calculate_interaction_zscores.R 54 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487
  1. suppressMessages({
  2. library("ggplot2")
  3. library("plotly")
  4. library("htmlwidgets")
  5. library("dplyr")
  6. library("rlang")
  7. library("ggthemes")
  8. library("data.table")
  9. library("future")
  10. library("furrr")
  11. library("purrr")
  12. })
  13. # These parallelization libraries are very noisy
  14. suppressPackageStartupMessages({
  15. library("future")
  16. library("furrr")
  17. library("purrr")
  18. })
  19. options(warn = 2)
  20. # Constants for configuration
  21. plot_width <- 14
  22. plot_height <- 9
  23. base_size <- 14
  24. parse_arguments <- function() {
  25. args <- if (interactive()) {
  26. c(
  27. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/20240116_jhartman2_DoxoHLD",
  28. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/apps/r/SGD_features.tab",
  29. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/easy/20240116_jhartman2_DoxoHLD/results_std.txt",
  30. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/20240822_jhartman2_DoxoHLD/exp1",
  31. "Experiment 1: Doxo versus HLD",
  32. 3,
  33. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/20240822_jhartman2_DoxoHLD/exp2",
  34. "Experiment 2: HLD versus Doxo",
  35. 3
  36. )
  37. } else {
  38. commandArgs(trailingOnly = TRUE)
  39. }
  40. out_dir <- normalizePath(args[1], mustWork = FALSE)
  41. sgd_gene_list <- normalizePath(args[2], mustWork = FALSE)
  42. easy_results_file <- normalizePath(args[3], mustWork = FALSE)
  43. # The remaining arguments should be in groups of 3
  44. exp_args <- args[-(1:3)]
  45. if (length(exp_args) %% 3 != 0) {
  46. stop("Experiment arguments should be in groups of 3: path, name, sd.")
  47. }
  48. # Extract the experiments into a list
  49. experiments <- list()
  50. for (i in seq(1, length(exp_args), by = 3)) {
  51. exp_name <- exp_args[i + 1]
  52. experiments[[exp_name]] <- list(
  53. path = normalizePath(exp_args[i], mustWork = FALSE),
  54. sd = as.numeric(exp_args[i + 2])
  55. )
  56. }
  57. # Extract the trailing number from each path
  58. trailing_numbers <- sapply(experiments, function(x) {
  59. path <- x$path
  60. nums <- gsub("[^0-9]", "", basename(path))
  61. as.integer(nums)
  62. })
  63. # Sort the experiments based on the trailing numbers
  64. sorted_experiments <- experiments[order(trailing_numbers)]
  65. list(
  66. out_dir = out_dir,
  67. sgd_gene_list = sgd_gene_list,
  68. easy_results_file = easy_results_file,
  69. experiments = sorted_experiments
  70. )
  71. }
  72. args <- parse_arguments()
  73. # Should we keep output in exp dirs or combine in the study output dir?
  74. # dir.create(file.path(args$out_dir, "zscores"), showWarnings = FALSE)
  75. # dir.create(file.path(args$out_dir, "zscores", "qc"), showWarnings = FALSE)
  76. theme_publication <- function(base_size = 14, base_family = "sans", legend_position = "bottom") {
  77. theme_foundation <- ggthemes::theme_foundation(base_size = base_size, base_family = base_family)
  78. theme_foundation %+replace%
  79. theme(
  80. plot.title = element_text(face = "bold", size = rel(1.2), hjust = 0.5),
  81. text = element_text(),
  82. panel.background = element_rect(colour = NA),
  83. plot.background = element_rect(colour = NA),
  84. panel.border = element_rect(colour = NA),
  85. axis.title = element_text(face = "bold", size = rel(1)),
  86. axis.title.y = element_text(angle = 90, vjust = 2),
  87. axis.title.x = element_text(vjust = -0.2),
  88. axis.text = element_text(),
  89. axis.line = element_line(colour = "black"),
  90. axis.ticks = element_line(),
  91. panel.grid.major = element_line(colour = "#f0f0f0"),
  92. panel.grid.minor = element_blank(),
  93. legend.key = element_rect(colour = NA),
  94. legend.position = legend_position,
  95. legend.direction = ifelse(legend_position == "right", "vertical", "horizontal"),
  96. legend.key.size = unit(0.5, "cm"),
  97. legend.spacing = unit(0, "cm"),
  98. legend.title = element_text(face = "italic"),
  99. plot.margin = unit(c(10, 5, 5, 5), "mm"),
  100. strip.background = element_rect(colour = "#f0f0f0", fill = "#f0f0f0"),
  101. strip.text = element_text(face = "bold")
  102. )
  103. }
  104. scale_fill_publication <- function(...) {
  105. discrete_scale("fill", "Publication", manual_pal(values = c(
  106. "#386cb0", "#fdb462", "#7fc97f", "#ef3b2c", "#662506",
  107. "#a6cee3", "#fb9a99", "#984ea3", "#ffff33"
  108. )), ...)
  109. }
  110. scale_colour_publication <- function(...) {
  111. discrete_scale("colour", "Publication", manual_pal(values = c(
  112. "#386cb0", "#fdb462", "#7fc97f", "#ef3b2c", "#662506",
  113. "#a6cee3", "#fb9a99", "#984ea3", "#ffff33"
  114. )), ...)
  115. }
  116. # Load the initial dataframe from the easy_results_file
  117. load_and_filter_data <- function(easy_results_file, sd = 3) {
  118. df <- read.delim(easy_results_file, skip = 2, as.is = TRUE, row.names = 1, strip.white = TRUE)
  119. df <- df %>%
  120. filter(!(.[[1]] %in% c("", "Scan"))) %>%
  121. filter(!is.na(ORF) & ORF != "" & !Gene %in% c("BLANK", "Blank", "blank") & Drug != "BMH21") %>%
  122. # Rename columns
  123. rename(L = l, num = Num., AUC = AUC96, scan = Scan, last_bg = LstBackgrd, first_bg = X1stBackgrd) %>%
  124. mutate(
  125. across(c(Col, Row, num, L, K, r, scan, AUC, last_bg, first_bg), as.numeric),
  126. delta_bg = last_bg - first_bg,
  127. delta_bg_tolerance = mean(delta_bg, na.rm = TRUE) + (sd * sd(delta_bg, na.rm = TRUE)),
