calculate_interaction_zscores.R 57 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540
  1. suppressMessages({
  2. library("ggplot2")
  3. library("plotly")
  4. library("htmlwidgets")
  5. library("dplyr")
  6. library("rlang")
  7. library("ggthemes")
  8. library("data.table")
  9. library("gridExtra")
  10. library("future")
  11. library("furrr")
  12. library("purrr")
  13. })
  14. # These parallelization libraries are very noisy
  15. suppressPackageStartupMessages({
  16. library("future")
  17. library("furrr")
  18. library("purrr")
  19. })
  20. options(warn = 2)
  21. # Constants for configuration
  22. plot_width <- 14
  23. plot_height <- 9
  24. base_size <- 14
  25. parse_arguments <- function() {
  26. args <- if (interactive()) {
  27. c(
  28. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/20240116_jhartman2_DoxoHLD",
  29. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/apps/r/SGD_features.tab",
  30. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/easy/20240116_jhartman2_DoxoHLD/results_std.txt",
  31. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/20240822_jhartman2_DoxoHLD/exp1",
  32. "Experiment 1: Doxo versus HLD",
  33. 3,
  34. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/20240822_jhartman2_DoxoHLD/exp2",
  35. "Experiment 2: HLD versus Doxo",
  36. 3
  37. )
  38. } else {
  39. commandArgs(trailingOnly = TRUE)
  40. }
  41. out_dir <- normalizePath(args[1], mustWork = FALSE)
  42. sgd_gene_list <- normalizePath(args[2], mustWork = FALSE)
  43. easy_results_file <- normalizePath(args[3], mustWork = FALSE)
  44. # The remaining arguments should be in groups of 3
  45. exp_args <- args[-(1:3)]
  46. if (length(exp_args) %% 3 != 0) {
  47. stop("Experiment arguments should be in groups of 3: path, name, sd.")
  48. }
  49. # Extract the experiments into a list
  50. experiments <- list()
  51. for (i in seq(1, length(exp_args), by = 3)) {
  52. exp_name <- exp_args[i + 1]
  53. experiments[[exp_name]] <- list(
  54. path = normalizePath(exp_args[i], mustWork = FALSE),
  55. sd = as.numeric(exp_args[i + 2])
  56. )
  57. }
  58. # Extract the trailing number from each path
  59. trailing_numbers <- sapply(experiments, function(x) {
  60. path <- x$path
  61. nums <- gsub("[^0-9]", "", basename(path))
  62. as.integer(nums)
  63. })
  64. # Sort the experiments based on the trailing numbers
  65. sorted_experiments <- experiments[order(trailing_numbers)]
  66. list(
  67. out_dir = out_dir,
  68. sgd_gene_list = sgd_gene_list,
  69. easy_results_file = easy_results_file,
  70. experiments = sorted_experiments
  71. )
  72. }
  73. args <- parse_arguments()
  74. # Should we keep output in exp dirs or combine in the study output dir?
  75. # dir.create(file.path(args$out_dir, "zscores"), showWarnings = FALSE)
  76. # dir.create(file.path(args$out_dir, "zscores", "qc"), showWarnings = FALSE)
  77. theme_publication <- function(base_size = 14, base_family = "sans", legend_position = "bottom") {
  78. theme_foundation <- ggthemes::theme_foundation(base_size = base_size, base_family = base_family)
  79. theme_foundation %+replace%
  80. theme(
  81. plot.title = element_text(face = "bold", size = rel(1.6), hjust = 0.5),
  82. text = element_text(),
  83. panel.background = element_blank(),
  84. plot.background = element_blank(),
  85. panel.border = element_blank(),
  86. axis.title = element_text(face = "bold", size = rel(1.4)),
  87. axis.title.y = element_text(angle = 90, vjust = 2),
  88. # axis.title.x = element_text(vjust = -0.2), # TODO this causes errors
  89. axis.text = element_text(size = rel(1.2)),
  90. axis.line = element_line(colour = "black"),
  91. # axis.ticks = element_line(),
  92. panel.grid.major = element_line(colour = "#f0f0f0"),
  93. panel.grid.minor = element_blank(),
  94. legend.key = element_rect(colour = NA),
  95. legend.position = legend_position,
  96. legend.direction = ifelse(legend_position == "right", "vertical", "horizontal"),
  97. # legend.key.size = unit(0.5, "cm"),
  98. legend.spacing = unit(0, "cm"),
  99. legend.title = element_text(face = "italic", size = rel(1.3)),
  100. legend.text = element_text(size = rel(1.2)),
  101. plot.margin = unit(c(10, 5, 5, 5), "mm"),
  102. # strip.background = element_rect(colour = "#f0f0f0", fill = "#f0f0f0"),
  103. # strip.text = element_text(face = "bold")
  104. )
  105. }
  106. scale_fill_publication <- function(...) {
  107. discrete_scale("fill", "Publication", manual_pal(values = c(
  108. "#386cb0", "#fdb462", "#7fc97f", "#ef3b2c", "#662506",
  109. "#a6cee3", "#fb9a99", "#984ea3", "#ffff33"
  110. )), ...)
  111. }
  112. scale_colour_publication <- function(...) {
  113. discrete_scale("colour", "Publication", manual_pal(values = c(
  114. "#386cb0", "#fdb462", "#7fc97f", "#ef3b2c", "#662506",
  115. "#a6cee3", "#fb9a99", "#984ea3", "#ffff33"
  116. )), ...)
  117. }
  118. # Load the initial dataframe from the easy_results_file
  119. load_and_filter_data <- function(easy_results_file, sd = 3) {
  120. df <- read.delim(easy_results_file, skip = 2, as.is = TRUE, row.names = 1, strip.white = TRUE)
  121. df <- df %>%
  122. filter(!(.[[1]] %in% c("", "Scan"))) %>%
  123. filter(!is.na(ORF) & ORF != "" & !Gene %in% c("BLANK", "Blank", "blank") & Drug != "BMH21") %>%
  124. # Rename columns
  125. rename(L = l, num = Num., AUC = AUC96, scan = Scan, last_bg = LstBackgrd, first_bg = X1stBackgrd) %>%
  126. mutate(
  127. across(c(Col, Row, num, L, K, r, scan, AUC, last_bg, first_bg), as.numeric),
  128. delta_bg = last_bg - first_bg,
  129. delta_bg_tolerance = mean(delta_bg, na.rm = TRUE) + (sd * sd(delta_bg, na.rm = TRUE)),
