calculate_interaction_zscores.R 65 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697
  1. suppressMessages({
  2. library("ggplot2")
  3. library("plotly")
  4. library("htmlwidgets")
  5. library("htmltools")
  6. library("dplyr")
  7. library("rlang")
  8. library("ggthemes")
  9. library("data.table")
  10. library("grid")
  11. library("gridExtra")
  12. library("future")
  13. library("furrr")
  14. library("purrr")
  15. })
  16. # These parallelization libraries are very noisy
  17. suppressPackageStartupMessages({
  18. library("future")
  19. library("furrr")
  20. library("purrr")
  21. })
  22. # Turn all warnings into errors for development
  23. options(warn = 2)
  24. parse_arguments <- function() {
  25. args <- if (interactive()) {
  26. c(
  27. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/20240116_jhartman2_DoxoHLD",
  28. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/apps/r/SGD_features.tab",
  29. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/easy/20240116_jhartman2_DoxoHLD/results_std.txt",
  30. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/20240822_jhartman2_DoxoHLD/exp1",
  31. "Experiment 1: Doxo versus HLD",
  32. 3,
  33. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/20240822_jhartman2_DoxoHLD/exp2",
  34. "Experiment 2: HLD versus Doxo",
  35. 3
  36. )
  37. } else {
  38. commandArgs(trailingOnly = TRUE)
  39. }
  40. out_dir <- normalizePath(args[1], mustWork = FALSE)
  41. sgd_gene_list <- normalizePath(args[2], mustWork = FALSE)
  42. easy_results_file <- normalizePath(args[3], mustWork = FALSE)
  43. # The remaining arguments should be in groups of 3
  44. exp_args <- args[-(1:3)]
  45. if (length(exp_args) %% 3 != 0) {
  46. stop("Experiment arguments should be in groups of 3: path, name, sd.")
  47. }
  48. # Extract the experiments into a list
  49. experiments <- list()
  50. for (i in seq(1, length(exp_args), by = 3)) {
  51. exp_name <- exp_args[i + 1]
  52. experiments[[exp_name]] <- list(
  53. path = normalizePath(exp_args[i], mustWork = FALSE),
  54. sd = as.numeric(exp_args[i + 2])
  55. )
  56. }
  57. # Extract the trailing number from each path
  58. trailing_numbers <- sapply(experiments, function(x) {
  59. path <- x$path
  60. nums <- gsub("[^0-9]", "", basename(path))
  61. as.integer(nums)
  62. })
  63. # Sort the experiments based on the trailing numbers
  64. sorted_experiments <- experiments[order(trailing_numbers)]
  65. list(
  66. out_dir = out_dir,
  67. sgd_gene_list = sgd_gene_list,
  68. easy_results_file = easy_results_file,
  69. experiments = sorted_experiments
  70. )
  71. }
  72. args <- parse_arguments()
  73. # Should we keep output in exp dirs or combine in the study output dir?
  74. # dir.create(file.path(args$out_dir, "zscores"), showWarnings = FALSE)
  75. # dir.create(file.path(args$out_dir, "zscores", "qc"), showWarnings = FALSE)
  76. theme_publication <- function(base_size = 14, base_family = "sans", legend_position = NULL) {
  77. # Ensure that legend_position has a valid value or default to "none"
  78. legend_position <- if (is.null(legend_position) || length(legend_position) == 0) "none" else legend_position
  79. theme_foundation <- ggthemes::theme_foundation(base_size = base_size, base_family = base_family)
  80. theme_foundation %+replace%
  81. theme(
  82. plot.title = element_text(face = "bold", size = rel(1.6), hjust = 0.5),
  83. text = element_text(),
  84. panel.background = element_blank(),
  85. plot.background = element_blank(),
  86. panel.border = element_blank(),
  87. axis.title = element_text(face = "bold", size = rel(1.4)),
  88. axis.title.y = element_text(angle = 90, vjust = 2),
  89. axis.text = element_text(size = rel(1.2)),
  90. axis.line = element_line(colour = "black"),
  91. panel.grid.major = element_line(colour = "#f0f0f0"),
  92. panel.grid.minor = element_blank(),
  93. legend.key = element_rect(colour = NA),
  94. legend.position = legend_position,
  95. legend.direction =
  96. if (legend_position == "right") {
  97. "vertical"
  98. } else if (legend_position == "bottom") {
  99. "horizontal"
  100. } else {
  101. NULL # No legend direction if position is "none" or other values
  102. },
  103. legend.spacing = unit(0, "cm"),
  104. legend.title = element_text(face = "italic", size = rel(1.3)),
  105. legend.text = element_text(size = rel(1.2)),
  106. plot.margin = unit(c(10, 5, 5, 5), "mm")
  107. )
  108. }
  109. scale_fill_publication <- function(...) {
  110. discrete_scale("fill", "Publication", manual_pal(values = c(
  111. "#386cb0", "#fdb462", "#7fc97f", "#ef3b2c", "#662506",
  112. "#a6cee3", "#fb9a99", "#984ea3", "#ffff33"
  113. )), ...)
  114. }
  115. scale_colour_publication <- function(...) {
  116. discrete_scale("colour", "Publication", manual_pal(values = c(
  117. "#386cb0", "#fdb462", "#7fc97f", "#ef3b2c", "#662506",
  118. "#a6cee3", "#fb9a99", "#984ea3", "#ffff33"
  119. )), ...)
  120. }
  121. # Load the initial dataframe from the easy_results_file
  122. load_and_filter_data <- function(easy_results_file, sd = 3) {
  123. df <- read.delim(easy_results_file, skip = 2, as.is = TRUE, row.names = 1, strip.white = TRUE)
  124. df <- df %>%
  125. filter(!(.[[1]] %in% c("", "Scan"))) %>%
  126. filter(!is.na(ORF) & ORF != "" & !Gene %in% c("BLANK", "Blank", "blank") & Drug != "BMH21") %>%
  127. # Rename columns
  128. rename(L = l, num = Num., AUC = AUC96, scan = Scan, last_bg = LstBackgrd, first_bg = X1stBackgrd) %>%
  129. mutate(
  130. across(c(Col, Row, num, L, K, r, scan, AUC, last_bg, first_bg), as.numeric),
  131. delta_bg = last_bg - first_bg,
  132. delta_bg_tolerance = mean(delta_bg, na.rm = TRUE) + (sd * sd(delta_bg, na.rm = TRUE)),
