calculate_interaction_zscores.R 44 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099
  1. suppressMessages({
  2. library(ggplot2)
  3. library(plotly)
  4. library(htmlwidgets)
  5. library(dplyr)
  6. library(ggthemes)
  7. library(data.table)
  8. library(unix)
  9. })
  10. options(warn = 2)
  11. options(width = 10000)
  12. # Set the memory limit to 30GB (30 * 1024 * 1024 * 1024 bytes)
  13. soft_limit <- 30 * 1024 * 1024 * 1024
  14. hard_limit <- 30 * 1024 * 1024 * 1024
  15. rlimit_as(soft_limit, hard_limit)
  16. # Constants for configuration
  17. plot_width <- 14
  18. plot_height <- 9
  19. base_size <- 14
  20. parse_arguments <- function() {
  21. args <- if (interactive()) {
  22. c(
  23. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/20240116_jhartman2_DoxoHLD",
  24. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/apps/r/SGD_features.tab",
  25. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/easy/20240116_jhartman2_DoxoHLD/results_std.txt",
  26. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/20240822_jhartman2_DoxoHLD/exp1",
  27. "Experiment 1: Doxo versus HLD",
  28. 3,
  29. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/20240822_jhartman2_DoxoHLD/exp2",
  30. "Experiment 2: HLD versus Doxo",
  31. 3
  32. )
  33. } else {
  34. commandArgs(trailingOnly = TRUE)
  35. }
  36. # Extract paths, names, and standard deviations
  37. paths <- args[seq(4, length(args), by = 3)]
  38. names <- args[seq(5, length(args), by = 3)]
  39. sds <- as.numeric(args[seq(6, length(args), by = 3)])
  40. # Normalize paths
  41. normalized_paths <- normalizePath(paths, mustWork = FALSE)
  42. # Create named list of experiments
  43. experiments <- list()
  44. for (i in seq_along(paths)) {
  45. experiments[[names[i]]] <- list(
  46. path = normalized_paths[i],
  47. sd = sds[i]
  48. )
  49. }
  50. list(
  51. out_dir = normalizePath(args[1], mustWork = FALSE),
  52. sgd_gene_list = normalizePath(args[2], mustWork = FALSE),
  53. easy_results_file = normalizePath(args[3], mustWork = FALSE),
  54. experiments = experiments
  55. )
  56. }
  57. args <- parse_arguments()
  58. # Should we keep output in exp dirs or combine in the study output dir?
  59. # dir.create(file.path(args$out_dir, "zscores"), showWarnings = FALSE)
  60. # dir.create(file.path(args$out_dir, "zscores", "qc"), showWarnings = FALSE)
  61. # Define themes and scales
  62. theme_publication <- function(base_size = 14, base_family = "sans", legend_position = "bottom") {
  63. theme_foundation <- ggplot2::theme_grey(base_size = base_size, base_family = base_family)
  64. theme_foundation %+replace%
  65. theme(
  66. plot.title = element_text(face = "bold", size = rel(1.2), hjust = 0.5),
  67. text = element_text(),
  68. panel.background = element_rect(colour = NA),
  69. plot.background = element_rect(colour = NA),
  70. panel.border = element_rect(colour = NA),
  71. axis.title = element_text(face = "bold", size = rel(1)),
  72. axis.title.y = element_text(angle = 90, vjust = 2),
  73. axis.title.x = element_text(vjust = -0.2),
  74. axis.line = element_line(colour = "black"),
  75. panel.grid.major = element_line(colour = "#f0f0f0"),
  76. panel.grid.minor = element_blank(),
  77. legend.key = element_rect(colour = NA),
  78. legend.position = legend_position,
  79. legend.direction = ifelse(legend_position == "right", "vertical", "horizontal"),
  80. plot.margin = unit(c(10, 5, 5, 5), "mm"),
  81. strip.background = element_rect(colour = "#f0f0f0", fill = "#f0f0f0"),
  82. strip.text = element_text(face = "bold")
  83. )
  84. }
  85. scale_fill_publication <- function(...) {
  86. discrete_scale("fill", "Publication", manual_pal(values = c(
  87. "#386cb0", "#fdb462", "#7fc97f", "#ef3b2c", "#662506",
  88. "#a6cee3", "#fb9a99", "#984ea3", "#ffff33"
  89. )), ...)
  90. }
  91. scale_colour_publication <- function(...) {
  92. discrete_scale("colour", "Publication", manual_pal(values = c(
  93. "#386cb0", "#fdb462", "#7fc97f", "#ef3b2c", "#662506",
  94. "#a6cee3", "#fb9a99", "#984ea3", "#ffff33"
  95. )), ...)
  96. }
  97. # Load the initial dataframe from the easy_results_file
  98. load_and_process_data <- function(easy_results_file, sd = 3) {
  99. df <- read.delim(easy_results_file, skip = 2, as.is = TRUE, row.names = 1, strip.white = TRUE)
  100. df <- df %>%
  101. filter(!(.[[1]] %in% c("", "Scan"))) %>%
  102. filter(!is.na(ORF) & ORF != "" & !Gene %in% c("BLANK", "Blank", "blank") & Drug != "BMH21") %>%
  103. # Rename columns
  104. rename(L = l, num = Num., AUC = AUC96, scan = Scan, last_bg = LstBackgrd, first_bg = X1stBackgrd) %>%
  105. mutate(
  106. across(c(Col, Row, num, L, K, r, scan, AUC, last_bg, first_bg), as.numeric),
  107. delta_bg = last_bg - first_bg,
  108. delta_bg_tolerance = mean(delta_bg, na.rm = TRUE) + (sd * sd(delta_bg, na.rm = TRUE)),