  128. NG = if_else(L == 0 & !is.na(L), 1, 0),
  129. DB = if_else(delta_bg >= delta_bg_tolerance, 1, 0),
  130. SM = 0,
  131. OrfRep = if_else(ORF == "YDL227C", "YDL227C", OrfRep), # should these be hardcoded?
  132. conc_num = as.numeric(gsub("[^0-9\\.]", "", Conc)),
  133. conc_num_factor = factor(as.numeric(factor(conc_num)) - 1),
  134. conc_num_factor_num = as.numeric(conc_num_factor)
  135. )
  136. return(df)
  137. }
  138. # Update Gene names using the SGD gene list
  139. update_gene_names <- function(df, sgd_gene_list) {
  140. # Load SGD gene list
  141. genes <- read.delim(file = sgd_gene_list,
  142. quote = "", header = FALSE,
  143. colClasses = c(rep("NULL", 3), rep("character", 2), rep("NULL", 11)))
  144. # Create a named vector for mapping ORF to GeneName
  145. gene_map <- setNames(genes$V5, genes$V4)
  146. # Vectorized match to find the GeneName from gene_map
  147. mapped_genes <- gene_map[df$ORF]
  148. # Replace NAs in mapped_genes with original Gene names (preserves existing Gene names if ORF is not found)
  149. updated_genes <- ifelse(is.na(mapped_genes) | df$OrfRep == "YDL227C", df$Gene, mapped_genes)
  150. # Ensure Gene is not left blank or incorrectly updated to "OCT1"
  151. df <- df %>%
  152. mutate(Gene = ifelse(updated_genes == "" | updated_genes == "OCT1", OrfRep, updated_genes))
  153. return(df)
  154. }
  155. calculate_summary_stats <- function(df, variables, group_vars) {
  156. summary_stats <- df %>%
  157. group_by(across(all_of(group_vars))) %>%
  158. summarise(
  159. N = n(),
  160. across(all_of(variables),
  161. list(
  162. mean = ~mean(., na.rm = TRUE),
  163. median = ~median(., na.rm = TRUE),
  164. max = ~ifelse(all(is.na(.)), NA, max(., na.rm = TRUE)),
  165. min = ~ifelse(all(is.na(.)), NA, min(., na.rm = TRUE)),
  166. sd = ~sd(., na.rm = TRUE),
  167. se = ~sd(., na.rm = TRUE) / sqrt(N - 1) # TODO non-standard SE, needs explanation
  168. ),
  169. .names = "{.fn}_{.col}"
  170. ),
  171. .groups = "drop"
  172. )
  173. # Create a cleaned version of df that doesn't overlap with summary_stats
  174. cleaned_df <- df %>%
  175. select(-any_of(setdiff(intersect(names(df), names(summary_stats)), group_vars)))
  176. df_joined <- left_join(cleaned_df, summary_stats, by = group_vars)
  177. return(list(summary_stats = summary_stats, df_with_stats = df_joined))
  178. }
  179. calculate_interaction_scores <- function(df, max_conc, bg_stats,
  180. group_vars = c("OrfRep", "Gene", "num")) {
  181. # Calculate total concentration variables
  182. total_conc_num <- length(unique(df$conc_num))
  183. calculations <- df %>%
  184. group_by(across(all_of(group_vars))) %>%
  185. mutate(
  186. NG = sum(NG, na.rm = TRUE),
  187. DB = sum(DB, na.rm = TRUE),
  188. SM = sum(SM, na.rm = TRUE),
  189. num_non_removed_concs = total_conc_num - sum(DB, na.rm = TRUE) - 1,
  190. # Calculate raw data
  191. Raw_Shift_L = first(mean_L) - bg_stats$mean_L,
  192. Raw_Shift_K = first(mean_K) - bg_stats$mean_K,
  193. Raw_Shift_r = first(mean_r) - bg_stats$mean_r,
  194. Raw_Shift_AUC = first(mean_AUC) - bg_stats$mean_AUC,
  195. Z_Shift_L = first(Raw_Shift_L) / bg_stats$sd_L,
  196. Z_Shift_K = first(Raw_Shift_K) / bg_stats$sd_K,
  197. Z_Shift_r = first(Raw_Shift_r) / bg_stats$sd_r,
  198. Z_Shift_AUC = first(Raw_Shift_AUC) / bg_stats$sd_AUC,
  199. Exp_L = WT_L + Raw_Shift_L,
  200. Exp_K = WT_K + Raw_Shift_K,
  201. Exp_r = WT_r + Raw_Shift_r,
  202. Exp_AUC = WT_AUC + Raw_Shift_AUC,
  203. Delta_L = mean_L - Exp_L,
  204. Delta_K = mean_K - Exp_K,
  205. Delta_r = mean_r - Exp_r,
  206. Delta_AUC = mean_AUC - Exp_AUC,
  207. Delta_L = if_else(NG == 1, mean_L - WT_L, Delta_L),
  208. Delta_K = if_else(NG == 1, mean_K - WT_K, Delta_K),
  209. Delta_r = if_else(NG == 1, mean_r - WT_r, Delta_r),
  210. Delta_AUC = if_else(NG == 1, mean_AUC - WT_AUC, Delta_AUC),
  211. Delta_L = if_else(SM == 1, mean_L - WT_L, Delta_L),
  212. # Calculate Z-scores
  213. Zscore_L = Delta_L / WT_sd_L,
  214. Zscore_K = Delta_K / WT_sd_K,
  215. Zscore_r = Delta_r / WT_sd_r,
  216. Zscore_AUC = Delta_AUC / WT_sd_AUC,
  217. # Fit linear models and store in list-columns
  218. gene_lm_L = list(lm(Delta_L ~ conc_num_factor_num, data = pick(everything()))),
  219. gene_lm_K = list(lm(Delta_K ~ conc_num_factor_num, data = pick(everything()))),
  220. gene_lm_r = list(lm(Delta_r ~ conc_num_factor_num, data = pick(everything()))),
  221. gene_lm_AUC = list(lm(Delta_AUC ~ conc_num_factor_num, data = pick(everything()))),
  222. # Extract coefficients using purrr::map_dbl
  223. lm_intercept_L = map_dbl(gene_lm_L, ~ coef(.x)[1]),
  224. lm_slope_L = map_dbl(gene_lm_L, ~ coef(.x)[2]),
  225. lm_intercept_K = map_dbl(gene_lm_K, ~ coef(.x)[1]),
  226. lm_slope_K = map_dbl(gene_lm_K, ~ coef(.x)[2]),
  227. lm_intercept_r = map_dbl(gene_lm_r, ~ coef(.x)[1]),
  228. lm_slope_r = map_dbl(gene_lm_r, ~ coef(.x)[2]),
  229. lm_intercept_AUC = map_dbl(gene_lm_AUC, ~ coef(.x)[1]),
  230. lm_slope_AUC = map_dbl(gene_lm_AUC, ~ coef(.x)[2]),
  231. # Calculate lm_Score_* based on coefficients
  232. lm_Score_L = max_conc * lm_slope_L + lm_intercept_L,
  233. lm_Score_K = max_conc * lm_slope_K + lm_intercept_K,
  234. lm_Score_r = max_conc * lm_slope_r + lm_intercept_r,
  235. lm_Score_AUC = max_conc * lm_slope_AUC + lm_intercept_AUC,
  236. # Calculate R-squared values
  237. R_Squared_L = map_dbl(gene_lm_L, ~ summary(.x)$r.squared),
  238. R_Squared_K = map_dbl(gene_lm_K, ~ summary(.x)$r.squared),
  239. R_Squared_r = map_dbl(gene_lm_r, ~ summary(.x)$r.squared),
  240. R_Squared_AUC = map_dbl(gene_lm_AUC, ~ summary(.x)$r.squared)
  241. ) %>%
  242. ungroup()
  243. # Calculate overall mean and SD for lm_Score_* variables
  244. lm_means_sds <- calculations %>%
  245. summarise(
  246. lm_mean_L = mean(lm_Score_L, na.rm = TRUE),
  247. lm_sd_L = sd(lm_Score_L, na.rm = TRUE),
  248. lm_mean_K = mean(lm_Score_K, na.rm = TRUE),
  249. lm_sd_K = sd(lm_Score_K, na.rm = TRUE),
  250. lm_mean_r = mean(lm_Score_r, na.rm = TRUE),
  251. lm_sd_r = sd(lm_Score_r, na.rm = TRUE),
  252. lm_mean_AUC = mean(lm_Score_AUC, na.rm = TRUE),
  253. lm_sd_AUC = sd(lm_Score_AUC, na.rm = TRUE)
  254. )
  255. calculations <- calculations %>%
  256. mutate(
  257. Z_lm_L = (lm_Score_L - lm_means_sds$lm_mean_L) / lm_means_sds$lm_sd_L,
  258. Z_lm_K = (lm_Score_K - lm_means_sds$lm_mean_K) / lm_means_sds$lm_sd_K,
  259. Z_lm_r = (lm_Score_r - lm_means_sds$lm_mean_r) / lm_means_sds$lm_sd_r,
  260. Z_lm_AUC = (lm_Score_AUC - lm_means_sds$lm_mean_AUC) / lm_means_sds$lm_sd_AUC
  261. )
  262. # Summarize some of the stats
  263. interactions <- calculations %>%
  264. group_by(across(all_of(group_vars))) %>%
  265. mutate(
  266. # Calculate raw shifts
  267. Raw_Shift_L = first(Raw_Shift_L),
  268. Raw_Shift_K = first(Raw_Shift_K),
  269. Raw_Shift_r = first(Raw_Shift_r),
  270. Raw_Shift_AUC = first(Raw_Shift_AUC),
  271. # Calculate Z-shifts
  272. Z_Shift_L = first(Z_Shift_L),
  273. Z_Shift_K = first(Z_Shift_K),
  274. Z_Shift_r = first(Z_Shift_r),
  275. Z_Shift_AUC = first(Z_Shift_AUC),
  276. # Sum Z-scores
  277. Sum_Z_Score_L = sum(Zscore_L),
  278. Sum_Z_Score_K = sum(Zscore_K),
  279. Sum_Z_Score_r = sum(Zscore_r),
  280. Sum_Z_Score_AUC = sum(Zscore_AUC),
  281. # Calculate Average Z-scores
  282. Avg_Zscore_L = Sum_Z_Score_L / num_non_removed_concs,
  283. Avg_Zscore_K = Sum_Z_Score_K / num_non_removed_concs,
  284. Avg_Zscore_r = Sum_Z_Score_r / (total_conc_num - 1),
  285. Avg_Zscore_AUC = Sum_Z_Score_AUC / (total_conc_num - 1)
  286. ) %>%
  287. arrange(desc(Z_lm_L), desc(NG)) %>%
  288. ungroup()
  289. # Declare column order for output
  290. calculations <- calculations %>%
  291. select(
  292. "OrfRep", "Gene", "num", "conc_num", "conc_num_factor", "N",
  293. "mean_L", "mean_K", "mean_r", "mean_AUC",
