calculate_interaction_zscores.R 52 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443
  1. suppressMessages({
  2. library("ggplot2")
  3. library("plotly")
  4. library("htmlwidgets")
  5. library("htmltools")
  6. library("dplyr")
  7. library("rlang")
  8. library("ggthemes")
  9. library("data.table")
  10. library("gridExtra")
  11. library("future")
  12. library("furrr")
  13. library("purrr")
  14. })
  15. # These parallelization libraries are very noisy
  16. suppressPackageStartupMessages({
  17. library("future")
  18. library("furrr")
  19. library("purrr")
  20. })
  21. options(warn = 2)
  22. # Constants for configuration
  23. plot_width <- 14
  24. plot_height <- 9
  25. base_size <- 14
  26. parse_arguments <- function() {
  27. args <- if (interactive()) {
  28. c(
  29. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/20240116_jhartman2_DoxoHLD",
  30. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/apps/r/SGD_features.tab",
  31. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/easy/20240116_jhartman2_DoxoHLD/results_std.txt",
  32. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/20240822_jhartman2_DoxoHLD/exp1",
  33. "Experiment 1: Doxo versus HLD",
  34. 3,
  35. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/20240822_jhartman2_DoxoHLD/exp2",
  36. "Experiment 2: HLD versus Doxo",
  37. 3
  38. )
  39. } else {
  40. commandArgs(trailingOnly = TRUE)
  41. }
  42. out_dir <- normalizePath(args[1], mustWork = FALSE)
  43. sgd_gene_list <- normalizePath(args[2], mustWork = FALSE)
  44. easy_results_file <- normalizePath(args[3], mustWork = FALSE)
  45. # The remaining arguments should be in groups of 3
  46. exp_args <- args[-(1:3)]
  47. if (length(exp_args) %% 3 != 0) {
  48. stop("Experiment arguments should be in groups of 3: path, name, sd.")
  49. }
  50. # Extract the experiments into a list
  51. experiments <- list()
  52. for (i in seq(1, length(exp_args), by = 3)) {
  53. exp_name <- exp_args[i + 1]
  54. experiments[[exp_name]] <- list(
  55. path = normalizePath(exp_args[i], mustWork = FALSE),
  56. sd = as.numeric(exp_args[i + 2])
  57. )
  58. }
  59. # Extract the trailing number from each path
  60. trailing_numbers <- sapply(experiments, function(x) {
  61. path <- x$path
  62. nums <- gsub("[^0-9]", "", basename(path))
  63. as.integer(nums)
  64. })
  65. # Sort the experiments based on the trailing numbers
  66. sorted_experiments <- experiments[order(trailing_numbers)]
  67. list(
  68. out_dir = out_dir,
  69. sgd_gene_list = sgd_gene_list,
  70. easy_results_file = easy_results_file,
  71. experiments = sorted_experiments
  72. )
  73. }
  74. args <- parse_arguments()
  75. # Should we keep output in exp dirs or combine in the study output dir?
  76. # dir.create(file.path(args$out_dir, "zscores"), showWarnings = FALSE)
  77. # dir.create(file.path(args$out_dir, "zscores", "qc"), showWarnings = FALSE)
  78. theme_publication <- function(base_size = 14, base_family = "sans", legend_position = NULL) {
  79. # Ensure that legend_position has a valid value or default to "none"
  80. legend_position <- if (is.null(legend_position) || length(legend_position) == 0) "none" else legend_position
  81. theme_foundation <- ggthemes::theme_foundation(base_size = base_size, base_family = base_family)
  82. theme_foundation %+replace%
  83. theme(
  84. plot.title = element_text(face = "bold", size = rel(1.6), hjust = 0.5),
  85. text = element_text(),
  86. panel.background = element_blank(),
  87. plot.background = element_blank(),
  88. panel.border = element_blank(),
  89. axis.title = element_text(face = "bold", size = rel(1.4)),
  90. axis.title.y = element_text(angle = 90, vjust = 2),
  91. axis.text = element_text(size = rel(1.2)),
  92. axis.line = element_line(colour = "black"),
  93. panel.grid.major = element_line(colour = "#f0f0f0"),
  94. panel.grid.minor = element_blank(),
  95. legend.key = element_rect(colour = NA),
  96. legend.position = legend_position,
  97. legend.direction =
  98. if (legend_position == "right") {
  99. "vertical"
  100. } else if (legend_position == "bottom") {
  101. "horizontal"
  102. } else {
  103. NULL # No legend direction if position is "none" or other values
  104. },
  105. legend.spacing = unit(0, "cm"),
  106. legend.title = element_text(face = "italic", size = rel(1.3)),
  107. legend.text = element_text(size = rel(1.2)),
  108. plot.margin = unit(c(10, 5, 5, 5), "mm")
  109. )
  110. }
  111. scale_fill_publication <- function(...) {
  112. discrete_scale("fill", "Publication", manual_pal(values = c(
  113. "#386cb0", "#fdb462", "#7fc97f", "#ef3b2c", "#662506",
  114. "#a6cee3", "#fb9a99", "#984ea3", "#ffff33"
  115. )), ...)
  116. }
  117. scale_colour_publication <- function(...) {
  118. discrete_scale("colour", "Publication", manual_pal(values = c(
  119. "#386cb0", "#fdb462", "#7fc97f", "#ef3b2c", "#662506",
  120. "#a6cee3", "#fb9a99", "#984ea3", "#ffff33"
  121. )), ...)
  122. }
  123. # Load the initial dataframe from the easy_results_file
  124. load_and_filter_data <- function(easy_results_file, sd = 3) {
  125. df <- read.delim(easy_results_file, skip = 2, as.is = TRUE, row.names = 1, strip.white = TRUE)
  126. df <- df %>%
  127. filter(!(.[[1]] %in% c("", "Scan"))) %>%
  128. filter(!is.na(ORF) & ORF != "" & !Gene %in% c("BLANK", "Blank", "blank") & Drug != "BMH21") %>%
  129. # Rename columns
  130. rename(L = l, num = Num., AUC = AUC96, scan = Scan, last_bg = LstBackgrd, first_bg = X1stBackgrd) %>%
  131. mutate(
  132. across(c(Col, Row, num, L, K, r, scan, AUC, last_bg, first_bg), as.numeric),
  133. delta_bg = last_bg - first_bg,
  134. delta_bg_tolerance = mean(delta_bg, na.rm = TRUE) + (sd * sd(delta_bg, na.rm = TRUE)),