  109. NG = if_else(L == 0 & !is.na(L), 1, 0),
  110. DB = if_else(delta_bg >= delta_bg_tolerance, 1, 0),
  111. SM = 0,
  112. OrfRep = if_else(ORF == "YDL227C", "YDL227C", OrfRep), # should these be hardcoded?
  113. conc_num = as.numeric(gsub("[^0-9\\.]", "", Conc)),
  114. conc_num_factor = as.numeric(as.factor(conc_num)) - 1
  115. )
  116. return(df)
  117. }
  118. # Update Gene names using the SGD gene list
  119. update_gene_names <- function(df, sgd_gene_list) {
  120. # Load SGD gene list
  121. genes <- read.delim(file = sgd_gene_list,
  122. quote = "", header = FALSE,
  123. colClasses = c(rep("NULL", 3), rep("character", 2), rep("NULL", 11)))
  124. # Create a named vector for mapping ORF to GeneName
  125. gene_map <- setNames(genes$V5, genes$V4)
  126. # Vectorized match to find the GeneName from gene_map
  127. mapped_genes <- gene_map[df$ORF]
  128. # Replace NAs in mapped_genes with original Gene names (preserves existing Gene names if ORF is not found)
  129. updated_genes <- ifelse(is.na(mapped_genes) | df$OrfRep == "YDL227C", df$Gene, mapped_genes)
  130. # Ensure Gene is not left blank or incorrectly updated to "OCT1"
  131. df <- df %>%
  132. mutate(Gene = ifelse(updated_genes == "" | updated_genes == "OCT1", OrfRep, updated_genes))
  133. return(df)
  134. }
  135. # Calculate summary statistics for all variables
  136. calculate_summary_stats <- function(df, variables, group_vars = c("OrfRep", "conc_num", "conc_num_factor")) {
  137. # Summarize the variables within the grouped data
  138. summary_stats <- df %>%
  139. group_by(across(all_of(group_vars))) %>%
  140. summarise(
  141. N = sum(!is.na(L)),
  142. across(all_of(variables), list(
  143. mean = ~mean(., na.rm = TRUE),
  144. median = ~median(., na.rm = TRUE),
  145. max = ~ ifelse(all(is.na(.)), NA, max(., na.rm = TRUE)),
  146. min = ~ ifelse(all(is.na(.)), NA, min(., na.rm = TRUE)),
  147. sd = ~sd(., na.rm = TRUE),
  148. se = ~ ifelse(all(is.na(.)), NA, sd(., na.rm = TRUE) / sqrt(sum(!is.na(.)) - 1))
  149. ), .names = "{.fn}_{.col}")
  150. )
  151. print(summary_stats)
  152. # Prevent .x and .y suffix issues by renaming columns
  153. df_cleaned <- df %>%
  154. select(-any_of(setdiff(names(summary_stats), group_vars))) # Avoid duplicate columns in the final join
  155. # Join the stats back to the original dataframe
  156. df_with_stats <- left_join(df_cleaned, summary_stats, by = group_vars)
  157. return(list(summary_stats = summary_stats, df_with_stats = df_with_stats))
  158. }
  159. calculate_interaction_scores <- function(df, max_conc, variables, group_vars = c("OrfRep", "Gene", "num")) {
  160. # Calculate total concentration variables
  161. total_conc_num <- length(unique(df$conc_num))
  162. num_non_removed_concs <- total_conc_num - sum(df$DB, na.rm = TRUE) - 1
  163. # Pull the background means and standard deviations from zero concentration
  164. bg_means <- list(
  165. L = df %>% filter(conc_num_factor == 0) %>% pull(mean_L) %>% first(),
  166. K = df %>% filter(conc_num_factor == 0) %>% pull(mean_K) %>% first(),
  167. r = df %>% filter(conc_num_factor == 0) %>% pull(mean_r) %>% first(),
  168. AUC = df %>% filter(conc_num_factor == 0) %>% pull(mean_AUC) %>% first()
  169. )
  170. bg_sd <- list(
  171. L = df %>% filter(conc_num_factor == 0) %>% pull(sd_L) %>% first(),
  172. K = df %>% filter(conc_num_factor == 0) %>% pull(sd_K) %>% first(),
  173. r = df %>% filter(conc_num_factor == 0) %>% pull(sd_r) %>% first(),
  174. AUC = df %>% filter(conc_num_factor == 0) %>% pull(sd_AUC) %>% first()
  175. )
  176. calculations <- df %>%
  177. mutate(
  178. WT_L = df$mean_L,
  179. WT_K = df$mean_K,
  180. WT_r = df$mean_r,
  181. WT_AUC = df$mean_AUC,
  182. WT_sd_L = df$sd_L,
  183. WT_sd_K = df$sd_K,
  184. WT_sd_r = df$sd_r,
  185. WT_sd_AUC = df$sd_AUC
  186. ) %>%
  187. group_by(across(all_of(group_vars)), conc_num, conc_num_factor) %>%
  188. mutate(
  189. N = sum(!is.na(L)),
  190. NG = sum(NG, na.rm = TRUE),
  191. DB = sum(DB, na.rm = TRUE),
  192. SM = sum(SM, na.rm = TRUE),
  193. across(all_of(variables), list(
  194. mean = ~mean(., na.rm = TRUE),
  195. median = ~median(., na.rm = TRUE),
  196. max = ~max(., na.rm = TRUE),
  197. min = ~min(., na.rm = TRUE),
  198. sd = ~sd(., na.rm = TRUE),
  199. se = ~sd(., na.rm = TRUE) / sqrt(sum(!is.na(.)) - 1)
  200. ), .names = "{.fn}_{.col}")
  201. ) %>%
  202. ungroup()
  203. calculations <- calculations %>%
  204. group_by(across(all_of(group_vars))) %>%
  205. mutate(
  206. Raw_Shift_L = mean_L[[1]] - bg_means$L,
  207. Raw_Shift_K = mean_K[[1]] - bg_means$K,
  208. Raw_Shift_r = mean_r[[1]] - bg_means$r,
  209. Raw_Shift_AUC = mean_AUC[[1]] - bg_means$AUC,
  210. Z_Shift_L = Raw_Shift_L[[1]] / bg_sd$L,
  211. Z_Shift_K = Raw_Shift_K[[1]] / bg_sd$K,
  212. Z_Shift_r = Raw_Shift_r[[1]] / bg_sd$r,
  213. Z_Shift_AUC = Raw_Shift_AUC[[1]] / bg_sd$AUC
  214. )
  215. calculations <- calculations %>%
  216. mutate(
  217. Exp_L = WT_L + Raw_Shift_L,
  218. Delta_L = mean_L - Exp_L,
  219. Exp_K = WT_K + Raw_Shift_K,
  220. Delta_K = mean_K - Exp_K,
  221. Exp_r = WT_r + Raw_Shift_r,
  222. Delta_r = mean_r - Exp_r,
  223. Exp_AUC = WT_AUC + Raw_Shift_AUC,
  224. Delta_AUC = mean_AUC - Exp_AUC
  225. )
  226. calculations <- calculations %>%
  227. mutate(
  228. Delta_L = if_else(NG == 1, mean_L - WT_L, Delta_L),
  229. Delta_K = if_else(NG == 1, mean_K - WT_K, Delta_K),
  230. Delta_r = if_else(NG == 1, mean_r - WT_r, Delta_r),
  231. Delta_AUC = if_else(NG == 1, mean_AUC - WT_AUC, Delta_AUC),
  232. Delta_L = if_else(SM == 1, mean_L - WT_L, Delta_L)
  233. )
  234. interactions <- calculations %>%
  235. mutate(
  236. lm_L = lm(Delta_L ~ conc_num_factor),
  237. lm_K = lm(Delta_K ~ conc_num_factor),