  130. NG = if_else(L == 0 & !is.na(L), 1, 0),
  131. DB = if_else(delta_bg >= delta_bg_tolerance, 1, 0),
  132. SM = 0,
  133. OrfRep = if_else(ORF == "YDL227C", "YDL227C", OrfRep), # should these be hardcoded?
  134. conc_num = as.numeric(gsub("[^0-9\\.]", "", Conc)),
  135. conc_num_factor_new = factor(conc_num),
  136. conc_num_factor_zeroed = factor(as.numeric(conc_num_factor_new) - 1),
  137. conc_num_factor = as.numeric(conc_num_factor_zeroed) # for legacy purposes
  138. )
  139. return(df)
  140. }
  141. # Update Gene names using the SGD gene list
  142. update_gene_names <- function(df, sgd_gene_list) {
  143. # Load SGD gene list
  144. genes <- read.delim(file = sgd_gene_list,
  145. quote = "", header = FALSE,
  146. colClasses = c(rep("NULL", 3), rep("character", 2), rep("NULL", 11)))
  147. # Create a named vector for mapping ORF to GeneName
  148. gene_map <- setNames(genes$V5, genes$V4)
  149. # Vectorized match to find the GeneName from gene_map
  150. mapped_genes <- gene_map[df$ORF]
  151. # Replace NAs in mapped_genes with original Gene names (preserves existing Gene names if ORF is not found)
  152. updated_genes <- ifelse(is.na(mapped_genes) | df$OrfRep == "YDL227C", df$Gene, mapped_genes)
  153. # Ensure Gene is not left blank or incorrectly updated to "OCT1"
  154. df <- df %>%
  155. mutate(Gene = ifelse(updated_genes == "" | updated_genes == "OCT1", OrfRep, updated_genes))
  156. return(df)
  157. }
  158. calculate_summary_stats <- function(df, variables, group_vars) {
  159. summary_stats <- df %>%
  160. group_by(across(all_of(group_vars))) %>%
  161. summarise(
  162. N = n(),
  163. across(all_of(variables),
  164. list(
  165. mean = ~mean(., na.rm = TRUE),
  166. median = ~median(., na.rm = TRUE),
  167. max = ~ifelse(all(is.na(.)), NA, max(., na.rm = TRUE)),
  168. min = ~ifelse(all(is.na(.)), NA, min(., na.rm = TRUE)),
  169. sd = ~sd(., na.rm = TRUE),
  170. se = ~sd(., na.rm = TRUE) / sqrt(N - 1) # Bessel's correction
  171. ),
  172. .names = "{.fn}_{.col}"
  173. ),
  174. .groups = "drop"
  175. )
  176. # Create a cleaned version of df that doesn't overlap with summary_stats
  177. cleaned_df <- df %>%
  178. select(-any_of(setdiff(intersect(names(df), names(summary_stats)), group_vars)))
  179. df_joined <- left_join(cleaned_df, summary_stats, by = group_vars)
  180. return(list(summary_stats = summary_stats, df_with_stats = df_joined))
  181. }
  182. calculate_interaction_scores <- function(df, max_conc, bg_stats,
  183. group_vars = c("OrfRep", "Gene", "num")) {
  184. # Calculate total concentration variables
  185. total_conc_num <- length(unique(df$conc_num))
  186. calculations <- df %>%
  187. group_by(across(all_of(group_vars))) %>%
  188. mutate(
  189. NG = sum(NG, na.rm = TRUE),
  190. DB = sum(DB, na.rm = TRUE),
  191. SM = sum(SM, na.rm = TRUE),
  192. num_non_removed_concs = total_conc_num - sum(DB, na.rm = TRUE) - 1,
  193. # Calculate raw data
  194. Raw_Shift_L = first(mean_L) - bg_stats$mean_L,
  195. Raw_Shift_K = first(mean_K) - bg_stats$mean_K,
  196. Raw_Shift_r = first(mean_r) - bg_stats$mean_r,
  197. Raw_Shift_AUC = first(mean_AUC) - bg_stats$mean_AUC,
  198. Z_Shift_L = first(Raw_Shift_L) / bg_stats$sd_L,
  199. Z_Shift_K = first(Raw_Shift_K) / bg_stats$sd_K,
  200. Z_Shift_r = first(Raw_Shift_r) / bg_stats$sd_r,
  201. Z_Shift_AUC = first(Raw_Shift_AUC) / bg_stats$sd_AUC,
  202. Exp_L = WT_L + Raw_Shift_L,
  203. Exp_K = WT_K + Raw_Shift_K,
  204. Exp_r = WT_r + Raw_Shift_r,
  205. Exp_AUC = WT_AUC + Raw_Shift_AUC,
  206. Delta_L = mean_L - Exp_L,
  207. Delta_K = mean_K - Exp_K,
  208. Delta_r = mean_r - Exp_r,
  209. Delta_AUC = mean_AUC - Exp_AUC,
  210. Delta_L = if_else(NG == 1, mean_L - WT_L, Delta_L),
  211. Delta_K = if_else(NG == 1, mean_K - WT_K, Delta_K),
  212. Delta_r = if_else(NG == 1, mean_r - WT_r, Delta_r),
  213. Delta_AUC = if_else(NG == 1, mean_AUC - WT_AUC, Delta_AUC),
  214. Delta_L = if_else(SM == 1, mean_L - WT_L, Delta_L),
  215. # Calculate Z-scores
  216. Zscore_L = Delta_L / WT_sd_L,
  217. Zscore_K = Delta_K / WT_sd_K,
  218. Zscore_r = Delta_r / WT_sd_r,
  219. Zscore_AUC = Delta_AUC / WT_sd_AUC,
  220. # Fit linear models and store in list-columns
  221. gene_lm_L = list(lm(Delta_L ~ conc_num_factor, data = pick(everything()))),
  222. gene_lm_K = list(lm(Delta_K ~ conc_num_factor, data = pick(everything()))),
  223. gene_lm_r = list(lm(Delta_r ~ conc_num_factor, data = pick(everything()))),
  224. gene_lm_AUC = list(lm(Delta_AUC ~ conc_num_factor, data = pick(everything()))),
  225. # Extract coefficients using purrr::map_dbl
  226. lm_intercept_L = map_dbl(gene_lm_L, ~ coef(.x)[1]),
  227. lm_slope_L = map_dbl(gene_lm_L, ~ coef(.x)[2]),
  228. lm_intercept_K = map_dbl(gene_lm_K, ~ coef(.x)[1]),
  229. lm_slope_K = map_dbl(gene_lm_K, ~ coef(.x)[2]),
  230. lm_intercept_r = map_dbl(gene_lm_r, ~ coef(.x)[1]),
  231. lm_slope_r = map_dbl(gene_lm_r, ~ coef(.x)[2]),
  232. lm_intercept_AUC = map_dbl(gene_lm_AUC, ~ coef(.x)[1]),
  233. lm_slope_AUC = map_dbl(gene_lm_AUC, ~ coef(.x)[2]),
  234. # Calculate lm_Score_* based on coefficients
  235. lm_Score_L = max_conc * lm_slope_L + lm_intercept_L,
  236. lm_Score_K = max_conc * lm_slope_K + lm_intercept_K,
  237. lm_Score_r = max_conc * lm_slope_r + lm_intercept_r,
  238. lm_Score_AUC = max_conc * lm_slope_AUC + lm_intercept_AUC,
  239. # Calculate R-squared values
  240. R_Squared_L = map_dbl(gene_lm_L, ~ summary(.x)$r.squared),
  241. R_Squared_K = map_dbl(gene_lm_K, ~ summary(.x)$r.squared),
  242. R_Squared_r = map_dbl(gene_lm_r, ~ summary(.x)$r.squared),
  243. R_Squared_AUC = map_dbl(gene_lm_AUC, ~ summary(.x)$r.squared)
  244. ) %>%
  245. ungroup()
  246. # Calculate overall mean and SD for lm_Score_* variables
  247. lm_means_sds <- calculations %>%
  248. summarise(
  249. lm_mean_L = mean(lm_Score_L, na.rm = TRUE),
  250. lm_sd_L = sd(lm_Score_L, na.rm = TRUE),
  251. lm_mean_K = mean(lm_Score_K, na.rm = TRUE),
  252. lm_sd_K = sd(lm_Score_K, na.rm = TRUE),
  253. lm_mean_r = mean(lm_Score_r, na.rm = TRUE),
  254. lm_sd_r = sd(lm_Score_r, na.rm = TRUE),
  255. lm_mean_AUC = mean(lm_Score_AUC, na.rm = TRUE),
  256. lm_sd_AUC = sd(lm_Score_AUC, na.rm = TRUE)
  257. )
  258. calculations <- calculations %>%
  259. mutate(
  260. Z_lm_L = (lm_Score_L - lm_means_sds$lm_mean_L) / lm_means_sds$lm_sd_L,
  261. Z_lm_K = (lm_Score_K - lm_means_sds$lm_mean_K) / lm_means_sds$lm_sd_K,
  262. Z_lm_r = (lm_Score_r - lm_means_sds$lm_mean_r) / lm_means_sds$lm_sd_r,
  263. Z_lm_AUC = (lm_Score_AUC - lm_means_sds$lm_mean_AUC) / lm_means_sds$lm_sd_AUC
  264. )
  265. # Summarize some of the stats
  266. interactions <- calculations %>%
  267. group_by(across(all_of(group_vars))) %>%
  268. mutate(
  269. # Calculate raw shifts
  270. Raw_Shift_L = first(Raw_Shift_L),
  271. Raw_Shift_K = first(Raw_Shift_K),
  272. Raw_Shift_r = first(Raw_Shift_r),
  273. Raw_Shift_AUC = first(Raw_Shift_AUC),
  274. # Calculate Z-shifts
  275. Z_Shift_L = first(Z_Shift_L),
  276. Z_Shift_K = first(Z_Shift_K),
  277. Z_Shift_r = first(Z_Shift_r),
  278. Z_Shift_AUC = first(Z_Shift_AUC),
  279. # Sum Z-scores
  280. Sum_Z_Score_L = sum(Zscore_L),
  281. Sum_Z_Score_K = sum(Zscore_K),
  282. Sum_Z_Score_r = sum(Zscore_r),
  283. Sum_Z_Score_AUC = sum(Zscore_AUC),
  284. # Calculate Average Z-scores
