calculate_interaction_zscores.R 54 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496
  1. suppressMessages({
  2. library("ggplot2")
  3. library("plotly")
  4. library("htmlwidgets")
  5. library("dplyr")
  6. library("rlang")
  7. library("ggthemes")
  8. library("data.table")
  9. library("future")
  10. library("furrr")
  11. library("purrr")
  12. })
  13. # These parallelization libraries are very noisy
  14. suppressPackageStartupMessages({
  15. library("future")
  16. library("furrr")
  17. library("purrr")
  18. })
  19. options(warn = 2)
  20. # Constants for configuration
  21. plot_width <- 14
  22. plot_height <- 9
  23. base_size <- 14
  24. parse_arguments <- function() {
  25. args <- if (interactive()) {
  26. c(
  27. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/20240116_jhartman2_DoxoHLD",
  28. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/apps/r/SGD_features.tab",
  29. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/easy/20240116_jhartman2_DoxoHLD/results_std.txt",
  30. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/20240822_jhartman2_DoxoHLD/exp1",
  31. "Experiment 1: Doxo versus HLD",
  32. 3,
  33. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/20240822_jhartman2_DoxoHLD/exp2",
  34. "Experiment 2: HLD versus Doxo",
  35. 3
  36. )
  37. } else {
  38. commandArgs(trailingOnly = TRUE)
  39. }
  40. out_dir <- normalizePath(args[1], mustWork = FALSE)
  41. sgd_gene_list <- normalizePath(args[2], mustWork = FALSE)
  42. easy_results_file <- normalizePath(args[3], mustWork = FALSE)
  43. # The remaining arguments should be in groups of 3
  44. exp_args <- args[-(1:3)]
  45. if (length(exp_args) %% 3 != 0) {
  46. stop("Experiment arguments should be in groups of 3: path, name, sd.")
  47. }
  48. experiments <- list()
  49. for (i in seq(1, length(exp_args), by = 3)) {
  50. exp_name <- exp_args[i + 1]
  51. experiments[[exp_name]] <- list(
  52. path = normalizePath(exp_args[i], mustWork = FALSE),
  53. sd = as.numeric(exp_args[i + 2])
  54. )
  55. }
  56. list(
  57. out_dir = out_dir,
  58. sgd_gene_list = sgd_gene_list,
  59. easy_results_file = easy_results_file,
  60. experiments = experiments
  61. )
  62. }
  63. args <- parse_arguments()
  64. # Should we keep output in exp dirs or combine in the study output dir?
  65. # dir.create(file.path(args$out_dir, "zscores"), showWarnings = FALSE)
  66. # dir.create(file.path(args$out_dir, "zscores", "qc"), showWarnings = FALSE)
  67. # Define themes and scales
  68. theme_publication <- function(base_size = 14, base_family = "sans", legend_position = "bottom") {
  69. theme_foundation <- ggplot2::theme_grey(base_size = base_size, base_family = base_family)
  70. theme_foundation %+replace%
  71. theme(
  72. plot.title = element_text(face = "bold", size = rel(1.2), hjust = 0.5),
  73. text = element_text(),
  74. panel.background = element_rect(colour = NA),
  75. plot.background = element_rect(colour = NA),
  76. panel.border = element_rect(colour = NA),
  77. axis.title = element_text(face = "bold", size = rel(1)),
  78. axis.title.y = element_text(angle = 90, vjust = 2, size = 18),
  79. axis.title.x = element_text(vjust = -0.2, size = 18),
  80. axis.line = element_line(colour = "black"),
  81. axis.text.x = element_text(size = 16),
  82. axis.text.y = element_text(size = 16),
  83. panel.grid.major = element_line(colour = "#f0f0f0"),
  84. panel.grid.minor = element_blank(),
  85. legend.key = element_rect(colour = NA),
  86. legend.position = legend_position,
  87. legend.direction = ifelse(legend_position == "right", "vertical", "horizontal"),
  88. plot.margin = unit(c(10, 5, 5, 5), "mm"),
  89. strip.background = element_rect(colour = "#f0f0f0", fill = "#f0f0f0"),
  90. strip.text = element_text(face = "bold")
  91. )
  92. }
  93. scale_fill_publication <- function(...) {
  94. discrete_scale("fill", "Publication", manual_pal(values = c(
  95. "#386cb0", "#fdb462", "#7fc97f", "#ef3b2c", "#662506",
  96. "#a6cee3", "#fb9a99", "#984ea3", "#ffff33"
  97. )), ...)
  98. }
  99. scale_colour_publication <- function(...) {
  100. discrete_scale("colour", "Publication", manual_pal(values = c(
  101. "#386cb0", "#fdb462", "#7fc97f", "#ef3b2c", "#662506",
  102. "#a6cee3", "#fb9a99", "#984ea3", "#ffff33"
  103. )), ...)
  104. }
  105. # Load the initial dataframe from the easy_results_file
  106. load_and_process_data <- function(easy_results_file, sd = 3) {
  107. df <- read.delim(easy_results_file, skip = 2, as.is = TRUE, row.names = 1, strip.white = TRUE)
  108. df <- df %>%
  109. filter(!(.[[1]] %in% c("", "Scan"))) %>%
  110. filter(!is.na(ORF) & ORF != "" & !Gene %in% c("BLANK", "Blank", "blank") & Drug != "BMH21") %>%
  111. # Rename columns
  112. rename(L = l, num = Num., AUC = AUC96, scan = Scan, last_bg = LstBackgrd, first_bg = X1stBackgrd) %>%
  113. mutate(
  114. across(c(Col, Row, num, L, K, r, scan, AUC, last_bg, first_bg), as.numeric),
  115. delta_bg = last_bg - first_bg,
  116. delta_bg_tolerance = mean(delta_bg, na.rm = TRUE) + (sd * sd(delta_bg, na.rm = TRUE)),