  238. lm_r = lm(Delta_r ~ conc_num_factor),
  239. lm_AUC = lm(Delta_AUC ~ conc_num_factor),
  240. Zscore_L = Delta_L / WT_sd_L,
  241. Zscore_K = Delta_K / WT_sd_K,
  242. Zscore_r = Delta_r / WT_sd_r,
  243. Zscore_AUC = Delta_AUC / WT_sd_AUC
  244. )
  245. interactions <- interactions %>%
  246. mutate(
  247. lm_Score_L = max_conc * coef(lm_L)[2] + coef(lm_L)[1],
  248. lm_Score_K = max_conc * coef(lm_K)[2] + coef(lm_K)[1],
  249. lm_Score_r = max_conc * coef(lm_r)[2] + coef(lm_r)[1],
  250. lm_Score_AUC = max_conc * coef(lm_AUC)[2] + coef(lm_AUC)[1],
  251. r_squared_L = summary(lm_L)$r.squared,
  252. r_squared_K = summary(lm_K)$r.squared,
  253. r_squared_r = summary(lm_r)$r.squared,
  254. r_squared_AUC = summary(lm_AUC)$r.squared,
  255. Sum_Zscore_L = sum(Zscore_L, na.rm = TRUE),
  256. Sum_Zscore_K = sum(Zscore_K, na.rm = TRUE),
  257. Sum_Zscore_r = sum(Zscore_r, na.rm = TRUE),
  258. Sum_Zscore_AUC = sum(Zscore_AUC, na.rm = TRUE)
  259. )
  260. interactions <- interactions %>%
  261. mutate(
  262. Avg_Zscore_L = Sum_Zscore_L / num_non_removed_concs,
  263. Avg_Zscore_K = Sum_Zscore_K / num_non_removed_concs,
  264. Avg_Zscore_r = Sum_Zscore_r / (total_conc_num - 1),
  265. Avg_Zscore_AUC = Sum_Zscore_AUC / (total_conc_num - 1),
  266. Z_lm_L = (lm_Score_L - mean(lm_Score_L, na.rm = TRUE)) / sd(lm_Score_L, na.rm = TRUE),
  267. Z_lm_K = (lm_Score_K - mean(lm_Score_K, na.rm = TRUE)) / sd(lm_Score_K, na.rm = TRUE),
  268. Z_lm_r = (lm_Score_r - mean(lm_Score_r, na.rm = TRUE)) / sd(lm_Score_r, na.rm = TRUE),
  269. Z_lm_AUC = (lm_Score_AUC - mean(lm_Score_AUC, na.rm = TRUE)) / sd(lm_Score_AUC, na.rm = TRUE)
  270. )
  271. # Declare column order for output
  272. calculations <- calculations %>%
  273. select("OrfRep", "Gene", "num", "conc_num", "conc_num_factor",
  274. "mean_L", "mean_K", "mean_r", "mean_AUC",
  275. "median_L", "median_K", "median_r", "median_AUC",
  276. "sd_L", "sd_K", "sd_r", "sd_AUC",
  277. "se_L", "se_K", "se_r", "se_AUC",
  278. "Raw_Shift_L", "Raw_Shift_K", "Raw_Shift_r", "Raw_Shift_AUC",
  279. "Z_Shift_L", "Z_Shift_K", "Z_Shift_r", "Z_Shift_AUC",
  280. "WT_L", "WT_K", "WT_r", "WT_AUC", "WT_sd_L", "WT_sd_K", "WT_sd_r", "WT_sd_AUC",
  281. "Exp_L", "Exp_K", "Exp_r", "Exp_AUC", "Delta_L", "Delta_K", "Delta_r", "Delta_AUC",
  282. "Zscore_L", "Zscore_K", "Zscore_r", "Zscore_AUC",
  283. "NG", "SM", "DB") %>%
  284. ungroup()
  285. # Also arrange results by Z_lm_L and NG
  286. interactions <- interactions %>%
  287. select("OrfRep", "Gene", "num", "Raw_Shift_L", "Raw_Shift_K", "Raw_Shift_AUC", "Raw_Shift_r",
  288. "Z_Shift_L", "Z_Shift_K", "Z_Shift_r", "Z_Shift_AUC",
  289. "lm_Score_L", "lm_Score_K", "lm_Score_AUC", "lm_Score_r",
  290. "R_Squared_L", "R_Squared_K", "R_Squared_r", "R_Squared_AUC",
  291. "Sum_Z_Score_L", "Sum_Z_Score_K", "Sum_Z_Score_r", "Sum_Z_Score_AUC",
  292. "Avg_Zscore_L", "Avg_Zscore_K", "Avg_Zscore_r", "Avg_Zscore_AUC",
  293. "Z_lm_L", "Z_lm_K", "Z_lm_r", "Z_lm_AUC",
  294. "NG", "SM", "DB") %>%
  295. arrange(desc(lm_Score_L)) %>%
  296. arrange(desc(NG)) %>%
  297. ungroup()
  298. return(list(calculations = calculations, interactions = interaction))
  299. }
  300. generate_and_save_plots <- function(output_dir, file_name, plot_configs, grid_layout = NULL) {
  301. message("Generating html and pdf plots for: ", file_name, ".pdf|html")
  302. plots <- lapply(plot_configs, function(config) {
  303. # Log details and setup
  304. df <- config$df
  305. aes_mapping <-
  306. if (is.null(config$y_var))
  307. aes(x = !!sym(config$x_var), color = as.factor(!!sym(config$color_var)))
  308. else
  309. aes(x = !!sym(config$x_var), y = !!sym(config$y_var), color = as.factor(!!sym(config$color_var)))
  310. plot <- ggplot(df, aes_mapping)
  311. # Plot type handling
  312. plot <- switch(config$plot_type,
  313. "scatter" = {
  314. plot <- if (!is.null(config$delta_bg_point) && config$delta_bg_point) {
  315. plot + geom_point(aes(ORF = ORF, Gene = Gene, delta_bg = delta_bg), config$shape %||% 3)
  316. } else if (!is.null(config$gene_point) && config$gene_point) {
  317. plot + geom_point(aes(ORF = ORF, Gene = Gene, Gene = Gene), shape = config$shape %||% 3, position = "jitter")
  318. } else if (!is.null(config$position) && config$position == "jitter") {
  319. plot + geom_point(shape = config$shape %||% 3, size = config$size %||% 0.2, position = "jitter")
  320. } else {
  321. plot + geom_point(shape = config$shape %||% 3, size = config$size %||% 0.2)
  322. }
  323. if (!is.null(config$add_smooth) && config$add_smooth) {
  324. if (!is.null(config$lm_line)) {
  325. # Use precomputed linear model values if available
  326. plot <- plot + geom_abline(intercept = config$lm_line$intercept, slope = config$lm_line$slope)
  327. } else {
  328. # Fallback to dynamically calculating the smooth line
  329. plot <- plot + geom_smooth(method = "lm", se = FALSE)
  330. }
  331. }
  332. plot <- plot +
  333. geom_errorbar(aes(
  334. ymin = !!sym(paste0("mean_", config$y_var)) - !!sym(paste0("sd_", config$y_var)),
  335. ymax = !!sym(paste0("mean_", config$y_var)) + !!sym(paste0("sd_", config$y_var))),
  336. width = 0.1) +
  337. geom_point(aes(y = !!sym(paste0("mean_", config$y_var))), size = 0.6)
  338. plot
  339. },
  340. "rank" = {
  341. plot <- plot + geom_point(size = config$size %||% 0.1, shape = config$shape %||% 3)
  342. if (!is.null(config$sd_band)) {
  343. for (i in seq_len(config$sd_band)) {
  344. plot <- plot +
  345. annotate("rect", xmin = -Inf, xmax = Inf, ymin = i, ymax = Inf, fill = "#542788", alpha = 0.3) +
  346. annotate("rect", xmin = -Inf, xmax = Inf, ymin = -i, ymax = -Inf, fill = "orange", alpha = 0.3) +
  347. geom_hline(yintercept = c(-i, i), color = "gray")
  348. }
  349. }