  135. NG = if_else(L == 0 & !is.na(L), 1, 0),
  136. DB = if_else(delta_bg >= delta_bg_tolerance, 1, 0),
  137. SM = 0,
  138. OrfRep = if_else(ORF == "YDL227C", "YDL227C", OrfRep), # should these be hardcoded?
  139. conc_num = as.numeric(gsub("[^0-9\\.]", "", Conc)),
  140. conc_num_factor = as.numeric(as.factor(conc_num)) - 1, # for legacy purposes
  141. conc_num_factor_factor = as.factor(conc_num)
  142. )
  143. return(df)
  144. }
  145. # Update Gene names using the SGD gene list
  146. update_gene_names <- function(df, sgd_gene_list) {
  147. # Load SGD gene list
  148. genes <- read.delim(file = sgd_gene_list,
  149. quote = "", header = FALSE,
  150. colClasses = c(rep("NULL", 3), rep("character", 2), rep("NULL", 11)))
  151. # Create a named vector for mapping ORF to GeneName
  152. gene_map <- setNames(genes$V5, genes$V4)
  153. # Vectorized match to find the GeneName from gene_map
  154. mapped_genes <- gene_map[df$ORF]
  155. # Replace NAs in mapped_genes with original Gene names (preserves existing Gene names if ORF is not found)
  156. updated_genes <- ifelse(is.na(mapped_genes) | df$OrfRep == "YDL227C", df$Gene, mapped_genes)
  157. # Ensure Gene is not left blank or incorrectly updated to "OCT1"
  158. df <- df %>%
  159. mutate(Gene = ifelse(updated_genes == "" | updated_genes == "OCT1", OrfRep, updated_genes))
  160. return(df)
  161. }
  162. calculate_summary_stats <- function(df, variables, group_vars) {
  163. summary_stats <- df %>%
  164. group_by(across(all_of(group_vars))) %>%
  165. summarise(
  166. N = n(),
  167. across(all_of(variables),
  168. list(
  169. mean = ~ mean(.x, na.rm = TRUE),
  170. median = ~ median(.x, na.rm = TRUE),
  171. max = ~ ifelse(all(is.na(.x)), NA, max(.x, na.rm = TRUE)),
  172. min = ~ ifelse(all(is.na(.x)), NA, min(.x, na.rm = TRUE)),
  173. sd = ~ sd(.x, na.rm = TRUE),
  174. se = ~ sd(.x, na.rm = TRUE) / sqrt(n() - 1)
  175. ),
  176. .names = "{.fn}_{.col}"
  177. ),
  178. .groups = "drop"
  179. )
  180. # Create a cleaned version of df that doesn't overlap with summary_stats
  181. cleaned_df <- df %>%
  182. select(-any_of(setdiff(intersect(names(df), names(summary_stats)), group_vars)))
  183. df_joined <- left_join(cleaned_df, summary_stats, by = group_vars)
  184. return(list(summary_stats = summary_stats, df_with_stats = df_joined))
  185. }
  186. calculate_interaction_scores <- function(df, max_conc, bg_stats, group_vars, overlap_threshold = 2) {
  187. # Calculate total concentration variables
  188. total_conc_num <- length(unique(df$conc_num))
  189. # Initial calculations
  190. calculations <- df %>%
  191. group_by(across(all_of(group_vars))) %>%
  192. mutate(
  193. NG = sum(NG, na.rm = TRUE),
  194. DB = sum(DB, na.rm = TRUE),
  195. SM = sum(SM, na.rm = TRUE),
  196. num_non_removed_concs = total_conc_num - sum(DB, na.rm = TRUE) - 1,
  197. # Calculate raw data
  198. Raw_Shift_L = first(mean_L) - bg_stats$mean_L,
  199. Raw_Shift_K = first(mean_K) - bg_stats$mean_K,
  200. Raw_Shift_r = first(mean_r) - bg_stats$mean_r,
  201. Raw_Shift_AUC = first(mean_AUC) - bg_stats$mean_AUC,
  202. Z_Shift_L = Raw_Shift_L / bg_stats$sd_L,
  203. Z_Shift_K = Raw_Shift_K / bg_stats$sd_K,
  204. Z_Shift_r = Raw_Shift_r / bg_stats$sd_r,
  205. Z_Shift_AUC = Raw_Shift_AUC / bg_stats$sd_AUC,
  206. # Expected values
  207. Exp_L = WT_L + Raw_Shift_L,
  208. Exp_K = WT_K + Raw_Shift_K,
  209. Exp_r = WT_r + Raw_Shift_r,
  210. Exp_AUC = WT_AUC + Raw_Shift_AUC,
  211. # Deltas
  212. Delta_L = mean_L - Exp_L,
  213. Delta_K = mean_K - Exp_K,
  214. Delta_r = mean_r - Exp_r,
  215. Delta_AUC = mean_AUC - Exp_AUC,
  216. Delta_L = if_else(NG == 1, mean_L - WT_L, Delta_L),
  217. Delta_K = if_else(NG == 1, mean_K - WT_K, Delta_K),
  218. Delta_r = if_else(NG == 1, mean_r - WT_r, Delta_r),
  219. Delta_AUC = if_else(NG == 1, mean_AUC - WT_AUC, Delta_AUC),
  220. Delta_L = if_else(SM == 1, mean_L - WT_L, Delta_L),
  221. # Calculate Z-scores
  222. Zscore_L = Delta_L / WT_sd_L,
  223. Zscore_K = Delta_K / WT_sd_K,
  224. Zscore_r = Delta_r / WT_sd_r,
  225. Zscore_AUC = Delta_AUC / WT_sd_AUC
  226. ) %>%
  227. group_modify(~ {
  228. # Perform linear models
  229. lm_L <- lm(Delta_L ~ conc_num_factor, data = .x)
  230. lm_K <- lm(Delta_K ~ conc_num_factor, data = .x)
  231. lm_r <- lm(Delta_r ~ conc_num_factor, data = .x)
  232. lm_AUC <- lm(Delta_AUC ~ conc_num_factor, data = .x)
  233. .x %>%
  234. mutate(
  235. lm_intercept_L = coef(lm_L)[1],
  236. lm_slope_L = coef(lm_L)[2],
  237. R_Squared_L = summary(lm_L)$r.squared,
  238. lm_Score_L = max_conc * lm_slope_L + lm_intercept_L,
  239. lm_intercept_K = coef(lm_K)[1],
  240. lm_slope_K = coef(lm_K)[2],
  241. R_Squared_K = summary(lm_K)$r.squared,
  242. lm_Score_K = max_conc * lm_slope_K + lm_intercept_K,
  243. lm_intercept_r = coef(lm_r)[1],
  244. lm_slope_r = coef(lm_r)[2],
  245. R_Squared_r = summary(lm_r)$r.squared,
  246. lm_Score_r = max_conc * lm_slope_r + lm_intercept_r,
  247. lm_intercept_AUC = coef(lm_AUC)[1],
  248. lm_slope_AUC = coef(lm_AUC)[2],
  249. R_Squared_AUC = summary(lm_AUC)$r.squared,
  250. lm_Score_AUC = max_conc * lm_slope_AUC + lm_intercept_AUC
  251. )
  252. }) %>%
  253. ungroup()
  254. # Summary statistics for lm scores
  255. lm_means_sds <- calculations %>%
  256. group_by(across(all_of(group_vars))) %>%
  257. summarise(
  258. mean_lm_L = mean(lm_Score_L, na.rm = TRUE),
  259. sd_lm_L = sd(lm_Score_L, na.rm = TRUE),
  260. mean_lm_K = mean(lm_Score_K, na.rm = TRUE),
  261. sd_lm_K = sd(lm_Score_K, na.rm = TRUE),
  262. mean_lm_r = mean(lm_Score_r, na.rm = TRUE),
  263. sd_lm_r = sd(lm_Score_r, na.rm = TRUE),
  264. mean_lm_AUC = mean(lm_Score_AUC, na.rm = TRUE),
  265. sd_lm_AUC = sd(lm_Score_AUC, na.rm = TRUE)
  266. )
  267. # Continue with gene Z-scores and interactions
  268. calculations <- calculations %>%
  269. left_join(lm_means_sds, by = group_vars) %>%
  270. group_by(across(all_of(group_vars))) %>%
  271. mutate(
  272. Z_lm_L = (lm_Score_L - mean_lm_L) / sd_lm_L,
  273. Z_lm_K = (lm_Score_K - mean_lm_K) / sd_lm_K,
  274. Z_lm_r = (lm_Score_r - mean_lm_r) / sd_lm_r,
  275. Z_lm_AUC = (lm_Score_AUC - mean_lm_AUC) / sd_lm_AUC
  276. )
  277. # Build summary stats (interactions)
  278. interactions <- calculations %>%
  279. group_by(across(all_of(group_vars))) %>%
  280. summarise(
  281. Avg_Zscore_L = sum(Zscore_L, na.rm = TRUE) / first(num_non_removed_concs),
  282. Avg_Zscore_K = sum(Zscore_K, na.rm = TRUE) / first(num_non_removed_concs),
  283. Avg_Zscore_r = sum(Zscore_r, na.rm = TRUE) / first(num_non_removed_concs),
  284. Avg_Zscore_AUC = sum(Zscore_AUC, na.rm = TRUE) / first(num_non_removed_concs),
  285. # Interaction Z-scores
  286. Z_lm_L = first(Z_lm_L),
  287. Z_lm_K = first(Z_lm_K),
  288. Z_lm_r = first(Z_lm_r),
  289. Z_lm_AUC = first(Z_lm_AUC),
  290. # Raw Shifts
  291. Raw_Shift_L = first(Raw_Shift_L),
  292. Raw_Shift_K = first(Raw_Shift_K),
  293. Raw_Shift_r = first(Raw_Shift_r),
  294. Raw_Shift_AUC = first(Raw_Shift_AUC),
  295. # Z Shifts
  296. Z_Shift_L = first(Z_Shift_L),
  297. Z_Shift_K = first(Z_Shift_K),
  298. Z_Shift_r = first(Z_Shift_r),
  299. Z_Shift_AUC = first(Z_Shift_AUC),
  300. # NG, DB, SM values
  301. NG = first(NG),
  302. DB = first(DB),