  117. NG = if_else(L == 0 & !is.na(L), 1, 0),
  118. DB = if_else(delta_bg >= delta_bg_tolerance, 1, 0),
  119. SM = 0,
  120. OrfRep = if_else(ORF == "YDL227C", "YDL227C", OrfRep), # should these be hardcoded?
  121. conc_num = as.numeric(gsub("[^0-9\\.]", "", Conc))
  122. ) %>%
  123. mutate(
  124. conc_num_factor = as.factor(match(conc_num, sort(unique(conc_num))) - 1)
  125. )
  126. return(df)
  127. }
  128. # Update Gene names using the SGD gene list
  129. update_gene_names <- function(df, sgd_gene_list) {
  130. # Load SGD gene list
  131. genes <- read.delim(file = sgd_gene_list,
  132. quote = "", header = FALSE,
  133. colClasses = c(rep("NULL", 3), rep("character", 2), rep("NULL", 11)))
  134. # Create a named vector for mapping ORF to GeneName
  135. gene_map <- setNames(genes$V5, genes$V4)
  136. # Vectorized match to find the GeneName from gene_map
  137. mapped_genes <- gene_map[df$ORF]
  138. # Replace NAs in mapped_genes with original Gene names (preserves existing Gene names if ORF is not found)
  139. updated_genes <- ifelse(is.na(mapped_genes) | df$OrfRep == "YDL227C", df$Gene, mapped_genes)
  140. # Ensure Gene is not left blank or incorrectly updated to "OCT1"
  141. df <- df %>%
  142. mutate(Gene = ifelse(updated_genes == "" | updated_genes == "OCT1", OrfRep, updated_genes))
  143. return(df)
  144. }
  145. calculate_summary_stats <- function(df, variables, group_vars) {
  146. summary_stats <- df %>%
  147. group_by(across(all_of(group_vars))) %>%
  148. summarise(
  149. N = n(),
  150. across(all_of(variables), list(
  151. mean = ~mean(., na.rm = TRUE),
  152. median = ~median(., na.rm = TRUE),
  153. max = ~ ifelse(all(is.na(.)), NA, max(., na.rm = TRUE)),
  154. min = ~ ifelse(all(is.na(.)), NA, min(., na.rm = TRUE)),
  155. sd = ~sd(., na.rm = TRUE),
  156. se = ~sd(., na.rm = TRUE) / sqrt(N) - 1 # TODO needs comment for explanation
  157. ), .names = "{.fn}_{.col}"),
  158. .groups = "drop"
  159. )
  160. # Create a cleaned version of df that doesn't overlap with summary_stats
  161. cleaned_df <- df %>%
  162. select(-any_of(setdiff(intersect(names(df), names(summary_stats)), group_vars)))
  163. df_joined <- left_join(cleaned_df, summary_stats, by = group_vars)
  164. return(list(summary_stats = summary_stats, df_with_stats = df_joined))
  165. }
  166. calculate_interaction_scores <- function(df, max_conc, variables = c("L", "K", "r", "AUC"),
  167. group_vars = c("OrfRep", "Gene", "num")) {
  168. # Calculate total concentration variables
  169. total_conc_num <- length(unique(df$conc_num))
  170. # Pull the background means and standard deviations from zero concentration
  171. bg_means <- list(
  172. L = df %>% filter(conc_num == 0) %>% pull(mean_L) %>% first(),
  173. K = df %>% filter(conc_num == 0) %>% pull(mean_K) %>% first(),
  174. r = df %>% filter(conc_num == 0) %>% pull(mean_r) %>% first(),
  175. AUC = df %>% filter(conc_num == 0) %>% pull(mean_AUC) %>% first()
  176. )
  177. bg_sd <- list(
  178. L = df %>% filter(conc_num == 0) %>% pull(sd_L) %>% first(),
  179. K = df %>% filter(conc_num == 0) %>% pull(sd_K) %>% first(),
  180. r = df %>% filter(conc_num == 0) %>% pull(sd_r) %>% first(),
  181. AUC = df %>% filter(conc_num == 0) %>% pull(sd_AUC) %>% first()
  182. )
  183. # Calculate per spot
  184. # sd and se calculations are invalid when grouping at this level
  185. interaction_ss <- calculate_summary_stats(
  186. df = df,
  187. variables = variables,
  188. group_vars = c("OrfRep", "Gene", "num", "conc_num", "conc_num_factor")
  189. )$df_with_stats
  190. # Load original WT data
  191. stats <- df %>%
  192. group_by(across(all_of(group_vars))) %>%
  193. mutate(
  194. WT_L = mean_L,
  195. WT_K = mean_K,
  196. WT_r = mean_r,
  197. WT_AUC = mean_AUC,
  198. WT_sd_L = sd_L,
  199. WT_sd_K = sd_K,
  200. WT_sd_r = sd_r,
  201. WT_sd_AUC = sd_AUC
  202. )
  203. cleaned_df <- stats %>%
  204. select(-any_of(setdiff(intersect(names(stats), names(interaction_ss)),
  205. c(group_vars, "sd_L", "sd_K", "sd_r", "sd_AUC", "se_L", "se_K", "se_r", "se_AUC"))))
  206. stats <- left_join(cleaned_df, interaction_ss, by = c("OrfRep", "Gene", "num", "conc_num", "conc_num_factor"))
  207. stats <- stats %>%
  208. mutate(
  209. Raw_Shift_L = first(mean_L) - bg_means$L,
  210. Raw_Shift_K = first(mean_K) - bg_means$K,
  211. Raw_Shift_r = first(mean_r) - bg_means$r,
  212. Raw_Shift_AUC = first(mean_AUC) - bg_means$AUC,
  213. Z_Shift_L = first(Raw_Shift_L) / bg_sd$L,
  214. Z_Shift_K = first(Raw_Shift_K) / bg_sd$K,
  215. Z_Shift_r = first(Raw_Shift_r) / bg_sd$r,
  216. Z_Shift_AUC = first(Raw_Shift_AUC) / bg_sd$AUC
  217. )
  218. stats <- stats %>%
  219. mutate(
  220. Exp_L = WT_L + Raw_Shift_L,
  221. Exp_K = WT_K + Raw_Shift_K,
  222. Exp_r = WT_r + Raw_Shift_r,
  223. Exp_AUC = WT_AUC + Raw_Shift_AUC,
  224. Delta_L = mean_L - Exp_L,
  225. Delta_K = mean_K - Exp_K,
  226. Delta_r = mean_r - Exp_r,
  227. Delta_AUC = mean_AUC - Exp_AUC
  228. )
  229. stats <- stats %>%
  230. mutate(
  231. Delta_L = if_else(NG == 1, mean_L - WT_L, Delta_L),
  232. Delta_K = if_else(NG == 1, mean_K - WT_K, Delta_K),
  233. Delta_r = if_else(NG == 1, mean_r - WT_r, Delta_r),
  234. Delta_AUC = if_else(NG == 1, mean_AUC - WT_AUC, Delta_AUC),
  235. Delta_L = if_else(SM == 1, mean_L - WT_L, Delta_L)
  236. )
  237. stats <- stats %>%
  238. mutate(
  239. Zscore_L = Delta_L / WT_sd_L,
  240. Zscore_K = Delta_K / WT_sd_K,
  241. Zscore_r = Delta_r / WT_sd_r,
  242. Zscore_AUC = Delta_AUC / WT_sd_AUC
  243. )
  244. # Fit linear models and calculate interaction scores
  245. gene_lm_L <- lm(formula = Delta_L ~ conc_num_factor, data = df)
  246. gene_lm_K <- lm(formula = Delta_K ~ conc_num_factor, data = df)
  247. gene_lm_r <- lm(formula = Delta_r ~ conc_num_factor, data = df)
  248. gene_lm_AUC <- lm(formula = Delta_AUC ~ conc_num_factor, data = df)
  249. interactions <- stats %>%
  250. group_by(across(all_of(group_vars))) %>%
  251. mutate(
  252. OrfRep = first(OrfRep),
  253. Gene = first(Gene),
  254. num = first(num),
  255. conc_num = first(conc_num),
  256. conc_num_factor = first(conc_num_factor),
  257. Raw_Shift_L = first(Raw_Shift_L),
  258. Raw_Shift_K = first(Raw_Shift_K),
  259. Raw_Shift_r = first(Raw_Shift_r),
  260. Raw_Shift_AUC = first(Raw_Shift_AUC),
  261. Z_Shift_L = first(Z_Shift_L),
  262. Z_Shift_K = first(Z_Shift_K),
  263. Z_Shift_r = first(Z_Shift_r),
  264. Z_Shift_AUC = first(Z_Shift_AUC),
  265. lm_Score_L = max_conc * (gene_lm_L$coefficients[2]) + gene_lm_L$coefficients[1],
  266. lm_Score_K = max_conc * (gene_lm_K$coefficients[2]) + gene_lm_K$coefficients[1],
  267. lm_Score_r = max_conc * (gene_lm_r$coefficients[2]) + gene_lm_r$coefficients[1],
  268. lm_Score_AUC = max_conc * (gene_lm_AUC$coefficients[2]) + gene_lm_AUC$coefficients[1],
  269. R_Squared_L = summary(gene_lm_L)$r.squared,
  270. R_Squared_K = summary(gene_lm_K)$r.squared,
  271. R_Squared_r = summary(gene_lm_r)$r.squared,
  272. R_Squared_AUC = summary(gene_lm_AUC)$r.squared,
  273. lm_intercept_L = coef(lm(Zscore_L ~ conc_num))[1],
  274. lm_slope_L = coef(lm(Zscore_L ~ conc_num))[2],
  275. lm_intercept_K = coef(lm(Zscore_K ~ conc_num))[1],
  276. lm_slope_K = coef(lm(Zscore_K ~ conc_num))[2],
  277. lm_intercept_r = coef(lm(Zscore_r ~ conc_num))[1],
  278. lm_slope_r = coef(lm(Zscore_r ~ conc_num))[2],
  279. lm_intercept_AUC = coef(lm(Zscore_AUC ~ conc_num))[1],
  280. lm_slope_AUC = coef(lm(Zscore_AUC ~ conc_num))[2],
