855. generate_and_save_plots(out_dir_qc, "L_vs_K_above_threshold", above_threshold_plots)
  856. generate_and_save_plots(out_dir_qc, "plate_analysis", plate_analysis_plots)
  857. generate_and_save_plots(out_dir_qc, "plate_analysis_boxplots", plate_analysis_boxplots)
  858. generate_and_save_plots(out_dir_qc, "plate_analysis_no_zeros", plate_analysis_no_zeros_plots)
  859. generate_and_save_plots(out_dir_qc, "plate_analysis_no_zeros_boxplots", plate_analysis_no_zeros_boxplots)
  860. generate_and_save_plots(out_dir_qc, "L_vs_K_for_strains_2SD_outside_mean_K", l_outside_2sd_k_plots)
  861. generate_and_save_plots(out_dir_qc, "delta_background_vs_K_for_strains_2sd_outside_mean_K", delta_bg_outside_2sd_k_plots)
  862. # Clean up
  863. rm(df, df_above_tolerance, df_no_zeros, df_no_zeros_stats, df_no_zeros_filtered_stats, ss)
  864. gc()
  865. # TODO: Originally this filtered L NA's
  866. # Let's try to avoid for now since stats have already been calculated
  867. # Process background strains
  868. bg_strains <- c("YDL227C")
  869. lapply(bg_strains, function(strain) {
  870. message("Processing background strain: ", strain)
  871. # Handle missing data by setting zero values to NA
  872. # and then removing any rows with NA in L col
  873. df_bg <- df_na %>%
  874. filter(OrfRep == strain) %>%
  875. mutate(
  876. L = if_else(L == 0, NA, L),
  877. K = if_else(K == 0, NA, K),
  878. r = if_else(r == 0, NA, r),
  879. AUC = if_else(AUC == 0, NA, AUC)
  880. ) %>%
  881. filter(!is.na(L))
  882. # Recalculate summary statistics for the background strain
  883. message("Calculating summary statistics for background strain")
  884. ss_bg <- calculate_summary_stats(df_bg, summary_vars, group_vars = group_vars)
  885. summary_stats_bg <- ss_bg$summary_stats
  886. # df_bg_stats <- ss_bg$df_with_stats
  887. write.csv(summary_stats_bg,
  888. file = file.path(out_dir, paste0("SummaryStats_BackgroundStrains_", strain, ".csv")),
  889. row.names = FALSE)
  890. # Filter reference and deletion strains
  891. # Formerly X2_RF (reference strains)
  892. df_reference <- df_na_stats %>%
  893. filter(OrfRep == strain) %>%
  894. mutate(SM = 0)
  895. # Formerly X2 (deletion strains)
  896. df_deletion <- df_na_stats %>%
  897. filter(OrfRep != strain) %>%
  898. mutate(SM = 0)
  899. # Set the missing values to the highest theoretical value at each drug conc for L
  900. # Leave other values as 0 for the max/min
  901. reference_strain <- df_reference %>%
  902. group_by(conc_num) %>%
  903. mutate(
  904. max_l_theoretical = max(max_L, na.rm = TRUE),
  905. L = ifelse(L == 0 & !is.na(L) & conc_num > 0, max_l_theoretical, L),
  906. SM = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, 1, SM),
  907. L = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, max_l_theoretical, L)) %>%
  908. ungroup()
  909. # Ditto for deletion strains
  910. deletion_strains <- df_deletion %>%
  911. group_by(conc_num) %>%
  912. mutate(
  913. max_l_theoretical = max(max_L, na.rm = TRUE),
  914. L = ifelse(L == 0 & !is.na(L) & conc_num > 0, max_l_theoretical, L),
  915. SM = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, 1, SM),
  916. L = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, max_l_theoretical, L)) %>%
  917. ungroup()
  918. # Calculate interactions
  919. interaction_vars <- c("L", "K", "r", "AUC")
  920. message("Calculating interaction scores")
  921. # print("Reference strain:")
  922. # print(head(reference_strain))
  923. reference_results <- calculate_interaction_scores(reference_strain, max_conc, interaction_vars, group_vars = orf_group_vars)
  924. # print("Deletion strains:")
  925. # print(head(deletion_strains))
  926. deletion_results <- calculate_interaction_scores(deletion_strains, max_conc, interaction_vars, group_vars = orf_group_vars)
  927. zscores_calculations_reference <- reference_results$calculations
  928. zscores_interactions_reference <- reference_results$interactions
  929. zscores_joined_reference <- reference_results$joined
  930. zscores_calculations <- deletion_results$calculations
  931. zscores_interactions <- deletion_results$interactions
  932. zscores_joined <- deletion_results$joined
  933. # Writing Z-Scores to file
  934. write.csv(zscores_calculations_reference, file = file.path(out_dir, "RF_ZScores_Calculations.csv"), row.names = FALSE)
  935. write.csv(zscores_calculations, file = file.path(out_dir, "ZScores_Calculations.csv"), row.names = FALSE)
  936. write.csv(zscores_interactions_reference, file = file.path(out_dir, "RF_ZScores_Interaction.csv"), row.names = FALSE)
  937. write.csv(zscores_interactions, file = file.path(out_dir, "ZScores_Interaction.csv"), row.names = FALSE)
  938. # Create interaction plots
  939. message("Generating interaction plot configurations")
  940. reference_plot_configs <- generate_interaction_plot_configs(zscores_joined_reference, interaction_vars)
  941. deletion_plot_configs <- generate_interaction_plot_configs(zscores_joined, interaction_vars)
  942. message("Generating interaction plots")
  943. generate_and_save_plots(out_dir, "RF_interactionPlots", reference_plot_configs, grid_layout = list(ncol = 4, nrow = 3))
  944. generate_and_save_plots(out_dir, "InteractionPlots", deletion_plot_configs, grid_layout = list(ncol = 4, nrow = 3))
  945. # Define conditions for enhancers and suppressors
  946. # TODO Add to study config file?