  303. SM = first(SM)
  304. )
  305. # Creating the final calculations and interactions dataframes with only required columns for csv output
  306. calculations_df <- calculations %>%
  307. select(
  308. all_of(group_vars),
  309. conc_num, conc_num_factor, conc_num_factor_factor,
  310. N, NG, DB, SM,
  311. mean_L, median_L, sd_L, se_L,
  312. mean_K, median_K, sd_K, se_K,
  313. mean_r, median_r, sd_r, se_r,
  314. mean_AUC, median_AUC, sd_AUC, se_AUC,
  315. Raw_Shift_L, Raw_Shift_K, Raw_Shift_r, Raw_Shift_AUC,
  316. Z_Shift_L, Z_Shift_K, Z_Shift_r, Z_Shift_AUC,
  317. WT_L, WT_K, WT_r, WT_AUC,
  318. WT_sd_L, WT_sd_K, WT_sd_r, WT_sd_AUC,
  319. Exp_L, Exp_K, Exp_r, Exp_AUC,
  320. Delta_L, Delta_K, Delta_r, Delta_AUC,
  321. Zscore_L, Zscore_K, Zscore_r, Zscore_AUC
  322. )
  323. interactions_df <- interactions %>%
  324. select(
  325. all_of(group_vars),
  326. NG, DB, SM,
  327. Avg_Zscore_L, Avg_Zscore_K, Avg_Zscore_r, Avg_Zscore_AUC,
  328. Z_lm_L, Z_lm_K, Z_lm_r, Z_lm_AUC,
  329. Raw_Shift_L, Raw_Shift_K, Raw_Shift_r, Raw_Shift_AUC,
  330. Z_Shift_L, Z_Shift_K, Z_Shift_r, Z_Shift_AUC
  331. )
  332. # Use left_join to avoid dimension mismatch issues
  333. full_data <- calculations %>%
  334. left_join(interactions, by = group_vars)
  335. # Return full_data and the two required dataframes (calculations and interactions)
  336. return(list(
  337. calculations = calculations_df,
  338. interactions = interactions_df,
  339. full_data = full_data
  340. ))
  341. }
  342. generate_and_save_plots <- function(out_dir, filename, plot_configs) {
  343. message("Generating ", filename, ".pdf and ", filename, ".html")
  344. # Check if we're dealing with multiple plot groups
  345. plot_groups <- if ("plots" %in% names(plot_configs)) {
  346. list(plot_configs) # Single group
  347. } else {
  348. plot_configs # Multiple groups
  349. }
  350. for (group in plot_groups) {
  351. static_plots <- list()
  352. plotly_plots <- list()
  353. grid_layout <- group$grid_layout
  354. plots <- group$plots
  355. for (i in seq_along(plots)) {
  356. config <- plots[[i]]
  357. df <- config$df
  358. if (config$plot_type == "bar") {
  359. if (!is.null(config$color_var)) {
  360. aes_mapping <- aes(x = .data[[config$x_var]], fill = .data[[config$color_var]], color = .data[[config$color_var]])
  361. } else {
  362. aes_mapping <- aes(x = .data[[config$x_var]])
  363. }
  364. } else if (config$plot_type == "density") {
  365. if (!is.null(config$color_var)) {
  366. aes_mapping <- aes(x = .data[[config$x_var]], color = .data[[config$color_var]])
  367. } else {
  368. aes_mapping <- aes(x = .data[[config$x_var]])
  369. }
  370. } else {
  371. # For other plot types
  372. if (!is.null(config$y_var) && !is.null(config$color_var)) {
  373. aes_mapping <- aes(x = .data[[config$x_var]], y = .data[[config$y_var]], color = .data[[config$color_var]])
  374. } else if (!is.null(config$y_var)) {
  375. aes_mapping <- aes(x = .data[[config$x_var]], y = .data[[config$y_var]])
  376. } else {
  377. aes_mapping <- aes(x = .data[[config$x_var]])
  378. }
  379. }
  380. plot <- ggplot(df, aes_mapping) + theme_publication(legend_position = config$legend_position)
  381. plot <- switch(config$plot_type,
  382. "scatter" = generate_scatter_plot(plot, config),
  383. "box" = generate_boxplot(plot, config),
  384. "density" = plot + geom_density(),
  385. "bar" = plot + geom_bar(),
  386. plot # default (unused)
  387. )
  388. if (!is.null(config$title)) plot <- plot + ggtitle(config$title)
  389. if (!is.null(config$x_label)) plot <- plot + xlab(config$x_label)
  390. if (!is.null(config$y_label)) plot <- plot + ylab(config$y_label)
  391. if (!is.null(config$coord_cartesian)) plot <- plot + coord_cartesian(ylim = config$coord_cartesian)
  392. plotly_plot <- suppressWarnings(plotly::ggplotly(plot))
  393. static_plots[[i]] <- plot
  394. plotly_plots[[i]] <- plotly_plot
  395. }
  396. pdf(file.path(out_dir, paste0(filename, ".pdf")), width = 16, height = 9)
  397. if (is.null(grid_layout)) {
  398. for (plot in static_plots) {
  399. print(plot)
  400. }
  401. } else {
  402. grid.arrange(
  403. grobs = static_plots,
  404. ncol = grid_layout$ncol,
  405. nrow = grid_layout$nrow
  406. )
  407. }
  408. dev.off()
  409. out_html_file <- file.path(out_dir, paste0(filename, ".html"))
  410. message("Saving combined HTML file: ", out_html_file)
  411. htmltools::save_html(
  412. htmltools::tagList(plotly_plots),
  413. file = out_html_file
  414. )
  415. }
  416. }
  417. generate_scatter_plot <- function(plot, config) {
  418. # Define the points
  419. shape <- if (!is.null(config$shape)) config$shape else 3
  420. size <- if (!is.null(config$size)) config$size else 1.5
  421. position <-
  422. if (!is.null(config$position) && config$position == "jitter") {
  423. position_jitter(width = 0.1, height = 0)
  424. } else {
  425. "identity"
  426. }
  427. plot <- plot + geom_point(
  428. shape = shape,
  429. size = size,
  430. position = position
  431. )
  432. if (!is.null(config$cyan_points) && config$cyan_points) {
  433. plot <- plot + geom_point(
  434. aes(x = .data[[config$x_var]], y = .data[[config$y_var]]),
  435. color = "cyan",
  436. shape = 3,
  437. size = 0.5
  438. )
  439. }
  440. # Add Smooth Line if specified
  441. if (!is.null(config$smooth) && config$smooth) {
  442. smooth_color <- if (!is.null(config$smooth_color)) config$smooth_color else "blue"
  443. if (!is.null(config$lm_line)) {
  444. plot <- plot +
  445. geom_abline(
  446. intercept = config$lm_line$intercept,
  447. slope = config$lm_line$slope,
  448. color = smooth_color
  449. )
  450. } else {
  451. plot <- plot +
  452. geom_smooth(
  453. method = "lm",
  454. se = FALSE,
  455. color = smooth_color
  456. )
  457. }
  458. }
  459. # Add SD Bands if specified
  460. if (!is.null(config$sd_band)) {
  461. plot <- plot +
  462. annotate(
  463. "rect",
  464. xmin = -Inf, xmax = Inf,
  465. ymin = config$sd_band, ymax = Inf,
  466. fill = ifelse(!is.null(config$fill_positive), config$fill_positive, "#542788"),
  467. alpha = ifelse(!is.null(config$alpha_positive), config$alpha_positive, 0.3)
  468. ) +
  469. annotate(
  470. "rect",
  471. xmin = -Inf, xmax = Inf,
  472. ymin = -config$sd_band, ymax = -Inf,
  473. fill = ifelse(!is.null(config$fill_negative), config$fill_negative, "orange"),
  474. alpha = ifelse(!is.null(config$alpha_negative), config$alpha_negative, 0.3)
  475. ) +
  476. geom_hline(
  477. yintercept = c(-config$sd_band, config$sd_band),
  478. color = ifelse(!is.null(config$hl_color), config$hl_color, "gray")
  479. )
  480. }
  481. # Add Rectangles if specified
  482. if (!is.null(config$rectangles)) {
  483. for (rect in config$rectangles) {
  484. plot <- plot + annotate(
  485. "rect",
  486. xmin = rect$xmin,
  487. xmax = rect$xmax,
  488. ymin = rect$ymin,
  489. ymax = rect$ymax,
  490. fill = ifelse(is.null(rect$fill), NA, rect$fill),
  491. color = ifelse(is.null(rect$color), "black", rect$color),
  492. alpha = ifelse(is.null(rect$alpha), 0.1, rect$alpha)
  493. )
  494. }
  495. }
  496. # Add error bars if specified
  497. if (!is.null(config$error_bar) && config$error_bar && !is.null(config$y_var)) {
  498. if (!is.null(config$error_bar_params)) {