  285. Avg_Zscore_L = Sum_Z_Score_L / num_non_removed_concs,
  286. Avg_Zscore_K = Sum_Z_Score_K / num_non_removed_concs,
  287. Avg_Zscore_r = Sum_Z_Score_r / (total_conc_num - 1),
  288. Avg_Zscore_AUC = Sum_Z_Score_AUC / (total_conc_num - 1)
  289. ) %>%
  290. arrange(desc(Z_lm_L), desc(NG)) %>%
  291. ungroup()
  292. # Declare column order for output
  293. calculations <- calculations %>%
  294. select(
  295. "OrfRep", "Gene", "num", "conc_num", "conc_num_factor", "N",
  296. "mean_L", "mean_K", "mean_r", "mean_AUC",
  297. "median_L", "median_K", "median_r", "median_AUC",
  298. "sd_L", "sd_K", "sd_r", "sd_AUC",
  299. "se_L", "se_K", "se_r", "se_AUC",
  300. "Raw_Shift_L", "Raw_Shift_K", "Raw_Shift_r", "Raw_Shift_AUC",
  301. "Z_Shift_L", "Z_Shift_K", "Z_Shift_r", "Z_Shift_AUC",
  302. "WT_L", "WT_K", "WT_r", "WT_AUC",
  303. "WT_sd_L", "WT_sd_K", "WT_sd_r", "WT_sd_AUC",
  304. "Exp_L", "Exp_K", "Exp_r", "Exp_AUC",
  305. "Delta_L", "Delta_K", "Delta_r", "Delta_AUC",
  306. "Zscore_L", "Zscore_K", "Zscore_r", "Zscore_AUC",
  307. "NG", "SM", "DB"
  308. )
  309. interactions <- interactions %>%
  310. select(
  311. "OrfRep", "Gene", "conc_num", "conc_num_factor", "num", "NG", "DB", "SM",
  312. "Raw_Shift_L", "Raw_Shift_K", "Raw_Shift_r", "Raw_Shift_AUC",
  313. "Z_Shift_L", "Z_Shift_K", "Z_Shift_r", "Z_Shift_AUC",
  314. "Sum_Z_Score_L", "Sum_Z_Score_K", "Sum_Z_Score_r", "Sum_Z_Score_AUC",
  315. "Avg_Zscore_L", "Avg_Zscore_K", "Avg_Zscore_r", "Avg_Zscore_AUC",
  316. "lm_Score_L", "lm_Score_K", "lm_Score_r", "lm_Score_AUC",
  317. "R_Squared_L", "R_Squared_K", "R_Squared_r", "R_Squared_AUC",
  318. "Z_lm_L", "Z_lm_K", "Z_lm_r", "Z_lm_AUC"
  319. )
  320. # Clean the original dataframe by removing overlapping columns
  321. cleaned_df <- df %>%
  322. select(-any_of(
  323. setdiff(intersect(names(df), names(calculations)),
  324. c("OrfRep", "Gene", "num", "conc_num", "conc_num_factor"))))
  325. # Join the original dataframe with calculations
  326. df_with_calculations <- left_join(cleaned_df, calculations, by = c("OrfRep", "Gene", "num", "conc_num", "conc_num_factor"))
  327. # Remove overlapping columns between df_with_calculations and interactions
  328. df_with_calculations_clean <- df_with_calculations %>%
  329. select(-any_of(
  330. setdiff(intersect(names(df_with_calculations), names(interactions)),
  331. c("OrfRep", "Gene", "num", "conc_num", "conc_num_factor"))))
  332. # Join with interactions to create the full dataset
  333. full_data <- left_join(df_with_calculations_clean, interactions, by = c("OrfRep", "Gene", "num", "conc_num", "conc_num_factor"))
  334. return(list(
  335. calculations = calculations,
  336. interactions = interactions,
  337. full_data = full_data
  338. ))
  339. }
  340. generate_and_save_plots <- function(out_dir, filename, plot_configs) {
  341. message("Generating ", filename, ".pdf and ", filename, ".html")
  342. for (config_group in plot_configs) {
  343. plot_list <- config_group$plots
  344. grid_nrow <- config_group$grid_layout$nrow
  345. grid_ncol <- config_group$grid_layout$ncol
  346. # Set defaults if nrow or ncol are not provided
  347. if (is.null(grid_nrow) || is.null(grid_ncol)) {
  348. num_plots <- length(plot_list)
  349. grid_nrow <- ifelse(is.null(grid_nrow), 1, grid_nrow)
  350. grid_ncol <- ifelse(is.null(grid_ncol), num_plots, grid_ncol)
  351. }
  352. # Prepare lists to collect static and interactive plots
  353. static_plots <- list()
  354. plotly_plots <- list()
  355. # Generate each individual plot based on the configuration
  356. for (i in seq_along(plot_list)) {
  357. config <- plot_list[[i]]
  358. df <- config$df
  359. # Create the base plot
  360. aes_mapping <- if (config$plot_type == "bar") {
  361. if (!is.null(config$color_var)) {
  362. aes(x = .data[[config$x_var]], fill = as.factor(.data[[config$color_var]]), color = as.factor(.data[[config$color_var]]))
  363. } else {
  364. aes(x = .data[[config$x_var]])
  365. }
  366. } else if (config$plot_type == "density") {
  367. if (!is.null(config$color_var)) {
  368. aes(x = .data[[config$x_var]], color = as.factor(.data[[config$color_var]]))
  369. } else {
  370. aes(x = .data[[config$x_var]])
  371. }
  372. } else {
  373. if (!is.null(config$color_var)) {
  374. aes(x = .data[[config$x_var]], y = .data[[config$y_var]], color = as.factor(.data[[config$color_var]]))
  375. } else {
  376. aes(x = .data[[config$x_var]], y = .data[[config$y_var]])
  377. }
  378. }
  379. plot <- ggplot(df, aes_mapping)
  380. # Apply theme_publication with legend_position from config
  381. legend_position <- if (!is.null(config$legend_position)) config$legend_position else "bottom"
  382. plot <- plot + theme_publication(legend_position = legend_position)
  383. # Use appropriate helper function based on plot type
  384. plot <- switch(config$plot_type,
  385. "scatter" = generate_scatter_plot(plot, config),
  386. "box" = generate_box_plot(plot, config),
  387. "density" = plot + geom_density(),
  388. "bar" = plot + geom_bar(),
  389. plot # default case if no type matches
  390. )
  391. # Add title and labels
  392. if (!is.null(config$title)) {
  393. plot <- plot + ggtitle(config$title)
  394. }
  395. if (!is.null(config$x_label)) {
  396. plot <- plot + xlab(config$x_label)
  397. }
  398. if (!is.null(config$y_label)) {
  399. plot <- plot + ylab(config$y_label)
  400. }
  401. # Add cartesian coordinates if specified
  402. if (!is.null(config$coord_cartesian)) {
  403. plot <- plot + coord_cartesian(ylim = config$coord_cartesian)
  404. }
  405. # Apply scale_color_discrete(guide = FALSE) when color_var is NULL
  406. if (is.null(config$color_var)) {
  407. plot <- plot + scale_color_discrete(guide = "none")
  408. }
  409. # Add interactive tooltips for plotly
  410. tooltip_vars <- c()
  411. if (config$plot_type == "scatter") {
  412. if (!is.null(config$delta_bg_point) && config$delta_bg_point) {
  413. tooltip_vars <- c(tooltip_vars, "OrfRep", "Gene", "delta_bg")
  414. } else if (!is.null(config$gene_point) && config$gene_point) {
  415. tooltip_vars <- c(tooltip_vars, "OrfRep", "Gene")
  416. } else if (!is.null(config$y_var) && !is.null(config$x_var)) {
  417. tooltip_vars <- c(config$x_var, config$y_var)
  418. }
  419. }
  420. # Convert to plotly object and suppress warnings here
  421. plotly_plot <- suppressWarnings({
  422. if (length(tooltip_vars) > 0) {
  423. plotly::ggplotly(plot, tooltip = tooltip_vars)
  424. } else {
  425. plotly::ggplotly(plot, tooltip = "none")
  426. }
  427. })
  428. # Adjust legend position if specified
  429. if (!is.null(config$legend_position) && config$legend_position == "bottom") {
  430. plotly_plot <- plotly_plot %>% layout(legend = list(orientation = "h"))
  431. }
  432. # Add plots to lists
  433. static_plots[[i]] <- plot
  434. plotly_plots[[i]] <- plotly_plot
  435. }
  436. # Save static PDF plot(s) for the current grid
  437. pdf(file.path(out_dir, paste0(filename, ".pdf")), width = 16, height = 9)
  438. grid.arrange(grobs = static_plots, ncol = grid_ncol, nrow = grid_nrow)
  439. dev.off()
  440. combined_plot <- plotly::subplot(
  441. plotly_plots,
  442. nrows = grid_nrow,
  443. ncols = grid_ncol,
  444. margin = 0.05
  445. )
  446. # Save combined HTML plot(s)
  447. html_file <- file.path(out_dir, paste0(filename, ".html"))