  133. NG = if_else(L == 0 & !is.na(L), 1, 0),
  134. DB = if_else(delta_bg >= delta_bg_tolerance, 1, 0),
  135. SM = 0,
  136. OrfRep = if_else(ORF == "YDL227C", "YDL227C", OrfRep), # should these be hardcoded?
  137. conc_num = as.numeric(gsub("[^0-9\\.]", "", Conc)),
  138. conc_num_factor = as.numeric(as.factor(conc_num)) - 1, # for legacy purposes
  139. conc_num_factor_factor = as.factor(conc_num)
  140. )
  141. return(df)
  142. }
  143. update_gene_names <- function(df, sgd_gene_list) {
  144. genes <- read.delim(file = sgd_gene_list, quote = "", header = FALSE,
  145. colClasses = c(rep("NULL", 3), rep("character", 2), rep("NULL", 11)))
  146. gene_map <- setNames(genes$V5, genes$V4) # ORF to GeneName mapping
  147. df <- df %>%
  148. mutate(
  149. mapped_genes = gene_map[ORF],
  150. Gene = if_else(is.na(mapped_genes) | OrfRep == "YDL227C", Gene, mapped_genes),
  151. Gene = if_else(Gene == "" | Gene == "OCT1", OrfRep, Gene) # Handle invalid names
  152. )
  153. return(df)
  154. }
  155. calculate_summary_stats <- function(df, variables, group_vars) {
  156. summary_stats <- df %>%
  157. group_by(across(all_of(group_vars))) %>%
  158. summarise(
  159. N = n(),
  160. across(all_of(variables),
  161. list(
  162. mean = ~ mean(.x, na.rm = TRUE),
  163. median = ~ median(.x, na.rm = TRUE),
  164. max = ~ ifelse(all(is.na(.x)), NA, max(.x, na.rm = TRUE)),
  165. min = ~ ifelse(all(is.na(.x)), NA, min(.x, na.rm = TRUE)),
  166. sd = ~ sd(.x, na.rm = TRUE),
  167. se = ~ sd(.x, na.rm = TRUE) / sqrt(n() - 1)
  168. ),
  169. .names = "{.fn}_{.col}"
  170. ),
  171. .groups = "drop"
  172. )
  173. # Create a cleaned version of df that doesn't overlap with summary_stats
  174. df_cleaned <- df %>%
  175. select(-any_of(setdiff(intersect(names(df), names(summary_stats)), group_vars)))
  176. df_joined <- left_join(df_cleaned, summary_stats, by = group_vars)
  177. return(list(summary_stats = summary_stats, df_with_stats = df_joined))
  178. }
  179. calculate_interaction_scores <- function(df, df_bg, type, overlap_threshold = 2) {
  180. max_conc <- max(as.numeric(df$conc_num_factor), na.rm = TRUE)
  181. total_conc_num <- length(unique(df$conc_num))
  182. if (type == "reference") {
  183. bg_group_vars <- c("OrfRep", "Gene", "num", "Drug", "conc_num", "conc_num_factor", "conc_num_factor_factor")
  184. group_vars <- c("OrfRep", "Gene", "num", "Drug")
  185. } else if (type == "deletion") {
  186. bg_group_vars <- c("Drug", "conc_num", "conc_num_factor", "conc_num_factor_factor")
  187. group_vars <- c("OrfRep", "Gene", "Drug")
  188. }
  189. # Calculate WT statistics from df_bg
  190. wt_stats <- df_bg %>%
  191. group_by(across(all_of(bg_group_vars))) %>%
  192. summarise(
  193. WT_L = mean(mean_L, na.rm = TRUE),
  194. WT_sd_L = mean(sd_L, na.rm = TRUE),
  195. WT_K = mean(mean_K, na.rm = TRUE),
  196. WT_sd_K = mean(sd_K, na.rm = TRUE),
  197. WT_r = mean(mean_r, na.rm = TRUE),
  198. WT_sd_r = mean(sd_r, na.rm = TRUE),
  199. WT_AUC = mean(mean_AUC, na.rm = TRUE),
  200. WT_sd_AUC = mean(sd_AUC, na.rm = TRUE),
  201. .groups = "drop"
  202. )
  203. # Join WT statistics to df
  204. df <- df %>%
  205. left_join(wt_stats, by = bg_group_vars)
  206. # Compute mean values at zero concentration
  207. mean_zeroes <- df %>%
  208. filter(conc_num == 0) %>%
  209. group_by(across(all_of(group_vars))) %>%
  210. summarise(
  211. mean_L_zero = mean(mean_L, na.rm = TRUE),
  212. mean_K_zero = mean(mean_K, na.rm = TRUE),
  213. mean_r_zero = mean(mean_r, na.rm = TRUE),
  214. mean_AUC_zero = mean(mean_AUC, na.rm = TRUE),
  215. .groups = "drop"
  216. )
  217. df <- df %>%
  218. left_join(mean_zeroes, by = c(group_vars))
  219. # Calculate Raw Shifts and Z Shifts
  220. df <- df %>%
  221. mutate(
  222. Raw_Shift_L = mean_L_zero - WT_L,
  223. Raw_Shift_K = mean_K_zero - WT_K,
  224. Raw_Shift_r = mean_r_zero - WT_r,
  225. Raw_Shift_AUC = mean_AUC_zero - WT_AUC,
  226. Z_Shift_L = Raw_Shift_L / WT_sd_L,
  227. Z_Shift_K = Raw_Shift_K / WT_sd_K,
  228. Z_Shift_r = Raw_Shift_r / WT_sd_r,
  229. Z_Shift_AUC = Raw_Shift_AUC / WT_sd_AUC
  230. )
  231. calculations <- df %>%
  232. group_by(across(all_of(c(group_vars, "conc_num", "conc_num_factor", "conc_num_factor_factor")))) %>%
  233. mutate(
  234. NG_sum = sum(NG, na.rm = TRUE),
  235. DB_sum = sum(DB, na.rm = TRUE),
  236. SM_sum = sum(SM, na.rm = TRUE),
  237. num_non_removed_concs = total_conc_num - sum(DB, na.rm = TRUE) - 1,
  238. # Expected values
  239. Exp_L = WT_L + Raw_Shift_L,
  240. Exp_K = WT_K + Raw_Shift_K,
  241. Exp_r = WT_r + Raw_Shift_r,
  242. Exp_AUC = WT_AUC + Raw_Shift_AUC,
  243. # Deltas
  244. Delta_L = mean_L - Exp_L,
  245. Delta_K = mean_K - Exp_K,
  246. Delta_r = mean_r - Exp_r,
  247. Delta_AUC = mean_AUC - Exp_AUC,
  248. # Adjust deltas for NG and SM
  249. Delta_L = if_else(NG == 1, mean_L - WT_L, Delta_L),
  250. Delta_K = if_else(NG == 1, mean_K - WT_K, Delta_K),
  251. Delta_r = if_else(NG == 1, mean_r - WT_r, Delta_r),
  252. Delta_AUC = if_else(NG == 1, mean_AUC - WT_AUC, Delta_AUC),
  253. Delta_L = if_else(SM == 1, mean_L - WT_L, Delta_L),
  254. # Calculate Z-scores
  255. Zscore_L = Delta_L / WT_sd_L,
  256. Zscore_K = Delta_K / WT_sd_K,
  257. Zscore_r = Delta_r / WT_sd_r,
  258. Zscore_AUC = Delta_AUC / WT_sd_AUC
  259. ) %>%
  260. ungroup() %>% # Ungroup before group_modify
  261. group_by(across(all_of(group_vars))) %>%
  262. group_modify(~ {
  263. # Filter each column for valid data or else linear modeling will fail
  264. valid_data_L <- .x %>% filter(!is.na(Delta_L))
  265. valid_data_K <- .x %>% filter(!is.na(Delta_K))
  266. valid_data_r <- .x %>% filter(!is.na(Delta_r))
  267. valid_data_AUC <- .x %>% filter(!is.na(Delta_AUC))
  268. # Perform linear modeling
  269. lm_L <- if (nrow(valid_data_L) > 1) lm(Delta_L ~ conc_num_factor, data = valid_data_L) else NULL
  270. lm_K <- if (nrow(valid_data_K) > 1) lm(Delta_K ~ conc_num_factor, data = valid_data_K) else NULL
  271. lm_r <- if (nrow(valid_data_r) > 1) lm(Delta_r ~ conc_num_factor, data = valid_data_r) else NULL
  272. lm_AUC <- if (nrow(valid_data_AUC) > 1) lm(Delta_AUC ~ conc_num_factor, data = valid_data_AUC) else NULL
  273. # Extract coefficients for calculations and plotting
  274. .x %>%
  275. mutate(
  276. lm_intercept_L = if (!is.null(lm_L)) coef(lm_L)[1] else NA,
  277. lm_slope_L = if (!is.null(lm_L)) coef(lm_L)[2] else NA,
  278. R_Squared_L = if (!is.null(lm_L)) summary(lm_L)$r.squared else NA,
  279. lm_Score_L = if (!is.null(lm_L)) max_conc * coef(lm_L)[2] + coef(lm_L)[1] else NA,
  280. lm_intercept_K = if (!is.null(lm_K)) coef(lm_K)[1] else NA,
  281. lm_slope_K = if (!is.null(lm_K)) coef(lm_K)[2] else NA,
  282. R_Squared_K = if (!is.null(lm_K)) summary(lm_K)$r.squared else NA,
  283. lm_Score_K = if (!is.null(lm_K)) max_conc * coef(lm_K)[2] + coef(lm_K)[1] else NA,
  284. lm_intercept_r = if (!is.null(lm_r)) coef(lm_r)[1] else NA,
  285. lm_slope_r = if (!is.null(lm_r)) coef(lm_r)[2] else NA,
  286. R_Squared_r = if (!is.null(lm_r)) summary(lm_r)$r.squared else NA,
  287. lm_Score_r = if (!is.null(lm_r)) max_conc * coef(lm_r)[2] + coef(lm_r)[1] else NA,
  288. lm_intercept_AUC = if (!is.null(lm_AUC)) coef(lm_AUC)[1] else NA,
  289. lm_slope_AUC = if (!is.null(lm_AUC)) coef(lm_AUC)[2] else NA,
  290. R_Squared_AUC = if (!is.null(lm_AUC)) summary(lm_AUC)$r.squared else NA,
  291. lm_Score_AUC = if (!is.null(lm_AUC)) max_conc * coef(lm_AUC)[2] + coef(lm_AUC)[1] else NA
  292. )
  293. }) %>%
  294. ungroup()
  295. # For interaction plot error bars
  296. delta_means_sds <- calculations %>%