  947. threshold <- 2
  948. enhancer_condition_L <- zscores_interactions$Avg_Zscore_L >= threshold
  949. suppressor_condition_L <- zscores_interactions$Avg_Zscore_L <= -threshold
  950. enhancer_condition_K <- zscores_interactions$Avg_Zscore_K >= threshold
  951. suppressor_condition_K <- zscores_interactions$Avg_Zscore_K <= -threshold
  952. # Subset data
  953. enhancers_L <- zscores_interactions[enhancer_condition_L, ]
  954. suppressors_L <- zscores_interactions[suppressor_condition_L, ]
  955. enhancers_K <- zscores_interactions[enhancer_condition_K, ]
  956. suppressors_K <- zscores_interactions[suppressor_condition_K, ]
  957. # Save enhancers and suppressors
  958. message("Writing enhancer/suppressor csv files")
  959. write.csv(enhancers_L, file = file.path(out_dir, "ZScores_Interaction_Deletion_Enhancers_L.csv"), row.names = FALSE)
  960. write.csv(suppressors_L, file = file.path(out_dir, "ZScores_Interaction_Deletion_Suppressors_L.csv"), row.names = FALSE)
  961. write.csv(enhancers_K, file = file.path(out_dir, "ZScores_Interaction_Deletion_Enhancers_K.csv"), row.names = FALSE)
  962. write.csv(suppressors_K, file = file.path(out_dir, "ZScores_Interaction_Deletion_Suppressors_K.csv"), row.names = FALSE)
  963. # Combine conditions for enhancers and suppressors
  964. enhancers_and_suppressors_L <- zscores_interactions[enhancer_condition_L | suppressor_condition_L, ]
  965. enhancers_and_suppressors_K <- zscores_interactions[enhancer_condition_K | suppressor_condition_K, ]
  966. # Save combined enhancers and suppressors
  967. write.csv(enhancers_and_suppressors_L,
  968. file = file.path(out_dir, "ZScores_Interaction_Deletion_Enhancers_and_Suppressors_L.csv"), row.names = FALSE)
  969. write.csv(enhancers_and_suppressors_K,
  970. file = file.path(out_dir, "ZScores_Interaction_Deletion_Enhancers_and_Suppressors_K.csv"), row.names = FALSE)
  971. # Handle linear model based enhancers and suppressors
  972. lm_threshold <- 2
  973. enhancers_lm_L <- zscores_interactions[zscores_interactions$Z_lm_L >= lm_threshold, ]
  974. suppressors_lm_L <- zscores_interactions[zscores_interactions$Z_lm_L <= -lm_threshold, ]
  975. enhancers_lm_K <- zscores_interactions[zscores_interactions$Z_lm_K >= lm_threshold, ]
  976. suppressors_lm_K <- zscores_interactions[zscores_interactions$Z_lm_K <= -lm_threshold, ]
  977. # Save linear model based enhancers and suppressors
  978. message("Writing linear model enhancer/suppressor csv files")
  979. write.csv(enhancers_lm_L,
  980. file = file.path(out_dir, "ZScores_Interaction_Deletion_Enhancers_L_lm.csv"), row.names = FALSE)
  981. write.csv(suppressors_lm_L,
  982. file = file.path(out_dir, "ZScores_Interaction_Deletion_Suppressors_L_lm.csv"), row.names = FALSE)
  983. write.csv(enhancers_lm_K,
  984. file = file.path(out_dir, "ZScores_Interaction_Deletion_Enhancers_K_lm.csv"), row.names = FALSE)
  985. write.csv(suppressors_lm_K,
  986. file = file.path(out_dir, "ZScores_Interaction_Deletion_Suppressors_K_lm.csv"), row.names = FALSE)
  987. # TODO needs explanation
  988. zscores_interactions_adjusted <- adjust_missing_and_rank(zscores_interactions)
  989. rank_plot_configs <- c(
  990. generate_rank_plot_configs(zscores_interactions_adjusted, "Rank_L", "Avg_Zscore_L", "L"),