  448. saveWidget(combined_plot, file = html_file, selfcontained = TRUE)
  449. }
  450. }
  451. generate_scatter_plot <- function(plot, config) {
  452. # Define the points
  453. shape <- if (!is.null(config$shape)) config$shape else 3
  454. size <- if (!is.null(config$size)) config$size else 1.5
  455. position <-
  456. if (!is.null(config$position) && config$position == "jitter") {
  457. position_jitter(width = 0.1, height = 0)
  458. } else {
  459. "identity"
  460. }
  461. plot <- plot + geom_point(
  462. shape = shape,
  463. size = size,
  464. position = position
  465. )
  466. if (!is.null(config$cyan_points) && config$cyan_points) {
  467. plot <- plot + geom_point(
  468. aes(x = .data[[config$x_var]], y = .data[[config$y_var]]),
  469. color = "cyan",
  470. shape = 3,
  471. size = 0.5
  472. )
  473. }
  474. # Add Smooth Line if specified
  475. if (!is.null(config$smooth) && config$smooth) {
  476. smooth_color <- if (!is.null(config$smooth_color)) config$smooth_color else "blue"
  477. if (!is.null(config$lm_line)) {
  478. plot <- plot +
  479. geom_abline(
  480. intercept = config$lm_line$intercept,
  481. slope = config$lm_line$slope,
  482. color = smooth_color
  483. )
  484. } else {
  485. plot <- plot +
  486. geom_smooth(
  487. method = "lm",
  488. se = FALSE,
  489. color = smooth_color
  490. )
  491. }
  492. }
  493. # Add SD Bands if specified
  494. if (!is.null(config$sd_band)) {
  495. plot <- plot +
  496. annotate(
  497. "rect",
  498. xmin = -Inf, xmax = Inf,
  499. ymin = config$sd_band, ymax = Inf,
  500. fill = ifelse(!is.null(config$fill_positive), config$fill_positive, "#542788"),
  501. alpha = ifelse(!is.null(config$alpha_positive), config$alpha_positive, 0.3)
  502. ) +
  503. annotate(
  504. "rect",
  505. xmin = -Inf, xmax = Inf,
  506. ymin = -config$sd_band, ymax = -Inf,
  507. fill = ifelse(!is.null(config$fill_negative), config$fill_negative, "orange"),
  508. alpha = ifelse(!is.null(config$alpha_negative), config$alpha_negative, 0.3)
  509. ) +
  510. geom_hline(
  511. yintercept = c(-config$sd_band, config$sd_band),
  512. color = ifelse(!is.null(config$hl_color), config$hl_color, "gray")
  513. )
  514. }
  515. # Add Rectangles if specified
  516. if (!is.null(config$rectangles)) {
  517. for (rect in config$rectangles) {
  518. plot <- plot + annotate(
  519. "rect",
  520. xmin = rect$xmin,
  521. xmax = rect$xmax,
  522. ymin = rect$ymin,
  523. ymax = rect$ymax,
  524. fill = ifelse(is.null(rect$fill), NA, rect$fill),
  525. color = ifelse(is.null(rect$color), "black", rect$color),
  526. alpha = ifelse(is.null(rect$alpha), 0.1, rect$alpha)
  527. )
  528. }
  529. }
  530. # Add error bars if specified
  531. if (!is.null(config$error_bar) && config$error_bar && !is.null(config$y_var)) {
  532. y_mean_col <- paste0("mean_", config$y_var)
  533. y_sd_col <- paste0("sd_", config$y_var)
  534. plot <- plot +
  535. geom_errorbar(
  536. aes(
  537. ymin = !!sym(y_mean_col) - !!sym(y_sd_col),
  538. ymax = !!sym(y_mean_col) + !!sym(y_sd_col)
  539. ),
  540. alpha = 0.3,
  541. linewidth = 0.5
  542. )
  543. }
  544. # Customize X-axis if specified
  545. if (!is.null(config$x_breaks) && !is.null(config$x_labels) && !is.null(config$x_label)) {
  546. plot <- plot +
  547. scale_x_discrete(
  548. name = config$x_label,
  549. breaks = config$x_breaks,
  550. labels = config$x_labels
  551. )
  552. }
  553. # Set Y-axis limits if specified
  554. if (!is.null(config$ylim_vals)) {
  555. plot <- plot + scale_y_continuous(limits = config$ylim_vals)
  556. }
  557. # Add annotations if specified
  558. if (!is.null(config$annotations)) {
  559. for (annotation in config$annotations) {
  560. plot <- plot +
  561. annotate(
  562. "text",
  563. x = annotation$x,
  564. y = annotation$y,
  565. label = annotation$label,
  566. hjust = ifelse(is.null(annotation$hjust), 0.5, annotation$hjust),
  567. vjust = ifelse(is.null(annotation$vjust), 0.5, annotation$vjust),
  568. size = ifelse(is.null(annotation$size), 6, annotation$size),
  569. color = ifelse(is.null(annotation$color), "black", annotation$color)
  570. )
  571. }
  572. }
  573. return(plot)
  574. }
  575. generate_box_plot <- function(plot, config) {
  576. # Convert x_var to a factor within aes mapping
  577. plot <- plot + geom_boxplot(aes(x = factor(.data[[config$x_var]])))
  578. # Apply scale_x_discrete for breaks, labels, and axis label if provided
  579. if (!is.null(config$x_breaks) && !is.null(config$x_labels) && !is.null(config$x_label)) {
  580. plot <- plot + scale_x_discrete(
  581. name = config$x_label,
  582. breaks = config$x_breaks,
  583. labels = config$x_labels
  584. )
  585. }
  586. return(plot)
  587. }
  588. generate_plate_analysis_plot_configs <- function(variables, stages = c("before", "after"),
  589. df_before = NULL, df_after = NULL, plot_type = "scatter") {
  590. plots <- list()
  591. for (var in variables) {
  592. for (stage in stages) {
  593. df_plot <- if (stage == "before") df_before else df_after
  594. # Check for non-finite values in the y-variable
  595. df_plot_filtered <- df_plot %>%
  596. filter(is.finite(!!sym(var)))
  597. # Count removed rows
  598. removed_rows <- nrow(df_plot) - nrow(df_plot_filtered)
  599. if (removed_rows > 0) {
  600. message(sprintf("Removed %d non-finite values for variable %s during stage %s", removed_rows, var, stage))
  601. }
  602. # Adjust settings based on plot_type
  603. if (plot_type == "scatter") {
  604. error_bar <- TRUE
  605. position <- "jitter"
  606. } else if (plot_type == "box") {
  607. error_bar <- FALSE
  608. position <- NULL
  609. }
  610. config <- list(
  611. df = df_plot,
  612. x_var = "scan",
  613. y_var = var,
  614. plot_type = plot_type,
  615. title = paste("Plate analysis by Drug Conc for", var, stage, "quality control"),
  616. error_bar = error_bar,
  617. color_var = "conc_num_factor_zeroed",
  618. position = position,
  619. size = 0.2
  620. )
  621. plots <- append(plots, list(config))
  622. }
  623. }
  624. return(plots)
  625. }
  626. generate_interaction_plot_configs <- function(df, limits_map = NULL, plot_type = "reference") {
  627. # Define limits if not provided
  628. if (is.null(limits_map)) {
  629. limits_map <- list(
  630. L = c(0, 130),
  631. K = c(-20, 160),
  632. r = c(0, 1),
  633. AUC = c(0, 12500),
  634. Delta_L = c(-60, 60),
  635. Delta_K = c(-60, 60),
  636. Delta_r = c(-0.6, 0.6),
  637. Delta_AUC = c(-6000, 6000)
  638. )
  639. }
  640. # Define grouping variables and filter data based on plot type
  641. if (plot_type == "reference") {
  642. group_vars <- c("OrfRep", "Gene", "num")
  643. df_filtered <- df %>%
  644. mutate(
  645. OrfRepCombined = paste(OrfRep, Gene, num, sep = "_")
  646. )
  647. } else if (plot_type == "deletion") {
  648. group_vars <- c("OrfRep", "Gene")
  649. df_filtered <- df %>%
  650. mutate(
  651. OrfRepCombined = paste(OrfRep, Gene, sep = "_") # Compare by OrfRep and Gene for deletion
  652. )
  653. }
  654. # Create a list to store all configs
  655. configs <- list()
  656. # Generate the first 8 scatter/box plots for L, K, r, AUC (shared between reference and deletion)
  657. overall_vars <- c("L", "K", "r", "AUC")
  658. for (var in overall_vars) {
  659. y_limits <- limits_map[[var]]
  660. config <- list(