  350. if (!is.null(config$enhancer_label)) {
  351. plot <- plot + annotate("text", x = config$enhancer_label$x, y = config$enhancer_label$y, label = config$enhancer_label$label)
  352. }
  353. if (!is.null(config$suppressor_label)) {
  354. plot <- plot + annotate("text", x = config$suppressor_label$x, y = config$suppressor_label$y, label = config$suppressor_label$label)
  355. }
  356. plot
  357. },
  358. "correlation" = plot + geom_point(shape = config$shape %||% 3, color = "gray70") +
  359. geom_abline(intercept = config$lm_line$intercept, slope = config$lm_line$slope, color = "tomato3") +
  360. annotate("text", x = 0, y = 0, label = config$correlation_text),
  361. "box" = plot + geom_boxplot(),
  362. "density" = plot + geom_density(),
  363. "bar" = plot + geom_bar()
  364. )
  365. # Conditionally apply scale_x_continuous if x_breaks, x_labels, and x_label are present
  366. if (!is.null(config$x_breaks) && !is.null(config$x_labels) && !is.null(config$x_label)) {
  367. plot <- plot + scale_x_continuous(
  368. name = config$x_label,
  369. breaks = config$x_breaks,
  370. labels = config$x_labels
  371. )
  372. }
  373. # Conditionally apply scale_y_continuous if ylim_vals is present
  374. if (!is.null(config$ylim_vals)) {
  375. plot <- plot + scale_y_continuous(limits = config$ylim_vals)
  376. }
  377. plot
  378. })
  379. # Save plots to PDF and HTML
  380. pdf(file.path(output_dir, paste0(file_name, ".pdf")), width = 14, height = 9)
  381. lapply(plots, print)
  382. dev.off()
  383. plotly_plots <- lapply(plots, function(plot) suppressWarnings(ggplotly(plot) %>% layout(legend = list(orientation = "h"))))
  384. combined_plot <- subplot(plotly_plots, nrows = grid_layout$nrow %||% length(plots), margin = 0.05)
  385. saveWidget(combined_plot, file = file.path(output_dir, paste0(file_name, ".html")), selfcontained = TRUE)
  386. }
  387. generate_interaction_plot_configs <- function(df, variables) {
  388. configs <- list()
  389. # Define common y-limits and other attributes for each variable dynamically
  390. limits_map <- list(L = c(-65, 65), K = c(-65, 65), r = c(-0.65, 0.65), AUC = c(-6500, 6500))
  391. # Define annotation positions based on the variable being plotted
  392. annotation_positions <- list(
  393. L = list(ZShift = 45, lm_ZScore = 25, NG = -25, DB = -35, SM = -45),
  394. K = list(ZShift = 45, lm_ZScore = 25, NG = -25, DB = -35, SM = -45),
  395. r = list(ZShift = 0.45, lm_ZScore = 0.25, NG = -0.25, DB = -0.35, SM = -0.45),
  396. AUC = list(ZShift = 4500, lm_ZScore = 2500, NG = -2500, DB = -3500, SM = -4500)
  397. )
  398. # Define which annotations to include for each plot
  399. annotation_labels <- list(
  400. ZShift = function(df, var) paste("ZShift =", round(df[[paste0("Z_Shift_", var)]], 2)),
  401. lm_ZScore = function(df, var) paste("lm ZScore =", round(df[[paste0("Z_lm_", var)]], 2)),
  402. NG = function(df, var) paste("NG =", df$NG),
  403. DB = function(df, var) paste("DB =", df$DB),
  404. SM = function(df, var) paste("SM =", df$SM)
  405. )
  406. for (variable in variables) {
  407. # Dynamically generate the names of the columns
  408. var_info <- list(
  409. ylim = limits_map[[variable]],
  410. lm_model = df[[paste0("lm_", variable)]][[1]], # Access the precomputed linear model
  411. sd_col = paste0("WT_sd_", variable),
  412. delta_var = paste0("Delta_", variable)
  413. )
  414. # Extract the precomputed linear model coefficients
  415. lm_line <- list(
  416. intercept = coef(var_info$lm_model)[1],
  417. slope = coef(var_info$lm_model)[2]
  418. )
  419. # Dynamically create annotations based on variable
  420. annotations <- lapply(names(annotation_positions[[variable]]), function(annotation_name) {
  421. y_pos <- annotation_positions[[variable]][[annotation_name]]
  422. label <- annotation_labels[[annotation_name]](df, variable)
  423. list(x = 1, y = y_pos, label = label)
  424. })
  425. # Add scatter plot configuration for this variable
  426. configs[[length(configs) + 1]] <- list(
  427. df = df,
  428. x_var = "conc_num_factor",
  429. y_var = var_info$delta_var,
  430. plot_type = "scatter",
  431. title = sprintf("%s %s", df$OrfRep[1], df$Gene[1]),
  432. ylim_vals = var_info$ylim,
  433. annotations = annotations,
  434. lm_line = lm_line, # Precomputed linear model
  435. error_bar = list(
  436. ymin = 0 - (2 * df[[var_info$sd_col]][1]),
  437. ymax = 0 + (2 * df[[var_info$sd_col]][1])
  438. ),
  439. x_breaks = unique(df$conc_num_factor),
  440. x_labels = unique(as.character(df$conc_num)),
  441. x_label = unique(df$Drug[1]),
  442. shape = 3,
  443. size = 0.6,
  444. position = "jitter"
  445. )
  446. # Add box plot configuration for this variable
  447. configs[[length(configs) + 1]] <- list(
  448. df = df,
  449. x_var = "conc_num_factor",
  450. y_var = variable,
  451. plot_type = "box",
  452. title = sprintf("%s %s (Boxplot)", df$OrfRep[1], df$Gene[1]),
  453. ylim_vals = var_info$ylim,
  454. annotations = annotations,
  455. error_bar = FALSE, # Boxplots typically don't need error bars
  456. x_breaks = unique(df$conc_num_factor),
  457. x_labels = unique(as.character(df$conc_num)),
  458. x_label = unique(df$Drug[1])
  459. )
  460. }
  461. return(configs)
  462. }
  463. # Adjust missing values and calculate ranks
  464. adjust_missing_and_rank <- function(df, variables) {
  465. # Adjust missing values in Avg_Zscore and Z_lm columns, and apply rank to the specified variables
  466. df <- df %>%
  467. mutate(across(all_of(variables), list(
  468. Avg_Zscore = ~ if_else(is.na(get(paste0("Avg_Zscore_", cur_column()))), 0.001, get(paste0("Avg_Zscore_", cur_column()))),
  469. Z_lm = ~ if_else(is.na(get(paste0("Z_lm_", cur_column()))), 0.001, get(paste0("Z_lm_", cur_column()))),