  297. group_by(across(all_of(group_vars))) %>%
  298. summarise(
  299. mean_Delta_L = mean(Delta_L, na.rm = TRUE),
  300. mean_Delta_K = mean(Delta_K, na.rm = TRUE),
  301. mean_Delta_r = mean(Delta_r, na.rm = TRUE),
  302. mean_Delta_AUC = mean(Delta_AUC, na.rm = TRUE),
  303. sd_Delta_L = sd(Delta_L, na.rm = TRUE),
  304. sd_Delta_K = sd(Delta_K, na.rm = TRUE),
  305. sd_Delta_r = sd(Delta_r, na.rm = TRUE),
  306. sd_Delta_AUC = sd(Delta_AUC, na.rm = TRUE),
  307. .groups = "drop"
  308. )
  309. calculations <- calculations %>%
  310. left_join(delta_means_sds, by = group_vars)
  311. # Summary statistics for lm scores
  312. calculations <- calculations %>%
  313. mutate(
  314. lm_mean_L = mean(lm_Score_L, na.rm = TRUE),
  315. lm_sd_L = sd(lm_Score_L, na.rm = TRUE),
  316. lm_mean_K = mean(lm_Score_K, na.rm = TRUE),
  317. lm_sd_K = sd(lm_Score_K, na.rm = TRUE),
  318. lm_mean_r = mean(lm_Score_r, na.rm = TRUE),
  319. lm_sd_r = sd(lm_Score_r, na.rm = TRUE),
  320. lm_mean_AUC = mean(lm_Score_AUC, na.rm = TRUE),
  321. lm_sd_AUC = sd(lm_Score_AUC, na.rm = TRUE)
  322. ) %>%
  323. # Calculate Z-lm scores
  324. mutate(
  325. Z_lm_L = (lm_Score_L - lm_mean_L) / lm_sd_L,
  326. Z_lm_K = (lm_Score_K - lm_mean_K) / lm_sd_K,
  327. Z_lm_r = (lm_Score_r - lm_mean_r) / lm_sd_r,
  328. Z_lm_AUC = (lm_Score_AUC - lm_mean_AUC) / lm_sd_AUC
  329. )
  330. # Build summary stats (interactions)
  331. interactions <- calculations %>%
  332. group_by(across(all_of(group_vars))) %>%
  333. summarise(
  334. Avg_Zscore_L = sum(Zscore_L, na.rm = TRUE) / first(num_non_removed_concs),
  335. Avg_Zscore_K = sum(Zscore_K, na.rm = TRUE) / first(num_non_removed_concs),
  336. Avg_Zscore_r = sum(Zscore_r, na.rm = TRUE) / (total_conc_num - 1),
  337. Avg_Zscore_AUC = sum(Zscore_AUC, na.rm = TRUE) / (total_conc_num - 1),
  338. # Interaction Z-scores
  339. Z_lm_L = first(Z_lm_L),
  340. Z_lm_K = first(Z_lm_K),
  341. Z_lm_r = first(Z_lm_r),
  342. Z_lm_AUC = first(Z_lm_AUC),
  343. # Raw Shifts
  344. Raw_Shift_L = first(Raw_Shift_L),
  345. Raw_Shift_K = first(Raw_Shift_K),
  346. Raw_Shift_r = first(Raw_Shift_r),
  347. Raw_Shift_AUC = first(Raw_Shift_AUC),
  348. # Z Shifts
  349. Z_Shift_L = first(Z_Shift_L),
  350. Z_Shift_K = first(Z_Shift_K),
  351. Z_Shift_r = first(Z_Shift_r),
  352. Z_Shift_AUC = first(Z_Shift_AUC),
  353. # R Squared values
  354. R_Squared_L = first(R_Squared_L),
  355. R_Squared_K = first(R_Squared_K),
  356. R_Squared_r = first(R_Squared_r),
  357. R_Squared_AUC = first(R_Squared_AUC),
  358. # lm intercepts
  359. lm_intercept_L = first(lm_intercept_L),
  360. lm_intercept_K = first(lm_intercept_K),
  361. lm_intercept_r = first(lm_intercept_r),
  362. lm_intercept_AUC = first(lm_intercept_AUC),
  363. # lm slopes
  364. lm_slope_L = first(lm_slope_L),
  365. lm_slope_K = first(lm_slope_K),
  366. lm_slope_r = first(lm_slope_r),
  367. lm_slope_AUC = first(lm_slope_AUC),
  368. # NG, DB, SM values
  369. NG = first(NG),
  370. DB = first(DB),
  371. SM = first(SM),
  372. .groups = "drop"
  373. )
  374. # Add overlap threshold categories based on Z-lm and Avg-Z scores
  375. interactions <- interactions %>%
  376. filter(!is.na(Z_lm_L) | !is.na(Avg_Zscore_L)) %>%
  377. mutate(
  378. Overlap = case_when(
  379. Z_lm_L >= overlap_threshold & Avg_Zscore_L >= overlap_threshold ~ "Deletion Enhancer Both",
  380. Z_lm_L <= -overlap_threshold & Avg_Zscore_L <= -overlap_threshold ~ "Deletion Suppressor Both",
  381. Z_lm_L >= overlap_threshold & Avg_Zscore_L <= overlap_threshold ~ "Deletion Enhancer lm only",
  382. Z_lm_L <= overlap_threshold & Avg_Zscore_L >= overlap_threshold ~ "Deletion Enhancer Avg Zscore only",
  383. Z_lm_L <= -overlap_threshold & Avg_Zscore_L >= -overlap_threshold ~ "Deletion Suppressor lm only",
  384. Z_lm_L >= -overlap_threshold & Avg_Zscore_L <= -overlap_threshold ~ "Deletion Suppressor Avg Zscore only",
  385. Z_lm_L >= overlap_threshold & Avg_Zscore_L <= -overlap_threshold ~ "Deletion Enhancer lm, Deletion Suppressor Avg Zscore",
  386. Z_lm_L <= -overlap_threshold & Avg_Zscore_L >= overlap_threshold ~ "Deletion Suppressor lm, Deletion Enhancer Avg Zscore",
  387. TRUE ~ "No Effect"
  388. ),
  389. # For correlation plots
  390. lm_R_squared_L = summary(lm(Z_lm_L ~ Avg_Zscore_L))$r.squared,
  391. lm_R_squared_K = summary(lm(Z_lm_K ~ Avg_Zscore_K))$r.squared,
  392. lm_R_squared_r = summary(lm(Z_lm_r ~ Avg_Zscore_r))$r.squared,
  393. lm_R_squared_AUC = summary(lm(Z_lm_AUC ~ Avg_Zscore_AUC))$r.squared
  394. )
  395. # Creating the final calculations and interactions dataframes with only required columns for csv output
  396. df_calculations <- calculations %>%
  397. select(
  398. all_of(group_vars),
  399. conc_num, conc_num_factor, conc_num_factor_factor, N,
  400. mean_L, median_L, sd_L, se_L,
  401. mean_K, median_K, sd_K, se_K,
  402. mean_r, median_r, sd_r, se_r,
  403. mean_AUC, median_AUC, sd_AUC, se_AUC,
  404. Raw_Shift_L, Raw_Shift_K, Raw_Shift_r, Raw_Shift_AUC,
  405. Z_Shift_L, Z_Shift_K, Z_Shift_r, Z_Shift_AUC,
  406. WT_L, WT_K, WT_r, WT_AUC,
  407. WT_sd_L, WT_sd_K, WT_sd_r, WT_sd_AUC,
  408. Exp_L, Exp_K, Exp_r, Exp_AUC,
  409. Delta_L, Delta_K, Delta_r, Delta_AUC,
  410. mean_Delta_L, mean_Delta_K, mean_Delta_r, mean_Delta_AUC,
  411. Zscore_L, Zscore_K, Zscore_r, Zscore_AUC
  412. )
  413. df_interactions <- interactions %>%
  414. select(
  415. all_of(group_vars),
  416. NG, DB, SM,
  417. Avg_Zscore_L, Avg_Zscore_K, Avg_Zscore_r, Avg_Zscore_AUC,
  418. Z_lm_L, Z_lm_K, Z_lm_r, Z_lm_AUC,
  419. Raw_Shift_L, Raw_Shift_K, Raw_Shift_r, Raw_Shift_AUC,
  420. Z_Shift_L, Z_Shift_K, Z_Shift_r, Z_Shift_AUC,
  421. lm_R_squared_L, lm_R_squared_K, lm_R_squared_r, lm_R_squared_AUC,
  422. lm_intercept_L, lm_intercept_K, lm_intercept_r, lm_intercept_AUC,
  423. lm_slope_L, lm_slope_K, lm_slope_r, lm_slope_AUC, Overlap
  424. )
  425. # Join calculations and interactions to avoid dimension mismatch
  426. calculations_no_overlap <- calculations %>%
  427. select(-any_of(c("DB", "NG", "SM",
  428. "Raw_Shift_L", "Raw_Shift_K", "Raw_Shift_r", "Raw_Shift_AUC",
  429. "Z_Shift_L", "Z_Shift_K", "Z_Shift_r", "Z_Shift_AUC",
  430. "Z_lm_L", "Z_lm_K", "Z_lm_r", "Z_lm_AUC",
  431. "lm_R_squared_L", "lm_R_squared_K", "lm_R_squared_r", "lm_R_squared_AUC",
  432. "lm_intercept_L", "lm_intercept_K", "lm_intercept_r", "lm_intercept_AUC",
  433. "lm_slope_L", "lm_slope_K", "lm_slope_r", "lm_slope_AUC"
  434. )))
  435. full_data <- calculations_no_overlap %>%
  436. left_join(df_interactions, by = group_vars)
  437. # Return final dataframes
  438. return(list(
  439. calculations = df_calculations,
  440. interactions = df_interactions,
  441. full_data = full_data
  442. ))
  443. }
  444. generate_and_save_plots <- function(out_dir, filename, plot_configs, page_width = 12, page_height = 8) {
  445. message("Generating ", filename, ".pdf and ", filename, ".html")
  446. plot_groups <- if ("plots" %in% names(plot_configs)) {
  447. list(plot_configs) # Single group
  448. } else {
  449. plot_configs # Multiple groups
  450. }
  451. pdf(file.path(out_dir, paste0(filename, ".pdf")), width = page_width, height = page_height)
  452. for (group in plot_groups) {
  453. static_plots <- list()
  454. plotly_plots <- list()
  455. for (i in seq_along(group$plots)) {
  456. config <- group$plots[[i]]
  457. df <- config$df
  458. # Filter NAs
  459. if (!is.null(config$filter_na) && config$filter_na) {
  460. df <- df %>%
  461. filter(!is.na(!!sym(config$y_var)))
  462. }
  463. # TODO for now skip all NA plots NA data
  464. # Eventually add to own or filter_na block so we can handle selectively