  281. Sum_Zscore_L = sum(Zscore_L, na.rm = TRUE),
  282. Sum_Zscore_K = sum(Zscore_K, na.rm = TRUE),
  283. Sum_Zscore_r = sum(Zscore_r, na.rm = TRUE),
  284. Sum_Zscore_AUC = sum(Zscore_AUC, na.rm = TRUE),
  285. NG = sum(NG, na.rm = TRUE),
  286. DB = sum(DB, na.rm = TRUE),
  287. SM = sum(SM, na.rm = TRUE),
  288. num_non_removed_concs = total_conc_num - sum(DB, na.rm = TRUE) - 1
  289. )
  290. interactions <- interactions %>%
  291. mutate(
  292. Avg_Zscore_L = Sum_Zscore_L / num_non_removed_concs,
  293. Avg_Zscore_K = Sum_Zscore_K / num_non_removed_concs,
  294. Avg_Zscore_r = Sum_Zscore_r / (total_conc_num - 1),
  295. Avg_Zscore_AUC = Sum_Zscore_AUC / (total_conc_num - 1),
  296. Z_lm_L = (lm_Score_L - mean(lm_Score_L, na.rm = TRUE)) / sd(lm_Score_L, na.rm = TRUE),
  297. Z_lm_K = (lm_Score_K - mean(lm_Score_K, na.rm = TRUE)) / sd(lm_Score_K, na.rm = TRUE),
  298. Z_lm_r = (lm_Score_r - mean(lm_Score_r, na.rm = TRUE)) / sd(lm_Score_r, na.rm = TRUE),
  299. Z_lm_AUC = (lm_Score_AUC - mean(lm_Score_AUC, na.rm = TRUE)) / sd(lm_Score_AUC, na.rm = TRUE)
  300. ) %>%
  301. arrange(desc(Z_lm_L), desc(NG))
  302. # Declare column order for output
  303. calculations <- stats %>%
  304. select(
  305. "OrfRep", "Gene", "num", "conc_num", "conc_num_factor", "N",
  306. "mean_L", "mean_K", "mean_r", "mean_AUC",
  307. "median_L", "median_K", "median_r", "median_AUC",
  308. "sd_L", "sd_K", "sd_r", "sd_AUC",
  309. "se_L", "se_K", "se_r", "se_AUC",
  310. "Raw_Shift_L", "Raw_Shift_K", "Raw_Shift_r", "Raw_Shift_AUC",
  311. "Z_Shift_L", "Z_Shift_K", "Z_Shift_r", "Z_Shift_AUC",
  312. "WT_L", "WT_K", "WT_r", "WT_AUC",
  313. "WT_sd_L", "WT_sd_K", "WT_sd_r", "WT_sd_AUC",
  314. "Exp_L", "Exp_K", "Exp_r", "Exp_AUC",
  315. "Delta_L", "Delta_K", "Delta_r", "Delta_AUC",
  316. "Zscore_L", "Zscore_K", "Zscore_r", "Zscore_AUC",
  317. "NG", "SM", "DB")
  318. cleaned_df <- df %>%
  319. select(-any_of(setdiff(intersect(names(df), names(calculations)), group_vars)))
  320. calculations_joined <- left_join(cleaned_df, calculations, by = c("OrfRep", "Gene", "num", "conc_num", "conc_num_factor"))
  321. cleaned_df <- df %>%
  322. select(-any_of(setdiff(intersect(names(df), names(interactions)), group_vars)))
  323. interactions_joined <- left_join(cleaned_df, interactions, by = c("OrfRep", "Gene", "num", "conc_num", "conc_num_factor"))
  324. return(list(calculations = calculations, interactions = interactions, interactions_joined = interactions_joined,
  325. calculations_joined = calculations_joined))
  326. }
  327. generate_and_save_plots <- function(out_dir, filename, plot_configs, grid_layout = NULL) {
  328. message("Generating ", filename, ".pdf and ", filename, ".html")
  329. # Prepare lists to collect plots
  330. static_plots <- list()
  331. plotly_plots <- list()
  332. for (i in seq_along(plot_configs)) {
  333. config <- plot_configs[[i]]
  334. df <- config$df
  335. aes_mapping <- if (is.null(config$color_var)) {
  336. if (is.null(config$y_var)) {
  337. aes(x = .data[[config$x_var]])
  338. } else {
  339. aes(x = .data[[config$x_var]], y = .data[[config$y_var]])
  340. }
  341. } else {
  342. if (is.null(config$y_var)) {
  343. aes(x = .data[[config$x_var]], color = as.factor(.data[[config$color_var]]))
  344. } else {
  345. aes(x = .data[[config$x_var]], y = .data[[config$y_var]], color = as.factor(.data[[config$color_var]]))
  346. }
  347. }
  348. # Start building the plot with aes_mapping
  349. plot_base <- ggplot(df, aes_mapping)
  350. # Use appropriate helper function based on plot type
  351. plot <- switch(config$plot_type,
  352. "scatter" = generate_scatter_plot(plot_base, config),
  353. "box" = generate_box_plot(plot_base, config),
  354. "density" = plot_base + geom_density(),
  355. "bar" = plot_base + geom_bar(),
  356. plot_base # default case if no type matches
  357. )
  358. # Apply additional settings
  359. if (!is.null(config$legend_position)) {
  360. plot <- plot + theme(legend.position = config$legend_position)
  361. }
  362. # Add title and labels
  363. if (!is.null(config$title)) {
  364. plot <- plot + ggtitle(config$title)
  365. }
  366. if (!is.null(config$x_label)) {
  367. plot <- plot + xlab(config$x_label)
  368. }
  369. if (!is.null(config$y_label)) {
  370. plot <- plot + ylab(config$y_label)
  371. }
  372. # Apply scale_color_discrete(guide = FALSE) when color_var is NULL
  373. if (is.null(config$color_var)) {
  374. plot <- plot + scale_color_discrete(guide = "none")
  375. }
  376. # Add interactive tooltips for plotly
  377. tooltip_vars <- c()
  378. if (config$plot_type == "scatter") {
  379. if (!is.null(config$delta_bg_point) && config$delta_bg_point) {
  380. tooltip_vars <- c(tooltip_vars, "OrfRep", "Gene", "delta_bg")
  381. } else if (!is.null(config$gene_point) && config$gene_point) {
  382. tooltip_vars <- c(tooltip_vars, "OrfRep", "Gene")
  383. } else if (!is.null(config$y_var) && !is.null(config$x_var)) {
  384. tooltip_vars <- c(config$x_var, config$y_var)
  385. }
  386. }
  387. # Convert to plotly object
  388. if (length(tooltip_vars) > 0) {
  389. plotly_plot <- ggplotly(plot, tooltip = tooltip_vars)
  390. } else {
  391. plotly_plot <- ggplotly(plot, tooltip = "none")
  392. }
  393. # Adjust legend position if specified
  394. if (!is.null(config$legend_position) && config$legend_position == "bottom") {
  395. plotly_plot <- plotly_plot %>% layout(legend = list(orientation = "h"))
  396. }
  397. # Add plots to lists
  398. static_plots[[i]] <- plot
  399. plotly_plots[[i]] <- plotly_plot
  400. }
  401. # Save static PDF plots
  402. pdf(file.path(out_dir, paste0(filename, ".pdf")), width = 14, height = 9)
  403. lapply(static_plots, print)
  404. dev.off()
  405. # Combine and save interactive HTML plots
  406. combined_plot <- subplot(
  407. plotly_plots,
  408. nrows = if (!is.null(grid_layout) && !is.null(grid_layout$nrow)) {
  409. grid_layout$nrow
  410. } else {
  411. # Calculate nrow based on the length of plotly_plots (default 1 row if only one plot)
  412. ceiling(length(plotly_plots) / ifelse(!is.null(grid_layout) && !is.null(grid_layout$ncol), grid_layout$ncol, 1))
  413. },
  414. margin = 0.05
  415. )
  416. saveWidget(combined_plot, file = file.path(out_dir, paste0(filename, ".html")), selfcontained = TRUE)
  417. }
  418. generate_scatter_plot <- function(plot, config) {
  419. shape <- if (!is.null(config$shape)) config$shape else 3
  420. size <- if (!is.null(config$size)) config$size else 0.1
  421. position <-
  422. if (!is.null(config$position) && config$position == "jitter") {
  423. position_jitter(width = 0.1, height = 0)
  424. } else {
  425. "identity"
  426. }
  427. plot <- plot + geom_point(
  428. shape = shape,
  429. size = size,
  430. position = position
  431. )
  432. if (!is.null(config$cyan_points) && config$cyan_points) {
  433. plot <- plot + geom_point(
  434. aes(x = .data[[config$x_var]], y = .data[[config$y_var]]),
  435. color = "cyan",
  436. shape = 3,
  437. size = 0.5
  438. )
  439. }
  440. # Add Smooth Line if specified
  441. if (!is.null(config$smooth) && config$smooth) {
  442. smooth_color <- if (!is.null(config$smooth_color)) config$smooth_color else "blue"
  443. if (!is.null(config$lm_line)) {
  444. plot <- plot +
  445. geom_abline(
  446. intercept = config$lm_line$intercept,
  447. slope = config$lm_line$slope,
  448. color = smooth_color
  449. )
  450. } else {
  451. plot <- plot +
  452. geom_smooth(
  453. method = "lm",