  661. df = df_filtered,
  662. plot_type = "scatter",
  663. x_var = "conc_num_factor_new",
  664. y_var = var,
  665. x_label = unique(df_filtered$Drug)[1],
  666. title = sprintf("Scatter RF for %s with SD", var),
  667. coord_cartesian = y_limits,
  668. error_bar = TRUE,
  669. x_breaks = unique(df_filtered$conc_num_factor_new),
  670. x_labels = as.character(unique(df_filtered$conc_num)),
  671. grid_layout = list(ncol = 2, nrow = 2),
  672. position = "jitter"
  673. )
  674. configs <- append(configs, list(config))
  675. }
  676. # Generate Delta comparison plots (4x3 grid for deletion and reference)
  677. unique_groups <- df_filtered %>% select(all_of(group_vars)) %>% distinct()
  678. for (i in seq_len(nrow(unique_groups))) {
  679. group <- unique_groups[i, ]
  680. group_data <- df_filtered %>% filter(across(all_of(group_vars), ~ . == group[[cur_column()]]))
  681. OrfRep <- as.character(group$OrfRep)
  682. Gene <- if ("Gene" %in% names(group)) as.character(group$Gene) else ""
  683. num <- if ("num" %in% names(group)) as.character(group$num) else ""
  684. OrfRepCombined <- paste(OrfRep, Gene, num, sep = "_")
  685. # Generate plots for Delta variables
  686. delta_vars <- c("Delta_L", "Delta_K", "Delta_r", "Delta_AUC")
  687. for (var in delta_vars) {
  688. y_limits <- limits_map[[var]]
  689. upper_y <- y_limits[2]
  690. lower_y <- y_limits[1]
  691. y_span <- upper_y - lower_y
  692. # Get WT_sd_var for error bar calculations
  693. WT_sd_var <- paste0("WT_sd_", sub("Delta_", "", var))
  694. WT_sd_value <- group_data[[WT_sd_var]][1]
  695. error_bar_ymin <- 0 - (2 * WT_sd_value)
  696. error_bar_ymax <- 0 + (2 * WT_sd_value)
  697. # Set annotations (Z_Shifts, lm Z-Scores, NG, DB, SM values)
  698. Z_Shift_var <- paste0("Z_Shift_", sub("Delta_", "", var))
  699. Z_lm_var <- paste0("Z_lm_", sub("Delta_", "", var))
  700. Z_Shift_value <- round(group_data[[Z_Shift_var]][1], 2)
  701. Z_lm_value <- round(group_data[[Z_lm_var]][1], 2)
  702. NG_value <- group_data$NG[1]
  703. DB_value <- group_data$DB[1]
  704. SM_value <- group_data$SM[1]
  705. annotations <- list(
  706. list(x = 1, y = upper_y - 0.2 * y_span, label = paste("ZShift =", Z_Shift_value)),
  707. list(x = 1, y = upper_y - 0.3 * y_span, label = paste("lm ZScore =", Z_lm_value)),
  708. list(x = 1, y = lower_y + 0.2 * y_span, label = paste("NG =", NG_value)),
  709. list(x = 1, y = lower_y + 0.1 * y_span, label = paste("DB =", DB_value)),
  710. list(x = 1, y = lower_y, label = paste("SM =", SM_value))
  711. )
  712. # Create configuration for each Delta plot
  713. config <- list(
  714. df = group_data,
  715. plot_type = "scatter",
  716. x_var = "conc_num",
  717. y_var = var,
  718. x_label = unique(group_data$Drug)[1],
  719. title = paste(OrfRep, Gene, sep = " "),
  720. coord_cartesian = y_limits,
  721. annotations = annotations,
  722. error_bar = TRUE,
  723. error_bar_params = list(
  724. ymin = error_bar_ymin,
  725. ymax = error_bar_ymax
  726. ),
  727. lm_smooth = TRUE,
  728. x_breaks = unique(group_data$conc_num_factor_new),
  729. x_labels = as.character(unique(group_data$conc_num)),
  730. ylim_vals = y_limits,
  731. grid_layout = list(ncol = 4, nrow = 3) # Adjust grid layout for gene-gene comparisons
  732. )
  733. configs <- append(configs, list(config))
  734. }
  735. }
  736. return(configs)
  737. }
  738. generate_rank_plot_configs <- function(df, variables, is_lm = FALSE, adjust = FALSE, overlap_color = FALSE) {
  739. sd_bands <- c(1, 2, 3)
  740. avg_zscore_cols <- paste0("Avg_Zscore_", variables)
  741. z_lm_cols <- paste0("Z_lm_", variables)
  742. rank_avg_zscore_cols <- paste0("Rank_", variables)
  743. rank_z_lm_cols <- paste0("Rank_lm_", variables)
  744. configs <- list()
  745. if (adjust) {
  746. message("Replacing NA with 0.001 for Avg_Zscore_ and Z_lm_ columns for ranks")
  747. df <- df %>%
  748. mutate(
  749. across(all_of(avg_zscore_cols), ~ifelse(is.na(.), 0.001, .)),
  750. across(all_of(z_lm_cols), ~ifelse(is.na(.), 0.001, .))
  751. )
  752. }
  753. message("Calculating ranks for Avg_Zscore and Z_lm columns")
  754. rank_col_mapping <- setNames(rank_avg_zscore_cols, avg_zscore_cols)
  755. df_ranked <- df %>%
  756. mutate(across(all_of(avg_zscore_cols), ~rank(., na.last = "keep"), .names = "{rank_col_mapping[.col]}"))
  757. rank_lm_col_mapping <- setNames(rank_z_lm_cols, z_lm_cols)
  758. df_ranked <- df_ranked %>%
  759. mutate(across(all_of(z_lm_cols), ~rank(., na.last = "keep"), .names = "{rank_lm_col_mapping[.col]}"))
  760. # SD-based plots for L and K
  761. for (variable in c("L", "K")) {
  762. if (is_lm) {
  763. rank_var <- paste0("Rank_lm_", variable)
  764. zscore_var <- paste0("Z_lm_", variable)
  765. y_label <- paste("Int Z score", variable)
  766. } else {
  767. rank_var <- paste0("Rank_", variable)
  768. zscore_var <- paste0("Avg_Zscore_", variable)
  769. y_label <- paste("Avg Z score", variable)
  770. }
  771. for (sd_band in sd_bands) {
  772. num_enhancers <- sum(df_ranked[[zscore_var]] >= sd_band, na.rm = TRUE)
  773. num_suppressors <- sum(df_ranked[[zscore_var]] <= -sd_band, na.rm = TRUE)
  774. # Annotated plot configuration
  775. configs[[length(configs) + 1]] <- list(
  776. df = df_ranked,
  777. x_var = rank_var,
  778. y_var = zscore_var,
  779. plot_type = "scatter",
  780. title = paste(y_label, "vs. Rank for", variable, "above", sd_band, "SD"),
  781. sd_band = sd_band,
  782. fill_positive = "#542788",
  783. fill_negative = "orange",
  784. alpha_positive = 0.3,
  785. alpha_negative = 0.3,
  786. annotations = list(
  787. list(
  788. x = median(df_ranked[[rank_var]], na.rm = TRUE),
  789. y = max(df_ranked[[zscore_var]], na.rm = TRUE) * 0.9,
  790. label = paste("Deletion Enhancers =", num_enhancers),
  791. hjust = 0.5,
  792. vjust = 1
  793. ),
  794. list(
  795. x = median(df_ranked[[rank_var]], na.rm = TRUE),
  796. y = min(df_ranked[[zscore_var]], na.rm = TRUE) * 0.9,
  797. label = paste("Deletion Suppressors =", num_suppressors),
  798. hjust = 0.5,
  799. vjust = 0
  800. )
  801. ),
  802. shape = 3,
  803. size = 0.1,
  804. y_label = y_label,
  805. x_label = "Rank",
  806. legend_position = "none",
  807. grid_layout = list(ncol = 3, nrow = 2)
  808. )
  809. # Non-Annotated Plot Configuration
  810. configs[[length(configs) + 1]] <- list(
  811. df = df_ranked,
  812. x_var = rank_var,
  813. y_var = zscore_var,
  814. plot_type = "scatter",
  815. title = paste(y_label, "vs. Rank for", variable, "above", sd_band, "SD No Annotations"),
  816. sd_band = sd_band,
  817. fill_positive = "#542788",
  818. fill_negative = "orange",
  819. alpha_positive = 0.3,
  820. alpha_negative = 0.3,
  821. annotations = NULL,
  822. shape = 3,
  823. size = 0.1,
  824. y_label = y_label,
  825. x_label = "Rank",
  826. legend_position = "none",
  827. grid_layout = list(ncol = 3, nrow = 2)
  828. )
  829. }
  830. }
  831. # Avg ZScore and Rank Avg ZScore Plots for variables
  832. for (variable in variables) {
  833. for (plot_type in c("Avg Zscore vs lm", "Rank Avg Zscore vs lm")) {
  834. title <- paste(plot_type, variable)
  835. # Define specific variables based on plot type
  836. if (plot_type == "Avg Zscore vs lm") {
  837. x_var <- paste0("Avg_Zscore_", variable)
  838. y_var <- paste0("Z_lm_", variable)
  839. rectangles <- list(