  465. if (nrow(df) == 0) {
  466. message("Insufficient data for plot:", config$title)
  467. next # skip plot if insufficient data is available
  468. }
  469. # Create initial aes mappings for all plot types
  470. aes_mapping <- aes(x = !!sym(config$x_var)) # required
  471. if (!is.null(config$y_var)) {
  472. aes_mapping <- modifyList(aes_mapping, aes(y = !!sym(config$y_var))) # optional for density/bar plots
  473. }
  474. if (!is.null(config$color_var)) {
  475. aes_mapping <- modifyList(aes_mapping, aes(color = !!sym(config$color_var))) # dynamic color_var
  476. } else if (!is.null(config$color)) {
  477. aes_mapping <- modifyList(aes_mapping, aes(color = config$color)) # static color
  478. }
  479. if (config$plot_type == "bar" && !is.null(config$color_var)) {
  480. aes_mapping <- modifyList(aes_mapping, aes(fill = !!sym(config$color_var))) # only fill bar plots
  481. }
  482. # Begin plot generation
  483. plot <- ggplot(df, aes_mapping) + theme_publication(legend_position = config$legend_position)
  484. plot <- switch(config$plot_type,
  485. "scatter" = generate_scatter_plot(plot, config),
  486. "box" = generate_boxplot(plot, config),
  487. "density" = plot + geom_density(),
  488. "bar" = plot + geom_bar(),
  489. plot # default
  490. )
  491. if (!is.null(config$title)) {
  492. plot <- plot + ggtitle(config$title)
  493. if (!is.null(config$title_size)) {
  494. plot <- plot + theme(plot.title = element_text(size = config$title_size))
  495. }
  496. }
  497. if (!is.null(config$x_label)) plot <- plot + xlab(config$x_label)
  498. if (!is.null(config$y_label)) plot <- plot + ylab(config$y_label)
  499. if (!is.null(config$coord_cartesian)) plot <- plot + coord_cartesian(ylim = config$coord_cartesian)
  500. #plotly_plot <- suppressWarnings(plotly::ggplotly(plot))
  501. static_plots[[i]] <- plot
  502. #plotly_plots[[i]] <- plotly_plot
  503. }
  504. grid_layout <- group$grid_layout
  505. if (!is.null(grid_layout)) {
  506. if (is.null(grid_layout$ncol)) {
  507. grid_layout$ncol <- 1
  508. }
  509. if (!is.null(grid_layout$ncol) && is.null(grid_layout$nrow)) {
  510. num_plots <- length(static_plots)
  511. grid_layout$nrow <- ceiling(num_plots / grid_layout$ncol)
  512. }
  513. # total_spots <- grid_layout$nrow * grid_layout$ncol
  514. # num_plots <- length(static_plots)
  515. # if (num_plots < total_spots) {
  516. # message("Filling ", total_spots - num_plots, " empty spots with nullGrob()")
  517. # static_plots <- c(static_plots, replicate(total_spots - num_plots, nullGrob(), simplify = FALSE))
  518. # }
  519. grid.arrange(
  520. grobs = static_plots,
  521. ncol = grid_layout$ncol,
  522. nrow = grid_layout$nrow
  523. )
  524. } else {
  525. for (plot in static_plots) {
  526. print(plot)
  527. }
  528. }
  529. }
  530. dev.off()
  531. # out_html_file <- file.path(out_dir, paste0(filename, ".html"))
  532. # message("Saving combined HTML file: ", out_html_file)
  533. # htmltools::save_html(
  534. # htmltools::tagList(plotly_plots),
  535. # file = out_html_file
  536. # )
  537. }
  538. generate_scatter_plot <- function(plot, config) {
  539. # Define the points
  540. shape <- if (!is.null(config$shape)) config$shape else 3
  541. size <- if (!is.null(config$size)) config$size else 1.5
  542. position <-
  543. if (!is.null(config$position) && config$position == "jitter") {
  544. position_jitter(width = 0.4, height = 0.1)
  545. } else {
  546. "identity"
  547. }
  548. plot <- plot + geom_point(
  549. shape = shape,
  550. size = size,
  551. position = position
  552. )
  553. # Add a cyan point for the reference data for correlation plots
  554. if (!is.null(config$cyan_points) && config$cyan_points) {
  555. plot <- plot + geom_point(
  556. aes(x = !!sym(config$x_var), y = !!sym(config$y_var)),
  557. data = config$df_reference,
  558. color = "cyan",
  559. shape = 3,
  560. size = 0.5
  561. )
  562. }
  563. # Add error bars if specified
  564. if (!is.null(config$error_bar) && config$error_bar) {
  565. # Check if custom columns are provided for y_mean and y_sd, or use the defaults
  566. y_mean_col <- if (!is.null(config$error_bar_params$y_mean_col)) {
  567. config$error_bar_params$y_mean_col
  568. } else {
  569. paste0("mean_", config$y_var)
  570. }
  571. y_sd_col <- if (!is.null(config$error_bar_params$y_sd_col)) {
  572. config$error_bar_params$y_sd_col
  573. } else {
  574. paste0("sd_", config$y_var)
  575. }
  576. # Use rlang to handle custom error bar calculations
  577. if (!is.null(config$error_bar_params$custom_error_bar)) {
  578. custom_ymin_expr <- rlang::parse_expr(config$error_bar_params$custom_error_bar$ymin)
  579. custom_ymax_expr <- rlang::parse_expr(config$error_bar_params$custom_error_bar$ymax)
  580. plot <- plot + geom_errorbar(
  581. aes(
  582. ymin = !!custom_ymin_expr,
  583. ymax = !!custom_ymax_expr
  584. ),
  585. color = config$error_bar_params$color,
  586. linewidth = ifelse(is.null(config$error_bar_params$linewidth), 0.1, config$error_bar_params$linewidth)
  587. )
  588. } else {
  589. # If no custom error bar formula, use the default or dynamic ones
  590. if (!is.null(config$color_var) && config$color_var %in% colnames(config$df)) {
  591. # Only use color_var if it's present in the dataframe
  592. plot <- plot + geom_errorbar(
  593. aes(
  594. ymin = !!sym(y_mean_col) - !!sym(y_sd_col),
  595. ymax = !!sym(y_mean_col) + !!sym(y_sd_col),
  596. color = !!sym(config$color_var)
  597. ),
  598. linewidth = 0.1
  599. )
  600. } else {
  601. # If color_var is missing, fall back to a default color or none
  602. plot <- plot + geom_errorbar(
  603. aes(
  604. ymin = !!sym(y_mean_col) - !!sym(y_sd_col),
  605. ymax = !!sym(y_mean_col) + !!sym(y_sd_col)
  606. ),
  607. color = config$error_bar_params$color, # use the provided color or default
  608. linewidth = ifelse(is.null(config$error_bar_params$linewidth), 0.1, config$error_bar_params$linewidth)
  609. )
  610. }
  611. }
  612. # Add the center point if the option is provided
  613. if (!is.null(config$error_bar_params$mean_point) && config$error_bar_params$mean_point) {
  614. if (!is.null(config$error_bar_params$color)) {
  615. plot <- plot + geom_point(
  616. aes(x = !!sym(config$x_var), y = !!sym(y_mean_col)),
  617. color = config$error_bar_params$color,
  618. shape = 16
  619. )
  620. } else {
  621. plot <- plot + geom_point(
  622. aes(x = !!sym(config$x_var), y = !!sym(y_mean_col)),
  623. shape = 16
  624. )
  625. }
  626. }
  627. }
  628. # Add linear regression line if specified
  629. if (!is.null(config$lm_line)) {
  630. # Extract necessary values
  631. intercept <- config$lm_line$intercept # required
  632. slope <- config$lm_line$slope # required
  633. xmin <- ifelse(!is.null(config$lm_line$xmin), config$lm_line$xmin, min(as.numeric(config$df[[config$x_var]])))
  634. xmax <- ifelse(!is.null(config$lm_line$xmax), config$lm_line$xmax, max(as.numeric(config$df[[config$x_var]])))
  635. color <- ifelse(!is.null(config$lm_line$color), config$lm_line$color, "blue")
  636. linewidth <- ifelse(!is.null(config$lm_line$linewidth), config$lm_line$linewidth, 1)
  637. ymin <- intercept + slope * xmin
  638. ymax <- intercept + slope * xmax
  639. # Ensure y-values are within y-limits (if any)
  640. if (!is.null(config$ylim_vals)) {
  641. ymin_within_limits <- ymin >= config$ylim_vals[1] && ymin <= config$ylim_vals[2]
  642. ymax_within_limits <- ymax >= config$ylim_vals[1] && ymax <= config$ylim_vals[2]
  643. # Adjust or skip based on whether the values fall within limits