  454. se = FALSE,
  455. color = smooth_color
  456. )
  457. }
  458. }
  459. # Add SD Bands if specified
  460. if (!is.null(config$sd_band)) {
  461. plot <- plot +
  462. annotate(
  463. "rect",
  464. xmin = -Inf, xmax = Inf,
  465. ymin = config$sd_band, ymax = Inf,
  466. fill = ifelse(!is.null(config$fill_positive), config$fill_positive, "#542788"),
  467. alpha = ifelse(!is.null(config$alpha_positive), config$alpha_positive, 0.3)
  468. ) +
  469. annotate(
  470. "rect",
  471. xmin = -Inf, xmax = Inf,
  472. ymin = -config$sd_band, ymax = -Inf,
  473. fill = ifelse(!is.null(config$fill_negative), config$fill_negative, "orange"),
  474. alpha = ifelse(!is.null(config$alpha_negative), config$alpha_negative, 0.3)
  475. ) +
  476. geom_hline(
  477. yintercept = c(-config$sd_band, config$sd_band),
  478. color = ifelse(!is.null(config$hl_color), config$hl_color, "gray")
  479. )
  480. }
  481. # Add Rectangles if specified
  482. if (!is.null(config$rectangles)) {
  483. for (rect in config$rectangles) {
  484. plot <- plot + annotate(
  485. "rect",
  486. xmin = rect$xmin,
  487. xmax = rect$xmax,
  488. ymin = rect$ymin,
  489. ymax = rect$ymax,
  490. fill = ifelse(is.null(rect$fill), NA, rect$fill),
  491. color = ifelse(is.null(rect$color), "black", rect$color),
  492. alpha = ifelse(is.null(rect$alpha), 0.1, rect$alpha)
  493. )
  494. }
  495. }
  496. # Add Error Bars if specified
  497. if (!is.null(config$error_bar) && config$error_bar && !is.null(config$y_var)) {
  498. y_mean_col <- paste0("mean_", config$y_var)
  499. y_sd_col <- paste0("sd_", config$y_var)
  500. plot <- plot +
  501. geom_errorbar(
  502. aes(
  503. ymin = !!sym(y_mean_col) - !!sym(y_sd_col),
  504. ymax = !!sym(y_mean_col) + !!sym(y_sd_col)
  505. ),
  506. alpha = 0.3
  507. )
  508. }
  509. # Customize X-axis if specified
  510. if (!is.null(config$x_breaks) && !is.null(config$x_labels) && !is.null(config$x_label)) {
  511. plot <- plot +
  512. scale_x_discrete(
  513. name = config$x_label,
  514. breaks = config$x_breaks,
  515. labels = config$x_labels
  516. )
  517. }
  518. # Apply coord_cartesian if specified
  519. if (!is.null(config$coord_cartesian)) {
  520. plot <- plot + coord_cartesian(ylim = config$coord_cartesian)
  521. }
  522. # Set Y-axis limits if specified
  523. if (!is.null(config$ylim_vals)) {
  524. plot <- plot + scale_y_continuous(limits = config$ylim_vals)
  525. }
  526. # Add Annotations if specified
  527. if (!is.null(config$annotations)) {
  528. for (annotation in config$annotations) {
  529. plot <- plot +
  530. annotate(
  531. "text",
  532. x = annotation$x,
  533. y = annotation$y,
  534. label = annotation$label,
  535. hjust = ifelse(is.null(annotation$hjust), 0.5, annotation$hjust),
  536. vjust = ifelse(is.null(annotation$vjust), 0.5, annotation$vjust),
  537. size = ifelse(is.null(annotation$size), 4, annotation$size),
  538. color = ifelse(is.null(annotation$color), "black", annotation$color)
  539. )
  540. }
  541. }
  542. # Add Title if specified
  543. if (!is.null(config$title)) {
  544. plot <- plot + ggtitle(config$title)
  545. }
  546. # Adjust Legend Position if specified
  547. if (!is.null(config$legend_position)) {
  548. plot <- plot + theme(legend.position = config$legend_position)
  549. }
  550. return(plot)
  551. }
  552. generate_box_plot <- function(plot, config) {
  553. plot <- plot + geom_boxplot()
  554. if (!is.null(config$x_breaks) && !is.null(config$x_labels) && !is.null(config$x_label)) {
  555. plot <- plot + scale_x_discrete(
  556. name = config$x_label,
  557. breaks = config$x_breaks,
  558. labels = config$x_labels
  559. )
  560. }
  561. if (!is.null(config$coord_cartesian)) {
  562. plot <- plot + coord_cartesian(ylim = config$coord_cartesian)
  563. }
  564. return(plot)
  565. }
  566. generate_plate_analysis_plot_configs <- function(variables, stages = c("before", "after"),
  567. df_before = NULL, df_after = NULL, plot_type = "scatter") {
  568. plots <- list()
  569. for (var in variables) {
  570. for (stage in stages) {
  571. df_plot <- if (stage == "before") df_before else df_after
  572. # Adjust settings based on plot_type
  573. if (plot_type == "scatter") {
  574. error_bar <- TRUE
  575. position <- "jitter"
  576. } else if (plot_type == "box") {
  577. error_bar <- FALSE
  578. position <- NULL
  579. }
  580. config <- list(
  581. df = df_plot,
  582. x_var = "scan",
  583. y_var = var,
  584. plot_type = plot_type,
  585. title = paste("Plate analysis by Drug Conc for", var, stage, "quality control"),
  586. error_bar = error_bar,
  587. color_var = "conc_num_factor",
  588. position = position
  589. )
  590. plots <- append(plots, list(config))
  591. }
  592. }
  593. return(plots)
  594. }
  595. generate_interaction_plot_configs <- function(df, variables) {
  596. configs <- list()
  597. limits_map <- list(
  598. L = c(-65, 65),
  599. K = c(-65, 65),
  600. r = c(-0.65, 0.65),
  601. AUC = c(-6500, 6500)
  602. )
  603. df_filtered <- process_data(df, variables, filter_na = TRUE, limits_map = limits_map)
  604. # Define annotation label functions
  605. generate_annotation_labels <- function(df, var, annotation_name) {
  606. switch(annotation_name,
  607. ZShift = paste("ZShift =", round(df[[paste0("Z_Shift_", var)]], 2)),
  608. lm_ZScore = paste("lm ZScore =", round(df[[paste0("Z_lm_", var)]], 2)),
  609. NG = paste("NG =", df$NG),
  610. DB = paste("DB =", df$DB),
  611. SM = paste("SM =", df$SM),
  612. NULL # Default case for unrecognized annotation names
  613. )
  614. }
  615. # Define annotation positions relative to the y-axis range
  616. calculate_annotation_positions <- function(y_range) {
  617. y_min <- min(y_range)
  618. y_max <- max(y_range)
  619. y_span <- y_max - y_min
  620. list(
  621. ZShift = y_max - 0.1 * y_span,
  622. lm_ZScore = y_max - 0.2 * y_span,
  623. NG = y_min + 0.2 * y_span,
  624. DB = y_min + 0.1 * y_span,
  625. SM = y_min + 0.05 * y_span
  626. )
  627. }
  628. # Create configurations for each variable
  629. for (variable in variables) {
  630. y_range <- limits_map[[variable]]
  631. annotation_positions <- calculate_annotation_positions(y_range)
  632. lm_line <- list(
  633. intercept = df_filtered[[paste0("lm_intercept_", variable)]],
  634. slope = df_filtered[[paste0("lm_slope_", variable)]]
  635. )
  636. # Determine x-axis midpoint
  637. num_levels <- length(levels(df_filtered$conc_num_factor))
  638. x_pos <- (1 + num_levels) / 2 # Midpoint of x-axis
  639. # Generate annotations
  640. annotations <- lapply(names(annotation_positions), function(annotation_name) {
  641. label <- generate_annotation_labels(df_filtered, variable, annotation_name)
  642. y_pos <- annotation_positions[[annotation_name]]
  643. if (!is.null(label)) {
  644. list(x = x_pos, y = y_pos, label = label)
  645. } else {
  646. message(paste("Warning: No annotation found for", annotation_name))
  647. NULL
  648. }
  649. })
  650. # Remove NULL annotations
  651. annotations <- Filter(Negate(is.null), annotations)
  652. # Shared plot settings
  653. plot_settings <- list(
  654. df = df_filtered,
  655. x_var = "conc_num_factor",
  656. y_var = variable,
  657. ylim_vals = y_range,
  658. annotations = annotations,
  659. lm_line = lm_line,
  660. x_breaks = levels(df_filtered$conc_num_factor),
  661. x_labels = levels(df_filtered$conc_num_factor),
  662. x_label = unique(df_filtered$Drug[1]),
  663. coord_cartesian = y_range # Use the actual y-limits