  294. "median_L", "median_K", "median_r", "median_AUC",
  295. "sd_L", "sd_K", "sd_r", "sd_AUC",
  296. "se_L", "se_K", "se_r", "se_AUC",
  297. "Raw_Shift_L", "Raw_Shift_K", "Raw_Shift_r", "Raw_Shift_AUC",
  298. "Z_Shift_L", "Z_Shift_K", "Z_Shift_r", "Z_Shift_AUC",
  299. "WT_L", "WT_K", "WT_r", "WT_AUC",
  300. "WT_sd_L", "WT_sd_K", "WT_sd_r", "WT_sd_AUC",
  301. "Exp_L", "Exp_K", "Exp_r", "Exp_AUC",
  302. "Delta_L", "Delta_K", "Delta_r", "Delta_AUC",
  303. "Zscore_L", "Zscore_K", "Zscore_r", "Zscore_AUC",
  304. "NG", "SM", "DB")
  305. interactions <- interactions %>%
  306. select(
  307. "OrfRep", "Gene", "conc_num", "conc_num_factor", "num", "NG", "DB", "SM",
  308. "Raw_Shift_L", "Raw_Shift_K", "Raw_Shift_r", "Raw_Shift_AUC",
  309. "Z_Shift_L", "Z_Shift_K", "Z_Shift_r", "Z_Shift_AUC",
  310. "Sum_Z_Score_L", "Sum_Z_Score_K", "Sum_Z_Score_r", "Sum_Z_Score_AUC",
  311. "Avg_Zscore_L", "Avg_Zscore_K", "Avg_Zscore_r", "Avg_Zscore_AUC",
  312. "lm_Score_L", "lm_Score_K", "lm_Score_r", "lm_Score_AUC",
  313. "R_Squared_L", "R_Squared_K", "R_Squared_r", "R_Squared_AUC",
  314. "Z_lm_L", "Z_lm_K", "Z_lm_r", "Z_lm_AUC")
  315. cleaned_df <- df %>%
  316. select(-any_of(
  317. setdiff(intersect(names(df), names(interactions)),
  318. c("OrfRep", "Gene", "num", "conc_num", "conc_num_factor"))))
  319. interactions_joined <- left_join(cleaned_df, interactions, by = c("OrfRep", "Gene", "num", "conc_num", "conc_num_factor"))
  320. return(list(
  321. calculations = calculations,
  322. interactions = interactions,
  323. interactions_joined = interactions_joined))
  324. }
  325. generate_and_save_plots <- function(out_dir, filename, plot_configs, grid_layout = NULL) {
  326. message("Generating ", filename, ".pdf and ", filename, ".html")
  327. # Prepare lists to collect plots
  328. static_plots <- list()
  329. plotly_plots <- list()
  330. for (i in seq_along(plot_configs)) {
  331. config <- plot_configs[[i]]
  332. df <- config$df
  333. # Create the base plot
  334. aes_mapping <- if (config$plot_type == "bar") {
  335. if (!is.null(config$color_var)) {
  336. aes(x = .data[[config$x_var]], fill = .data[[config$color_var]], color = .data[[config$color_var]])
  337. } else {
  338. aes(x = .data[[config$x_var]])
  339. }
  340. } else if (config$plot_type == "density") {
  341. if (!is.null(config$color_var)) {
  342. aes(x = .data[[config$x_var]], color = .data[[config$color_var]])
  343. } else {
  344. aes(x = .data[[config$x_var]])
  345. }
  346. } else {
  347. if (!is.null(config$color_var)) {
  348. aes(x = .data[[config$x_var]], y = .data[[config$y_var]], color = .data[[config$color_var]])
  349. } else {
  350. aes(x = .data[[config$x_var]], y = .data[[config$y_var]])
  351. }
  352. }
  353. plot_base <- ggplot(df, aes_mapping)
  354. # Use appropriate helper function based on plot type
  355. plot <- switch(config$plot_type,
  356. "scatter" = generate_scatter_plot(plot_base, config),
  357. "box" = generate_box_plot(plot_base, config),
  358. "density" = plot_base + geom_density(),
  359. "bar" = plot_base + geom_bar(),
  360. plot_base # default case if no type matches
  361. )
  362. # Apply theme_publication with legend_position from config
  363. legend_position <- if (!is.null(config$legend_position)) config$legend_position else "bottom"
  364. plot <- plot + theme_publication(legend_position = legend_position)
  365. # Add title and labels
  366. if (!is.null(config$title)) {
  367. plot <- plot + ggtitle(config$title)
  368. }
  369. if (!is.null(config$x_label)) {
  370. plot <- plot + xlab(config$x_label)
  371. }
  372. if (!is.null(config$y_label)) {
  373. plot <- plot + ylab(config$y_label)
  374. }
  375. # Apply scale_color_discrete(guide = FALSE) when color_var is NULL
  376. if (is.null(config$color_var)) {
  377. plot <- plot + scale_color_discrete(guide = "none")
  378. }
  379. # Add interactive tooltips for plotly
  380. tooltip_vars <- c()
  381. if (config$plot_type == "scatter") {
  382. if (!is.null(config$delta_bg_point) && config$delta_bg_point) {
  383. tooltip_vars <- c(tooltip_vars, "OrfRep", "Gene", "delta_bg")
  384. } else if (!is.null(config$gene_point) && config$gene_point) {
  385. tooltip_vars <- c(tooltip_vars, "OrfRep", "Gene")
  386. } else if (!is.null(config$y_var) && !is.null(config$x_var)) {
  387. tooltip_vars <- c(config$x_var, config$y_var)
  388. }
  389. }
  390. # Convert to plotly object and suppress warnings here
  391. plotly_plot <- suppressWarnings({
  392. if (length(tooltip_vars) > 0) {
  393. ggplotly(plot, tooltip = tooltip_vars)
  394. } else {
  395. ggplotly(plot, tooltip = "none")
  396. }
  397. })
  398. # Adjust legend position if specified
  399. if (!is.null(config$legend_position) && config$legend_position == "bottom") {
  400. plotly_plot <- plotly_plot %>% layout(legend = list(orientation = "h"))
  401. }
  402. # Add plots to lists
  403. static_plots[[i]] <- plot
  404. plotly_plots[[i]] <- plotly_plot
  405. }
  406. # Save static PDF plot(s)
  407. pdf(file.path(out_dir, paste0(filename, ".pdf")), width = 14, height = 9)
  408. lapply(static_plots, print)
  409. dev.off()
  410. # Combine and save interactive HTML plot(s)
  411. combined_plot <- subplot(
  412. plotly_plots,
  413. nrows = if (!is.null(grid_layout) && !is.null(grid_layout$nrow)) {
  414. grid_layout$nrow
  415. } else {
  416. # Calculate nrow based on the length of plotly_plots
  417. ceiling(length(plotly_plots) / ifelse(!is.null(grid_layout) && !is.null(grid_layout$ncol), grid_layout$ncol, 1))
  418. },
  419. margin = 0.05
  420. )
  421. # Save combined html plot(s)
  422. saveWidget(combined_plot, file = file.path(out_dir, paste0(filename, ".html")), selfcontained = TRUE)
  423. }
  424. generate_scatter_plot <- function(plot, config) {
  425. shape <- if (!is.null(config$shape)) config$shape else 3
  426. size <- if (!is.null(config$size)) config$size else 0.1
  427. position <-
  428. if (!is.null(config$position) && config$position == "jitter") {
  429. position_jitter(width = 0.1, height = 0)
  430. } else {
  431. "identity"
  432. }
  433. plot <- plot + geom_point(
  434. shape = shape,
  435. size = size,
  436. position = position
  437. )
  438. if (!is.null(config$cyan_points) && config$cyan_points) {
  439. plot <- plot + geom_point(
  440. aes(x = .data[[config$x_var]], y = .data[[config$y_var]]),
  441. color = "cyan",
  442. shape = 3,
  443. size = 0.5
  444. )
  445. }
  446. # Add Smooth Line if specified
  447. if (!is.null(config$smooth) && config$smooth) {
  448. smooth_color <- if (!is.null(config$smooth_color)) config$smooth_color else "blue"
  449. if (!is.null(config$lm_line)) {
  450. plot <- plot +
  451. geom_abline(
  452. intercept = config$lm_line$intercept,
  453. slope = config$lm_line$slope,
  454. color = smooth_color
  455. )
  456. } else {
  457. plot <- plot +
  458. geom_smooth(
  459. method = "lm",
  460. se = FALSE,
  461. color = smooth_color
  462. )
  463. }
  464. }
  465. # Add SD Bands if specified
  466. if (!is.null(config$sd_band)) {
  467. plot <- plot +
  468. annotate(
  469. "rect",
  470. xmin = -Inf, xmax = Inf,
  471. ymin = config$sd_band, ymax = Inf,
  472. fill = ifelse(!is.null(config$fill_positive), config$fill_positive, "#542788"),
  473. alpha = ifelse(!is.null(config$alpha_positive), config$alpha_positive, 0.3)
  474. ) +
  475. annotate(
  476. "rect",
  477. xmin = -Inf, xmax = Inf,
  478. ymin = -config$sd_band, ymax = -Inf,
  479. fill = ifelse(!is.null(config$fill_negative), config$fill_negative, "orange"),
  480. alpha = ifelse(!is.null(config$alpha_negative), config$alpha_negative, 0.3)
  481. ) +
  482. geom_hline(
  483. yintercept = c(-config$sd_band, config$sd_band),
  484. color = ifelse(!is.null(config$hl_color), config$hl_color, "gray")