  840. list(xmin = -2, xmax = 2, ymin = -2, ymax = 2,
  841. fill = NA, color = "grey20", alpha = 0.1
  842. )
  843. )
  844. } else if (plot_type == "Rank Avg Zscore vs lm") {
  845. x_var <- paste0("Rank_", variable)
  846. y_var <- paste0("Rank_lm_", variable)
  847. rectangles <- NULL
  848. }
  849. # Fit the linear model
  850. lm_model <- lm(as.formula(paste(y_var, "~", x_var)), data = df_ranked)
  851. # Extract intercept, slope, and R-squared from the model coefficients
  852. intercept <- coef(lm_model)[1]
  853. slope <- coef(lm_model)[2]
  854. r_squared <- summary(lm_model)$r.squared
  855. # Annotations: include R-squared in the plot
  856. annotations <- list(
  857. list(
  858. x = mean(range(df_ranked[[x_var]], na.rm = TRUE)),
  859. y = mean(range(df_ranked[[y_var]], na.rm = TRUE)),
  860. label = paste("R-squared =", round(r_squared, 2)),
  861. hjust = 0.5,
  862. vjust = 1,
  863. size = 5
  864. )
  865. )
  866. configs[[length(configs) + 1]] <- list(
  867. df = df_ranked,
  868. x_var = x_var,
  869. y_var = y_var,
  870. plot_type = "scatter",
  871. title = title,
  872. annotations = annotations,
  873. shape = 3,
  874. size = 0.25,
  875. smooth = TRUE,
  876. smooth_color = "black",
  877. lm_line = list(intercept = intercept, slope = slope),
  878. legend_position = "right",
  879. color_var = if (overlap_color) "Overlap" else NULL,
  880. x_label = x_var,
  881. y_label = y_var,
  882. rectangles = rectangles
  883. )
  884. }
  885. }
  886. return(configs)
  887. }
  888. generate_correlation_plot_configs <- function(df, highlight_cyan = FALSE) {
  889. # Define relationships for plotting
  890. relationships <- list(
  891. list(x = "Z_lm_L", y = "Z_lm_K", label = "Interaction L vs. Interaction K"),
  892. list(x = "Z_lm_L", y = "Z_lm_r", label = "Interaction L vs. Interaction r"),
  893. list(x = "Z_lm_L", y = "Z_lm_AUC", label = "Interaction L vs. Interaction AUC"),
  894. list(x = "Z_lm_K", y = "Z_lm_r", label = "Interaction K vs. Interaction r"),
  895. list(x = "Z_lm_K", y = "Z_lm_AUC", label = "Interaction K vs. Interaction AUC"),
  896. list(x = "Z_lm_r", y = "Z_lm_AUC", label = "Interaction r vs. Interaction AUC")
  897. )
  898. configs <- list()
  899. for (rel in relationships) {
  900. # Fit linear model
  901. lm_model <- lm(as.formula(paste(rel$y, "~", rel$x)), data = df)
  902. lm_summary <- summary(lm_model)
  903. intercept <- coef(lm_model)[1]
  904. slope <- coef(lm_model)[2]
  905. r_squared <- lm_summary$r.squared
  906. # Construct plot configuration
  907. config <- list(
  908. df = df,
  909. x_var = rel$x,
  910. y_var = rel$y,
  911. plot_type = "scatter",
  912. title = rel$label,
  913. x_label = paste("z-score", gsub("Z_lm_", "", rel$x)),
  914. y_label = paste("z-score", gsub("Z_lm_", "", rel$y)),
  915. annotations = list(
  916. list(
  917. x = mean(range(df[[rel$x]], na.rm = TRUE)),
  918. y = mean(range(df[[rel$y]], na.rm = TRUE)),
  919. label = paste("R-squared =", round(r_squared, 3)),
  920. hjust = 0.5,
  921. vjust = 1,
  922. size = 5,
  923. color = "black"
  924. )
  925. ),
  926. smooth = TRUE,
  927. smooth_color = "tomato3",
  928. lm_line = list(intercept = intercept, slope = slope),
  929. legend_position = "right",
  930. shape = 3,
  931. size = 0.5,
  932. color_var = "Overlap",
  933. rectangles = list(
  934. list(
  935. xmin = -2, xmax = 2, ymin = -2, ymax = 2,
  936. fill = NA, color = "grey20", alpha = 0.1
  937. )
  938. ),
  939. cyan_points = highlight_cyan, # Toggle cyan point highlighting
  940. )
  941. configs[[length(configs) + 1]] <- config
  942. }
  943. return(configs)
  944. }
  945. main <- function() {
  946. lapply(names(args$experiments), function(exp_name) {
  947. exp <- args$experiments[[exp_name]]
  948. exp_path <- exp$path
  949. exp_sd <- exp$sd
  950. out_dir <- file.path(exp_path, "zscores")
  951. out_dir_qc <- file.path(exp_path, "zscores", "qc")
  952. dir.create(out_dir, recursive = TRUE, showWarnings = FALSE)
  953. dir.create(out_dir_qc, recursive = TRUE, showWarnings = FALSE)
  954. summary_vars <- c("L", "K", "r", "AUC", "delta_bg") # fields to filter and calculate summary stats across
  955. interaction_vars <- c("L", "K", "r", "AUC") # fields to calculate interaction z-scores
  956. print_vars <- c("OrfRep", "Plate", "scan", "Col", "Row", "num", "OrfRep", "conc_num", "conc_num_factor",
  957. "delta_bg_tolerance", "delta_bg", "Gene", "L", "K", "r", "AUC", "NG", "DB")
  958. message("Loading and filtering data for experiment: ", exp_name)
  959. df <- load_and_filter_data(args$easy_results_file, sd = exp_sd) %>%
  960. update_gene_names(args$sgd_gene_list) %>%
  961. as_tibble()
  962. # Filter rows above delta background tolerance
  963. df_above_tolerance <- df %>% filter(DB == 1)
  964. df_na <- df %>% mutate(across(all_of(summary_vars), ~ ifelse(DB == 1, NA, .))) # formerly X
  965. df_no_zeros <- df_na %>% filter(L > 0) # formerly X_noZero
  966. # Save some constants
  967. max_conc <- max(df$conc_num_factor_zeroed_num)
  968. l_half_median <- (median(df_above_tolerance$L, na.rm = TRUE)) / 2
  969. k_half_median <- (median(df_above_tolerance$K, na.rm = TRUE)) / 2
  970. message("Calculating summary statistics before quality control")
  971. df_stats <- calculate_summary_stats(
  972. df = df,
  973. variables = summary_vars,
  974. group_vars = c("conc_num", "conc_num_factor"))$df_with_stats
  975. message("Calculating summary statistics after quality control")
  976. ss <- calculate_summary_stats(
  977. df = df_na,
  978. variables = summary_vars,
  979. group_vars = c("conc_num", "conc_num_factor"))
  980. df_na_ss <- ss$summary_stats
  981. df_na_stats <- ss$df_with_stats
  982. write.csv(df_na_ss, file = file.path(out_dir, "summary_stats_all_strains.csv"), row.names = FALSE)
  983. # For plotting (ggplot warns on NAs)
  984. df_na_stats_filtered <- df_na_stats %>% filter(if_all(all_of(summary_vars), is.finite))
  985. df_na_stats <- df_na_stats %>%
  986. mutate(
  987. WT_L = mean_L,
  988. WT_K = mean_K,
  989. WT_r = mean_r,
  990. WT_AUC = mean_AUC,
  991. WT_sd_L = sd_L,
  992. WT_sd_K = sd_K,
  993. WT_sd_r = sd_r,
  994. WT_sd_AUC = sd_AUC
  995. )
  996. # Pull the background means and standard deviations from zero concentration for interactions
  997. bg_stats <- df_na_stats %>%
  998. filter(conc_num == 0) %>%
  999. summarise(
  1000. mean_L = first(mean_L),
  1001. mean_K = first(mean_K),
  1002. mean_r = first(mean_r),
  1003. mean_AUC = first(mean_AUC),
  1004. sd_L = first(sd_L),
  1005. sd_K = first(sd_K),
  1006. sd_r = first(sd_r),
  1007. sd_AUC = first(sd_AUC)
  1008. )
  1009. message("Calculating summary statistics after quality control excluding zero values")
  1010. df_no_zeros_stats <- calculate_summary_stats(
  1011. df = df_no_zeros,
  1012. variables = summary_vars,
  1013. group_vars = c("conc_num", "conc_num_factor")
  1014. )$df_with_stats
  1015. message("Filtering by 2SD of K")
  1016. df_na_within_2sd_k <- df_na_stats %>%
  1017. filter(K >= (mean_K - 2 * sd_K) & K <= (mean_K + 2 * sd_K))
  1018. df_na_outside_2sd_k <- df_na_stats %>%
  1019. filter(K < (mean_K - 2 * sd_K) | K > (mean_K + 2 * sd_K))
  1020. message("Calculating summary statistics for L within 2SD of K")
  1021. # TODO We're omitting the original z_max calculation, not sure if needed?