  644. if (ymin_within_limits && ymax_within_limits) {
  645. plot <- plot + annotate(
  646. "segment",
  647. x = xmin,
  648. xend = xmax,
  649. y = ymin,
  650. yend = ymax,
  651. color = color,
  652. linewidth = linewidth,
  653. )
  654. } else {
  655. message("Skipping linear regression line due to y-values outside of limits")
  656. }
  657. } else {
  658. # If no y-limits are provided, proceed with the annotation
  659. plot <- plot + annotate(
  660. "segment",
  661. x = xmin,
  662. xend = xmax,
  663. y = ymin,
  664. yend = ymax,
  665. color = color,
  666. linewidth = linewidth
  667. )
  668. }
  669. }
  670. # Add SD Bands if specified
  671. if (!is.null(config$sd_band)) {
  672. plot <- plot +
  673. annotate(
  674. "rect",
  675. xmin = -Inf, xmax = Inf,
  676. ymin = config$sd_band, ymax = Inf,
  677. fill = ifelse(!is.null(config$fill_positive), config$fill_positive, "#542788"),
  678. alpha = ifelse(!is.null(config$alpha_positive), config$alpha_positive, 0.3)
  679. ) +
  680. annotate(
  681. "rect",
  682. xmin = -Inf, xmax = Inf,
  683. ymin = -config$sd_band, ymax = -Inf,
  684. fill = ifelse(!is.null(config$fill_negative), config$fill_negative, "orange"),
  685. alpha = ifelse(!is.null(config$alpha_negative), config$alpha_negative, 0.3)
  686. ) +
  687. geom_hline(
  688. yintercept = c(-config$sd_band, config$sd_band),
  689. color = ifelse(!is.null(config$hl_color), config$hl_color, "black")
  690. )
  691. }
  692. # # Add rectangles if specified
  693. # if (!is.null(config$rectangles)) {
  694. # for (rect in config$rectangles) {
  695. # plot <- plot + annotate(
  696. # "rect",
  697. # xmin = rect$xmin,
  698. # xmax = rect$xmax,
  699. # ymin = rect$ymin,
  700. # ymax = rect$ymax,
  701. # fill = ifelse(is.null(rect$fill), NA, rect$fill),
  702. # color = ifelse(is.null(rect$color), "black", rect$color),
  703. # alpha = ifelse(is.null(rect$alpha), 0.1, rect$alpha)
  704. # )
  705. # }
  706. # }
  707. # Customize X-axis if specified
  708. if (!is.null(config$x_breaks) && !is.null(config$x_labels) && !is.null(config$x_label)) {
  709. # Check if x_var is factor or character (for discrete x-axis)
  710. if (is.factor(plot$data[[config$x_var]]) || is.character(plot$data[[config$x_var]])) {
  711. plot <- plot +
  712. scale_x_discrete(
  713. name = config$x_label,
  714. breaks = config$x_breaks,
  715. labels = config$x_labels
  716. )
  717. } else {
  718. plot <- plot +
  719. scale_x_continuous(
  720. name = config$x_label,
  721. breaks = config$x_breaks,
  722. labels = config$x_labels
  723. )
  724. }
  725. }
  726. # Set Y-axis limits if specified
  727. if (!is.null(config$ylim_vals)) {
  728. plot <- plot + scale_y_continuous(limits = config$ylim_vals)
  729. }
  730. return(plot)
  731. }
  732. generate_boxplot <- function(plot, config) {
  733. # Convert x_var to a factor within aes mapping
  734. plot <- plot + geom_boxplot(aes(x = factor(!!sym(config$x_var))))
  735. # Customize X-axis if specified
  736. if (!is.null(config$x_breaks) && !is.null(config$x_labels) && !is.null(config$x_label)) {
  737. # Check if x_var is factor or character (for discrete x-axis)
  738. if (is.factor(plot$data[[config$x_var]]) || is.character(plot$data[[config$x_var]])) {
  739. plot <- plot +
  740. scale_x_discrete(
  741. name = config$x_label,
  742. breaks = config$x_breaks,
  743. labels = config$x_labels
  744. )
  745. } else {
  746. plot <- plot +
  747. scale_x_continuous(
  748. name = config$x_label,
  749. breaks = config$x_breaks,
  750. labels = config$x_labels
  751. )
  752. }
  753. }
  754. return(plot)
  755. }
  756. generate_plate_analysis_plot_configs <- function(variables, df_before = NULL, df_after = NULL,
  757. plot_type = "scatter", stages = c("before", "after")) {
  758. plot_configs <- list()
  759. for (var in variables) {
  760. for (stage in stages) {
  761. df_plot <- if (stage == "before") df_before else df_after
  762. # Check for non-finite values in the y-variable
  763. # df_plot_filtered <- df_plot %>% filter(is.finite(!!sym(var)))
  764. # Adjust settings based on plot_type
  765. plot_config <- list(
  766. df = df_plot,
  767. x_var = "scan",
  768. y_var = var,
  769. plot_type = plot_type,
  770. title = paste("Plate analysis by Drug Conc for", var, stage, "quality control"),
  771. color_var = "conc_num_factor_factor",
  772. size = 0.2,
  773. error_bar = (plot_type == "scatter"),
  774. legend_position = "bottom",
  775. filter_na = TRUE
  776. )
  777. # Add config to plots list
  778. plot_configs <- append(plot_configs, list(plot_config))
  779. }
  780. }
  781. return(list(plots = plot_configs))
  782. }
  783. generate_interaction_plot_configs <- function(df_summary, df_interactions, type) {
  784. # Define the y-limits for the plots
  785. limits_map <- list(
  786. L = c(0, 130),
  787. K = c(-20, 160),
  788. r = c(0, 1),
  789. AUC = c(0, 12500)
  790. )
  791. stats_plot_configs <- list()
  792. stats_boxplot_configs <- list()
  793. delta_plot_configs <- list()
  794. # Overall statistics plots
  795. OrfRep <- first(df_summary$OrfRep) # this should correspond to the reference strain
  796. for (plot_type in c("scatter", "box")) {
  797. for (var in names(limits_map)) {
  798. y_limits <- limits_map[[var]]
  799. y_span <- y_limits[2] - y_limits[1]
  800. # Common plot configuration
  801. plot_config <- list(
  802. df = df_summary,
  803. plot_type = plot_type,
  804. x_var = "conc_num_factor_factor",
  805. y_var = var,
  806. shape = 16,
  807. x_label = paste0("[", unique(df_summary$Drug)[1], "]"),
  808. coord_cartesian = y_limits,
  809. x_breaks = unique(df_summary$conc_num_factor_factor),
  810. x_labels = as.character(unique(df_summary$conc_num))
  811. )
  812. # Add specific configurations for scatter and box plots
  813. if (plot_type == "scatter") {
  814. plot_config$title <- sprintf("%s Scatter RF for %s with SD", OrfRep, var)
  815. plot_config$error_bar <- TRUE
  816. plot_config$error_bar_params <- list(
  817. color = "red",
  818. mean_point = TRUE,
  819. y_mean_col = paste0("mean_mean_", var),
  820. y_sd_col = paste0("mean_sd_", var)
  821. )
  822. plot_config$position <- "jitter"
  823. annotations <- list(
  824. list(x = 0.25, y = y_limits[1] + 0.08 * y_span, label = " NG =", size = 4),
  825. list(x = 0.25, y = y_limits[1] + 0.04 * y_span, label = " DB =", size = 4),
  826. list(x = 0.25, y = y_limits[1], label = " SM =", size = 4)
  827. )
  828. for (x_val in unique(df_summary$conc_num_factor_factor)) {
  829. current_df <- df_summary %>% filter(!!sym(plot_config$x_var) == x_val)
  830. annotations <- append(annotations, list(
  831. list(x = x_val, y = y_limits[1] + 0.08 * y_span, label = first(current_df$NG, default = 0), size = 4),
  832. list(x = x_val, y = y_limits[1] + 0.04 * y_span, label = first(current_df$DB, default = 0), size = 4),
  833. list(x = x_val, y = y_limits[1], label = first(current_df$SM, default = 0), size = 4)
  834. ))
  835. }
  836. plot_config$annotations <- annotations
  837. stats_plot_configs <- append(stats_plot_configs, list(plot_config))
  838. } else if (plot_type == "box") {
  839. plot_config$title <- sprintf("%s Box RF for %s with SD", OrfRep, var)
  840. plot_config$position <- "dodge"
  841. stats_boxplot_configs <- append(stats_boxplot_configs, list(plot_config))
  842. }
  843. }
  844. }
  845. # Delta interaction plots
  846. delta_limits_map <- list(
  847. L = c(-60, 60),
  848. K = c(-60, 60),
  849. r = c(-0.6, 0.6),
  850. AUC = c(-6000, 6000)
  851. )
  852. # Select the data grouping by data type