  485. )
  486. }
  487. # Add Rectangles if specified
  488. if (!is.null(config$rectangles)) {
  489. for (rect in config$rectangles) {
  490. plot <- plot + annotate(
  491. "rect",
  492. xmin = rect$xmin,
  493. xmax = rect$xmax,
  494. ymin = rect$ymin,
  495. ymax = rect$ymax,
  496. fill = ifelse(is.null(rect$fill), NA, rect$fill),
  497. color = ifelse(is.null(rect$color), "black", rect$color),
  498. alpha = ifelse(is.null(rect$alpha), 0.1, rect$alpha)
  499. )
  500. }
  501. }
  502. # Add Error Bars if specified
  503. if (!is.null(config$error_bar) && config$error_bar && !is.null(config$y_var)) {
  504. y_mean_col <- paste0("mean_", config$y_var)
  505. y_sd_col <- paste0("sd_", config$y_var)
  506. plot <- plot +
  507. geom_errorbar(
  508. aes(
  509. ymin = !!sym(y_mean_col) - !!sym(y_sd_col),
  510. ymax = !!sym(y_mean_col) + !!sym(y_sd_col)
  511. ),
  512. alpha = 0.3
  513. )
  514. }
  515. # Customize X-axis if specified
  516. if (!is.null(config$x_breaks) && !is.null(config$x_labels) && !is.null(config$x_label)) {
  517. plot <- plot +
  518. scale_x_discrete(
  519. name = config$x_label,
  520. breaks = config$x_breaks,
  521. labels = config$x_labels
  522. )
  523. }
  524. # Apply coord_cartesian if specified
  525. if (!is.null(config$coord_cartesian)) {
  526. plot <- plot + coord_cartesian(ylim = config$coord_cartesian)
  527. }
  528. # Set Y-axis limits if specified
  529. if (!is.null(config$ylim_vals)) {
  530. plot <- plot + scale_y_continuous(limits = config$ylim_vals)
  531. }
  532. # Add Annotations if specified
  533. if (!is.null(config$annotations)) {
  534. for (annotation in config$annotations) {
  535. plot <- plot +
  536. annotate(
  537. "text",
  538. x = annotation$x,
  539. y = annotation$y,
  540. label = annotation$label,
  541. hjust = ifelse(is.null(annotation$hjust), 0.5, annotation$hjust),
  542. vjust = ifelse(is.null(annotation$vjust), 0.5, annotation$vjust),
  543. size = ifelse(is.null(annotation$size), 4, annotation$size),
  544. color = ifelse(is.null(annotation$color), "black", annotation$color)
  545. )
  546. }
  547. }
  548. # Add Title if specified
  549. if (!is.null(config$title)) {
  550. plot <- plot + ggtitle(config$title)
  551. }
  552. return(plot)
  553. }
  554. generate_box_plot <- function(plot, config) {
  555. plot <- plot + geom_boxplot()
  556. if (!is.null(config$x_breaks) && !is.null(config$x_labels) && !is.null(config$x_label)) {
  557. plot <- plot + scale_x_discrete(
  558. name = config$x_label,
  559. breaks = config$x_breaks,
  560. labels = config$x_labels
  561. )
  562. }
  563. if (!is.null(config$coord_cartesian)) {
  564. plot <- plot + coord_cartesian(ylim = config$coord_cartesian)
  565. }
  566. return(plot)
  567. }
  568. generate_plate_analysis_plot_configs <- function(variables, stages = c("before", "after"),
  569. df_before = NULL, df_after = NULL, plot_type = "scatter") {
  570. plots <- list()
  571. for (var in variables) {
  572. for (stage in stages) {
  573. df_plot <- if (stage == "before") df_before else df_after
  574. # Check for non-finite values in the y-variable
  575. df_plot_filtered <- df_plot %>%
  576. filter(is.finite(!!sym(var)))
  577. # Count removed rows
  578. removed_rows <- nrow(df_plot) - nrow(df_plot_filtered)
  579. if (removed_rows > 0) {
  580. message(sprintf("Removed %d non-finite values for variable %s during stage %s", removed_rows, var, stage))
  581. }
  582. # Adjust settings based on plot_type
  583. if (plot_type == "scatter") {
  584. error_bar <- TRUE
  585. position <- "jitter"
  586. } else if (plot_type == "box") {
  587. error_bar <- FALSE
  588. position <- NULL
  589. }
  590. config <- list(
  591. df = df_plot,
  592. x_var = "scan",
  593. y_var = var,
  594. plot_type = plot_type,
  595. title = paste("Plate analysis by Drug Conc for", var, stage, "quality control"),
  596. error_bar = error_bar,
  597. color_var = "conc_num_factor",
  598. position = position
  599. )
  600. plots <- append(plots, list(config))
  601. }
  602. }
  603. return(plots)
  604. }
  605. generate_interaction_plot_configs <- function(df, limits_map = NULL) {
  606. # Default limits_map if not provided
  607. if (is.null(limits_map)) {
  608. limits_map <- list(
  609. L = c(-65, 65),
  610. K = c(-65, 65),
  611. r = c(-0.65, 0.65),
  612. AUC = c(-6500, 6500)
  613. )
  614. }
  615. # Filter data
  616. df_filtered <- df
  617. for (var in names(limits_map)) {
  618. df_filtered <- df_filtered %>%
  619. filter(!is.na(!!sym(var)) &
  620. !!sym(var) >= limits_map[[var]][1] &
  621. !!sym(var) <= limits_map[[var]][2])
  622. }
  623. configs <- list()
  624. for (var in names(limits_map)) {
  625. y_range <- limits_map[[var]]
  626. # Calculate annotation positions
  627. y_min <- min(y_range)
  628. y_max <- max(y_range)
  629. y_span <- y_max - y_min
  630. annotation_positions <- list(
  631. ZShift = y_max - 0.1 * y_span,
  632. lm_ZScore = y_max - 0.2 * y_span,
  633. NG = y_min + 0.2 * y_span,
  634. DB = y_min + 0.1 * y_span,
  635. SM = y_min + 0.05 * y_span
  636. )
  637. # Prepare linear model line
  638. lm_line <- list(
  639. intercept = df_filtered[[paste0("lm_intercept_", var)]],
  640. slope = df_filtered[[paste0("lm_slope_", var)]]
  641. )
  642. # Calculate x-axis position for annotations
  643. num_levels <- length(levels(df_filtered$conc_num_factor))
  644. x_pos <- (1 + num_levels) / 2
  645. # Generate annotations
  646. annotations <- lapply(names(annotation_positions), function(annotation_name) {
  647. label <- switch(annotation_name,
  648. ZShift = paste("ZShift =", round(df_filtered[[paste0("Z_Shift_", var)]], 2)),
  649. lm_ZScore = paste("lm ZScore =", round(df_filtered[[paste0("Z_lm_", var)]], 2)),
  650. NG = paste("NG =", df_filtered$NG),
  651. DB = paste("DB =", df_filtered$DB),
  652. SM = paste("SM =", df_filtered$SM),
  653. NULL
  654. )
  655. if (!is.null(label)) {
  656. list(x = x_pos, y = annotation_positions[[annotation_name]], label = label)
  657. } else {
  658. NULL
  659. }
  660. })
  661. annotations <- Filter(Negate(is.null), annotations)
  662. # Shared plot settings
  663. plot_settings <- list(
  664. df = df_filtered,
  665. x_var = "conc_num_factor",
  666. y_var = var,
  667. ylim_vals = y_range,
  668. annotations = annotations,
  669. lm_line = lm_line,
  670. x_breaks = levels(df_filtered$conc_num_factor),
  671. x_labels = levels(df_filtered$conc_num_factor),
  672. x_label = unique(df_filtered$Drug[1]),
  673. coord_cartesian = y_range
  674. )
  675. # Scatter plot config
  676. configs[[length(configs) + 1]] <- modifyList(plot_settings, list(
  677. plot_type = "scatter",
  678. title = sprintf("%s %s", df_filtered$OrfRep[1], df_filtered$Gene[1]),
  679. error_bar = TRUE,
  680. position = "jitter"
  681. ))
  682. # Box plot config
  683. configs[[length(configs) + 1]] <- modifyList(plot_settings, list(
  684. plot_type = "box",
  685. title = sprintf("%s %s (box plot)", df_filtered$OrfRep[1], df_filtered$Gene[1]),
  686. error_bar = FALSE
  687. ))
  688. }
  689. return(configs)
  690. }
  691. generate_rank_plot_configs <- function(df, variables, is_lm = FALSE, adjust = FALSE, overlap_color = FALSE) {
  692. sd_bands <- c(1, 2, 3)
  693. avg_zscore_cols <- paste0("Avg_Zscore_", variables)
  694. z_lm_cols <- paste0("Z_lm_", variables)
  695. rank_avg_zscore_cols <- paste0("Rank_", variables)
  696. rank_z_lm_cols <- paste0("Rank_lm_", variables)
  697. configs <- list()
  698. if (adjust) {
  699. message("Replacing NA with 0.001 for Avg_Zscore_ and Z_lm_ columns for ranks")
  700. df <- df %>%
  701. mutate(
  702. across(all_of(avg_zscore_cols), ~ifelse(is.na(.), 0.001, .)),
  703. across(all_of(z_lm_cols), ~ifelse(is.na(.), 0.001, .))