  1022. ss <- calculate_summary_stats(df_na_within_2sd_k, "L", group_vars = c("conc_num", "conc_num_factor"))$summary_stats
  1023. write.csv(ss,
  1024. file = file.path(out_dir_qc, "max_observed_L_vals_for_spots_within_2sd_K.csv"),
  1025. row.names = FALSE)
  1026. message("Calculating summary statistics for L outside 2SD of K")
  1027. ss <- calculate_summary_stats(df_na_outside_2sd_k, "L", group_vars = c("conc_num", "conc_num_factor"))
  1028. df_na_l_outside_2sd_k_stats <- ss$df_with_stats
  1029. write.csv(ss$summary_stats,
  1030. file = file.path(out_dir, "max_observed_L_vals_for_spots_outside_2sd_K.csv"),
  1031. row.names = FALSE)
  1032. # Each plots list corresponds to a file
  1033. l_vs_k_plot_configs <- list(
  1034. list(
  1035. df = df,
  1036. x_var = "L",
  1037. y_var = "K",
  1038. plot_type = "scatter",
  1039. delta_bg_point = TRUE,
  1040. title = "Raw L vs K before quality control",
  1041. color_var = "conc_num_factor_zeroed",
  1042. error_bar = FALSE,
  1043. legend_position = "right"
  1044. )
  1045. )
  1046. frequency_delta_bg_plot_configs <- list(
  1047. list(
  1048. df = df_stats,
  1049. x_var = "delta_bg",
  1050. y_var = NULL,
  1051. plot_type = "density",
  1052. title = "Density plot for Delta Background by [Drug] (All Data)",
  1053. color_var = "conc_num_factor_zeroed",
  1054. x_label = "Delta Background",
  1055. y_label = "Density",
  1056. error_bar = FALSE,
  1057. legend_position = "right"),
  1058. list(
  1059. df = df_stats,
  1060. x_var = "delta_bg",
  1061. y_var = NULL,
  1062. plot_type = "bar",
  1063. title = "Bar plot for Delta Background by [Drug] (All Data)",
  1064. color_var = "conc_num_factor_zeroed",
  1065. x_label = "Delta Background",
  1066. y_label = "Count",
  1067. error_bar = FALSE,
  1068. legend_position = "right")
  1069. )
  1070. above_threshold_plot_configs <- list(
  1071. list(
  1072. df = df_above_tolerance,
  1073. x_var = "L",
  1074. y_var = "K",
  1075. plot_type = "scatter",
  1076. delta_bg_point = TRUE,
  1077. title = paste("Raw L vs K for strains above Delta Background threshold of",
  1078. round(df_above_tolerance$delta_bg_tolerance[[1]], 3), "or above"),
  1079. color_var = "conc_num_factor_zeroed",
  1080. position = "jitter",
  1081. annotations = list(
  1082. list(
  1083. x = l_half_median,
  1084. y = k_half_median,
  1085. label = paste("# strains above Delta Background tolerance =", nrow(df_above_tolerance))
  1086. )
  1087. ),
  1088. error_bar = FALSE,
  1089. legend_position = "right"
  1090. )
  1091. )
  1092. plate_analysis_plot_configs <- generate_plate_analysis_plot_configs(
  1093. variables = summary_vars,
  1094. df_before = df_stats,
  1095. df_after = df_na_stats_filtered
  1096. )
  1097. plate_analysis_boxplot_configs <- generate_plate_analysis_plot_configs(
  1098. variables = summary_vars,
  1099. df_before = df_stats,
  1100. df_after = df_na_stats_filtered,
  1101. plot_type = "box"
  1102. )
  1103. plate_analysis_no_zeros_plot_configs <- generate_plate_analysis_plot_configs(
  1104. variables = summary_vars,
  1105. stages = c("after"), # Only after QC
  1106. df_after = df_no_zeros_stats
  1107. )
  1108. plate_analysis_no_zeros_boxplot_configs <- generate_plate_analysis_plot_configs(
  1109. variables = summary_vars,
  1110. stages = c("after"), # Only after QC
  1111. df_after = df_no_zeros_stats,
  1112. plot_type = "box"
  1113. )
  1114. l_outside_2sd_k_plot_configs <- list(
  1115. list(
  1116. df = df_na_l_outside_2sd_k_stats,
  1117. x_var = "L",
  1118. y_var = "K",
  1119. plot_type = "scatter",
  1120. delta_bg_point = TRUE,
  1121. title = "Raw L vs K for strains falling outside 2SD of the K mean at each Conc",
  1122. color_var = "conc_num_factor_zeroed",
  1123. position = "jitter",
  1124. legend_position = "right"
  1125. )
  1126. )
  1127. delta_bg_outside_2sd_k_plot_configs <- list(
  1128. list(
  1129. df = df_na_l_outside_2sd_k_stats,
  1130. x_var = "delta_bg",
  1131. y_var = "K",
  1132. plot_type = "scatter",
  1133. gene_point = TRUE,
  1134. title = "Delta Background vs K for strains falling outside 2SD of the K mean at each Conc",
  1135. color_var = "conc_num_factor_zeroed",
  1136. position = "jitter",
  1137. legend_position = "right"
  1138. )
  1139. )
  1140. message("Generating quality control plots in parallel")
  1141. # future::plan(future::multicore, workers = parallel::detectCores())
  1142. future::plan(future::multisession, workers = 3) # generate 3 plots in parallel
  1143. plot_configs <- list(
  1144. list(out_dir = out_dir_qc, filename = "L_vs_K_before_quality_control",
  1145. plot_configs = l_vs_k_plot_configs),
  1146. list(out_dir = out_dir_qc, filename = "frequency_delta_background",
  1147. plot_configs = frequency_delta_bg_plot_configs),
  1148. list(out_dir = out_dir_qc, filename = "L_vs_K_above_threshold",
  1149. plot_configs = above_threshold_plot_configs),
  1150. list(out_dir = out_dir_qc, filename = "plate_analysis",
  1151. plot_configs = plate_analysis_plot_configs),
  1152. list(out_dir = out_dir_qc, filename = "plate_analysis_boxplots",
  1153. plot_configs = plate_analysis_boxplot_configs),
  1154. list(out_dir = out_dir_qc, filename = "plate_analysis_no_zeros",
  1155. plot_configs = plate_analysis_no_zeros_plot_configs),
  1156. list(out_dir = out_dir_qc, filename = "plate_analysis_no_zeros_boxplots",
  1157. plot_configs = plate_analysis_no_zeros_boxplot_configs),
  1158. list(out_dir = out_dir_qc, filename = "L_vs_K_for_strains_2SD_outside_mean_K",
  1159. plot_configs = l_outside_2sd_k_plot_configs),
  1160. list(out_dir = out_dir_qc, filename = "delta_background_vs_K_for_strains_2sd_outside_mean_K",
  1161. plot_configs = delta_bg_outside_2sd_k_plot_configs)
  1162. )
  1163. # Generating quality control plots in parallel
  1164. # furrr::future_map(plot_configs, function(config) {
  1165. # generate_and_save_plots(config$out_dir, config$filename, config$plot_configs)
  1166. # }, .options = furrr_options(seed = TRUE))
  1167. # Process background strains
  1168. bg_strains <- c("YDL227C")
  1169. lapply(bg_strains, function(strain) {
  1170. message("Processing background strain: ", strain)
  1171. # Handle missing data by setting zero values to NA
  1172. # and then removing any rows with NA in L col
  1173. df_bg <- df_na %>%
  1174. filter(OrfRep == strain) %>%
  1175. mutate(
  1176. L = if_else(L == 0, NA, L),
  1177. K = if_else(K == 0, NA, K),
  1178. r = if_else(r == 0, NA, r),
  1179. AUC = if_else(AUC == 0, NA, AUC)
  1180. ) %>%
  1181. filter(!is.na(L))
  1182. # Recalculate summary statistics for the background strain
  1183. message("Calculating summary statistics for background strain")
  1184. ss_bg <- calculate_summary_stats(df_bg, summary_vars, group_vars = c("OrfRep", "conc_num", "conc_num_factor"))
  1185. summary_stats_bg <- ss_bg$summary_stats
  1186. write.csv(summary_stats_bg,
  1187. file = file.path(out_dir, paste0("summary_stats_background_strain_", strain, ".csv")),
  1188. row.names = FALSE)
  1189. # Set the missing values to the highest theoretical value at each drug conc for L
  1190. # Leave other values as 0 for the max/min
  1191. df_reference <- df_na_stats %>% # formerly X2_RF
  1192. filter(OrfRep == strain) %>%
  1193. filter(!is.na(L)) %>%
  1194. group_by(conc_num, conc_num_factor) %>%
  1195. mutate(
  1196. max_l_theoretical = max(max_L, na.rm = TRUE),
  1197. L = ifelse(L == 0 & !is.na(L) & conc_num > 0, max_l_theoretical, L),
  1198. SM = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, 1, 0),
  1199. L = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, max_l_theoretical, L)) %>%
  1200. ungroup()
  1201. # Ditto for deletion strains
  1202. df_deletion <- df_na_stats %>% # formerly X2
  1203. filter(OrfRep != strain) %>%
  1204. filter(!is.na(L)) %>%
  1205. mutate(SM = 0) %>%
  1206. group_by(conc_num, conc_num_factor) %>%
  1207. mutate(
  1208. max_l_theoretical = max(max_L, na.rm = TRUE),
  1209. L = ifelse(L == 0 & !is.na(L) & conc_num > 0, max_l_theoretical, L),
  1210. SM = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, 1, SM),
  1211. L = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, max_l_theoretical, L)) %>%
  1212. ungroup()
  1213. message("Calculating reference strain interaction scores")
  1214. df_reference_stats <- calculate_summary_stats(
  1215. df = df_reference,
  1216. variables = interaction_vars,
  1217. group_vars = c("OrfRep", "Gene", "num", "conc_num", "conc_num_factor")
  1218. )$df_with_stats
  1219. reference_results <- calculate_interaction_scores(df_reference_stats, max_conc, bg_stats, group_vars = c("OrfRep", "Gene", "num"))
  1220. zscore_calculations_reference <- reference_results$calculations
  1221. zscore_interactions_reference <- reference_results$interactions
  1222. zscore_interactions_reference_joined <- reference_results$full_data
  1223. message("Calculating deletion strain(s) interactions scores")
  1224. df_deletion_stats <- calculate_summary_stats(
  1225. df = df_deletion,
  1226. variables = interaction_vars,
  1227. group_vars = c("OrfRep", "Gene", "conc_num", "conc_num_factor")
  1228. )$df_with_stats
  1229. deletion_results <- calculate_interaction_scores(df_deletion_stats, max_conc, bg_stats, group_vars = c("OrfRep"))
  1230. zscore_calculations <- deletion_results$calculations
  1231. zscore_interactions <- deletion_results$interactions
  1232. zscore_interactions_joined <- deletion_results$full_data
  1233. # Writing Z-Scores to file
  1234. write.csv(zscore_calculations_reference, file = file.path(out_dir, "zscore_calculations_reference.csv"), row.names = FALSE)
  1235. write.csv(zscore_calculations, file = file.path(out_dir, "zscore_calculations.csv"), row.names = FALSE)
  1236. write.csv(zscore_interactions_reference, file = file.path(out_dir, "zscore_interactions_reference.csv"), row.names = FALSE)
  1237. write.csv(zscore_interactions, file = file.path(out_dir, "zscore_interactions.csv"), row.names = FALSE)
  1238. # Create interaction plots
  1239. message("Generating reference interaction plots")
  1240. reference_plot_configs <- generate_interaction_plot_configs(zscore_interactions_reference_joined, plot_type = "reference")
  1241. generate_and_save_plots(out_dir, "interaction_plots_reference", reference_plot_configs)
  1242. message("Generating deletion interaction plots")
  1243. deletion_plot_configs <- generate_interaction_plot_configs(zscore_interactions_joined, plot_type = "deletion")
  1244. generate_and_save_plots(out_dir, "interaction_plots", deletion_plot_configs)
  1245. # Define conditions for enhancers and suppressors
  1246. # TODO Add to study config?