  470. Rank = ~ rank(get(paste0("Avg_Zscore_", cur_column()))),
  471. Rank_lm = ~ rank(get(paste0("Z_lm_", cur_column())))
  472. ), .names = "{fn}_{col}"))
  473. return(df)
  474. }
  475. generate_rank_plot_configs <- function(df, rank_var, zscore_var, var, is_lm = FALSE) {
  476. configs <- list()
  477. # Adjust titles for _lm plots if is_lm is TRUE
  478. plot_title_prefix <- if (is_lm) "Interaction Z score vs. Rank for" else "Average Z score vs. Rank for"
  479. # Annotated version (with text)
  480. for (sd_band in c(1, 2, 3)) {
  481. configs[[length(configs) + 1]] <- list(
  482. df = df,
  483. x_var = rank_var,
  484. y_var = zscore_var,
  485. plot_type = "rank",
  486. title = paste(plot_title_prefix, var, "above", sd_band, "SD"),
  487. sd_band = sd_band,
  488. enhancer_label = list(
  489. x = nrow(df) / 2, y = 10,
  490. label = paste("Deletion Enhancers =", nrow(df[df[[zscore_var]] >= sd_band, ]))
  491. ),
  492. suppressor_label = list(
  493. x = nrow(df) / 2, y = -10,
  494. label = paste("Deletion Suppressors =", nrow(df[df[[zscore_var]] <= -sd_band, ]))
  495. ),
  496. shape = 3,
  497. size = 0.1,
  498. position = "jitter"
  499. )
  500. }
  501. # Non-annotated version (_notext)
  502. for (sd_band in c(1, 2, 3)) {
  503. configs[[length(configs) + 1]] <- list(
  504. df = df,
  505. x_var = rank_var,
  506. y_var = zscore_var,
  507. plot_type = "rank",
  508. title = paste(plot_title_prefix, var, "above", sd_band, "SD"),
  509. sd_band = sd_band,
  510. enhancer_label = NULL, # No annotations for _notext
  511. suppressor_label = NULL, # No annotations for _notext
  512. shape = 3,
  513. size = 0.1,
  514. position = "jitter"
  515. )
  516. }
  517. return(configs)
  518. }
  519. generate_correlation_plot_configs <- function(df, variables) {
  520. configs <- list()
  521. for (variable in variables) {
  522. z_lm_var <- paste0("Z_lm_", variable)
  523. avg_zscore_var <- paste0("Avg_Zscore_", variable)
  524. lm_r_squared_col <- paste0("lm_R_squared_", variable)
  525. configs[[length(configs) + 1]] <- list(
  526. df = df,
  527. x_var = avg_zscore_var,
  528. y_var = z_lm_var,
  529. plot_type = "correlation",
  530. title = paste("Avg Zscore vs lm", variable),
  531. color_var = "Overlap",
  532. correlation_text = paste("R-squared =", round(df[[lm_r_squared_col]][1], 2)),
  533. shape = 3,
  534. geom_smooth = TRUE,
  535. legend_position = "right"
  536. )
  537. }
  538. return(configs)
  539. }
  540. main <- function() {
  541. lapply(names(args$experiments), function(exp_name) {
  542. exp <- args$experiments[[exp_name]]
  543. exp_path <- exp$path
  544. exp_sd <- exp$sd
  545. out_dir <- file.path(exp_path, "zscores")
  546. out_dir_qc <- file.path(exp_path, "zscores", "qc")
  547. dir.create(out_dir, recursive = TRUE, showWarnings = FALSE)
  548. dir.create(out_dir_qc, recursive = TRUE, showWarnings = FALSE)
  549. summary_vars <- c("L", "K", "r", "AUC", "delta_bg") # fields to filter and calculate summary stats across
  550. group_vars <- c("OrfRep", "conc_num", "conc_num_factor") # default fields to group by
  551. print_vars <- c("OrfRep", "Plate", "scan", "Col", "Row", "num", "OrfRep", "conc_num", "conc_num_factor",
  552. "delta_bg_tolerance", "delta_bg", "Gene", "L", "K", "r", "AUC", "NG", "DB")
  553. message("Loading and filtering data")
  554. df <- load_and_process_data(args$easy_results_file, sd = exp_sd)
  555. df <- update_gene_names(df, args$sgd_gene_list)
  556. df <- as_tibble(df)
  557. # Filter rows that are above tolerance for quality control plots
  558. df_above_tolerance <- df %>% filter(DB == 1)
  559. # Set L, r, K, AUC (and delta_bg?) to NA for rows that are above tolerance
  560. df_na <- df %>% mutate(across(all_of(summary_vars), ~ ifelse(DB == 1, NA, .)))
  561. # Remove rows with 0 values in L
  562. df_no_zeros <- df_na %>% filter(L > 0)
  563. # Save some constants
  564. max_conc <- max(df$conc_num_factor)
  565. l_half_median <- (median(df_above_tolerance$L, na.rm = TRUE)) / 2
  566. k_half_median <- (median(df_above_tolerance$K, na.rm = TRUE)) / 2
  567. message("Calculating summary statistics before quality control")
  568. ss <- calculate_summary_stats(df, summary_vars, group_vars = group_vars)
  569. df_ss <- ss$summary_stats
  570. df_stats <- ss$df_with_stats
  571. df_filtered_stats <- df_stats %>%
  572. {
  573. non_finite_rows <- filter(., if_any(c(L), ~ !is.finite(.)))
  574. if (nrow(non_finite_rows) > 0) {
  575. message("Removed the following non-finite rows:")
  576. print(non_finite_rows %>% select(any_of(print_vars)), n = 200)
  577. }
  578. filter(., if_all(c(L), is.finite))
  579. }
  580. message("Calculating summary statistics after quality control")
  581. ss <- calculate_summary_stats(df_na, summary_vars, group_vars = group_vars)
  582. df_na_ss <- ss$summary_stats
  583. df_na_stats <- ss$df_with_stats
  584. write.csv(df_na_ss, file = file.path(out_dir, "summary_stats_all_strains.csv"), row.names = FALSE)
  585. # Filter out non-finite rows for plotting
  586. df_na_filtered_stats <- df_na_stats %>%
  587. {
  588. non_finite_rows <- filter(., if_any(c(L), ~ !is.finite(.)))
  589. if (nrow(non_finite_rows) > 0) {
  590. message("Removed the following non-finite rows:")
  591. print(non_finite_rows %>% select(any_of(print_vars)), n = 200)
  592. }
  593. filter(., if_all(c(L), is.finite))
  594. }
  595. message("Calculating summary statistics after quality control excluding zero values")
  596. ss <- calculate_summary_stats(df_no_zeros, summary_vars, group_vars = group_vars)
  597. df_no_zeros_stats <- ss$df_with_stats
  598. df_no_zeros_filtered_stats <- df_no_zeros_stats %>%
  599. {
  600. non_finite_rows <- filter(., if_any(c(L), ~ !is.finite(.)))