  704. )
  705. }
  706. message("Calculating ranks for Avg_Zscore and Z_lm columns")
  707. rank_col_mapping <- setNames(rank_avg_zscore_cols, avg_zscore_cols)
  708. df_ranked <- df %>%
  709. mutate(across(all_of(avg_zscore_cols), ~rank(., na.last = "keep"), .names = "{rank_col_mapping[.col]}"))
  710. rank_lm_col_mapping <- setNames(rank_z_lm_cols, z_lm_cols)
  711. df_ranked <- df_ranked %>%
  712. mutate(across(all_of(z_lm_cols), ~rank(., na.last = "keep"), .names = "{rank_lm_col_mapping[.col]}"))
  713. # SD-based plots for L and K
  714. for (variable in c("L", "K")) {
  715. if (is_lm) {
  716. rank_var <- paste0("Rank_lm_", variable)
  717. zscore_var <- paste0("Z_lm_", variable)
  718. y_label <- paste("Int Z score", variable)
  719. } else {
  720. rank_var <- paste0("Rank_", variable)
  721. zscore_var <- paste0("Avg_Zscore_", variable)
  722. y_label <- paste("Avg Z score", variable)
  723. }
  724. for (sd_band in sd_bands) {
  725. num_enhancers <- sum(df_ranked[[zscore_var]] >= sd_band, na.rm = TRUE)
  726. num_suppressors <- sum(df_ranked[[zscore_var]] <= -sd_band, na.rm = TRUE)
  727. # Annotated plot configuration
  728. configs[[length(configs) + 1]] <- list(
  729. df = df_ranked,
  730. x_var = rank_var,
  731. y_var = zscore_var,
  732. plot_type = "scatter",
  733. title = paste(y_label, "vs. Rank for", variable, "above", sd_band, "SD"),
  734. sd_band = sd_band,
  735. fill_positive = "#542788",
  736. fill_negative = "orange",
  737. alpha_positive = 0.3,
  738. alpha_negative = 0.3,
  739. annotations = list(
  740. list(
  741. x = median(df_ranked[[rank_var]], na.rm = TRUE),
  742. y = 10,
  743. label = paste("Deletion Enhancers =", num_enhancers),
  744. hjust = 0.5,
  745. vjust = 1
  746. ),
  747. list(
  748. x = median(df_ranked[[rank_var]], na.rm = TRUE),
  749. y = -10,
  750. label = paste("Deletion Suppressors =", num_suppressors),
  751. hjust = 0.5,
  752. vjust = 0
  753. )
  754. ),
  755. shape = 3,
  756. size = 0.1,
  757. y_label = y_label,
  758. x_label = "Rank",
  759. legend_position = "none"
  760. )
  761. # Non-Annotated Plot Configuration
  762. configs[[length(configs) + 1]] <- list(
  763. df = df_ranked,
  764. x_var = rank_var,
  765. y_var = zscore_var,
  766. plot_type = "scatter",
  767. title = paste(y_label, "vs. Rank for", variable, "above", sd_band, "SD No Annotations"),
  768. sd_band = sd_band,
  769. fill_positive = "#542788",
  770. fill_negative = "orange",
  771. alpha_positive = 0.3,
  772. alpha_negative = 0.3,
  773. annotations = NULL,
  774. shape = 3,
  775. size = 0.1,
  776. y_label = y_label,
  777. x_label = "Rank",
  778. legend_position = "none"
  779. )
  780. }
  781. }
  782. # Avg ZScore and Rank Avg ZScore Plots for r, L, K, and AUC
  783. for (variable in variables) {
  784. for (plot_type in c("Avg Zscore vs lm", "Rank Avg Zscore vs lm")) {
  785. title <- paste(plot_type, variable)
  786. # Define specific variables based on plot type
  787. if (plot_type == "Avg Zscore vs lm") {
  788. x_var <- paste0("Avg_Zscore_", variable)
  789. y_var <- paste0("Z_lm_", variable)
  790. rectangles <- list(
  791. list(xmin = -2, xmax = 2, ymin = -2, ymax = 2,
  792. fill = NA, color = "grey20", alpha = 0.1
  793. )
  794. )
  795. } else if (plot_type == "Rank Avg Zscore vs lm") {
  796. x_var <- paste0("Rank_", variable)
  797. y_var <- paste0("Rank_lm_", variable)
  798. rectangles <- NULL
  799. }
  800. # Fit the linear model
  801. lm_model <- lm(as.formula(paste(y_var, "~", x_var)), data = df_ranked)
  802. # Extract intercept and slope from the model coefficients
  803. intercept <- coef(lm_model)[1]
  804. slope <- coef(lm_model)[2]
  805. configs[[length(configs) + 1]] <- list(
  806. df = df_ranked,
  807. x_var = x_var,
  808. y_var = y_var,
  809. plot_type = "scatter",
  810. title = title,
  811. annotations = list(
  812. list(
  813. x = median(df_ranked[[rank_var]], na.rm = TRUE),
  814. y = 10,
  815. label = paste("Deletion Enhancers =", num_enhancers),
  816. hjust = 0.5,
  817. vjust = 1
  818. ),
  819. list(
  820. x = median(df_ranked[[rank_var]], na.rm = TRUE),
  821. y = -10,
  822. label = paste("Deletion Suppressors =", num_suppressors),
  823. hjust = 0.5,
  824. vjust = 0
  825. )
  826. ),
  827. shape = 3,
  828. size = 0.1,
  829. smooth = TRUE,
  830. smooth_color = "black",
  831. lm_line = list(intercept = intercept, slope = slope),
  832. legend_position = "right",
  833. color_var = if (overlap_color) "Overlap" else NULL,
  834. x_label = x_var,
  835. y_label = y_var,
  836. rectangles = rectangles
  837. )
  838. }
  839. }
  840. return(configs)
  841. }
  842. generate_correlation_plot_configs <- function(df) {
  843. # Define relationships for plotting
  844. relationships <- list(
  845. list(x = "Z_lm_L", y = "Z_lm_K", label = "Interaction L vs. Interaction K"),
  846. list(x = "Z_lm_L", y = "Z_lm_r", label = "Interaction L vs. Interaction r"),
  847. list(x = "Z_lm_L", y = "Z_lm_AUC", label = "Interaction L vs. Interaction AUC"),
  848. list(x = "Z_lm_K", y = "Z_lm_r", label = "Interaction K vs. Interaction r"),
  849. list(x = "Z_lm_K", y = "Z_lm_AUC", label = "Interaction K vs. Interaction AUC"),
  850. list(x = "Z_lm_r", y = "Z_lm_AUC", label = "Interaction r vs. Interaction AUC")
  851. )
  852. configs <- list()
  853. for (rel in relationships) {
  854. # Fit linear model
  855. lm_model <- lm(as.formula(paste(rel$y, "~", rel$x)), data = df)
  856. lm_summary <- summary(lm_model)
  857. # Construct plot configuration
  858. config <- list(
  859. df = df,
  860. x_var = rel$x,
  861. y_var = rel$y,
  862. plot_type = "scatter",
  863. title = rel$label,
  864. x_label = paste("z-score", gsub("Z_lm_", "", rel$x)),
  865. y_label = paste("z-score", gsub("Z_lm_", "", rel$y)),
  866. annotations = list(
  867. list(
  868. x = Inf,
  869. y = Inf,
  870. label = paste("R-squared =", round(lm_summary$r.squared, 3)),
  871. hjust = 1.1,
  872. vjust = 2,
  873. size = 4,
  874. color = "black"
  875. )
  876. ),
  877. smooth = TRUE,
  878. smooth_color = "tomato3",
  879. lm_line = list(intercept = coef(lm_model)[1], slope = coef(lm_model)[2]),
  880. legend_position = "right",
  881. shape = 3,
  882. size = 0.5,
  883. color_var = "Overlap",
  884. rectangles = list(
  885. list(
  886. xmin = -2, xmax = 2, ymin = -2, ymax = 2,
  887. fill = NA, color = "grey20", alpha = 0.1
  888. )
  889. ),
  890. cyan_points = TRUE
  891. )
  892. configs[[length(configs) + 1]] <- config
  893. }
  894. return(configs)
  895. }
  896. main <- function() {
  897. lapply(names(args$experiments), function(exp_name) {
  898. exp <- args$experiments[[exp_name]]
  899. exp_path <- exp$path
  900. exp_sd <- exp$sd
  901. out_dir <- file.path(exp_path, "zscores")
  902. out_dir_qc <- file.path(exp_path, "zscores", "qc")
  903. dir.create(out_dir, recursive = TRUE, showWarnings = FALSE)
  904. dir.create(out_dir_qc, recursive = TRUE, showWarnings = FALSE)