  1247. threshold <- 2
  1248. enhancer_condition_L <- zscore_interactions$Avg_Zscore_L >= threshold
  1249. suppressor_condition_L <- zscore_interactions$Avg_Zscore_L <= -threshold
  1250. enhancer_condition_K <- zscore_interactions$Avg_Zscore_K >= threshold
  1251. suppressor_condition_K <- zscore_interactions$Avg_Zscore_K <= -threshold
  1252. # Subset data
  1253. enhancers_L <- zscore_interactions[enhancer_condition_L, ]
  1254. suppressors_L <- zscore_interactions[suppressor_condition_L, ]
  1255. enhancers_K <- zscore_interactions[enhancer_condition_K, ]
  1256. suppressors_K <- zscore_interactions[suppressor_condition_K, ]
  1257. # Save enhancers and suppressors
  1258. message("Writing enhancer/suppressor csv files")
  1259. write.csv(enhancers_L, file = file.path(out_dir, "zscore_interactions_deletion_enhancers_L.csv"), row.names = FALSE)
  1260. write.csv(suppressors_L, file = file.path(out_dir, "zscore_interactions_deletion_suppressors_L.csv"), row.names = FALSE)
  1261. write.csv(enhancers_K, file = file.path(out_dir, "zscore_interactions_deletion_enhancers_K.csv"), row.names = FALSE)
  1262. write.csv(suppressors_K, file = file.path(out_dir, "zscore_interactions_deletion_suppressors_K.csv"), row.names = FALSE)
  1263. # Combine conditions for enhancers and suppressors
  1264. enhancers_and_suppressors_L <- zscore_interactions[enhancer_condition_L | suppressor_condition_L, ]
  1265. enhancers_and_suppressors_K <- zscore_interactions[enhancer_condition_K | suppressor_condition_K, ]
  1266. # Save combined enhancers and suppressors
  1267. write.csv(enhancers_and_suppressors_L,
  1268. file = file.path(out_dir, "zscore_interactions_deletion_enhancers_and_suppressors_L.csv"), row.names = FALSE)
  1269. write.csv(enhancers_and_suppressors_K,
  1270. file = file.path(out_dir, "zscore_interaction_deletion_enhancers_and_suppressors_K.csv"), row.names = FALSE)
  1271. # Handle linear model based enhancers and suppressors
  1272. lm_threshold <- 2 # TODO add to study config?
  1273. enhancers_lm_L <- zscore_interactions[zscore_interactions$Z_lm_L >= lm_threshold, ]
  1274. suppressors_lm_L <- zscore_interactions[zscore_interactions$Z_lm_L <= -lm_threshold, ]
  1275. enhancers_lm_K <- zscore_interactions[zscore_interactions$Z_lm_K >= lm_threshold, ]
  1276. suppressors_lm_K <- zscore_interactions[zscore_interactions$Z_lm_K <= -lm_threshold, ]
  1277. # Save linear model based enhancers and suppressors
  1278. message("Writing linear model enhancer/suppressor csv files")
  1279. write.csv(enhancers_lm_L,
  1280. file = file.path(out_dir, "zscore_interactions_deletion_enhancers_lm_L.csv"), row.names = FALSE)
  1281. write.csv(suppressors_lm_L,
  1282. file = file.path(out_dir, "zscore_interactions_deletion_suppressors_lm_L.csv"), row.names = FALSE)
  1283. write.csv(enhancers_lm_K,
  1284. file = file.path(out_dir, "zscore_interactions_deletion_enhancers_lm_K.csv"), row.names = FALSE)
  1285. write.csv(suppressors_lm_K,
  1286. file = file.path(out_dir, "zscore_interactions_deletion_suppressors_lm_K.csv"), row.names = FALSE)
  1287. message("Generating rank plots")
  1288. rank_plot_configs <- generate_rank_plot_configs(
  1289. df = zscore_interactions_joined,
  1290. variables = interaction_vars,
  1291. is_lm = FALSE,
  1292. adjust = TRUE
  1293. )
  1294. generate_and_save_plots(out_dir = out_dir, filename = "rank_plots",
  1295. plot_configs = rank_plot_configs)
  1296. message("Generating ranked linear model plots")
  1297. rank_lm_plot_configs <- generate_rank_plot_configs(
  1298. df = zscore_interactions_joined,
  1299. variables = interaction_vars,
  1300. is_lm = TRUE,
  1301. adjust = TRUE
  1302. )
  1303. generate_and_save_plots(out_dir = out_dir, filename = "rank_plots_lm",
  1304. plot_configs = rank_lm_plot_configs)
  1305. message("Filtering and reranking plots")
  1306. interaction_threshold <- 2 # TODO add to study config?
  1307. # Formerly X_NArm
  1308. zscore_interactions_filtered <- zscore_interactions_joined %>%
  1309. filter(!is.na(Z_lm_L) & !is.na(Avg_Zscore_L)) %>%
  1310. mutate(
  1311. Overlap = case_when(
  1312. Z_lm_L >= interaction_threshold & Avg_Zscore_L >= interaction_threshold ~ "Deletion Enhancer Both",
  1313. Z_lm_L <= -interaction_threshold & Avg_Zscore_L <= -interaction_threshold ~ "Deletion Suppressor Both",
  1314. Z_lm_L >= interaction_threshold & Avg_Zscore_L <= interaction_threshold ~ "Deletion Enhancer lm only",
  1315. Z_lm_L <= interaction_threshold & Avg_Zscore_L >= interaction_threshold ~ "Deletion Enhancer Avg Zscore only",
  1316. Z_lm_L <= -interaction_threshold & Avg_Zscore_L >= -interaction_threshold ~ "Deletion Suppressor lm only",
  1317. Z_lm_L >= -interaction_threshold & Avg_Zscore_L <= -interaction_threshold ~ "Deletion Suppressor Avg Zscore only",
  1318. Z_lm_L >= interaction_threshold & Avg_Zscore_L <= -interaction_threshold ~ "Deletion Enhancer lm, Deletion Suppressor Avg Z score",
  1319. Z_lm_L <= -interaction_threshold & Avg_Zscore_L >= interaction_threshold ~ "Deletion Suppressor lm, Deletion Enhancer Avg Z score",
  1320. TRUE ~ "No Effect"
  1321. ),
  1322. lm_R_squared_L = summary(lm(Z_lm_L ~ Avg_Zscore_L))$r.squared,
  1323. lm_R_squared_K = summary(lm(Z_lm_K ~ Avg_Zscore_K))$r.squared,
  1324. lm_R_squared_r = summary(lm(Z_lm_r ~ Avg_Zscore_r))$r.squared,
  1325. lm_R_squared_AUC = summary(lm(Z_lm_AUC ~ Avg_Zscore_AUC))$r.squared
  1326. )
  1327. message("Generating filtered ranked plots")
  1328. rank_plot_filtered_configs <- generate_rank_plot_configs(
  1329. df = zscore_interactions_filtered,
  1330. variables = interaction_vars,
  1331. is_lm = FALSE,
  1332. adjust = FALSE,
  1333. overlap_color = TRUE
  1334. )
  1335. generate_and_save_plots(
  1336. out_dir = out_dir,
  1337. filename = "RankPlots_na_rm",
  1338. plot_configs = rank_plot_filtered_configs)
  1339. message("Generating filtered ranked linear model plots")
  1340. rank_plot_lm_filtered_configs <- generate_rank_plot_configs(
  1341. df = zscore_interactions_filtered,
  1342. variables = interaction_vars,
  1343. is_lm = TRUE,
  1344. adjust = FALSE,
  1345. overlap_color = TRUE
  1346. )
  1347. generate_and_save_plots(
  1348. out_dir = out_dir,
  1349. filename = "rank_plots_lm_na_rm",
  1350. plot_configs = rank_plot_lm_filtered_configs)
  1351. message("Generating correlation curve parameter pair plots")
  1352. correlation_plot_configs <- generate_correlation_plot_configs(zscore_interactions_filtered)
  1353. generate_and_save_plots(
  1354. out_dir = out_dir,
  1355. filename = "correlation_cpps",
  1356. plot_configs = correlation_plot_configs,
  1357. )
  1358. })
  1359. })
  1360. }
  1361. main()