  664. )
  665. # Scatter plot config
  666. configs[[length(configs) + 1]] <- modifyList(plot_settings, list(
  667. plot_type = "scatter",
  668. title = sprintf("%s %s", df_filtered$OrfRep[1], df_filtered$Gene[1]),
  669. error_bar = TRUE,
  670. position = "jitter"
  671. ))
  672. # Box plot config
  673. configs[[length(configs) + 1]] <- modifyList(plot_settings, list(
  674. plot_type = "box",
  675. title = sprintf("%s %s (box plot)", df_filtered$OrfRep[1], df_filtered$Gene[1]),
  676. error_bar = FALSE
  677. ))
  678. }
  679. return(configs)
  680. }
  681. generate_rank_plot_configs <- function(df_filtered, variables, is_lm = FALSE, overlap_color = FALSE) {
  682. sd_bands <- c(1, 2, 3)
  683. configs <- list()
  684. # SD-based plots for L and K
  685. for (variable in c("L", "K")) {
  686. if (is_lm) {
  687. rank_var <- paste0("Rank_lm_", variable)
  688. zscore_var <- paste0("Z_lm_", variable)
  689. y_label <- paste("Int Z score", variable)
  690. } else {
  691. rank_var <- paste0("Rank_", variable)
  692. zscore_var <- paste0("Avg_Zscore_", variable)
  693. y_label <- paste("Avg Z score", variable)
  694. }
  695. for (sd_band in sd_bands) {
  696. num_enhancers <- sum(df_filtered[[zscore_var]] >= sd_band, na.rm = TRUE)
  697. num_suppressors <- sum(df_filtered[[zscore_var]] <= -sd_band, na.rm = TRUE)
  698. # Annotated plot configuration
  699. configs[[length(configs) + 1]] <- list(
  700. df = df_filtered,
  701. x_var = rank_var,
  702. y_var = zscore_var,
  703. plot_type = "scatter",
  704. title = paste(y_label, "vs. Rank for", variable, "above", sd_band, "SD"),
  705. sd_band = sd_band,
  706. fill_positive = "#542788",
  707. fill_negative = "orange",
  708. alpha_positive = 0.3,
  709. alpha_negative = 0.3,
  710. annotations = list(
  711. list(
  712. x = median(df_filtered[[rank_var]], na.rm = TRUE),
  713. y = 10,
  714. label = paste("Deletion Enhancers =", num_enhancers),
  715. hjust = 0.5,
  716. vjust = 1
  717. ),
  718. list(
  719. x = median(df_filtered[[rank_var]], na.rm = TRUE),
  720. y = -10,
  721. label = paste("Deletion Suppressors =", num_suppressors),
  722. hjust = 0.5,
  723. vjust = 0
  724. )
  725. ),
  726. shape = 3,
  727. size = 0.1,
  728. y_label = y_label,
  729. x_label = "Rank",
  730. legend_position = "none"
  731. )
  732. # Non-Annotated Plot Configuration
  733. configs[[length(configs) + 1]] <- list(
  734. df = df_filtered,
  735. x_var = rank_var,
  736. y_var = zscore_var,
  737. plot_type = "scatter",
  738. title = paste(y_label, "vs. Rank for", variable, "above", sd_band, "SD No Annotations"),
  739. sd_band = sd_band,
  740. fill_positive = "#542788",
  741. fill_negative = "orange",
  742. alpha_positive = 0.3,
  743. alpha_negative = 0.3,
  744. annotations = NULL,
  745. shape = 3,
  746. size = 0.1,
  747. y_label = y_label,
  748. x_label = "Rank",
  749. legend_position = "none"
  750. )
  751. }
  752. }
  753. # Avg ZScore and Rank Avg ZScore Plots for r, L, K, and AUC
  754. for (variable in variables) {
  755. for (plot_type in c("Avg Zscore vs lm", "Rank Avg Zscore vs lm")) {
  756. title <- paste(plot_type, variable)
  757. # Define specific variables based on plot type
  758. if (plot_type == "Avg Zscore vs lm") {
  759. x_var <- paste0("Avg_Zscore_", variable)
  760. y_var <- paste0("Z_lm_", variable)
  761. rectangles <- list(
  762. list(xmin = -2, xmax = 2, ymin = -2, ymax = 2,
  763. fill = NA, color = "grey20", alpha = 0.1
  764. )
  765. )
  766. } else if (plot_type == "Rank Avg Zscore vs lm") {
  767. x_var <- paste0("Rank_", variable)
  768. y_var <- paste0("Rank_lm_", variable)
  769. rectangles <- NULL
  770. }
  771. # Fit linear model
  772. lm_model <- lm(as.formula(paste(y_var, "~", x_var)), data = df_filtered)
  773. lm_summary <- summary(lm_model)
  774. # Extract intercept and slope from the model coefficients
  775. intercept <- coef(lm_model)[1]
  776. slope <- coef(lm_model)[2]
  777. configs[[length(configs) + 1]] <- list(
  778. df = df_filtered,
  779. x_var = x_var,
  780. y_var = y_var,
  781. plot_type = "scatter",
  782. title = title,
  783. annotations = list(
  784. list(
  785. x = median(df_filtered[[rank_var]], na.rm = TRUE),
  786. y = 10,
  787. label = paste("Deletion Enhancers =", num_enhancers),
  788. hjust = 0.5,
  789. vjust = 1
  790. ),
  791. list(
  792. x = median(df_filtered[[rank_var]], na.rm = TRUE),
  793. y = -10,
  794. label = paste("Deletion Suppressors =", num_suppressors),
  795. hjust = 0.5,
  796. vjust = 0
  797. )
  798. ),
  799. shape = 3,
  800. size = 0.1,
  801. smooth = TRUE,
  802. smooth_color = "black",
  803. lm_line = list(intercept = intercept, slope = slope),
  804. legend_position = "right",
  805. color_var = if (overlap_color) "Overlap" else NULL,
  806. x_label = x_var,
  807. y_label = y_var,
  808. rectangles = rectangles
  809. )
  810. }
  811. }
  812. return(configs)
  813. }
  814. generate_correlation_plot_configs <- function(df) {
  815. # Define relationships for plotting
  816. relationships <- list(
  817. list(x = "Z_lm_L", y = "Z_lm_K", label = "Interaction L vs. Interaction K"),
  818. list(x = "Z_lm_L", y = "Z_lm_r", label = "Interaction L vs. Interaction r"),
  819. list(x = "Z_lm_L", y = "Z_lm_AUC", label = "Interaction L vs. Interaction AUC"),
  820. list(x = "Z_lm_K", y = "Z_lm_r", label = "Interaction K vs. Interaction r"),
  821. list(x = "Z_lm_K", y = "Z_lm_AUC", label = "Interaction K vs. Interaction AUC"),
  822. list(x = "Z_lm_r", y = "Z_lm_AUC", label = "Interaction r vs. Interaction AUC")
  823. )
  824. configs <- list()
  825. for (rel in relationships) {
  826. # Fit linear model
  827. lm_model <- lm(as.formula(paste(rel$y, "~", rel$x)), data = df)
  828. lm_summary <- summary(lm_model)
  829. # Construct plot configuration
  830. config <- list(
  831. df = df,
  832. x_var = rel$x,
  833. y_var = rel$y,
  834. plot_type = "scatter",
  835. title = rel$label,
  836. x_label = paste("z-score", gsub("Z_lm_", "", rel$x)),
  837. y_label = paste("z-score", gsub("Z_lm_", "", rel$y)),
  838. annotations = list(
  839. list(
  840. x = Inf,
  841. y = Inf,
  842. label = paste("R-squared =", round(lm_summary$r.squared, 3)),
  843. hjust = 1.1,
  844. vjust = 2,
  845. size = 4,
  846. color = "black"
  847. )
  848. ),
  849. smooth = TRUE,
  850. smooth_color = "tomato3",
  851. lm_line = list(intercept = coef(lm_model)[1], slope = coef(lm_model)[2]),
  852. legend_position = "right",
  853. shape = 3,
  854. size = 0.5,
  855. color_var = "Overlap",
  856. rectangles = list(
  857. list(
  858. xmin = -2, xmax = 2, ymin = -2, ymax = 2,
  859. fill = NA, color = "grey20", alpha = 0.1
  860. )
  861. ),
  862. cyan_points = TRUE
  863. )
  864. configs[[length(configs) + 1]] <- config
  865. }
  866. return(configs)
  867. }
  868. process_data <- function(df, variables, filter_nf = FALSE, filter_na = FALSE, adjust = FALSE,
  869. rank = FALSE, limits_map = NULL) {
  870. avg_zscore_cols <- paste0("Avg_Zscore_", variables)
  871. z_lm_cols <- paste0("Z_lm_", variables)
  872. rank_avg_zscore_cols <- paste0("Rank_", variables)
  873. rank_z_lm_cols <- paste0("Rank_lm_", variables)
  874. if (filter_nf) {
  875. message("Filtering non-finite values")
  876. df <- df %>%
  877. filter(if_all(all_of(variables), ~ is.finite(.)))
  878. }
  879. if (filter_na) {
  880. message("Filtering NA values")
  881. df <- df %>%
  882. filter(if_all(all_of(variables), ~ !is.na(.)))