  905. summary_vars <- c("L", "K", "r", "AUC", "delta_bg") # fields to filter and calculate summary stats across
  906. interaction_vars <- c("L", "K", "r", "AUC") # fields to calculate interaction z-scores
  907. print_vars <- c("OrfRep", "Plate", "scan", "Col", "Row", "num", "OrfRep", "conc_num", "conc_num_factor",
  908. "delta_bg_tolerance", "delta_bg", "Gene", "L", "K", "r", "AUC", "NG", "DB")
  909. message("Loading and filtering data for experiment: ", exp_name)
  910. df <- load_and_filter_data(args$easy_results_file, sd = exp_sd) %>%
  911. update_gene_names(args$sgd_gene_list) %>%
  912. as_tibble()
  913. # Filter rows above delta background tolerance
  914. df_above_tolerance <- df %>% filter(DB == 1)
  915. df_na <- df %>% mutate(across(all_of(summary_vars), ~ ifelse(DB == 1, NA, .))) # formerly X
  916. df_no_zeros <- df_na %>% filter(L > 0) # formerly X_noZero
  917. # Save some constants
  918. max_conc <- max(df$conc_num_factor_num)
  919. l_half_median <- (median(df_above_tolerance$L, na.rm = TRUE)) / 2
  920. k_half_median <- (median(df_above_tolerance$K, na.rm = TRUE)) / 2
  921. message("Calculating summary statistics before quality control")
  922. df_stats <- calculate_summary_stats(
  923. df = df,
  924. variables = summary_vars,
  925. group_vars = c("conc_num", "conc_num_factor"))$df_with_stats
  926. message("Calculating summary statistics after quality control")
  927. ss <- calculate_summary_stats(
  928. df = df_na,
  929. variables = summary_vars,
  930. group_vars = c("conc_num", "conc_num_factor"))
  931. df_na_ss <- ss$summary_stats
  932. df_na_stats <- ss$df_with_stats
  933. write.csv(df_na_ss, file = file.path(out_dir, "summary_stats_all_strains.csv"), row.names = FALSE)
  934. # For plotting (ggplot warns on NAs)
  935. df_na_stats_filtered <- df_na_stats %>% filter(if_all(all_of(summary_vars), is.finite))
  936. df_na_stats <- df_na_stats %>%
  937. mutate(
  938. WT_L = mean_L,
  939. WT_K = mean_K,
  940. WT_r = mean_r,
  941. WT_AUC = mean_AUC,
  942. WT_sd_L = sd_L,
  943. WT_sd_K = sd_K,
  944. WT_sd_r = sd_r,
  945. WT_sd_AUC = sd_AUC
  946. )
  947. # Pull the background means and standard deviations from zero concentration for interactions
  948. bg_stats <- df_na_stats %>%
  949. filter(conc_num == 0) %>%
  950. summarise(
  951. mean_L = first(mean_L),
  952. mean_K = first(mean_K),
  953. mean_r = first(mean_r),
  954. mean_AUC = first(mean_AUC),
  955. sd_L = first(sd_L),
  956. sd_K = first(sd_K),
  957. sd_r = first(sd_r),
  958. sd_AUC = first(sd_AUC)
  959. )
  960. message("Calculating summary statistics after quality control excluding zero values")
  961. df_no_zeros_stats <- calculate_summary_stats(
  962. df = df_no_zeros,
  963. variables = summary_vars,
  964. group_vars = c("conc_num", "conc_num_factor")
  965. )$df_with_stats
  966. message("Filtering by 2SD of K")
  967. df_na_within_2sd_k <- df_na_stats %>%
  968. filter(K >= (mean_K - 2 * sd_K) & K <= (mean_K + 2 * sd_K))
  969. df_na_outside_2sd_k <- df_na_stats %>%
  970. filter(K < (mean_K - 2 * sd_K) | K > (mean_K + 2 * sd_K))
  971. message("Calculating summary statistics for L within 2SD of K")
  972. # TODO We're omitting the original z_max calculation, not sure if needed?
  973. ss <- calculate_summary_stats(df_na_within_2sd_k, "L", group_vars = c("conc_num", "conc_num_factor"))$summary_stats
  974. write.csv(ss,
  975. file = file.path(out_dir_qc, "max_observed_L_vals_for_spots_within_2sd_K.csv"),
  976. row.names = FALSE)
  977. message("Calculating summary statistics for L outside 2SD of K")
  978. ss <- calculate_summary_stats(df_na_outside_2sd_k, "L", group_vars = c("conc_num", "conc_num_factor"))
  979. df_na_l_outside_2sd_k_stats <- ss$df_with_stats
  980. write.csv(ss$summary_stats,
  981. file = file.path(out_dir, "max_observed_L_vals_for_spots_outside_2sd_K.csv"),
  982. row.names = FALSE)
  983. # Each plots list corresponds to a file
  984. l_vs_k_plot_configs <- list(
  985. list(
  986. df = df,
  987. x_var = "L",
  988. y_var = "K",
  989. plot_type = "scatter",
  990. delta_bg_point = TRUE,
  991. title = "Raw L vs K before quality control",
  992. color_var = "conc_num_factor",
  993. error_bar = FALSE,
  994. legend_position = "right"
  995. )
  996. )
  997. frequency_delta_bg_plot_configs <- list(
  998. list(
  999. df = df_stats,
  1000. x_var = "delta_bg",
  1001. y_var = NULL,
  1002. plot_type = "density",
  1003. title = "Density plot for Delta Background by Conc All Data",
  1004. color_var = "conc_num_factor",
  1005. x_label = "Delta Background",
  1006. y_label = "Density",
  1007. error_bar = FALSE,
  1008. legend_position = "right"),
  1009. list(
  1010. df = df_stats,
  1011. x_var = "delta_bg",
  1012. y_var = NULL,
  1013. plot_type = "bar",
  1014. title = "Bar plot for Delta Background by Conc All Data",
  1015. color_var = "conc_num_factor",
  1016. x_label = "Delta Background",
  1017. y_label = "Count",
  1018. error_bar = FALSE,
  1019. legend_position = "right")
  1020. )
  1021. above_threshold_plot_configs <- list(
  1022. list(
  1023. df = df_above_tolerance,
  1024. x_var = "L",
  1025. y_var = "K",
  1026. plot_type = "scatter",
  1027. delta_bg_point = TRUE,
  1028. title = paste("Raw L vs K for strains above Delta Background threshold of",
  1029. df_above_tolerance$delta_bg_tolerance[[1]], "or above"),
  1030. color_var = "conc_num_factor",
  1031. position = "jitter",
  1032. annotations = list(
  1033. list(
  1034. x = l_half_median,
  1035. y = k_half_median,
  1036. label = paste("# strains above Delta Background tolerance =", nrow(df_above_tolerance))
  1037. )
  1038. ),
  1039. error_bar = FALSE,
  1040. legend_position = "right"
  1041. )
  1042. )
  1043. plate_analysis_plot_configs <- generate_plate_analysis_plot_configs(
  1044. variables = summary_vars,
  1045. df_before = df_stats,
  1046. df_after = df_na_stats_filtered
  1047. )
  1048. plate_analysis_boxplot_configs <- generate_plate_analysis_plot_configs(
  1049. variables = summary_vars,
  1050. df_before = df_stats,
  1051. df_after = df_na_stats_filtered,
  1052. plot_type = "box"
  1053. )
  1054. plate_analysis_no_zeros_plot_configs <- generate_plate_analysis_plot_configs(
  1055. variables = summary_vars,
  1056. stages = c("after"), # Only after QC
  1057. df_after = df_no_zeros_stats
  1058. )
  1059. plate_analysis_no_zeros_boxplot_configs <- generate_plate_analysis_plot_configs(
  1060. variables = summary_vars,
  1061. stages = c("after"), # Only after QC
  1062. df_after = df_no_zeros_stats,
  1063. plot_type = "box"
  1064. )
  1065. l_outside_2sd_k_plot_configs <- list(
  1066. list(
  1067. df = df_na_l_outside_2sd_k_stats,
  1068. x_var = "L",
  1069. y_var = "K",
  1070. plot_type = "scatter",
  1071. delta_bg_point = TRUE,
  1072. title = "Raw L vs K for strains falling outside 2SD of the K mean at each Conc",
  1073. color_var = "conc_num_factor",