  499. plot <- plot + geom_errorbar(aes(ymin = config$error_bar_params$ymin, ymax = config$error_bar_params$ymax))
  500. } else {
  501. y_mean_col <- paste0("mean_", config$y_var)
  502. y_sd_col <- paste0("sd_", config$y_var)
  503. plot <- plot + geom_errorbar(aes(ymin = !!sym(y_mean_col) - !!sym(y_sd_col), ymax = !!sym(y_mean_col) + !!sym(y_sd_col)))
  504. }
  505. }
  506. # Customize X-axis if specified
  507. if (!is.null(config$x_breaks) && !is.null(config$x_labels) && !is.null(config$x_label)) {
  508. # Check if x_var is factor or character (for discrete x-axis)
  509. if (is.factor(plot$data[[config$x_var]]) || is.character(plot$data[[config$x_var]])) {
  510. plot <- plot +
  511. scale_x_discrete(
  512. name = config$x_label,
  513. breaks = config$x_breaks,
  514. labels = config$x_labels
  515. )
  516. } else {
  517. plot <- plot +
  518. scale_x_continuous(
  519. name = config$x_label,
  520. breaks = config$x_breaks,
  521. labels = config$x_labels
  522. )
  523. }
  524. }
  525. # Set Y-axis limits if specified
  526. if (!is.null(config$ylim_vals)) {
  527. plot <- plot + scale_y_continuous(limits = config$ylim_vals)
  528. }
  529. # Add annotations if specified
  530. if (!is.null(config$annotations)) {
  531. for (annotation in config$annotations) {
  532. plot <- plot +
  533. annotate(
  534. "text",
  535. x = annotation$x,
  536. y = annotation$y,
  537. label = annotation$label,
  538. hjust = ifelse(is.null(annotation$hjust), 0.5, annotation$hjust),
  539. vjust = ifelse(is.null(annotation$vjust), 0.5, annotation$vjust),
  540. size = ifelse(is.null(annotation$size), 6, annotation$size),
  541. color = ifelse(is.null(annotation$color), "black", annotation$color)
  542. )
  543. }
  544. }
  545. return(plot)
  546. }
  547. generate_boxplot <- function(plot, config) {
  548. # Convert x_var to a factor within aes mapping
  549. plot <- plot + geom_boxplot(aes(x = factor(.data[[config$x_var]])))
  550. # Customize X-axis if specified
  551. if (!is.null(config$x_breaks) && !is.null(config$x_labels) && !is.null(config$x_label)) {
  552. # Check if x_var is factor or character (for discrete x-axis)
  553. if (is.factor(plot$data[[config$x_var]]) || is.character(plot$data[[config$x_var]])) {
  554. plot <- plot +
  555. scale_x_discrete(
  556. name = config$x_label,
  557. breaks = config$x_breaks,
  558. labels = config$x_labels
  559. )
  560. } else {
  561. plot <- plot +
  562. scale_x_continuous(
  563. name = config$x_label,
  564. breaks = config$x_breaks,
  565. labels = config$x_labels
  566. )
  567. }
  568. }
  569. return(plot)
  570. }
  571. generate_plate_analysis_plot_configs <- function(variables, df_before = NULL, df_after = NULL,
  572. plot_type = "scatter", stages = c("before", "after")) {
  573. plot_configs <- list()
  574. for (var in variables) {
  575. for (stage in stages) {
  576. df_plot <- if (stage == "before") df_before else df_after
  577. # Check for non-finite values in the y-variable
  578. df_plot_filtered <- df_plot %>% filter(is.finite(!!sym(var)))
  579. # Adjust settings based on plot_type
  580. plot_config <- list(
  581. df = df_plot_filtered,
  582. x_var = "scan",
  583. y_var = var,
  584. plot_type = plot_type,
  585. title = paste("Plate analysis by Drug Conc for", var, stage, "quality control"),
  586. color_var = "conc_num_factor_factor",
  587. position = if (plot_type == "scatter") "jitter" else NULL,
  588. size = 0.2,
  589. error_bar = (plot_type == "scatter")
  590. )
  591. # Add config to plots list
  592. plot_configs <- append(plot_configs, list(plot_config))
  593. }
  594. }
  595. return(list(plots = plot_configs))
  596. }
  597. generate_interaction_plot_configs <- function(df, type) {
  598. # Set group_vars based on the type (reference or deletion)
  599. if (type == "reference") {
  600. group_vars <- c("OrfRep", "Gene", "num")
  601. } else if (type == "deletion") {
  602. group_vars <- c("OrfRep", "Gene")
  603. }
  604. # Define the limits for the plots
  605. limits_map <- list(
  606. L = c(0, 130),
  607. K = c(-20, 160),
  608. r = c(0, 1),
  609. AUC = c(0, 12500)
  610. )
  611. delta_limits_map <- list(
  612. L = c(-60, 60),
  613. K = c(-60, 60),
  614. r = c(-0.6, 0.6),
  615. AUC = c(-6000, 6000)
  616. )
  617. overall_plot_configs <- list()
  618. delta_plot_configs <- list()
  619. # Overall statistics plots
  620. for (var in names(limits_map)) {
  621. y_limits <- limits_map[[var]]
  622. # Use the pre-calculated lm intercept and slope from the dataframe
  623. lm_intercept_col <- paste0("lm_intercept_", var)
  624. lm_slope_col <- paste0("lm_slope_", var)
  625. # Ensure no NA or invalid values in lm_line calculations
  626. intercept_value <- mean(df[[lm_intercept_col]], na.rm = TRUE)
  627. slope_value <- mean(df[[lm_slope_col]], na.rm = TRUE)
  628. plot_config <- list(
  629. df = df,
  630. plot_type = "scatter",
  631. x_var = "conc_num_factor_factor",
  632. y_var = var,
  633. x_label = unique(df$Drug)[1],
  634. title = sprintf("Scatter RF for %s with SD", var),
  635. coord_cartesian = y_limits,
  636. error_bar = TRUE,
  637. x_breaks = unique(df$conc_num_factor_factor),
  638. x_labels = as.character(unique(df$conc_num)),
  639. position = "jitter",
  640. smooth = TRUE,
  641. lm_line = list(
  642. intercept = intercept_value,
  643. slope = slope_value
  644. )
  645. )
  646. overall_plot_configs <- append(overall_plot_configs, list(plot_config))
  647. }
  648. # Delta interaction plots
  649. grouped_data <- df %>%
  650. group_by(across(all_of(group_vars))) %>%
  651. group_split()
  652. for (group_data in grouped_data) {
  653. OrfRep <- first(group_data$OrfRep)
  654. Gene <- first(group_data$Gene)
  655. num <- if ("num" %in% names(group_data)) first(group_data$num) else ""
  656. if (type == "reference") {
  657. OrfRepTitle <- paste(OrfRep, Gene, num, sep = "_")
  658. } else if (type == "deletion") {
  659. OrfRepTitle <- OrfRep
  660. }
  661. for (var in names(delta_limits_map)) {
  662. y_limits <- delta_limits_map[[var]]
  663. y_span <- y_limits[2] - y_limits[1]
  664. # Error bars
  665. WT_sd_value <- first(group_data[[paste0("WT_sd_", var)]], default = 0)
  666. # Z_Shift and lm values
  667. Z_Shift_value <- round(first(group_data[[paste0("Z_Shift_", var)]], default = 0), 2)
  668. Z_lm_value <- round(first(group_data[[paste0("Z_lm_", var)]], default = 0), 2)
  669. R_squared_value <- round(first(group_data[[paste0("R_squared_", var)]], default = 0), 2)
  670. # NG, DB, SM values
  671. NG_value <- first(group_data$NG, default = 0)
  672. DB_value <- first(group_data$DB, default = 0)
  673. SM_value <- first(group_data$SM, default = 0)
  674. annotations <- list(
  675. list(x = 1, y = y_limits[2] - 0.2 * y_span, label = paste("ZShift =", Z_Shift_value)),
  676. list(x = 1, y = y_limits[2] - 0.3 * y_span, label = paste("lm ZScore =", Z_lm_value)),
  677. list(x = 1, y = y_limits[2] - 0.4 * y_span, label = paste("R-squared =", R_squared_value)),
  678. list(x = 1, y = y_limits[1] + 0.2 * y_span, label = paste("NG =", NG_value)),
  679. list(x = 1, y = y_limits[1] + 0.1 * y_span, label = paste("DB =", DB_value)),
  680. list(x = 1, y = y_limits[1], label = paste("SM =", SM_value))