  601. if (nrow(non_finite_rows) > 0) {
  602. message("Removed the following non-finite rows:")
  603. print(non_finite_rows %>% select(any_of(print_vars)), n = 200)
  604. }
  605. filter(., if_all(c(L), is.finite))
  606. }
  607. message("Filtering by 2SD of K")
  608. df_na_within_2sd_k <- df_na_stats %>%
  609. filter(K >= (mean_K - 2 * sd_K) & K <= (mean_K + 2 * sd_K))
  610. df_na_outside_2sd_k <- df_na_stats %>%
  611. filter(K < (mean_K - 2 * sd_K) | K > (mean_K + 2 * sd_K))
  612. message("Calculating summary statistics for L within 2SD of K")
  613. # TODO We're omitting the original z_max calculation, not sure if needed?
  614. ss <- calculate_summary_stats(df_na_within_2sd_k, "L", group_vars = c("conc_num", "conc_num_factor"))
  615. l_within_2sd_k_ss <- ss$summary_stats
  616. df_na_l_within_2sd_k_stats <- ss$df_with_stats
  617. write.csv(l_within_2sd_k_ss,
  618. file = file.path(out_dir_qc, "max_observed_L_vals_for_spots_within_2sd_K.csv"), row.names = FALSE)
  619. message("Calculating summary statistics for L outside 2SD of K")
  620. ss <- calculate_summary_stats(df_na_outside_2sd_k, "L", group_vars = c("conc_num", "conc_num_factor"))
  621. l_outside_2sd_k_ss <- ss$summary_stats
  622. df_na_l_outside_2sd_k_stats <- ss$df_with_stats
  623. write.csv(l_outside_2sd_k_ss,
  624. file = file.path(out_dir, "max_observed_L_vals_for_spots_outside_2sd_K.csv"), row.names = FALSE)
  625. # Each plots list corresponds to a file
  626. message("Generating QC plot configurations")
  627. l_vs_k_plots <- list(
  628. list(
  629. df = df,
  630. x_var = "L",
  631. y_var = "K",
  632. plot_type = "scatter",
  633. delta_bg_point = TRUE,
  634. title = "Raw L vs K before quality control",
  635. color_var = "conc_num",
  636. error_bar = FALSE,
  637. legend_position = "right"
  638. )
  639. )
  640. frequency_delta_bg_plots <- list(
  641. list(
  642. df = df_filtered_stats,
  643. x_var = "delta_bg",
  644. y_var = NULL,
  645. plot_type = "density",
  646. title = "Plate analysis by Drug Conc for Delta Background before quality control",
  647. color_var = "conc_num",
  648. x_label = "Delta Background",
  649. y_label = "Density",
  650. error_bar = FALSE,
  651. legend_position = "right"),
  652. list(
  653. df = df_filtered_stats,
  654. x_var = "delta_bg",
  655. y_var = NULL,
  656. plot_type = "bar",
  657. title = "Plate analysis by Drug Conc for Delta Background before quality control",
  658. color_var = "conc_num",
  659. x_label = "Delta Background",
  660. y_label = "Count",
  661. error_bar = FALSE,
  662. legend_position = "right")
  663. )
  664. above_threshold_plots <- list(
  665. list(
  666. df = df_above_tolerance,
  667. x_var = "L",
  668. y_var = "K",
  669. plot_type = "scatter",
  670. delta_bg_point = TRUE,
  671. title = paste("Raw L vs K for strains above Delta Background threshold of",
  672. df_above_tolerance$delta_bg_tolerance[[1]], "or above"),
  673. color_var = "conc_num",
  674. position = "jitter",
  675. annotations = list(
  676. x = l_half_median,
  677. y = k_half_median,
  678. label = paste("# strains above Delta Background tolerance =", nrow(df_above_tolerance))
  679. ),
  680. error_bar = FALSE,
  681. legend_position = "right"
  682. )
  683. )
  684. plate_analysis_plots <- list()
  685. for (var in summary_vars) {
  686. for (stage in c("before", "after")) {
  687. if (stage == "before") {
  688. df_plot <- df_filtered_stats
  689. } else {
  690. df_plot <- df_na_filtered_stats
  691. }
  692. config <- list(
  693. df = df_plot,
  694. x_var = "scan",
  695. y_var = var,
  696. plot_type = "scatter",
  697. title = paste("Plate analysis by Drug Conc for", var, stage, "quality control"),
  698. error_bar = TRUE,
  699. color_var = "conc_num",
  700. position = "jitter")
  701. plate_analysis_plots <- append(plate_analysis_plots, list(config))
  702. }
  703. }
  704. plate_analysis_boxplots <- list()
  705. for (var in summary_vars) {
  706. for (stage in c("before", "after")) {
  707. if (stage == "before") {
  708. df_plot <- df_filtered_stats
  709. } else {
  710. df_plot <- df_na_filtered_stats
  711. }
  712. config <- list(
  713. df = df_plot,
  714. x_var = "scan",
  715. y_var = var,
  716. plot_type = "box",
  717. title = paste("Plate analysis by Drug Conc for", var, stage, "quality control"),
  718. error_bar = FALSE, color_var = "conc_num")
  719. plate_analysis_boxplots <- append(plate_analysis_boxplots, list(config))
  720. }
  721. }
  722. plate_analysis_no_zeros_plots <- list()
  723. for (var in summary_vars) {
  724. config <- list(
  725. df = df_no_zeros_filtered_stats,
  726. x_var = "scan",
  727. y_var = var,
  728. plot_type = "scatter",
  729. title = paste("Plate analysis by Drug Conc for", var, "after quality control"),
  730. error_bar = TRUE,
  731. color_var = "conc_num",
  732. position = "jitter")
  733. plate_analysis_no_zeros_plots <- append(plate_analysis_no_zeros_plots, list(config))
  734. }
  735. plate_analysis_no_zeros_boxplots <- list()
  736. for (var in summary_vars) {
  737. config <- list(
  738. df = df_no_zeros_filtered_stats,
  739. x_var = "scan",
  740. y_var = var,
  741. plot_type = "box",
  742. title = paste("Plate analysis by Drug Conc for", var, "after quality control"),
  743. error_bar = FALSE,
  744. color_var = "conc_num"
  745. )
  746. plate_analysis_no_zeros_boxplots <- append(plate_analysis_no_zeros_boxplots, list(config))
  747. }
  748. l_outside_2sd_k_plots <- list(
  749. list(
  750. df = df_na_l_outside_2sd_k_stats,
  751. x_var = "L",
  752. y_var = "K",
  753. plot_type = "scatter",
  754. delta_bg_point = TRUE,
  755. title = "Raw L vs K for strains falling outside 2SD of the K mean at each Conc",
  756. color_var = "conc_num",