  1074. position = "jitter",
  1075. legend_position = "right"
  1076. )
  1077. )
  1078. delta_bg_outside_2sd_k_plot_configs <- list(
  1079. list(
  1080. df = df_na_l_outside_2sd_k_stats,
  1081. x_var = "delta_bg",
  1082. y_var = "K",
  1083. plot_type = "scatter",
  1084. gene_point = TRUE,
  1085. title = "Delta Background vs K for strains falling outside 2SD of the K mean at each Conc",
  1086. color_var = "conc_num_factor",
  1087. position = "jitter",
  1088. legend_position = "right"
  1089. )
  1090. )
  1091. message("Generating quality control plots in parallel")
  1092. # future::plan(future::multicore, workers = parallel::detectCores())
  1093. future::plan(future::multisession, workers = 3) # generate 3 plots in parallel
  1094. plot_configs <- list(
  1095. list(out_dir = out_dir_qc, filename = "L_vs_K_before_quality_control",
  1096. plot_configs = l_vs_k_plot_configs),
  1097. list(out_dir = out_dir_qc, filename = "frequency_delta_background",
  1098. plot_configs = frequency_delta_bg_plot_configs),
  1099. list(out_dir = out_dir_qc, filename = "L_vs_K_above_threshold",
  1100. plot_configs = above_threshold_plot_configs),
  1101. list(out_dir = out_dir_qc, filename = "plate_analysis",
  1102. plot_configs = plate_analysis_plot_configs),
  1103. list(out_dir = out_dir_qc, filename = "plate_analysis_boxplots",
  1104. plot_configs = plate_analysis_boxplot_configs),
  1105. list(out_dir = out_dir_qc, filename = "plate_analysis_no_zeros",
  1106. plot_configs = plate_analysis_no_zeros_plot_configs),
  1107. list(out_dir = out_dir_qc, filename = "plate_analysis_no_zeros_boxplots",
  1108. plot_configs = plate_analysis_no_zeros_boxplot_configs),
  1109. list(out_dir = out_dir_qc, filename = "L_vs_K_for_strains_2SD_outside_mean_K",
  1110. plot_configs = l_outside_2sd_k_plot_configs),
  1111. list(out_dir = out_dir_qc, filename = "delta_background_vs_K_for_strains_2sd_outside_mean_K",
  1112. plot_configs = delta_bg_outside_2sd_k_plot_configs)
  1113. )
  1114. # Generating quality control plots in parallel
  1115. furrr::future_map(plot_configs, function(config) {
  1116. generate_and_save_plots(config$out_dir, config$filename, config$plot_configs)
  1117. }, .options = furrr_options(seed = TRUE))
  1118. # Process background strains
  1119. bg_strains <- c("YDL227C")
  1120. lapply(bg_strains, function(strain) {
  1121. message("Processing background strain: ", strain)
  1122. # Handle missing data by setting zero values to NA
  1123. # and then removing any rows with NA in L col
  1124. df_bg <- df_na %>%
  1125. filter(OrfRep == strain) %>%
  1126. mutate(
  1127. L = if_else(L == 0, NA, L),
  1128. K = if_else(K == 0, NA, K),
  1129. r = if_else(r == 0, NA, r),
  1130. AUC = if_else(AUC == 0, NA, AUC)
  1131. ) %>%
  1132. filter(!is.na(L))
  1133. # Recalculate summary statistics for the background strain
  1134. message("Calculating summary statistics for background strain")
  1135. ss_bg <- calculate_summary_stats(df_bg, summary_vars, group_vars = c("OrfRep", "conc_num", "conc_num_factor"))
  1136. summary_stats_bg <- ss_bg$summary_stats
  1137. write.csv(summary_stats_bg,
  1138. file = file.path(out_dir, paste0("summary_stats_background_strain_", strain, ".csv")),
  1139. row.names = FALSE)
  1140. # Set the missing values to the highest theoretical value at each drug conc for L
  1141. # Leave other values as 0 for the max/min
  1142. df_reference <- df_na_stats %>% # formerly X2_RF
  1143. filter(OrfRep == strain) %>%
  1144. filter(!is.na(L)) %>%
  1145. group_by(conc_num, conc_num_factor) %>%
  1146. mutate(
  1147. max_l_theoretical = max(max_L, na.rm = TRUE),
  1148. L = ifelse(L == 0 & !is.na(L) & conc_num > 0, max_l_theoretical, L),
  1149. SM = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, 1, 0),
  1150. L = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, max_l_theoretical, L)) %>%
  1151. ungroup()
  1152. # Ditto for deletion strains
  1153. df_deletion <- df_na_stats %>% # formerly X2
  1154. filter(OrfRep != strain) %>%
  1155. filter(!is.na(L)) %>%
  1156. mutate(SM = 0) %>%
  1157. group_by(conc_num, conc_num_factor) %>%
  1158. mutate(
  1159. max_l_theoretical = max(max_L, na.rm = TRUE),
  1160. L = ifelse(L == 0 & !is.na(L) & conc_num > 0, max_l_theoretical, L),
  1161. SM = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, 1, SM),
  1162. L = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, max_l_theoretical, L)) %>%
  1163. ungroup()
  1164. message("Calculating reference strain interaction scores")
  1165. df_reference_stats <- calculate_summary_stats(
  1166. df = df_reference,
  1167. variables = interaction_vars,
  1168. group_vars = c("OrfRep", "Gene", "num", "conc_num", "conc_num_factor")
  1169. )$df_with_stats
  1170. reference_results <- calculate_interaction_scores(df_reference_stats, max_conc, bg_stats, group_vars = c("OrfRep", "Gene", "num"))
  1171. zscore_calculations_reference <- reference_results$calculations
  1172. zscore_interactions_reference <- reference_results$interactions
  1173. zscore_interactions_reference_joined <- reference_results$interactions_joined
  1174. message("Calculating deletion strain(s) interactions scores")
  1175. df_deletion_stats <- calculate_summary_stats(
  1176. df = df_deletion,
  1177. variables = interaction_vars,
  1178. group_vars = c("OrfRep", "Gene", "conc_num", "conc_num_factor")
  1179. )$df_with_stats
  1180. deletion_results <- calculate_interaction_scores(df_deletion_stats, max_conc, bg_stats, group_vars = c("OrfRep"))
  1181. zscore_calculations <- deletion_results$calculations
  1182. zscore_interactions <- deletion_results$interactions
  1183. zscore_interactions_joined <- deletion_results$interactions_joined
  1184. # Writing Z-Scores to file
  1185. write.csv(zscore_calculations_reference, file = file.path(out_dir, "zscore_calculations_reference.csv"), row.names = FALSE)
  1186. write.csv(zscore_calculations, file = file.path(out_dir, "zscore_calculations.csv"), row.names = FALSE)
  1187. write.csv(zscore_interactions_reference, file = file.path(out_dir, "zscore_interactions_reference.csv"), row.names = FALSE)
  1188. write.csv(zscore_interactions, file = file.path(out_dir, "zscore_interactions.csv"), row.names = FALSE)
  1189. # Create interaction plots
  1190. message("Generating reference interaction plots")
  1191. reference_plot_configs <- generate_interaction_plot_configs(zscore_interactions_reference_joined)
  1192. generate_and_save_plots(out_dir, "interaction_plots_reference", reference_plot_configs, grid_layout = list(ncol = 4, nrow = 3))
  1193. message("Generating deletion interaction plots")
  1194. deletion_plot_configs <- generate_interaction_plot_configs(zscore_interactions_joined)
  1195. generate_and_save_plots(out_dir, "interaction_plots", deletion_plot_configs, grid_layout = list(ncol = 4, nrow = 3))
  1196. # Define conditions for enhancers and suppressors
  1197. # TODO Add to study config?