  853. if (type == "reference") {
  854. group_vars <- c("OrfRep", "Gene", "num")
  855. } else if (type == "deletion") {
  856. group_vars <- c("OrfRep", "Gene")
  857. }
  858. grouped_data <- df_interactions %>%
  859. group_by(across(all_of(group_vars))) %>%
  860. group_split()
  861. for (group_data in grouped_data) {
  862. # Build the plot title
  863. OrfRep <- first(group_data$OrfRep)
  864. Gene <- first(group_data$Gene)
  865. if (type == "reference") {
  866. num <- if ("num" %in% names(group_data)) first(group_data$num) else ""
  867. OrfRepTitle <- paste(OrfRep, Gene, num, sep = "_")
  868. } else if (type == "deletion") {
  869. OrfRepTitle <- OrfRep
  870. }
  871. for (var in names(delta_limits_map)) {
  872. y_limits <- delta_limits_map[[var]]
  873. y_span <- y_limits[2] - y_limits[1]
  874. y_var_name <- paste0("Delta_", var)
  875. # Anti-filter to select out-of-bounds rows
  876. out_of_bounds <- group_data %>%
  877. filter(is.na(!!sym(y_var_name)) |
  878. !!sym(y_var_name) < y_limits[1] |
  879. !!sym(y_var_name) > y_limits[2])
  880. if (nrow(out_of_bounds) > 0) {
  881. message(sprintf("Filtered %d row(s) from '%s' because %s is outside of y-limits: [%f, %f]",
  882. nrow(out_of_bounds), OrfRepTitle, y_var_name, y_limits[1], y_limits[2]
  883. ))
  884. }
  885. # Do the actual filtering
  886. group_data_filtered <- group_data %>%
  887. filter(!is.na(!!sym(y_var_name)) &
  888. !!sym(y_var_name) >= y_limits[1] &
  889. !!sym(y_var_name) <= y_limits[2])
  890. if (nrow(group_data_filtered) == 0) {
  891. message("Insufficient data for plot: ", OrfRepTitle, " ", var)
  892. next # skip plot if insufficient data is available
  893. }
  894. WT_sd_value <- first(group_data_filtered[[paste0("WT_sd_", var)]], default = 0)
  895. Z_Shift_value <- round(first(group_data_filtered[[paste0("Z_Shift_", var)]], default = 0), 2)
  896. Z_lm_value <- round(first(group_data_filtered[[paste0("Z_lm_", var)]], default = 0), 2)
  897. R_squared_value <- round(first(group_data_filtered[[paste0("R_Squared_", var)]], default = 0), 2)
  898. NG_value <- first(group_data_filtered$NG, default = 0)
  899. DB_value <- first(group_data_filtered$DB, default = 0)
  900. SM_value <- first(group_data_filtered$SM, default = 0)
  901. lm_intercept_col <- paste0("lm_intercept_", var)
  902. lm_slope_col <- paste0("lm_slope_", var)
  903. lm_intercept <- first(group_data_filtered[[lm_intercept_col]], default = 0)
  904. lm_slope <- first(group_data_filtered[[lm_slope_col]], default = 0)
  905. plot_config <- list(
  906. df = group_data_filtered,
  907. plot_type = "scatter",
  908. x_var = "conc_num_factor_factor",
  909. y_var = y_var_name,
  910. x_label = paste0("[", unique(df_summary$Drug)[1], "]"),
  911. shape = 16,
  912. title = paste(OrfRepTitle, Gene, sep = " "),
  913. title_size = rel(1.4),
  914. coord_cartesian = y_limits,
  915. annotations = list(
  916. list(x = 1, y = y_limits[2] - 0.1 * y_span, label = paste(" ZShift =", round(Z_Shift_value, 2))),
  917. list(x = 1, y = y_limits[2] - 0.2 * y_span, label = paste(" lm ZScore =", round(Z_lm_value, 2))),
  918. # list(x = 1, y = y_limits[2] - 0.3 * y_span, label = paste(" R-squared =", round(R_squared_value, 2))),
  919. list(x = 1, y = y_limits[1] + 0.1 * y_span, label = paste("NG =", NG_value)),
  920. list(x = 1, y = y_limits[1] + 0.05 * y_span, label = paste("DB =", DB_value)),
  921. list(x = 1, y = y_limits[1], label = paste("SM =", SM_value))
  922. ),
  923. error_bar = TRUE,
  924. error_bar_params = list(
  925. custom_error_bar = list(
  926. ymin = paste0("0 - 2 * WT_sd_", var),
  927. ymax = paste0("0 + 2 * WT_sd_", var)
  928. ),
  929. color = "gray70",
  930. linewidth = 0.5
  931. ),
  932. x_breaks = unique(group_data_filtered$conc_num_factor_factor),
  933. x_labels = as.character(unique(group_data_filtered$conc_num)),
  934. ylim_vals = y_limits,
  935. lm_line = list(
  936. intercept = lm_intercept,
  937. slope = lm_slope,
  938. color = "blue",
  939. linewidth = 0.8
  940. )
  941. )
  942. delta_plot_configs <- append(delta_plot_configs, list(plot_config))
  943. }
  944. }
  945. # Group delta plots in chunks of 12 per page
  946. chunk_size <- 12
  947. delta_plot_chunks <- split(delta_plot_configs, ceiling(seq_along(delta_plot_configs) / chunk_size))
  948. return(c(
  949. list(list(grid_layout = list(ncol = 2), plots = stats_plot_configs)),
  950. list(list(grid_layout = list(ncol = 2), plots = stats_boxplot_configs)),
  951. lapply(delta_plot_chunks, function(chunk) list(grid_layout = list(ncol = 4), plots = chunk))
  952. ))
  953. }
  954. generate_rank_plot_configs <- function(df, is_lm = FALSE, adjust = FALSE, filter_na = FALSE, overlap_color = FALSE) {
  955. sd_bands <- c(1, 2, 3)
  956. plot_configs <- list()
  957. variables <- c("L", "K")
  958. # Adjust (if necessary) and rank columns
  959. for (variable in variables) {
  960. if (adjust) {
  961. df[[paste0("Avg_Zscore_", variable)]] <- ifelse(is.na(df[[paste0("Avg_Zscore_", variable)]]), 0.001, df[[paste0("Avg_Zscore_", variable)]])
  962. df[[paste0("Z_lm_", variable)]] <- ifelse(is.na(df[[paste0("Z_lm_", variable)]]), 0.001, df[[paste0("Z_lm_", variable)]])
  963. }
  964. df[[paste0("Rank_", variable)]] <- rank(df[[paste0("Avg_Zscore_", variable)]], na.last = "keep")
  965. df[[paste0("Rank_lm_", variable)]] <- rank(df[[paste0("Z_lm_", variable)]], na.last = "keep")
  966. }
  967. # Helper function to create a rank plot configuration
  968. create_plot_config <- function(variable, rank_var, zscore_var, y_label, sd_band, filter_na, with_annotations = TRUE) {
  969. num_enhancers <- sum(df[[zscore_var]] >= sd_band, na.rm = TRUE)
  970. num_suppressors <- sum(df[[zscore_var]] <= -sd_band, na.rm = TRUE)
  971. # Default plot config
  972. plot_config <- list(
  973. df = df,
  974. x_var = rank_var,
  975. y_var = zscore_var,
  976. x_label = "Rank",
  977. y_label = y_label,
  978. plot_type = "scatter",
  979. title = paste(y_label, "vs. Rank for", variable, "above", sd_band, "SD"),
  980. sd_band = sd_band,
  981. fill_positive = "#542788",
  982. fill_negative = "orange",
  983. alpha_positive = 0.3,
  984. alpha_negative = 0.3,
  985. shape = 3,
  986. size = 0.1,
  987. filter_na = filter_na,
  988. legend_position = "none"
  989. )
  990. # Selectively add annotations
  991. if (with_annotations) {
  992. plot_config$annotations <- list(
  993. list(
  994. x = nrow(df) / 2,
  995. y = 10,
  996. label = paste("Deletion Enhancers =", num_enhancers)
  997. ),
  998. list(
  999. x = nrow(df) / 2,
  1000. y = -10,
  1001. label = paste("Deletion Suppressors =", num_suppressors)
  1002. )
  1003. )
  1004. }
  1005. return(plot_config)
  1006. }
  1007. # Generate plots for each variable
  1008. for (variable in variables) {
  1009. rank_var <- if (is_lm) paste0("Rank_lm_", variable) else paste0("Rank_", variable)
  1010. zscore_var <- if (is_lm) paste0("Z_lm_", variable) else paste0("Avg_Zscore_", variable)
  1011. y_label <- if (is_lm) paste("Int Z score", variable) else paste("Avg Z score", variable)
  1012. # Loop through SD bands
  1013. for (sd_band in sd_bands) {
  1014. # Create plot with annotations
  1015. plot_configs[[length(plot_configs) + 1]] <-
  1016. create_plot_config(variable, rank_var, zscore_var, y_label, sd_band, filter_na, with_annotations = TRUE)
  1017. # Create plot without annotations
  1018. plot_configs[[length(plot_configs) + 1]] <-
  1019. create_plot_config(variable, rank_var, zscore_var, y_label, sd_band, filter_na, with_annotations = FALSE)
  1020. }
  1021. }
  1022. # Group delta plots in chunks of 6 per page