  681. )
  682. # lm_line for delta plots
  683. lm_intercept_value <- first(group_data[[lm_intercept_col]], default = 0)
  684. lm_slope_value <- first(group_data[[lm_slope_col]], default = 0)
  685. plot_config <- list(
  686. df = group_data,
  687. plot_type = "scatter",
  688. x_var = "conc_num_factor_factor",
  689. y_var = var,
  690. x_label = unique(group_data$Drug)[1],
  691. title = paste(OrfRepTitle, Gene, num, sep = " "),
  692. coord_cartesian = y_limits,
  693. annotations = annotations,
  694. error_bar = TRUE,
  695. error_bar_params = list(
  696. ymin = 0 - (2 * WT_sd_value),
  697. ymax = 0 + (2 * WT_sd_value)
  698. ),
  699. smooth = TRUE,
  700. x_breaks = unique(group_data$conc_num_factor_factor),
  701. x_labels = as.character(unique(group_data$conc_num)),
  702. ylim_vals = y_limits,
  703. lm_line = list(
  704. intercept = lm_intercept_value,
  705. slope = lm_slope_value
  706. )
  707. )
  708. delta_plot_configs <- append(delta_plot_configs, list(plot_config))
  709. }
  710. }
  711. # Calculate dynamic grid layout
  712. grid_ncol <- 4
  713. num_plots <- length(delta_plot_configs)
  714. grid_nrow <- ceiling(num_plots / grid_ncol)
  715. return(list(
  716. list(grid_layout = list(ncol = 2, nrow = 2), plots = overall_plot_configs),
  717. list(grid_layout = list(ncol = 4, nrow = grid_nrow), plots = delta_plot_configs)
  718. ))
  719. }
  720. generate_rank_plot_configs <- function(df, variables, is_lm = FALSE, adjust = FALSE, overlap_color = FALSE) {
  721. sd_bands <- c(1, 2, 3)
  722. plot_configs <- list()
  723. variables <- c("L", "K")
  724. # Adjust (if necessary) and rank columns
  725. for (variable in variables) {
  726. if (adjust) {
  727. df[[paste0("Avg_Zscore_", variable)]] <- ifelse(is.na(df[[paste0("Avg_Zscore_", variable)]]), 0.001, df[[paste0("Avg_Zscore_", variable)]])
  728. df[[paste0("Z_lm_", variable)]] <- ifelse(is.na(df[[paste0("Z_lm_", variable)]]), 0.001, df[[paste0("Z_lm_", variable)]])
  729. }
  730. df[[paste0("Rank_", variable)]] <- rank(df[[paste0("Avg_Zscore_", variable)]], na.last = "keep")
  731. df[[paste0("Rank_lm_", variable)]] <- rank(df[[paste0("Z_lm_", variable)]], na.last = "keep")
  732. }
  733. # Helper function to create a plot configuration
  734. create_plot_config <- function(variable, rank_var, zscore_var, y_label, sd_band, with_annotations = TRUE) {
  735. num_enhancers <- sum(df[[zscore_var]] >= sd_band, na.rm = TRUE)
  736. num_suppressors <- sum(df[[zscore_var]] <= -sd_band, na.rm = TRUE)
  737. # Default plot config
  738. plot_config <- list(
  739. df = df,
  740. x_var = rank_var,
  741. y_var = zscore_var,
  742. plot_type = "scatter",
  743. title = paste(y_label, "vs. Rank for", variable, "above", sd_band),
  744. sd_band = sd_band,
  745. fill_positive = "#542788",
  746. fill_negative = "orange",
  747. alpha_positive = 0.3,
  748. alpha_negative = 0.3,
  749. annotations = NULL,
  750. shape = 3,
  751. size = 0.1,
  752. y_label = y_label,
  753. x_label = "Rank",
  754. legend_position = "none"
  755. )
  756. if (with_annotations) {
  757. # Add specific annotations for plots with annotations
  758. plot_config$annotations <- list(
  759. list(
  760. x = median(df[[rank_var]], na.rm = TRUE),
  761. y = max(df[[zscore_var]], na.rm = TRUE) * 0.9,
  762. label = paste("Deletion Enhancers =", num_enhancers)
  763. ),
  764. list(
  765. x = median(df[[rank_var]], na.rm = TRUE),
  766. y = min(df[[zscore_var]], na.rm = TRUE) * 0.9,
  767. label = paste("Deletion Suppressors =", num_suppressors)
  768. )
  769. )
  770. }
  771. return(plot_config)
  772. }
  773. # Generate plots for each variable
  774. for (variable in variables) {
  775. rank_var <- if (is_lm) paste0("Rank_lm_", variable) else paste0("Rank_", variable)
  776. zscore_var <- if (is_lm) paste0("Z_lm_", variable) else paste0("Avg_Zscore_", variable)
  777. y_label <- if (is_lm) paste("Int Z score", variable) else paste("Avg Z score", variable)
  778. # Loop through SD bands
  779. for (sd_band in sd_bands) {
  780. # Create plot with annotations
  781. plot_configs[[length(plot_configs) + 1]] <- create_plot_config(variable, rank_var, zscore_var, y_label, sd_band, with_annotations = TRUE)
  782. # Create plot without annotations
  783. plot_configs[[length(plot_configs) + 1]] <- create_plot_config(variable, rank_var, zscore_var, y_label, sd_band, with_annotations = FALSE)
  784. }
  785. }
  786. # Calculate dynamic grid layout based on the number of plots
  787. grid_ncol <- 3
  788. num_plots <- length(plot_configs)
  789. grid_nrow <- ceiling(num_plots / grid_ncol) # Automatically calculate the number of rows
  790. return(list(grid_layout = list(ncol = grid_ncol, nrow = grid_nrow), plots = plot_configs))
  791. }
  792. generate_correlation_plot_configs <- function(df, correlation_stats) {
  793. # Define relationships for different-variable correlations
  794. relationships <- list(
  795. list(x = "L", y = "K"),
  796. list(x = "L", y = "r"),
  797. list(x = "L", y = "AUC"),
  798. list(x = "K", y = "r"),
  799. list(x = "K", y = "AUC"),
  800. list(x = "r", y = "AUC")
  801. )
  802. plot_configs <- list()
  803. # Iterate over the option to highlight cyan points (TRUE/FALSE)
  804. highlight_cyan_options <- c(FALSE, TRUE)
  805. for (highlight_cyan in highlight_cyan_options) {
  806. for (rel in relationships) {
  807. # Extract relevant variable names for Z_lm values
  808. x_var <- paste0("Z_lm_", rel$x)
  809. y_var <- paste0("Z_lm_", rel$y)
  810. # Access the correlation statistics from the correlation_stats list
  811. relationship_name <- paste0(rel$x, "_vs_", rel$y) # Example: L_vs_K
  812. stats <- correlation_stats[[relationship_name]]
  813. intercept <- stats$intercept
  814. slope <- stats$slope
  815. r_squared <- stats$r_squared
  816. # Generate the label for the plot
  817. plot_label <- paste("Interaction", rel$x, "vs.", rel$y)
  818. # Construct plot config
  819. plot_config <- list(
  820. df = df,
  821. x_var = x_var,
  822. y_var = y_var,
  823. plot_type = "scatter",
  824. title = plot_label,
  825. annotations = list(
  826. list(
  827. x = mean(df[[x_var]], na.rm = TRUE),
  828. y = mean(df[[y_var]], na.rm = TRUE),
  829. label = paste("R-squared =", round(r_squared, 3))
  830. )
  831. ),
  832. smooth = TRUE,
  833. smooth_color = "tomato3",
  834. lm_line = list(
  835. intercept = intercept,
  836. slope = slope
  837. ),
  838. shape = 3,
  839. size = 0.5,
  840. color_var = "Overlap",
  841. cyan_points = highlight_cyan # Include cyan points or not based on the loop
  842. )
  843. plot_configs <- append(plot_configs, list(plot_config))
  844. }
  845. }
  846. return(list(plots = plot_configs))
  847. }
  848. main <- function() {
  849. lapply(names(args$experiments), function(exp_name) {
  850. exp <- args$experiments[[exp_name]]
  851. exp_path <- exp$path
  852. exp_sd <- exp$sd
  853. out_dir <- file.path(exp_path, "zscores")
  854. out_dir_qc <- file.path(exp_path, "zscores", "qc")
  855. dir.create(out_dir, recursive = TRUE, showWarnings = FALSE)
  856. dir.create(out_dir_qc, recursive = TRUE, showWarnings = FALSE)
  857. summary_vars <- c("L", "K", "r", "AUC", "delta_bg") # fields to filter and calculate summary stats across