  1198. threshold <- 2
  1199. enhancer_condition_L <- zscore_interactions$Avg_Zscore_L >= threshold
  1200. suppressor_condition_L <- zscore_interactions$Avg_Zscore_L <= -threshold
  1201. enhancer_condition_K <- zscore_interactions$Avg_Zscore_K >= threshold
  1202. suppressor_condition_K <- zscore_interactions$Avg_Zscore_K <= -threshold
  1203. # Subset data
  1204. enhancers_L <- zscore_interactions[enhancer_condition_L, ]
  1205. suppressors_L <- zscore_interactions[suppressor_condition_L, ]
  1206. enhancers_K <- zscore_interactions[enhancer_condition_K, ]
  1207. suppressors_K <- zscore_interactions[suppressor_condition_K, ]
  1208. # Save enhancers and suppressors
  1209. message("Writing enhancer/suppressor csv files")
  1210. write.csv(enhancers_L, file = file.path(out_dir, "zscore_interactions_deletion_enhancers_L.csv"), row.names = FALSE)
  1211. write.csv(suppressors_L, file = file.path(out_dir, "zscore_interactions_deletion_suppressors_L.csv"), row.names = FALSE)
  1212. write.csv(enhancers_K, file = file.path(out_dir, "zscore_interactions_deletion_enhancers_K.csv"), row.names = FALSE)
  1213. write.csv(suppressors_K, file = file.path(out_dir, "zscore_interactions_deletion_suppressors_K.csv"), row.names = FALSE)
  1214. # Combine conditions for enhancers and suppressors
  1215. enhancers_and_suppressors_L <- zscore_interactions[enhancer_condition_L | suppressor_condition_L, ]
  1216. enhancers_and_suppressors_K <- zscore_interactions[enhancer_condition_K | suppressor_condition_K, ]
  1217. # Save combined enhancers and suppressors
  1218. write.csv(enhancers_and_suppressors_L,
  1219. file = file.path(out_dir, "zscore_interactions_deletion_enhancers_and_suppressors_L.csv"), row.names = FALSE)
  1220. write.csv(enhancers_and_suppressors_K,
  1221. file = file.path(out_dir, "zscore_interaction_deletion_enhancers_and_suppressors_K.csv"), row.names = FALSE)
  1222. # Handle linear model based enhancers and suppressors
  1223. lm_threshold <- 2 # TODO add to study config?
  1224. enhancers_lm_L <- zscore_interactions[zscore_interactions$Z_lm_L >= lm_threshold, ]
  1225. suppressors_lm_L <- zscore_interactions[zscore_interactions$Z_lm_L <= -lm_threshold, ]
  1226. enhancers_lm_K <- zscore_interactions[zscore_interactions$Z_lm_K >= lm_threshold, ]
  1227. suppressors_lm_K <- zscore_interactions[zscore_interactions$Z_lm_K <= -lm_threshold, ]
  1228. # Save linear model based enhancers and suppressors
  1229. message("Writing linear model enhancer/suppressor csv files")
  1230. write.csv(enhancers_lm_L,
  1231. file = file.path(out_dir, "zscore_interactions_deletion_enhancers_lm_L.csv"), row.names = FALSE)
  1232. write.csv(suppressors_lm_L,
  1233. file = file.path(out_dir, "zscore_interactions_deletion_suppressors_lm_L.csv"), row.names = FALSE)
  1234. write.csv(enhancers_lm_K,
  1235. file = file.path(out_dir, "zscore_interactions_deletion_enhancers_lm_K.csv"), row.names = FALSE)
  1236. write.csv(suppressors_lm_K,
  1237. file = file.path(out_dir, "zscore_interactions_deletion_suppressors_lm_K.csv"), row.names = FALSE)
  1238. message("Generating rank plots")
  1239. rank_plot_configs <- generate_rank_plot_configs(
  1240. df = zscore_interactions_joined,
  1241. variables = interaction_vars,
  1242. is_lm = FALSE,
  1243. adjust = TRUE
  1244. )
  1245. generate_and_save_plots(out_dir = out_dir, filename = "rank_plots",
  1246. plot_configs = rank_plot_configs, grid_layout = list(ncol = 3, nrow = 2))
  1247. message("Generating ranked linear model plots")
  1248. rank_lm_plot_configs <- generate_rank_plot_configs(
  1249. df = zscore_interactions_joined,
  1250. variables = interaction_vars,
  1251. is_lm = TRUE,
  1252. adjust = TRUE
  1253. )
  1254. generate_and_save_plots(out_dir = out_dir, filename = "rank_plots_lm",
  1255. plot_configs = rank_lm_plot_configs, grid_layout = list(ncol = 3, nrow = 2))
  1256. message("Filtering and reranking plots")
  1257. interaction_threshold <- 2 # TODO add to study config?
  1258. # Formerly X_NArm
  1259. zscore_interactions_filtered <- zscore_interactions_joined %>%
  1260. filter(!is.na(Z_lm_L) & !is.na(Avg_Zscore_L)) %>%
  1261. mutate(
  1262. Overlap = case_when(
  1263. Z_lm_L >= interaction_threshold & Avg_Zscore_L >= interaction_threshold ~ "Deletion Enhancer Both",
  1264. Z_lm_L <= -interaction_threshold & Avg_Zscore_L <= -interaction_threshold ~ "Deletion Suppressor Both",
  1265. Z_lm_L >= interaction_threshold & Avg_Zscore_L <= interaction_threshold ~ "Deletion Enhancer lm only",
  1266. Z_lm_L <= interaction_threshold & Avg_Zscore_L >= interaction_threshold ~ "Deletion Enhancer Avg Zscore only",
  1267. Z_lm_L <= -interaction_threshold & Avg_Zscore_L >= -interaction_threshold ~ "Deletion Suppressor lm only",
  1268. Z_lm_L >= -interaction_threshold & Avg_Zscore_L <= -interaction_threshold ~ "Deletion Suppressor Avg Zscore only",
  1269. Z_lm_L >= interaction_threshold & Avg_Zscore_L <= -interaction_threshold ~ "Deletion Enhancer lm, Deletion Suppressor Avg Z score",
  1270. Z_lm_L <= -interaction_threshold & Avg_Zscore_L >= interaction_threshold ~ "Deletion Suppressor lm, Deletion Enhancer Avg Z score",
  1271. TRUE ~ "No Effect"
  1272. ),
  1273. lm_R_squared_L = summary(lm(Z_lm_L ~ Avg_Zscore_L))$r.squared,
  1274. lm_R_squared_K = summary(lm(Z_lm_K ~ Avg_Zscore_K))$r.squared,
  1275. lm_R_squared_r = summary(lm(Z_lm_r ~ Avg_Zscore_r))$r.squared,
  1276. lm_R_squared_AUC = summary(lm(Z_lm_AUC ~ Avg_Zscore_AUC))$r.squared
  1277. )
  1278. message("Generating filtered ranked plots")
  1279. rank_plot_filtered_configs <- generate_rank_plot_configs(
  1280. df = zscore_interactions_filtered,
  1281. variables = interaction_vars,
  1282. is_lm = FALSE,
  1283. adjust = FALSE,
  1284. overlap_color = TRUE
  1285. )
  1286. generate_and_save_plots(
  1287. out_dir = out_dir,
  1288. filename = "RankPlots_na_rm",
  1289. plot_configs = rank_plot_filtered_configs,
  1290. grid_layout = list(ncol = 3, nrow = 2))
  1291. message("Generating filtered ranked linear model plots")
  1292. rank_plot_lm_filtered_configs <- generate_rank_plot_configs(
  1293. df = zscore_interactions_filtered,
  1294. variables = interaction_vars,
  1295. is_lm = TRUE,
  1296. adjust = FALSE,
  1297. overlap_color = TRUE
  1298. )
  1299. generate_and_save_plots(
  1300. out_dir = out_dir,
  1301. filename = "rank_plots_lm_na_rm",
  1302. plot_configs = rank_plot_lm_filtered_configs,
  1303. grid_layout = list(ncol = 3, nrow = 2))
  1304. message("Generating correlation curve parameter pair plots")
  1305. correlation_plot_configs <- generate_correlation_plot_configs(zscore_interactions_filtered)
  1306. generate_and_save_plots(
  1307. out_dir = out_dir,
  1308. filename = "correlation_cpps",
  1309. plot_configs = correlation_plot_configs,
  1310. grid_layout = list(ncol = 2, nrow = 2))
  1311. })
  1312. })
  1313. }
  1314. main()