  757. position = "jitter",
  758. legend_position = "right"
  759. )
  760. )
  761. delta_bg_outside_2sd_k_plots <- list(
  762. list(
  763. df = df_na_l_outside_2sd_k_stats,
  764. x_var = "delta_bg",
  765. y_var = "K",
  766. plot_type = "scatter",
  767. gene_point = TRUE,
  768. title = "Delta Background vs K for strains falling outside 2SD of the K mean at each Conc",
  769. color_var = "conc_num",
  770. position = "jitter",
  771. legend_position = "right"
  772. )
  773. )
  774. message("Generating QC plots")
  775. generate_and_save_plots(out_dir_qc, "L_vs_K_before_quality_control", l_vs_k_plots)
  776. generate_and_save_plots(out_dir_qc, "frequency_delta_background", frequency_delta_bg_plots)
  777. generate_and_save_plots(out_dir_qc, "L_vs_K_above_threshold", above_threshold_plots)
  778. generate_and_save_plots(out_dir_qc, "plate_analysis", plate_analysis_plots)
  779. generate_and_save_plots(out_dir_qc, "plate_analysis_boxplots", plate_analysis_boxplots)
  780. generate_and_save_plots(out_dir_qc, "plate_analysis_no_zeros", plate_analysis_no_zeros_plots)
  781. generate_and_save_plots(out_dir_qc, "plate_analysis_no_zeros_boxplots", plate_analysis_no_zeros_boxplots)
  782. generate_and_save_plots(out_dir_qc, "L_vs_K_for_strains_2SD_outside_mean_K", l_outside_2sd_k_plots)
  783. generate_and_save_plots(out_dir_qc, "delta_background_vs_K_for_strains_2sd_outside_mean_K", delta_bg_outside_2sd_k_plots)
  784. # Clean up
  785. rm(df, df_above_tolerance, df_no_zeros)
  786. # TODO: Originally this filtered L NA's
  787. # Let's try to avoid for now since stats have already been calculated
  788. # Process background strains
  789. bg_strains <- c("YDL227C")
  790. lapply(bg_strains, function(strain) {
  791. message("Processing background strain: ", strain)
  792. # Handle missing data by setting zero values to NA
  793. # and then removing any rows with NA in L col
  794. df_bg <- df_na %>%
  795. filter(OrfRep == strain) %>%
  796. mutate(
  797. L = if_else(L == 0, NA, L),
  798. K = if_else(K == 0, NA, K),
  799. r = if_else(r == 0, NA, r),
  800. AUC = if_else(AUC == 0, NA, AUC)
  801. ) %>%
  802. filter(!is.na(L))
  803. # Recalculate summary statistics for the background strain
  804. message("Calculating summary statistics for background strain")
  805. ss_bg <- calculate_summary_stats(df_bg, summary_vars, group_vars = group_vars)
  806. summary_stats_bg <- ss_bg$summary_stats
  807. # df_bg_stats <- ss_bg$df_with_stats
  808. write.csv(summary_stats_bg,
  809. file = file.path(out_dir, paste0("SummaryStats_BackgroundStrains_", strain, ".csv")),
  810. row.names = FALSE)
  811. # Filter reference and deletion strains
  812. # Formerly X2_RF (reference strains)
  813. df_reference <- df_na_stats %>%
  814. filter(OrfRep == strain) %>%
  815. mutate(SM = 0)
  816. # Formerly X2 (deletion strains)
  817. df_deletion <- df_na_stats %>%
  818. filter(OrfRep != strain) %>%
  819. mutate(SM = 0)
  820. # Set the missing values to the highest theoretical value at each drug conc for L
  821. # Leave other values as 0 for the max/min
  822. reference_strain <- df_reference %>%
  823. group_by(conc_num) %>%
  824. mutate(
  825. max_l_theoretical = max(max_L, na.rm = TRUE),
  826. L = ifelse(L == 0 & !is.na(L) & conc_num > 0, max_l_theoretical, L),
  827. SM = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, 1, SM),
  828. L = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, max_l_theoretical, L)) %>%
  829. ungroup()
  830. # Ditto for deletion strains
  831. deletion_strains <- df_deletion %>%
  832. group_by(conc_num) %>%
  833. mutate(
  834. max_l_theoretical = max(max_L, na.rm = TRUE),
  835. L = ifelse(L == 0 & !is.na(L) & conc_num > 0, max_l_theoretical, L),
  836. SM = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, 1, SM),
  837. L = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, max_l_theoretical, L)) %>%
  838. ungroup()
  839. # Calculate interactions
  840. interaction_vars <- c("L", "K", "r", "AUC")
  841. message("Calculating interaction scores")
  842. # print("Reference strain:")
  843. # print(head(reference_strain))
  844. reference_results <- calculate_interaction_scores(reference_strain, max_conc, interaction_vars)
  845. # print("Deletion strains:")
  846. # print(head(deletion_strains))
  847. deletion_results <- calculate_interaction_scores(deletion_strains, max_conc, interaction_vars)
  848. zscores_calculations_reference <- reference_results$calculations
  849. zscores_interactions_reference <- reference_results$interactions
  850. zscores_calculations <- deletion_results$calculations
  851. zscores_interactions <- deletion_results$interactions
  852. # Writing Z-Scores to file
  853. write.csv(zscores_calculations_reference, file = file.path(out_dir, "RF_ZScores_Calculations.csv"), row.names = FALSE)
  854. write.csv(zscores_calculations, file = file.path(out_dir, "ZScores_Calculations.csv"), row.names = FALSE)
  855. write.csv(zscores_interactions_reference, file = file.path(out_dir, "RF_ZScores_Interaction.csv"), row.names = FALSE)
  856. write.csv(zscores_interactions, file = file.path(out_dir, "ZScores_Interaction.csv"), row.names = FALSE)
  857. # Create interaction plots
  858. reference_plot_configs <- generate_interaction_plot_configs(df_reference, interaction_vars)
  859. deletion_plot_configs <- generate_interaction_plot_configs(df_deletion, interaction_vars)
  860. generate_and_save_plots(out_dir, "RF_interactionPlots", reference_plot_configs, grid_layout = list(ncol = 4, nrow = 3))
  861. generate_and_save_plots(out_dir, "InteractionPlots", deletion_plot_configs, grid_layout = list(ncol = 4, nrow = 3))
  862. # Define conditions for enhancers and suppressors
  863. # TODO Add to study config file?