  858. interaction_vars <- c("L", "K", "r", "AUC") # fields to calculate interaction z-scores
  859. message("Loading and filtering data for experiment: ", exp_name)
  860. df <- load_and_filter_data(args$easy_results_file, sd = exp_sd) %>%
  861. update_gene_names(args$sgd_gene_list) %>%
  862. as_tibble()
  863. # Filter rows above delta background tolerance
  864. df_above_tolerance <- df %>% filter(DB == 1)
  865. df_na <- df %>% mutate(across(all_of(summary_vars), ~ ifelse(DB == 1, NA, .))) # formerly X
  866. df_no_zeros <- df_na %>% filter(L > 0) # formerly X_noZero
  867. # Save some constants
  868. max_conc <- max(df$conc_num_factor)
  869. message("Calculating summary statistics before quality control")
  870. df_stats <- calculate_summary_stats(
  871. df = df,
  872. variables = summary_vars,
  873. group_vars = c("conc_num", "conc_num_factor", "conc_num_factor_factor"))$df_with_stats
  874. message("Calculating summary statistics after quality control")
  875. ss <- calculate_summary_stats(
  876. df = df_na,
  877. variables = summary_vars,
  878. group_vars = c("conc_num", "conc_num_factor", "conc_num_factor_factor"))
  879. df_na_ss <- ss$summary_stats
  880. df_na_stats <- ss$df_with_stats
  881. write.csv(df_na_ss, file = file.path(out_dir, "summary_stats_all_strains.csv"), row.names = FALSE)
  882. # For plotting (ggplot warns on NAs)
  883. df_na_stats_filtered <- df_na_stats %>% filter(if_all(all_of(summary_vars), is.finite))
  884. df_na_stats <- df_na_stats %>%
  885. mutate(
  886. WT_L = mean_L,
  887. WT_K = mean_K,
  888. WT_r = mean_r,
  889. WT_AUC = mean_AUC,
  890. WT_sd_L = sd_L,
  891. WT_sd_K = sd_K,
  892. WT_sd_r = sd_r,
  893. WT_sd_AUC = sd_AUC
  894. )
  895. # Pull the background means and standard deviations from zero concentration for interactions
  896. bg_stats <- df_na_stats %>%
  897. filter(conc_num == 0) %>%
  898. summarise(
  899. mean_L = first(mean_L),
  900. mean_K = first(mean_K),
  901. mean_r = first(mean_r),
  902. mean_AUC = first(mean_AUC),
  903. sd_L = first(sd_L),
  904. sd_K = first(sd_K),
  905. sd_r = first(sd_r),
  906. sd_AUC = first(sd_AUC)
  907. )
  908. message("Calculating summary statistics after quality control excluding zero values")
  909. df_no_zeros_stats <- calculate_summary_stats(
  910. df = df_no_zeros,
  911. variables = summary_vars,
  912. group_vars = c("conc_num", "conc_num_factor", "conc_num_factor_factor")
  913. )$df_with_stats
  914. message("Filtering by 2SD of K")
  915. df_na_within_2sd_k <- df_na_stats %>%
  916. filter(K >= (mean_K - 2 * sd_K) & K <= (mean_K + 2 * sd_K))
  917. df_na_outside_2sd_k <- df_na_stats %>%
  918. filter(K < (mean_K - 2 * sd_K) | K > (mean_K + 2 * sd_K))
  919. message("Calculating summary statistics for L within 2SD of K")
  920. # TODO We're omitting the original z_max calculation, not sure if needed?
  921. ss <- calculate_summary_stats(df_na_within_2sd_k, "L", group_vars = c("conc_num", "conc_num_factor", "conc_num_factor_factor"))$summary_stats
  922. write.csv(ss,
  923. file = file.path(out_dir_qc, "max_observed_L_vals_for_spots_within_2sd_K.csv"),
  924. row.names = FALSE)
  925. message("Calculating summary statistics for L outside 2SD of K")
  926. ss <- calculate_summary_stats(df_na_outside_2sd_k, "L", group_vars = c("conc_num", "conc_num_factor", "conc_num_factor_factor"))
  927. df_na_l_outside_2sd_k_stats <- ss$df_with_stats
  928. write.csv(ss$summary_stats,
  929. file = file.path(out_dir, "max_observed_L_vals_for_spots_outside_2sd_K.csv"),
  930. row.names = FALSE)
  931. # Each list of plots corresponds to a file
  932. l_vs_k_plot_configs <- list(
  933. plots = list(
  934. list(
  935. df = df,
  936. x_var = "L",
  937. y_var = "K",
  938. plot_type = "scatter",
  939. tooltip_vars = c("OrfRep", "Gene", "delta_bg"),
  940. title = "Raw L vs K before quality control",
  941. color_var = "conc_num_factor_factor",
  942. error_bar = FALSE,
  943. legend_position = "right"
  944. )
  945. )
  946. )
  947. frequency_delta_bg_plot_configs <- list(
  948. plots = list(
  949. list(
  950. df = df_stats,
  951. x_var = "delta_bg",
  952. y_var = NULL,
  953. plot_type = "density",
  954. title = "Density plot for Delta Background by [Drug] (All Data)",
  955. color_var = "conc_num_factor_factor",
  956. x_label = "Delta Background",
  957. y_label = "Density",
  958. error_bar = FALSE,
  959. legend_position = "right"
  960. ),
  961. list(
  962. df = df_stats,
  963. x_var = "delta_bg",
  964. y_var = NULL,
  965. plot_type = "bar",
  966. title = "Bar plot for Delta Background by [Drug] (All Data)",
  967. color_var = "conc_num_factor_factor",
  968. x_label = "Delta Background",
  969. y_label = "Count",
  970. error_bar = FALSE,
  971. legend_position = "right"
  972. )
  973. )
  974. )
  975. above_threshold_plot_configs <- list(
  976. plots = list(
  977. list(
  978. df = df_above_tolerance,
  979. x_var = "L",
  980. y_var = "K",
  981. plot_type = "scatter",
  982. tooltip_vars = c("OrfRep", "Gene", "delta_bg"),
  983. title = paste("Raw L vs K for strains above Delta Background threshold of",
  984. round(df_above_tolerance$delta_bg_tolerance[[1]], 3), "or above"),
  985. color_var = "conc_num_factor_factor",
  986. position = "jitter",
  987. annotations = list(
  988. list(
  989. x = median(df_above_tolerance$L, na.rm = TRUE) / 2,
  990. y = median(df_above_tolerance$K, na.rm = TRUE) / 2,
  991. label = paste("# strains above Delta Background tolerance =", nrow(df_above_tolerance))
  992. )
  993. ),
  994. error_bar = FALSE,
  995. legend_position = "right"
  996. )
  997. )
  998. )
  999. plate_analysis_plot_configs <- generate_plate_analysis_plot_configs(
  1000. variables = summary_vars,
  1001. df_before = df_stats,
  1002. df_after = df_na_stats_filtered
  1003. )
  1004. plate_analysis_boxplot_configs <- generate_plate_analysis_plot_configs(
  1005. variables = summary_vars,
  1006. df_before = df_stats,
  1007. df_after = df_na_stats_filtered,
  1008. plot_type = "box"
  1009. )
  1010. plate_analysis_no_zeros_plot_configs <- generate_plate_analysis_plot_configs(
  1011. variables = summary_vars,
  1012. stages = c("after"), # Only after QC
  1013. df_after = df_no_zeros_stats
  1014. )
  1015. plate_analysis_no_zeros_boxplot_configs <- generate_plate_analysis_plot_configs(
  1016. variables = summary_vars,
  1017. stages = c("after"), # Only after QC
  1018. df_after = df_no_zeros_stats,
  1019. plot_type = "box"
  1020. )
  1021. l_outside_2sd_k_plot_configs <- list(
  1022. plots = list(
  1023. list(
  1024. df = df_na_l_outside_2sd_k_stats,
  1025. x_var = "L",
  1026. y_var = "K",
  1027. plot_type = "scatter",
  1028. title = "Raw L vs K for strains falling outside 2SD of the K mean at each Conc",
  1029. color_var = "conc_num_factor_factor",
  1030. position = "jitter",
  1031. tooltip_vars = c("OrfRep", "Gene", "delta_bg"),
  1032. annotations = list(
  1033. list(
  1034. x = median(df_na_l_outside_2sd_k_stats$L, na.rm = TRUE) / 2,
  1035. y = median(df_na_l_outside_2sd_k_stats$K, na.rm = TRUE) / 2,
  1036. label = paste("Total strains:", nrow(df_na_l_outside_2sd_k_stats))
  1037. )
  1038. ),
  1039. error_bar = FALSE,
  1040. legend_position = "right"
  1041. )
  1042. )
  1043. )