  1023. chunk_size <- 6
  1024. plot_chunks <- split(plot_configs, ceiling(seq_along(plot_configs) / chunk_size))
  1025. return(c(
  1026. lapply(plot_chunks, function(chunk) list(grid_layout = list(ncol = 3), plots = chunk))
  1027. ))
  1028. }
  1029. generate_correlation_plot_configs <- function(df, df_reference) {
  1030. # Define relationships for different-variable correlations
  1031. relationships <- list(
  1032. list(x = "L", y = "K"),
  1033. list(x = "L", y = "r"),
  1034. list(x = "L", y = "AUC"),
  1035. list(x = "K", y = "r"),
  1036. list(x = "K", y = "AUC"),
  1037. list(x = "r", y = "AUC")
  1038. )
  1039. # Filter both dataframes for missing linear model zscores for plotting
  1040. df <- df %>%
  1041. filter(!is.na(Z_lm_L))
  1042. df_reference <- df_reference %>%
  1043. filter(!is.na(Z_lm_L))
  1044. plot_configs <- list()
  1045. # Iterate over the option to highlight cyan points (TRUE/FALSE)
  1046. highlight_cyan_options <- c(FALSE, TRUE)
  1047. for (highlight_cyan in highlight_cyan_options) {
  1048. for (rel in relationships) {
  1049. # Extract relevant variable names for Z_lm values
  1050. x_var <- paste0("Z_lm_", rel$x)
  1051. y_var <- paste0("Z_lm_", rel$y)
  1052. # Find the max and min of both dataframes for printing linear regression line
  1053. xmin <- min(c(min(df[[x_var]], na.rm = TRUE), min(df_reference[[x_var]], na.rm = TRUE)), na.rm = TRUE)
  1054. xmax <- max(c(max(df[[x_var]], na.rm = TRUE), max(df_reference[[x_var]], na.rm = TRUE)), na.rm = TRUE)
  1055. # Extract the R-squared, intercept, and slope from the df (first value)
  1056. intercept <- df[[paste0("lm_intercept_", rel$x)]][1]
  1057. slope <- df[[paste0("lm_slope_", rel$x)]][1]
  1058. r_squared <- df[[paste0("lm_R_squared_", rel$x)]][1]
  1059. # Generate the label for the plot
  1060. plot_label <- paste("Interaction", rel$x, "vs.", rel$y)
  1061. # Construct plot config
  1062. plot_config <- list(
  1063. df = df,
  1064. df_reference = df_reference,
  1065. x_var = x_var,
  1066. y_var = y_var,
  1067. plot_type = "scatter",
  1068. title = plot_label,
  1069. annotations = list(
  1070. list(
  1071. x = mean(df[[x_var]], na.rm = TRUE),
  1072. y = mean(df[[y_var]], na.rm = TRUE),
  1073. label = paste("R-squared =", round(r_squared, 3))
  1074. )
  1075. ),
  1076. lm_line = list(
  1077. intercept = intercept,
  1078. slope = slope,
  1079. color = "tomato3",
  1080. linewidth = 0.8,
  1081. xmin = xmin,
  1082. xmax = xmax
  1083. ),
  1084. color = "gray70",
  1085. filter_na = TRUE,
  1086. cyan_points = highlight_cyan # include cyan points or not based on the loop
  1087. )
  1088. plot_configs <- append(plot_configs, list(plot_config))
  1089. }
  1090. }
  1091. return(list(plots = plot_configs))
  1092. }
  1093. main <- function() {
  1094. lapply(names(args$experiments), function(exp_name) {
  1095. exp <- args$experiments[[exp_name]]
  1096. exp_path <- exp$path
  1097. exp_sd <- exp$sd
  1098. out_dir <- file.path(exp_path, "zscores")
  1099. out_dir_qc <- file.path(exp_path, "zscores", "qc")
  1100. dir.create(out_dir, recursive = TRUE, showWarnings = FALSE)
  1101. dir.create(out_dir_qc, recursive = TRUE, showWarnings = FALSE)
  1102. # Each list of plots corresponds to a separate file
  1103. message("Loading and filtering data for experiment: ", exp_name)
  1104. df <- load_and_filter_data(args$easy_results_file, sd = exp_sd) %>%
  1105. update_gene_names(args$sgd_gene_list) %>%
  1106. as_tibble()
  1107. l_vs_k_plot_configs <- list(
  1108. plots = list(
  1109. list(
  1110. df = df,
  1111. x_var = "L",
  1112. y_var = "K",
  1113. plot_type = "scatter",
  1114. tooltip_vars = c("OrfRep", "Gene", "delta_bg"),
  1115. title = "Raw L vs K before quality control",
  1116. color_var = "conc_num_factor_factor",
  1117. error_bar = FALSE,
  1118. legend_position = "right"
  1119. )
  1120. )
  1121. )
  1122. message("Calculating summary statistics before quality control")
  1123. df_stats <- calculate_summary_stats( # formerly X_stats_ALL
  1124. df = df,
  1125. variables = c("L", "K", "r", "AUC", "delta_bg"),
  1126. group_vars = c("conc_num", "conc_num_factor_factor"))$df_with_stats
  1127. frequency_delta_bg_plot_configs <- list(
  1128. plots = list(
  1129. list(
  1130. df = df_stats,
  1131. x_var = "delta_bg",
  1132. y_var = NULL,
  1133. plot_type = "density",
  1134. title = "Density plot for Delta Background by [Drug] (All Data)",
  1135. color_var = "conc_num_factor_factor",
  1136. x_label = "Delta Background",
  1137. y_label = "Density",
  1138. error_bar = FALSE,
  1139. legend_position = "right"
  1140. ),
  1141. list(
  1142. df = df_stats,
  1143. x_var = "delta_bg",
  1144. y_var = NULL,
  1145. plot_type = "bar",
  1146. title = "Bar plot for Delta Background by [Drug] (All Data)",
  1147. color_var = "conc_num_factor_factor",
  1148. x_label = "Delta Background",
  1149. y_label = "Count",
  1150. error_bar = FALSE,
  1151. legend_position = "right"
  1152. )
  1153. )
  1154. )
  1155. message("Filtering rows above delta background tolerance for plotting")
  1156. df_above_tolerance <- df %>% filter(DB == 1)
  1157. above_threshold_plot_configs <- list(
  1158. plots = list(
  1159. list(
  1160. df = df_above_tolerance,
  1161. x_var = "L",
  1162. y_var = "K",
  1163. plot_type = "scatter",
  1164. tooltip_vars = c("OrfRep", "Gene", "delta_bg"),
  1165. title = paste("Raw L vs K for strains above Delta Background threshold of",
  1166. round(df_above_tolerance$delta_bg_tolerance[[1]], 3), "or above"),
  1167. color_var = "conc_num_factor_factor",
  1168. position = "jitter",
  1169. annotations = list(
  1170. list(
  1171. x = median(df_above_tolerance$L, na.rm = TRUE) / 2,
  1172. y = median(df_above_tolerance$K, na.rm = TRUE) / 2,
  1173. label = paste("# strains above Delta Background tolerance =", nrow(df_above_tolerance))
  1174. )
  1175. ),
  1176. error_bar = FALSE,
  1177. legend_position = "right"
  1178. )
  1179. )
  1180. )
  1181. message("Setting rows above delta background tolerance to NA")
  1182. df_na <- df %>% mutate(across(all_of(c("L", "K", "r", "AUC", "delta_bg")), ~ ifelse(DB == 1, NA, .))) # formerly X
  1183. message("Calculating summary statistics across all strains")
  1184. ss <- calculate_summary_stats(
  1185. df = df_na,
  1186. variables = c("L", "K", "r", "AUC", "delta_bg"),
  1187. group_vars = c("conc_num", "conc_num_factor_factor"))
  1188. df_na_ss <- ss$summary_stats
  1189. df_na_stats <- ss$df_with_stats # formerly X_stats_ALL
  1190. write.csv(df_na_ss, file = file.path(out_dir, "summary_stats_all_strains.csv"), row.names = FALSE)
  1191. # This can help bypass missing values ggplot warnings during testing
  1192. df_na_stats_filtered <- df_na_stats %>% filter(if_all(all_of(c("L", "K", "r", "AUC", "delta_bg")), is.finite))
  1193. message("Calculating summary statistics excluding zero values")
  1194. df_no_zeros <- df_na %>% filter(L > 0) # formerly X_noZero
  1195. df_no_zeros_stats <- calculate_summary_stats(
  1196. df = df_no_zeros,
  1197. variables = c("L", "K", "r", "AUC", "delta_bg"),
  1198. group_vars = c("conc_num", "conc_num_factor_factor")
  1199. )$df_with_stats
  1200. message("Filtering by 2SD of K")
  1201. df_na_within_2sd_k <- df_na_stats %>%
  1202. filter(K >= (mean_K - 2 * sd_K) & K <= (mean_K + 2 * sd_K))
  1203. df_na_outside_2sd_k <- df_na_stats %>%
  1204. filter(K < (mean_K - 2 * sd_K) | K > (mean_K + 2 * sd_K))
  1205. message("Calculating summary statistics for L within 2SD of K")
  1206. # TODO We're omitting the original z_max calculation, not sure if needed?