  864. threshold <- 2
  865. enhancer_condition_L <- zscores_interactions$Avg_Zscore_L >= threshold
  866. suppressor_condition_L <- zscores_interactions$Avg_Zscore_L <= -threshold
  867. enhancer_condition_K <- zscores_interactions$Avg_Zscore_K >= threshold
  868. suppressor_condition_K <- zscores_interactions$Avg_Zscore_K <= -threshold
  869. # Subset data
  870. enhancers_L <- zscores_interactions[enhancer_condition_L, ]
  871. suppressors_L <- zscores_interactions[suppressor_condition_L, ]
  872. enhancers_K <- zscores_interactions[enhancer_condition_K, ]
  873. suppressors_K <- zscores_interactions[suppressor_condition_K, ]
  874. # Save enhancers and suppressors
  875. message("Writing enhancer/suppressor csv files")
  876. write.csv(enhancers_L, file = file.path(out_dir, "ZScores_Interaction_Deletion_Enhancers_L.csv"), row.names = FALSE)
  877. write.csv(suppressors_L, file = file.path(out_dir, "ZScores_Interaction_Deletion_Suppressors_L.csv"), row.names = FALSE)
  878. write.csv(enhancers_K, file = file.path(out_dir, "ZScores_Interaction_Deletion_Enhancers_K.csv"), row.names = FALSE)
  879. write.csv(suppressors_K, file = file.path(out_dir, "ZScores_Interaction_Deletion_Suppressors_K.csv"), row.names = FALSE)
  880. # Combine conditions for enhancers and suppressors
  881. enhancers_and_suppressors_L <- zscores_interactions[enhancer_condition_L | suppressor_condition_L, ]
  882. enhancers_and_suppressors_K <- zscores_interactions[enhancer_condition_K | suppressor_condition_K, ]
  883. # Save combined enhancers and suppressors
  884. write.csv(enhancers_and_suppressors_L,
  885. file = file.path(out_dir, "ZScores_Interaction_Deletion_Enhancers_and_Suppressors_L.csv"), row.names = FALSE)
  886. write.csv(enhancers_and_suppressors_K,
  887. file = file.path(out_dir, "ZScores_Interaction_Deletion_Enhancers_and_Suppressors_K.csv"), row.names = FALSE)
  888. # Handle linear model based enhancers and suppressors
  889. lm_threshold <- 2
  890. enhancers_lm_L <- zscores_interactions[zscores_interactions$Z_lm_L >= lm_threshold, ]
  891. suppressors_lm_L <- zscores_interactions[zscores_interactions$Z_lm_L <= -lm_threshold, ]
  892. enhancers_lm_K <- zscores_interactions[zscores_interactions$Z_lm_K >= lm_threshold, ]
  893. suppressors_lm_K <- zscores_interactions[zscores_interactions$Z_lm_K <= -lm_threshold, ]
  894. # Save linear model based enhancers and suppressors
  895. message("Writing linear model enhancer/suppressor csv files")
  896. write.csv(enhancers_lm_L,
  897. file = file.path(out_dir, "ZScores_Interaction_Deletion_Enhancers_L_lm.csv"), row.names = FALSE)
  898. write.csv(suppressors_lm_L,
  899. file = file.path(out_dir, "ZScores_Interaction_Deletion_Suppressors_L_lm.csv"), row.names = FALSE)
  900. write.csv(enhancers_lm_K,
  901. file = file.path(out_dir, "ZScores_Interaction_Deletion_Enhancers_K_lm.csv"), row.names = FALSE)
  902. write.csv(suppressors_lm_K,
  903. file = file.path(out_dir, "ZScores_Interaction_Deletion_Suppressors_K_lm.csv"), row.names = FALSE)
  904. # TODO needs explanation
  905. zscores_interactions_adjusted <- adjust_missing_and_rank(zscores_interactions)
  906. rank_plot_configs <- c(
  907. generate_rank_plot_configs(zscores_interactions_adjusted, "Rank_L", "Avg_Zscore_L", "L"),
  908. generate_rank_plot_configs(zscores_interactions_adjusted, "Rank_K", "Avg_Zscore_K", "K")
  909. )
  910. generate_and_save_plots(output_dir = out_dir, file_name = "RankPlots",
  911. plot_configs = rank_plot_configs, grid_layout = list(ncol = 3, nrow = 2))
  912. rank_lm_plot_config <- c(
  913. generate_rank_plot_configs(zscores_interactions_adjusted, "Rank_lm_L", "Z_lm_L", "L", is_lm = TRUE),
  914. generate_rank_plot_configs(zscores_interactions_adjusted, "Rank_lm_K", "Z_lm_K", "K", is_lm = TRUE)
  915. )
  916. generate_and_save_plots(output_dir = out_dir, file_name = "RankPlots_lm",
  917. plot_configs = rank_lm_plot_config, grid_layout = list(ncol = 3, nrow = 2))
  918. # Formerly X_NArm
  919. zscores_interactions_filtered <- zscores_interactions %>%
  920. group_by(across(all_of(group_vars))) %>%
  921. filter(!is.na(Z_lm_L) | !is.na(Avg_Zscore_L))
  922. # Final filtered correlation calculations and plots
  923. zscores_interactions_filtered <- zscores_interactions_filtered %>%
  924. mutate(
  925. Overlap = case_when(
  926. Z_lm_L >= 2 & Avg_Zscore_L >= 2 ~ "Deletion Enhancer Both",
  927. Z_lm_L <= -2 & Avg_Zscore_L <= -2 ~ "Deletion Suppressor Both",
  928. Z_lm_L >= 2 & Avg_Zscore_L <= 2 ~ "Deletion Enhancer lm only",
  929. Z_lm_L <= -2 & Avg_Zscore_L >= -2 ~ "Deletion Suppressor lm only",
  930. Z_lm_L >= 2 & Avg_Zscore_L <= -2 ~ "Deletion Enhancer lm, Deletion Suppressor Avg Z score",
  931. Z_lm_L <= -2 & Avg_Zscore_L >= 2 ~ "Deletion Suppressor lm, Deletion Enhancer Avg Z score",
  932. TRUE ~ "No Effect"
  933. ),
  934. lm_R_squared_L = summary(lm(Z_lm_L ~ Avg_Zscore_L))$r.squared,
  935. lm_R_squared_K = summary(lm(Z_lm_K ~ Avg_Zscore_K))$r.squared,
  936. lm_R_squared_r = summary(lm(Z_lm_r ~ Avg_Zscore_r))$r.squared,
  937. lm_R_squared_AUC = summary(lm(Z_lm_AUC ~ Avg_Zscore_AUC))$r.squared
  938. ) %>%
  939. ungroup()
  940. rank_plot_configs <- c(
  941. generate_rank_plot_configs(zscores_interactions_filtered, "Rank_L", "Avg_Zscore_L", "L"),
  942. generate_rank_plot_configs(zscores_interactions_filtered, "Rank_K", "Avg_Zscore_K", "K")
  943. )
  944. generate_and_save_plots(output_dir = out_dir, file_name = "RankPlots",
  945. plot_configs = rank_plot_configs, grid_layout = list(ncol = 3, nrow = 2))
  946. rank_lm_plot_configs <- c(
  947. generate_rank_plot_configs(zscores_interactions_filtered, "Rank_lm_L", "Z_lm_L", "L", is_lm = TRUE),
  948. generate_rank_plot_configs(zscores_interactions_filtered, "Rank_lm_K", "Z_lm_K", "K", is_lm = TRUE)
  949. )
  950. generate_and_save_plots(output_dir = out_dir, file_name = "RankPlots_lm",
  951. plot_configs = rank_lm_plot_configs, grid_layout = list(ncol = 3, nrow = 2))
  952. correlation_plot_configs <- generate_correlation_plot_configs(zscores_interactions_filtered, interaction_vars)
  953. generate_and_save_plots(output_dir = out_dir, file_name = "Avg_Zscore_vs_lm_NA_rm",
  954. plot_configs = correlation_plot_configs, grid_layout = list(ncol = 2, nrow = 2))
  955. })
  956. })
  957. }
  958. main()