  1044. delta_bg_outside_2sd_k_plot_configs <- list(
  1045. plots = list(
  1046. list(
  1047. df = df_na_l_outside_2sd_k_stats,
  1048. x_var = "delta_bg",
  1049. y_var = "K",
  1050. plot_type = "scatter",
  1051. title = "Delta Background vs K for strains falling outside 2SD of the K mean at each Conc",
  1052. color_var = "conc_num_factor_factor",
  1053. position = "jitter",
  1054. tooltip_vars = c("OrfRep", "Gene", "delta_bg"),
  1055. annotations = list(
  1056. list(
  1057. x = median(df_na_l_outside_2sd_k_stats$delta_bg, na.rm = TRUE) / 2,
  1058. y = median(df_na_l_outside_2sd_k_stats$K, na.rm = TRUE) / 2,
  1059. label = paste("Total strains:", nrow(df_na_l_outside_2sd_k_stats))
  1060. )
  1061. ),
  1062. error_bar = FALSE,
  1063. legend_position = "right"
  1064. )
  1065. )
  1066. )
  1067. message("Generating quality control plots in parallel")
  1068. # future::plan(future::multicore, workers = parallel::detectCores())
  1069. future::plan(future::multisession, workers = 3) # generate 3 plots in parallel
  1070. plot_configs <- list(
  1071. list(out_dir = out_dir_qc, filename = "L_vs_K_before_quality_control",
  1072. plot_configs = l_vs_k_plot_configs),
  1073. list(out_dir = out_dir_qc, filename = "frequency_delta_background",
  1074. plot_configs = frequency_delta_bg_plot_configs),
  1075. list(out_dir = out_dir_qc, filename = "L_vs_K_above_threshold",
  1076. plot_configs = above_threshold_plot_configs),
  1077. list(out_dir = out_dir_qc, filename = "plate_analysis",
  1078. plot_configs = plate_analysis_plot_configs),
  1079. list(out_dir = out_dir_qc, filename = "plate_analysis_boxplots",
  1080. plot_configs = plate_analysis_boxplot_configs),
  1081. list(out_dir = out_dir_qc, filename = "plate_analysis_no_zeros",
  1082. plot_configs = plate_analysis_no_zeros_plot_configs),
  1083. list(out_dir = out_dir_qc, filename = "plate_analysis_no_zeros_boxplots",
  1084. plot_configs = plate_analysis_no_zeros_boxplot_configs),
  1085. list(out_dir = out_dir_qc, filename = "L_vs_K_for_strains_2SD_outside_mean_K",
  1086. plot_configs = l_outside_2sd_k_plot_configs),
  1087. list(out_dir = out_dir_qc, filename = "delta_background_vs_K_for_strains_2sd_outside_mean_K",
  1088. plot_configs = delta_bg_outside_2sd_k_plot_configs)
  1089. )
  1090. # Generating quality control plots in parallel
  1091. # furrr::future_map(plot_configs, function(config) {
  1092. # generate_and_save_plots(config$out_dir, config$filename, config$plot_configs)
  1093. # }, .options = furrr_options(seed = TRUE))
  1094. # Process background strains
  1095. bg_strains <- c("YDL227C")
  1096. lapply(bg_strains, function(strain) {
  1097. message("Processing background strain: ", strain)
  1098. # Handle missing data by setting zero values to NA
  1099. # and then removing any rows with NA in L col
  1100. df_bg <- df_na %>%
  1101. filter(OrfRep == strain) %>%
  1102. mutate(
  1103. L = if_else(L == 0, NA, L),
  1104. K = if_else(K == 0, NA, K),
  1105. r = if_else(r == 0, NA, r),
  1106. AUC = if_else(AUC == 0, NA, AUC)
  1107. ) %>%
  1108. filter(!is.na(L))
  1109. # Recalculate summary statistics for the background strain
  1110. message("Calculating summary statistics for background strain")
  1111. ss_bg <- calculate_summary_stats(df_bg, summary_vars, group_vars = c("OrfRep", "conc_num", "conc_num_factor", "conc_num_factor_factor"))
  1112. summary_stats_bg <- ss_bg$summary_stats
  1113. write.csv(summary_stats_bg,
  1114. file = file.path(out_dir, paste0("summary_stats_background_strain_", strain, ".csv")),
  1115. row.names = FALSE)
  1116. # Set the missing values to the highest theoretical value at each drug conc for L
  1117. # Leave other values as 0 for the max/min
  1118. df_reference <- df_na_stats %>% # formerly X2_RF
  1119. filter(OrfRep == strain) %>%
  1120. filter(!is.na(L)) %>%
  1121. group_by(conc_num, conc_num_factor, conc_num_factor_factor) %>%
  1122. mutate(
  1123. max_l_theoretical = max(max_L, na.rm = TRUE),
  1124. L = ifelse(L == 0 & !is.na(L) & conc_num > 0, max_l_theoretical, L),
  1125. SM = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, 1, 0),
  1126. L = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, max_l_theoretical, L)) %>%
  1127. ungroup()
  1128. # Ditto for deletion strains
  1129. df_deletion <- df_na_stats %>% # formerly X2
  1130. filter(OrfRep != strain) %>%
  1131. filter(!is.na(L)) %>%
  1132. mutate(SM = 0) %>%
  1133. group_by(conc_num, conc_num_factor, conc_num_factor_factor) %>%
  1134. mutate(
  1135. max_l_theoretical = max(max_L, na.rm = TRUE),
  1136. L = ifelse(L == 0 & !is.na(L) & conc_num > 0, max_l_theoretical, L),
  1137. SM = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, 1, SM),
  1138. L = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, max_l_theoretical, L)) %>%
  1139. ungroup()
  1140. message("Calculating reference strain interaction scores")
  1141. df_reference_stats <- calculate_summary_stats(
  1142. df = df_reference,
  1143. variables = interaction_vars,
  1144. group_vars = c("OrfRep", "Gene", "num", "conc_num", "conc_num_factor")
  1145. )$df_with_stats
  1146. reference_results <- calculate_interaction_scores(df_reference_stats, max_conc, bg_stats, group_vars = c("OrfRep", "Gene", "num"))
  1147. zscore_calculations_reference <- reference_results$calculations
  1148. zscore_interactions_reference <- reference_results$interactions
  1149. zscore_interactions_reference_joined <- reference_results$full_data
  1150. message("Calculating deletion strain(s) interactions scores")
  1151. df_deletion_stats <- calculate_summary_stats(
  1152. df = df_deletion,
  1153. variables = interaction_vars,
  1154. group_vars = c("OrfRep", "Gene", "conc_num", "conc_num_factor")
  1155. )$df_with_stats
  1156. deletion_results <- calculate_interaction_scores(df_deletion_stats, max_conc, bg_stats, group_vars = c("OrfRep", "Gene"))
  1157. zscore_calculations <- deletion_results$calculations
  1158. zscore_interactions <- deletion_results$interactions
  1159. zscore_interactions_joined <- deletion_results$full_data
  1160. # Writing Z-Scores to file
  1161. write.csv(zscore_calculations_reference, file = file.path(out_dir, "zscore_calculations_reference.csv"), row.names = FALSE)
  1162. write.csv(zscore_calculations, file = file.path(out_dir, "zscore_calculations.csv"), row.names = FALSE)
  1163. write.csv(zscore_interactions_reference, file = file.path(out_dir, "zscore_interactions_reference.csv"), row.names = FALSE)
  1164. write.csv(zscore_interactions, file = file.path(out_dir, "zscore_interactions.csv"), row.names = FALSE)
  1165. # Create interaction plots
  1166. message("Generating reference interaction plots")
  1167. reference_plot_configs <- generate_interaction_plot_configs(zscore_interactions_reference_joined, "reference")
  1168. generate_and_save_plots(out_dir, "interaction_plots_reference", reference_plot_configs)
  1169. message("Generating deletion interaction plots")
  1170. deletion_plot_configs <- generate_interaction_plot_configs(zscore_interactions_joined, "deletion")
  1171. generate_and_save_plots(out_dir, "interaction_plots", deletion_plot_configs)
  1172. # Define conditions for enhancers and suppressors
  1173. # TODO Add to study config?