  883. }
  884. if (!is.null(limits_map)) {
  885. message("Filtering data outside y-limits (for plotting)")
  886. for (variable in names(limits_map)) {
  887. if (variable %in% variables) {
  888. ylim_vals <- limits_map[[variable]]
  889. df <- df %>%
  890. filter(.data[[variable]] >= ylim_vals[1] & .data[[variable]] <= ylim_vals[2])
  891. }
  892. }
  893. }
  894. if (adjust) {
  895. message("Replacing NA with 0.001 for Avg_Zscore_ and Z_lm_ columns for ranks")
  896. df <- df %>%
  897. mutate(
  898. across(all_of(avg_zscore_cols), ~ifelse(is.na(.), 0.001, .)),
  899. across(all_of(z_lm_cols), ~ifelse(is.na(.), 0.001, .))
  900. )
  901. }
  902. # Calculate and add rank columns
  903. # TODO probably should be moved to separate function
  904. if (rank) {
  905. message("Calculating ranks for Avg_Zscore and Z_lm columns")
  906. rank_col_mapping <- setNames(rank_avg_zscore_cols, avg_zscore_cols)
  907. df <- df %>%
  908. mutate(across(all_of(avg_zscore_cols), ~rank(., na.last = "keep"), .names = "{rank_col_mapping[.col]}"))
  909. rank_lm_col_mapping <- setNames(rank_z_lm_cols, z_lm_cols)
  910. df <- df %>%
  911. mutate(across(all_of(z_lm_cols), ~rank(., na.last = "keep"), .names = "{rank_lm_col_mapping[.col]}"))
  912. }
  913. return(df)
  914. }
  915. main <- function() {
  916. lapply(names(args$experiments), function(exp_name) {
  917. exp <- args$experiments[[exp_name]]
  918. exp_path <- exp$path
  919. exp_sd <- exp$sd
  920. out_dir <- file.path(exp_path, "zscores")
  921. out_dir_qc <- file.path(exp_path, "zscores", "qc")
  922. dir.create(out_dir, recursive = TRUE, showWarnings = FALSE)
  923. dir.create(out_dir_qc, recursive = TRUE, showWarnings = FALSE)
  924. summary_vars <- c("L", "K", "r", "AUC", "delta_bg") # fields to filter and calculate summary stats across
  925. interaction_vars <- c("L", "K", "r", "AUC") # fields to calculate interaction z-scores
  926. print_vars <- c("OrfRep", "Plate", "scan", "Col", "Row", "num", "OrfRep", "conc_num", "conc_num_factor",
  927. "delta_bg_tolerance", "delta_bg", "Gene", "L", "K", "r", "AUC", "NG", "DB")
  928. message("Loading and filtering data for experiment: ", exp_name)
  929. df <- load_and_process_data(args$easy_results_file, sd = exp_sd) %>%
  930. update_gene_names(args$sgd_gene_list) %>%
  931. as_tibble()
  932. # Filter rows above delta background tolerance
  933. df_above_tolerance <- df %>% filter(DB == 1)
  934. df_na <- df %>% mutate(across(all_of(summary_vars), ~ ifelse(DB == 1, NA, .)))
  935. df_no_zeros <- df_na %>% filter(L > 0)
  936. # Save some constants
  937. max_conc <- max(df$conc_num)
  938. l_half_median <- (median(df_above_tolerance$L, na.rm = TRUE)) / 2
  939. k_half_median <- (median(df_above_tolerance$K, na.rm = TRUE)) / 2
  940. message("Calculating summary statistics before quality control")
  941. ss <- calculate_summary_stats(
  942. df = df,
  943. variables = summary_vars,
  944. group_vars = c("conc_num", "conc_num_factor"))
  945. df_stats <- ss$df_with_stats
  946. message("Filtering non-finite data")
  947. df_filtered_stats <- process_data(df_stats, c("L"), filter_nf = TRUE)
  948. message("Calculating summary statistics after quality control")
  949. ss <- calculate_summary_stats(
  950. df = df_na,
  951. variables = summary_vars,
  952. group_vars = c("conc_num", "conc_num_factor"))
  953. df_na_ss <- ss$summary_stats
  954. df_na_stats <- ss$df_with_stats
  955. write.csv(df_na_ss, file = file.path(out_dir, "summary_stats_all_strains.csv"), row.names = FALSE)
  956. df_na_filtered_stats <- process_data(df_na_stats, c("L"), filter_nf = TRUE)
  957. message("Calculating summary statistics after quality control excluding zero values")
  958. ss <- calculate_summary_stats(
  959. df = df_no_zeros,
  960. variables = summary_vars,
  961. group_vars = c("conc_num", "conc_num_factor"))
  962. df_no_zeros_stats <- ss$df_with_stats
  963. df_no_zeros_filtered_stats <- process_data(df_no_zeros_stats, c("L"), filter_nf = TRUE)
  964. message("Filtering by 2SD of K")
  965. df_na_within_2sd_k <- df_na_stats %>%
  966. filter(K >= (mean_K - 2 * sd_K) & K <= (mean_K + 2 * sd_K))
  967. df_na_outside_2sd_k <- df_na_stats %>%
  968. filter(K < (mean_K - 2 * sd_K) | K > (mean_K + 2 * sd_K))
  969. message("Calculating summary statistics for L within 2SD of K")
  970. # TODO We're omitting the original z_max calculation, not sure if needed?
  971. ss <- calculate_summary_stats(df_na_within_2sd_k, "L", group_vars = c("conc_num", "conc_num_factor"))
  972. # df_na_l_within_2sd_k_stats <- ss$df_with_stats
  973. write.csv(ss$summary_stats,
  974. file = file.path(out_dir_qc, "max_observed_L_vals_for_spots_within_2sd_K.csv"),
  975. row.names = FALSE)
  976. message("Calculating summary statistics for L outside 2SD of K")
  977. ss <- calculate_summary_stats(df_na_outside_2sd_k, "L", group_vars = c("conc_num", "conc_num_factor"))
  978. df_na_l_outside_2sd_k_stats <- ss$df_with_stats
  979. write.csv(ss$summary_stats,
  980. file = file.path(out_dir, "max_observed_L_vals_for_spots_outside_2sd_K.csv"),
  981. row.names = FALSE)
  982. # Each plots list corresponds to a file
  983. l_vs_k_plot_configs <- list(
  984. list(
  985. df = df,
  986. x_var = "L",
  987. y_var = "K",
  988. plot_type = "scatter",
  989. delta_bg_point = TRUE,
  990. title = "Raw L vs K before quality control",
  991. color_var = "conc_num_factor",
  992. error_bar = FALSE,
  993. legend_position = "right"
  994. )
  995. )
  996. frequency_delta_bg_plot_configs <- list(
  997. list(
  998. df = df_filtered_stats,
  999. x_var = "delta_bg",
  1000. y_var = NULL,
  1001. plot_type = "density",
  1002. title = "Plate analysis by Drug Conc for Delta Background before quality control",
  1003. color_var = "conc_num_factor",
  1004. x_label = "Delta Background",
  1005. y_label = "Density",
  1006. error_bar = FALSE,
  1007. legend_position = "right"),
  1008. list(
  1009. df = df_filtered_stats,
  1010. x_var = "delta_bg",
  1011. y_var = NULL,
  1012. plot_type = "bar",
  1013. title = "Plate analysis by Drug Conc for Delta Background before quality control",
  1014. color_var = "conc_num_factor",
  1015. x_label = "Delta Background",
  1016. y_label = "Count",
  1017. error_bar = FALSE,
  1018. legend_position = "right")
  1019. )
  1020. above_threshold_plot_configs <- list(
  1021. list(
  1022. df = df_above_tolerance,
  1023. x_var = "L",
  1024. y_var = "K",
  1025. plot_type = "scatter",
  1026. delta_bg_point = TRUE,
  1027. title = paste("Raw L vs K for strains above Delta Background threshold of",
  1028. df_above_tolerance$delta_bg_tolerance[[1]], "or above"),
  1029. color_var = "conc_num_factor",
  1030. position = "jitter",
  1031. annotations = list(
  1032. list(
  1033. x = l_half_median,
  1034. y = k_half_median,
  1035. label = paste("# strains above Delta Background tolerance =", nrow(df_above_tolerance))
  1036. )
  1037. ),
  1038. error_bar = FALSE,
  1039. legend_position = "right"
  1040. )
  1041. )
  1042. plate_analysis_plot_configs <- generate_plate_analysis_plot_configs(
  1043. variables = summary_vars,
  1044. df_before = df_filtered_stats,
  1045. df_after = df_na_filtered_stats,
  1046. )
  1047. plate_analysis_boxplot_configs <- generate_plate_analysis_plot_configs(
  1048. variables = summary_vars,
  1049. df_before = df_filtered_stats,
  1050. df_after = df_na_filtered_stats,
  1051. plot_type = "box"
  1052. )
  1053. plate_analysis_no_zeros_plot_configs <- generate_plate_analysis_plot_configs(