  991. generate_rank_plot_configs(zscores_interactions_adjusted, "Rank_K", "Avg_Zscore_K", "K")
  992. )
  993. generate_and_save_plots(output_dir = out_dir, file_name = "RankPlots",
  994. plot_configs = rank_plot_configs, grid_layout = list(ncol = 3, nrow = 2))
  995. rank_lm_plot_config <- c(
  996. generate_rank_plot_configs(zscores_interactions_adjusted, "Rank_lm_L", "Z_lm_L", "L", is_lm = TRUE),
  997. generate_rank_plot_configs(zscores_interactions_adjusted, "Rank_lm_K", "Z_lm_K", "K", is_lm = TRUE)
  998. )
  999. generate_and_save_plots(output_dir = out_dir, file_name = "RankPlots_lm",
  1000. plot_configs = rank_lm_plot_config, grid_layout = list(ncol = 3, nrow = 2))
  1001. # Formerly X_NArm
  1002. zscores_interactions_filtered <- zscores_interactions %>%
  1003. group_by(across(all_of(orf_group_vars))) %>%
  1004. filter(!is.na(Z_lm_L) | !is.na(Avg_Zscore_L))
  1005. # Final filtered correlation calculations and plots
  1006. lm_results <- zscores_interactions_filtered %>%
  1007. summarise(
  1008. lm_R_squared_L = if (n() > 1) summary(lm(Z_lm_L ~ Avg_Zscore_L))$r.squared else NA,
  1009. lm_R_squared_K = if (n() > 1) summary(lm(Z_lm_K ~ Avg_Zscore_K))$r.squared else NA,
  1010. lm_R_squared_r = if (n() > 1) summary(lm(Z_lm_r ~ Avg_Zscore_r))$r.squared else NA,
  1011. lm_R_squared_AUC = if (n() > 1) summary(lm(Z_lm_AUC ~ Avg_Zscore_AUC))$r.squared else NA
  1012. )
  1013. zscores_interactions_filtered <- zscores_interactions_filtered %>%
  1014. left_join(lm_results, by = orf_group_vars) %>%
  1015. mutate(
  1016. Overlap = case_when(
  1017. Z_lm_L >= 2 & Avg_Zscore_L >= 2 ~ "Deletion Enhancer Both",
  1018. Z_lm_L <= -2 & Avg_Zscore_L <= -2 ~ "Deletion Suppressor Both",
  1019. Z_lm_L >= 2 & Avg_Zscore_L <= 2 ~ "Deletion Enhancer lm only",
  1020. Z_lm_L <= -2 & Avg_Zscore_L >= -2 ~ "Deletion Suppressor lm only",
  1021. Z_lm_L >= 2 & Avg_Zscore_L <= -2 ~ "Deletion Enhancer lm, Deletion Suppressor Avg Z score",
  1022. Z_lm_L <= -2 & Avg_Zscore_L >= 2 ~ "Deletion Suppressor lm, Deletion Enhancer Avg Z score",
  1023. TRUE ~ "No Effect"
  1024. )
  1025. ) %>%
  1026. ungroup()
  1027. rank_plot_configs <- c(
  1028. generate_rank_plot_configs(zscores_interactions_filtered, "Rank_L", "Avg_Zscore_L", "L"),
  1029. generate_rank_plot_configs(zscores_interactions_filtered, "Rank_K", "Avg_Zscore_K", "K")
  1030. )
  1031. generate_and_save_plots(output_dir = out_dir, file_name = "RankPlots",
  1032. plot_configs = rank_plot_configs, grid_layout = list(ncol = 3, nrow = 2))
  1033. rank_lm_plot_configs <- c(
  1034. generate_rank_plot_configs(zscores_interactions_filtered, "Rank_lm_L", "Z_lm_L", "L", is_lm = TRUE),
  1035. generate_rank_plot_configs(zscores_interactions_filtered, "Rank_lm_K", "Z_lm_K", "K", is_lm = TRUE)
  1036. )
  1037. generate_and_save_plots(output_dir = out_dir, file_name = "RankPlots_lm",
  1038. plot_configs = rank_lm_plot_configs, grid_layout = list(ncol = 3, nrow = 2))
  1039. correlation_plot_configs <- generate_correlation_plot_configs(zscores_interactions_filtered, interaction_vars)
  1040. generate_and_save_plots(output_dir = out_dir, file_name = "Avg_Zscore_vs_lm_NA_rm",
  1041. plot_configs = correlation_plot_configs, grid_layout = list(ncol = 2, nrow = 2))
  1042. })
  1043. })
  1044. }
  1045. main()