  1174. threshold <- 2
  1175. enhancer_condition_L <- zscore_interactions$Avg_Zscore_L >= threshold
  1176. suppressor_condition_L <- zscore_interactions$Avg_Zscore_L <= -threshold
  1177. enhancer_condition_K <- zscore_interactions$Avg_Zscore_K >= threshold
  1178. suppressor_condition_K <- zscore_interactions$Avg_Zscore_K <= -threshold
  1179. # Subset data
  1180. enhancers_L <- zscore_interactions[enhancer_condition_L, ]
  1181. suppressors_L <- zscore_interactions[suppressor_condition_L, ]
  1182. enhancers_K <- zscore_interactions[enhancer_condition_K, ]
  1183. suppressors_K <- zscore_interactions[suppressor_condition_K, ]
  1184. # Save enhancers and suppressors
  1185. message("Writing enhancer/suppressor csv files")
  1186. write.csv(enhancers_L, file = file.path(out_dir, "zscore_interactions_deletion_enhancers_L.csv"), row.names = FALSE)
  1187. write.csv(suppressors_L, file = file.path(out_dir, "zscore_interactions_deletion_suppressors_L.csv"), row.names = FALSE)
  1188. write.csv(enhancers_K, file = file.path(out_dir, "zscore_interactions_deletion_enhancers_K.csv"), row.names = FALSE)
  1189. write.csv(suppressors_K, file = file.path(out_dir, "zscore_interactions_deletion_suppressors_K.csv"), row.names = FALSE)
  1190. # Combine conditions for enhancers and suppressors
  1191. enhancers_and_suppressors_L <- zscore_interactions[enhancer_condition_L | suppressor_condition_L, ]
  1192. enhancers_and_suppressors_K <- zscore_interactions[enhancer_condition_K | suppressor_condition_K, ]
  1193. # Save combined enhancers and suppressors
  1194. write.csv(enhancers_and_suppressors_L,
  1195. file = file.path(out_dir, "zscore_interactions_deletion_enhancers_and_suppressors_L.csv"), row.names = FALSE)
  1196. write.csv(enhancers_and_suppressors_K,
  1197. file = file.path(out_dir, "zscore_interaction_deletion_enhancers_and_suppressors_K.csv"), row.names = FALSE)
  1198. # Handle linear model based enhancers and suppressors
  1199. lm_threshold <- 2 # TODO add to study config?
  1200. enhancers_lm_L <- zscore_interactions[zscore_interactions$Z_lm_L >= lm_threshold, ]
  1201. suppressors_lm_L <- zscore_interactions[zscore_interactions$Z_lm_L <= -lm_threshold, ]
  1202. enhancers_lm_K <- zscore_interactions[zscore_interactions$Z_lm_K >= lm_threshold, ]
  1203. suppressors_lm_K <- zscore_interactions[zscore_interactions$Z_lm_K <= -lm_threshold, ]
  1204. # Save linear model based enhancers and suppressors
  1205. message("Writing linear model enhancer/suppressor csv files")
  1206. write.csv(enhancers_lm_L,
  1207. file = file.path(out_dir, "zscore_interactions_deletion_enhancers_lm_L.csv"), row.names = FALSE)
  1208. write.csv(suppressors_lm_L,
  1209. file = file.path(out_dir, "zscore_interactions_deletion_suppressors_lm_L.csv"), row.names = FALSE)
  1210. write.csv(enhancers_lm_K,
  1211. file = file.path(out_dir, "zscore_interactions_deletion_enhancers_lm_K.csv"), row.names = FALSE)
  1212. write.csv(suppressors_lm_K,
  1213. file = file.path(out_dir, "zscore_interactions_deletion_suppressors_lm_K.csv"), row.names = FALSE)
  1214. message("Generating rank plots")
  1215. rank_plot_configs <- generate_rank_plot_configs(
  1216. df = zscore_interactions_joined,
  1217. is_lm = FALSE,
  1218. adjust = TRUE
  1219. )
  1220. generate_and_save_plots(out_dir = out_dir, filename = "rank_plots",
  1221. plot_configs = rank_plot_configs)
  1222. message("Generating ranked linear model plots")
  1223. rank_lm_plot_configs <- generate_rank_plot_configs(
  1224. df = zscore_interactions_joined,
  1225. is_lm = TRUE,
  1226. adjust = TRUE
  1227. )
  1228. generate_and_save_plots(out_dir = out_dir, filename = "rank_plots_lm",
  1229. plot_configs = rank_lm_plot_configs)
  1230. message("Generating filtered ranked plots")
  1231. rank_plot_filtered_configs <- generate_rank_plot_configs(
  1232. df = zscore_interactions_filtered,
  1233. is_lm = FALSE,
  1234. adjust = FALSE,
  1235. overlap_color = TRUE
  1236. )
  1237. generate_and_save_plots(
  1238. out_dir = out_dir,
  1239. filename = "RankPlots_na_rm",
  1240. plot_configs = rank_plot_filtered_configs)
  1241. message("Generating filtered ranked linear model plots")
  1242. rank_plot_lm_filtered_configs <- generate_rank_plot_configs(
  1243. df = zscore_interactions_filtered,
  1244. is_lm = TRUE,
  1245. adjust = FALSE,
  1246. overlap_color = TRUE
  1247. )
  1248. generate_and_save_plots(
  1249. out_dir = out_dir,
  1250. filename = "rank_plots_lm_na_rm",
  1251. plot_configs = rank_plot_lm_filtered_configs)
  1252. message("Generating correlation curve parameter pair plots")
  1253. correlation_plot_configs <- generate_correlation_plot_configs(zscore_interactions_filtered)
  1254. generate_and_save_plots(
  1255. out_dir = out_dir,
  1256. filename = "correlation_cpps",
  1257. plot_configs = correlation_plot_configs,
  1258. )
  1259. })
  1260. })
  1261. }
  1262. main()
  1263. # For future simplification of joined dataframes
  1264. # df_joined <- left_join(cleaned_df, summary_stats, by = group_vars, suffix = c("_original", "_stats"))