  1054. variables = summary_vars,
  1055. stages = c("after"), # Only after QC
  1056. df_after = df_no_zeros_filtered_stats,
  1057. )
  1058. plate_analysis_no_zeros_boxplot_configs <- generate_plate_analysis_plot_configs(
  1059. variables = summary_vars,
  1060. stages = c("after"), # Only after QC
  1061. df_after = df_no_zeros_filtered_stats,
  1062. plot_type = "box"
  1063. )
  1064. l_outside_2sd_k_plot_configs <- list(
  1065. list(
  1066. df = df_na_l_outside_2sd_k_stats,
  1067. x_var = "L",
  1068. y_var = "K",
  1069. plot_type = "scatter",
  1070. delta_bg_point = TRUE,
  1071. title = "Raw L vs K for strains falling outside 2SD of the K mean at each Conc",
  1072. color_var = "conc_num_factor",
  1073. position = "jitter",
  1074. legend_position = "right"
  1075. )
  1076. )
  1077. delta_bg_outside_2sd_k_plot_configs <- list(
  1078. list(
  1079. df = df_na_l_outside_2sd_k_stats,
  1080. x_var = "delta_bg",
  1081. y_var = "K",
  1082. plot_type = "scatter",
  1083. gene_point = TRUE,
  1084. title = "Delta Background vs K for strains falling outside 2SD of the K mean at each Conc",
  1085. color_var = "conc_num_factor",
  1086. position = "jitter",
  1087. legend_position = "right"
  1088. )
  1089. )
  1090. message("Generating quality control plots")
  1091. # TODO trying out some parallelization
  1092. # future::plan(future::multicore, workers = parallel::detectCores())
  1093. future::plan(future::multisession, workers = 3)
  1094. plot_configs <- list(
  1095. list(out_dir = out_dir_qc, filename = "L_vs_K_before_quality_control",
  1096. plot_configs = l_vs_k_plot_configs),
  1097. list(out_dir = out_dir_qc, filename = "frequency_delta_background",
  1098. plot_configs = frequency_delta_bg_plot_configs),
  1099. list(out_dir = out_dir_qc, filename = "L_vs_K_above_threshold",
  1100. plot_configs = above_threshold_plot_configs),
  1101. list(out_dir = out_dir_qc, filename = "plate_analysis",
  1102. plot_configs = plate_analysis_plot_configs),
  1103. list(out_dir = out_dir_qc, filename = "plate_analysis_boxplots",
  1104. plot_configs = plate_analysis_boxplot_configs),
  1105. list(out_dir = out_dir_qc, filename = "plate_analysis_no_zeros",
  1106. plot_configs = plate_analysis_no_zeros_plot_configs),
  1107. list(out_dir = out_dir_qc, filename = "plate_analysis_no_zeros_boxplots",
  1108. plot_configs = plate_analysis_no_zeros_boxplot_configs),
  1109. list(out_dir = out_dir_qc, name = "L_vs_K_for_strains_2SD_outside_mean_K",
  1110. plot_configs = l_outside_2sd_k_plot_configs),
  1111. list(out_dir = out_dir_qc, name = "delta_background_vs_K_for_strains_2sd_outside_mean_K",
  1112. plot_configs = delta_bg_outside_2sd_k_plot_configs)
  1113. )
  1114. # Generating quality control plots in parallel
  1115. # furrr::future_map(plot_configs, function(config) {
  1116. # generate_and_save_plots(config$out_dir, config$filename, config$plot_configs)
  1117. # }, .options = furrr_options(seed = TRUE))
  1118. # Process background strains
  1119. bg_strains <- c("YDL227C")
  1120. lapply(bg_strains, function(strain) {
  1121. message("Processing background strain: ", strain)
  1122. # Handle missing data by setting zero values to NA
  1123. # and then removing any rows with NA in L col
  1124. df_bg <- df_na %>%
  1125. filter(OrfRep == strain) %>%
  1126. mutate(
  1127. L = if_else(L == 0, NA, L),
  1128. K = if_else(K == 0, NA, K),
  1129. r = if_else(r == 0, NA, r),
  1130. AUC = if_else(AUC == 0, NA, AUC)
  1131. ) %>%
  1132. filter(!is.na(L))
  1133. # Recalculate summary statistics for the background strain
  1134. message("Calculating summary statistics for background strain")
  1135. ss_bg <- calculate_summary_stats(df_bg, summary_vars, group_vars = c("OrfRep", "conc_num", "conc_num_factor"))
  1136. summary_stats_bg <- ss_bg$summary_stats
  1137. # df_bg_stats <- ss_bg$df_with_stats
  1138. write.csv(summary_stats_bg,
  1139. file = file.path(out_dir, paste0("SummaryStats_BackgroundStrains_", strain, ".csv")),
  1140. row.names = FALSE)
  1141. # Filter reference and deletion strains
  1142. # Formerly X2_RF (reference strains)
  1143. df_reference <- df_na_stats %>%
  1144. filter(OrfRep == strain) %>%
  1145. mutate(SM = 0)
  1146. # Formerly X2 (deletion strains)
  1147. df_deletion <- df_na_stats %>%
  1148. filter(OrfRep != strain) %>%
  1149. mutate(SM = 0)
  1150. # Set the missing values to the highest theoretical value at each drug conc for L
  1151. # Leave other values as 0 for the max/min
  1152. reference_strain <- df_reference %>%
  1153. group_by(conc_num, conc_num_factor) %>%
  1154. mutate(
  1155. max_l_theoretical = max(max_L, na.rm = TRUE),
  1156. L = ifelse(L == 0 & !is.na(L) & conc_num > 0, max_l_theoretical, L),
  1157. SM = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, 1, SM),
  1158. L = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, max_l_theoretical, L)) %>%
  1159. ungroup()
  1160. # Ditto for deletion strains
  1161. deletion_strains <- df_deletion %>%
  1162. group_by(conc_num, conc_num_factor) %>%
  1163. mutate(
  1164. max_l_theoretical = max(max_L, na.rm = TRUE),
  1165. L = ifelse(L == 0 & !is.na(L) & conc_num > 0, max_l_theoretical, L),
  1166. SM = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, 1, SM),
  1167. L = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, max_l_theoretical, L)) %>%
  1168. ungroup()
  1169. message("Calculating reference strain interaction scores")
  1170. reference_results <- calculate_interaction_scores(reference_strain, max_conc)
  1171. zscores_calculations_reference <- reference_results$calculations
  1172. zscores_interactions_reference <- reference_results$interactions
  1173. zscores_calculations_reference_joined <- reference_results$calculations_joined
  1174. zscores_interactions_reference_joined <- reference_results$interactions_joined
  1175. message("Calculating deletion strain(s) interactions scores")
  1176. deletion_results <- calculate_interaction_scores(deletion_strains, max_conc)
  1177. zscores_calculations <- deletion_results$calculations
  1178. zscores_interactions <- deletion_results$interactions
  1179. zscores_calculations_joined <- deletion_results$calculations_joined
  1180. zscores_interactions_joined <- deletion_results$interactions_joined
  1181. # Writing Z-Scores to file
  1182. write.csv(zscores_calculations_reference, file = file.path(out_dir, "RF_ZScores_Calculations.csv"), row.names = FALSE)
  1183. write.csv(zscores_calculations, file = file.path(out_dir, "ZScores_Calculations.csv"), row.names = FALSE)
  1184. write.csv(zscores_interactions_reference, file = file.path(out_dir, "RF_ZScores_Interaction.csv"), row.names = FALSE)
  1185. write.csv(zscores_interactions, file = file.path(out_dir, "ZScores_Interaction.csv"), row.names = FALSE)
  1186. # Create interaction plots
  1187. message("Generating reference interaction plots")
  1188. reference_plot_configs <- generate_interaction_plot_configs(zscores_interactions_reference_joined, interaction_vars)
  1189. generate_and_save_plots(out_dir, "RF_interactionPlots", reference_plot_configs, grid_layout = list(ncol = 4, nrow = 3))
  1190. message("Generating deletion interaction plots")
  1191. deletion_plot_configs <- generate_interaction_plot_configs(zscores_interactions_joined, interaction_vars)
  1192. generate_and_save_plots(out_dir, "InteractionPlots", deletion_plot_configs, grid_layout = list(ncol = 4, nrow = 3))
  1193. # Define conditions for enhancers and suppressors
  1194. # TODO Add to study config file?
  1195. threshold <- 2
  1196. enhancer_condition_L <- zscores_interactions$Avg_Zscore_L >= threshold
  1197. suppressor_condition_L <- zscores_interactions$Avg_Zscore_L <= -threshold
  1198. enhancer_condition_K <- zscores_interactions$Avg_Zscore_K >= threshold
  1199. suppressor_condition_K <- zscores_interactions$Avg_Zscore_K <= -threshold
  1200. # Subset data
  1201. enhancers_L <- zscores_interactions[enhancer_condition_L, ]
  1202. suppressors_L <- zscores_interactions[suppressor_condition_L, ]
  1203. enhancers_K <- zscores_interactions[enhancer_condition_K, ]
  1204. suppressors_K <- zscores_interactions[suppressor_condition_K, ]
  1205. # Save enhancers and suppressors
  1206. message("Writing enhancer/suppressor csv files")
  1207. write.csv(enhancers_L, file = file.path(out_dir, "ZScores_Interaction_Deletion_Enhancers_L.csv"), row.names = FALSE)
  1208. write.csv(suppressors_L, file = file.path(out_dir, "ZScores_Interaction_Deletion_Suppressors_L.csv"), row.names = FALSE)
  1209. write.csv(enhancers_K, file = file.path(out_dir, "ZScores_Interaction_Deletion_Enhancers_K.csv"), row.names = FALSE)
  1210. write.csv(suppressors_K, file = file.path(out_dir, "ZScores_Interaction_Deletion_Suppressors_K.csv"), row.names = FALSE)
  1211. # Combine conditions for enhancers and suppressors
  1212. enhancers_and_suppressors_L <- zscores_interactions[enhancer_condition_L | suppressor_condition_L, ]
  1213. enhancers_and_suppressors_K <- zscores_interactions[enhancer_condition_K | suppressor_condition_K, ]
  1214. # Save combined enhancers and suppressors
  1215. write.csv(enhancers_and_suppressors_L,
  1216. file = file.path(out_dir, "ZScores_Interaction_Deletion_Enhancers_and_Suppressors_L.csv"), row.names = FALSE)
  1217. write.csv(enhancers_and_suppressors_K,
  1218. file = file.path(out_dir, "ZScores_Interaction_Deletion_Enhancers_and_Suppressors_K.csv"), row.names = FALSE)
  1219. # Handle linear model based enhancers and suppressors
  1220. lm_threshold <- 2
  1221. enhancers_lm_L <- zscores_interactions[zscores_interactions$Z_lm_L >= lm_threshold, ]
  1222. suppressors_lm_L <- zscores_interactions[zscores_interactions$Z_lm_L <= -lm_threshold, ]
  1223. enhancers_lm_K <- zscores_interactions[zscores_interactions$Z_lm_K >= lm_threshold, ]
  1224. suppressors_lm_K <- zscores_interactions[zscores_interactions$Z_lm_K <= -lm_threshold, ]
  1225. # Save linear model based enhancers and suppressors
  1226. message("Writing linear model enhancer/suppressor csv files")
  1227. write.csv(enhancers_lm_L,
  1228. file = file.path(out_dir, "ZScores_Interaction_Deletion_Enhancers_L_lm.csv"), row.names = FALSE)
  1229. write.csv(suppressors_lm_L,
  1230. file = file.path(out_dir, "ZScores_Interaction_Deletion_Suppressors_L_lm.csv"), row.names = FALSE)
  1231. write.csv(enhancers_lm_K,
  1232. file = file.path(out_dir, "ZScores_Interaction_Deletion_Enhancers_K_lm.csv"), row.names = FALSE)
  1233. write.csv(suppressors_lm_K,
  1234. file = file.path(out_dir, "ZScores_Interaction_Deletion_Suppressors_K_lm.csv"), row.names = FALSE)
  1235. message("Generating rank plots")
  1236. # Formerly InteractionScores_AdjustMissing
  1237. zscores_interactions_joined_ranked <- process_data(
  1238. df = zscores_interactions_joined,
  1239. variables = interaction_vars,
  1240. adjust = TRUE,
  1241. rank = TRUE)
  1242. rank_plot_configs <- generate_rank_plot_configs(
  1243. df = zscores_interactions_joined_ranked,
  1244. variables = interaction_vars,
  1245. is_lm = FALSE
  1246. )
  1247. generate_and_save_plots(out_dir = out_dir, filename = "RankPlots",
  1248. plot_configs = rank_plot_configs, grid_layout = list(ncol = 3, nrow = 2))
  1249. message("Generating ranked linear model plots")
  1250. rank_lm_plot_configs <- generate_rank_plot_configs(
  1251. df = zscores_interactions_joined_ranked,
  1252. variables = interaction_vars,
  1253. is_lm = TRUE
  1254. )
  1255. generate_and_save_plots(out_dir = out_dir, filename = "RankPlots_lm",
  1256. plot_configs = rank_lm_plot_configs, grid_layout = list(ncol = 3, nrow = 2))
  1257. message("Filtering and reranking plots")
  1258. # Formerly X_NArm
  1259. zscores_interactions_filtered <- zscores_interactions_joined %>%
  1260. filter(!is.na(Z_lm_L) & !is.na(Avg_Zscore_L)) %>%
  1261. mutate(
  1262. Overlap = case_when(
  1263. Z_lm_L >= 2 & Avg_Zscore_L >= 2 ~ "Deletion Enhancer Both",
  1264. Z_lm_L <= -2 & Avg_Zscore_L <= -2 ~ "Deletion Suppressor Both",
  1265. Z_lm_L >= 2 & Avg_Zscore_L <= 2 ~ "Deletion Enhancer lm only",
  1266. Z_lm_L <= 2 & Avg_Zscore_L >= 2 ~ "Deletion Enhancer Avg Zscore only",
  1267. Z_lm_L <= -2 & Avg_Zscore_L >= -2 ~ "Deletion Suppressor lm only",
  1268. Z_lm_L >= -2 & Avg_Zscore_L <= -2 ~ "Deletion Suppressor Avg Zscore only",
  1269. Z_lm_L >= 2 & Avg_Zscore_L <= -2 ~ "Deletion Enhancer lm, Deletion Suppressor Avg Z score",
  1270. Z_lm_L <= -2 & Avg_Zscore_L >= 2 ~ "Deletion Suppressor lm, Deletion Enhancer Avg Z score",
  1271. TRUE ~ "No Effect"
  1272. ),
  1273. lm_R_squared_L = summary(lm(Z_lm_L ~ Avg_Zscore_L))$r.squared,
  1274. lm_R_squared_K = summary(lm(Z_lm_K ~ Avg_Zscore_K))$r.squared,
  1275. lm_R_squared_r = summary(lm(Z_lm_r ~ Avg_Zscore_r))$r.squared,
  1276. lm_R_squared_AUC = summary(lm(Z_lm_AUC ~ Avg_Zscore_AUC))$r.squared
  1277. )
  1278. # Re-rank
  1279. zscores_interactions_filtered_ranked <- process_data(
  1280. df = zscores_interactions_filtered,
  1281. variables = interaction_vars,
  1282. rank = TRUE
  1283. )
  1284. rank_plot_filtered_configs <- generate_rank_plot_configs(
  1285. df = zscores_interactions_filtered_ranked,
  1286. variables = interaction_vars,
  1287. is_lm = FALSE,
  1288. overlap_color = TRUE
  1289. )
  1290. message("Generating filtered ranked plots")
  1291. generate_and_save_plots(
  1292. out_dir = out_dir,
  1293. filename = "RankPlots_na_rm",
  1294. plot_configs = rank_plot_filtered_configs,
  1295. grid_layout = list(ncol = 3, nrow = 2))
  1296. message("Generating filtered ranked linear model plots")
  1297. rank_plot_lm_filtered_configs <- generate_rank_plot_configs(
  1298. df = zscores_interactions_filtered_ranked,
  1299. variables = interaction_vars,
  1300. is_lm = TRUE,
  1301. overlap_color = TRUE
  1302. )
  1303. generate_and_save_plots(
  1304. out_dir = out_dir,
  1305. filename = "RankPlots_lm_na_rm",
  1306. plot_configs = rank_plot_lm_filtered_configs,
  1307. grid_layout = list(ncol = 3, nrow = 2))
  1308. message("Generating correlation plots")
  1309. correlation_plot_configs <- generate_correlation_plot_configs(zscores_interactions_filtered)
  1310. generate_and_save_plots(
  1311. out_dir = out_dir,
  1312. filename = "Avg_Zscore_vs_lm_NA_rm",
  1313. plot_configs = correlation_plot_configs,
  1314. grid_layout = list(ncol = 2, nrow = 2))
  1315. })
  1316. })
  1317. }
  1318. main()