  1207. ss <- calculate_summary_stats(df_na_within_2sd_k, "L", # formerly X_stats_BY_L_within_2SD_K
  1208. group_vars = c("conc_num", "conc_num_factor_factor"))$summary_stats
  1209. write.csv(ss,
  1210. file = file.path(out_dir_qc, "max_observed_L_vals_for_spots_within_2SD_K.csv"),
  1211. row.names = FALSE)
  1212. message("Calculating summary statistics for L outside 2SD of K")
  1213. ss <- calculate_summary_stats(df_na_outside_2sd_k, "L", # formerly X_stats_BY_L_outside_2SD_K
  1214. group_vars = c("conc_num", "conc_num_factor_factor"))
  1215. df_na_l_outside_2sd_k_stats <- ss$df_with_stats
  1216. write.csv(ss$summary_stats,
  1217. file = file.path(out_dir, "max_observed_L_vals_for_spots_outside_2SD_K.csv"),
  1218. row.names = FALSE)
  1219. plate_analysis_plot_configs <- generate_plate_analysis_plot_configs(
  1220. variables = c("L", "K", "r", "AUC", "delta_bg"),
  1221. df_before = df_stats,
  1222. df_after = df_na_stats_filtered
  1223. )
  1224. plate_analysis_boxplot_configs <- generate_plate_analysis_plot_configs(
  1225. variables = c("L", "K", "r", "AUC", "delta_bg"),
  1226. df_before = df_stats,
  1227. df_after = df_na_stats_filtered,
  1228. plot_type = "box"
  1229. )
  1230. plate_analysis_no_zeros_plot_configs <- generate_plate_analysis_plot_configs(
  1231. variables = c("L", "K", "r", "AUC", "delta_bg"),
  1232. stages = c("after"), # Only after QC
  1233. df_after = df_no_zeros_stats
  1234. )
  1235. plate_analysis_no_zeros_boxplot_configs <- generate_plate_analysis_plot_configs(
  1236. variables = c("L", "K", "r", "AUC", "delta_bg"),
  1237. stages = c("after"), # Only after QC
  1238. df_after = df_no_zeros_stats,
  1239. plot_type = "box"
  1240. )
  1241. l_outside_2sd_k_plot_configs <- list(
  1242. plots = list(
  1243. list(
  1244. df = df_na_l_outside_2sd_k_stats,
  1245. x_var = "L",
  1246. y_var = "K",
  1247. plot_type = "scatter",
  1248. title = "Raw L vs K for strains falling outside 2 SD of the K mean at each Conc",
  1249. color_var = "conc_num_factor_factor",
  1250. position = "jitter",
  1251. tooltip_vars = c("OrfRep", "Gene", "delta_bg"),
  1252. annotations = list(
  1253. list(
  1254. x = median(df_na_l_outside_2sd_k_stats$L, na.rm = TRUE) / 2,
  1255. y = median(df_na_l_outside_2sd_k_stats$K, na.rm = TRUE) / 2,
  1256. label = paste("Total strains:", nrow(df_na_l_outside_2sd_k_stats))
  1257. )
  1258. ),
  1259. error_bar = FALSE,
  1260. legend_position = "right"
  1261. )
  1262. )
  1263. )
  1264. delta_bg_outside_2sd_k_plot_configs <- list(
  1265. plots = list(
  1266. list(
  1267. df = df_na_l_outside_2sd_k_stats,
  1268. x_var = "delta_bg",
  1269. x_label = "Delta Background",
  1270. y_var = "K",
  1271. plot_type = "scatter",
  1272. title = "Delta Background vs K for strains falling outside 2 SD of K",
  1273. color_var = "conc_num_factor_factor",
  1274. position = "jitter",
  1275. tooltip_vars = c("OrfRep", "Gene", "delta_bg"),
  1276. annotations = list(
  1277. list(
  1278. x = 0.05,
  1279. y = 0.95,
  1280. hjust = 0,
  1281. vjust = 1,
  1282. label = paste("Total strains:", nrow(df_na_l_outside_2sd_k_stats)),
  1283. size = 5
  1284. )
  1285. ),
  1286. error_bar = FALSE,
  1287. legend_position = "right"
  1288. )
  1289. )
  1290. )
  1291. message("Generating quality control plots in parallel")
  1292. # future::plan(future::multicore, workers = parallel::detectCores())
  1293. future::plan(future::multisession, workers = 3) # generate 3 plot files in parallel
  1294. plot_configs <- list(
  1295. list(out_dir = out_dir_qc, filename = "L_vs_K_before_quality_control",
  1296. plot_configs = l_vs_k_plot_configs, page_width = 12, page_height = 8),
  1297. list(out_dir = out_dir_qc, filename = "frequency_delta_background",
  1298. plot_configs = frequency_delta_bg_plot_configs, page_width = 12, page_height = 8),
  1299. list(out_dir = out_dir_qc, filename = "L_vs_K_above_threshold",
  1300. plot_configs = above_threshold_plot_configs, page_width = 12, page_height = 8),
  1301. list(out_dir = out_dir_qc, filename = "plate_analysis",
  1302. plot_configs = plate_analysis_plot_configs, page_width = 14, page_height = 9),
  1303. list(out_dir = out_dir_qc, filename = "plate_analysis_boxplots",
  1304. plot_configs = plate_analysis_boxplot_configs, page_width = 18, page_height = 9),
  1305. list(out_dir = out_dir_qc, filename = "plate_analysis_no_zeros",
  1306. plot_configs = plate_analysis_no_zeros_plot_configs, page_width = 14, page_height = 9),
  1307. list(out_dir = out_dir_qc, filename = "plate_analysis_no_zeros_boxplots",
  1308. plot_configs = plate_analysis_no_zeros_boxplot_configs, page_width = 18, page_height = 9),
  1309. list(out_dir = out_dir_qc, filename = "L_vs_K_for_strains_2SD_outside_mean_K",
  1310. plot_configs = l_outside_2sd_k_plot_configs, page_width = 10, page_height = 8),
  1311. list(out_dir = out_dir_qc, filename = "delta_background_vs_K_for_strains_2SD_outside_mean_K",
  1312. plot_configs = delta_bg_outside_2sd_k_plot_configs, page_width = 10, page_height = 8)
  1313. )
  1314. # Parallelize background and quality control plot generation
  1315. # furrr::future_map(plot_configs, function(config) {
  1316. # generate_and_save_plots(config$out_dir, config$filename, config$plot_configs,
  1317. # page_width = config$page_width, page_height = config$page_height)
  1318. # }, .options = furrr_options(seed = TRUE))
  1319. # Loop over background strains
  1320. # TODO currently only tested against one strain, if we want to do multiple strains we'll
  1321. # have to rename or group the output files by dir or something so they don't get clobbered
  1322. bg_strains <- c("YDL227C")
  1323. lapply(bg_strains, function(strain) {
  1324. message("Processing background strain: ", strain)
  1325. # Handle missing data by setting zero values to NA
  1326. # and then removing any rows with NA in L col
  1327. df_bg <- df_na %>%
  1328. filter(OrfRep == strain) %>%
  1329. mutate(
  1330. L = if_else(L == 0, NA, L),
  1331. K = if_else(K == 0, NA, K),
  1332. r = if_else(r == 0, NA, r),
  1333. AUC = if_else(AUC == 0, NA, AUC)
  1334. ) %>%
  1335. filter(!is.na(L))
  1336. message("Calculating background summary statistics")
  1337. ss_bg <- calculate_summary_stats(df_bg, c("L", "K", "r", "AUC", "delta_bg"), # formerly X_stats_BY
  1338. group_vars = c("OrfRep", "Drug", "conc_num", "conc_num_factor_factor"))
  1339. summary_stats_bg <- ss_bg$summary_stats
  1340. df_bg_stats <- ss_bg$df_with_stats
  1341. write.csv(
  1342. summary_stats_bg,
  1343. file = file.path(out_dir, paste0("summary_stats_background_strain_", strain, ".csv")),
  1344. row.names = FALSE)
  1345. message("Setting missing reference values to the highest theoretical value at each drug conc for L")
  1346. df_reference <- df_na_stats %>% # formerly X2_RF
  1347. filter(OrfRep == strain) %>%
  1348. filter(!is.na(L)) %>%
  1349. group_by(OrfRep, Drug, conc_num, conc_num_factor_factor) %>%
  1350. mutate(
  1351. max_l_theoretical = max(max_L, na.rm = TRUE),
  1352. L = ifelse(L == 0 & !is.na(L) & conc_num > 0, max_l_theoretical, L),
  1353. SM = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, 1, 0),
  1354. L = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, max_l_theoretical, L)) %>%
  1355. ungroup()
  1356. message("Calculating reference strain summary statistics")
  1357. df_reference_summary_stats <- calculate_summary_stats( # formerly X_stats_X2_RF
  1358. df = df_reference,
  1359. variables = c("L", "K", "r", "AUC"),
  1360. group_vars = c("OrfRep", "Drug", "conc_num", "conc_num_factor_factor")
  1361. )$df_with_stats
  1362. # Summarise statistics for error bars
  1363. df_reference_summary_stats <- df_reference_summary_stats %>%
  1364. group_by(OrfRep, Drug, conc_num, conc_num_factor_factor) %>%
  1365. mutate(
  1366. mean_mean_L = first(mean_L),
  1367. mean_sd_L = first(sd_L),
  1368. mean_mean_K = first(mean_K),
  1369. mean_sd_K = first(sd_K),
  1370. mean_mean_r = first(mean_r),
  1371. mean_sd_r = first(sd_r),
  1372. mean_mean_AUC = first(mean_AUC),
  1373. mean_sd_AUC = first(sd_AUC),
  1374. .groups = "drop"
  1375. )
  1376. message("Calculating reference strain interaction summary statistics") # formerly X_stats_interaction
  1377. df_reference_interaction_stats <- calculate_summary_stats(
  1378. df = df_reference,
  1379. variables = c("L", "K", "r", "AUC"),
  1380. group_vars = c("OrfRep", "Gene", "num", "Drug", "conc_num", "conc_num_factor_factor")
  1381. )$df_with_stats
  1382. message("Calculating reference strain interaction scores")
  1383. reference_results <- calculate_interaction_scores(df_reference_interaction_stats, df_bg_stats, "reference")
  1384. df_reference_interactions_joined <- reference_results$full_data
  1385. df_reference_interactions <- reference_results$interactions
  1386. write.csv(reference_results$calculations, file = file.path(out_dir, "zscore_calculations_reference.csv"), row.names = FALSE)
  1387. write.csv(df_reference_interactions, file = file.path(out_dir, "zscore_interactions_reference.csv"), row.names = FALSE)
  1388. message("Generating reference interaction plots")
  1389. reference_plot_configs <- generate_interaction_plot_configs(df_reference_summary_stats, df_reference_interactions_joined, "reference")
  1390. generate_and_save_plots(out_dir, "interaction_plots_reference", reference_plot_configs, page_width = 16, page_height = 16)
  1391. message("Setting missing deletion values to the highest theoretical value at each drug conc for L")
  1392. df_deletion <- df_na_stats %>% # formerly X2
  1393. filter(OrfRep != strain) %>%
  1394. filter(!is.na(L)) %>%
  1395. group_by(OrfRep, Gene, conc_num, conc_num_factor_factor) %>%
  1396. mutate(
  1397. max_l_theoretical = max(max_L, na.rm = TRUE),
  1398. L = ifelse(L == 0 & !is.na(L) & conc_num > 0, max_l_theoretical, L),
  1399. SM = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, 1, SM),
  1400. L = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, max_l_theoretical, L)) %>%
  1401. ungroup()
  1402. message("Calculating deletion strain(s) interaction summary statistics")
  1403. df_deletion_stats <- calculate_summary_stats(
  1404. df = df_deletion,
  1405. variables = c("L", "K", "r", "AUC"),
  1406. group_vars = c("OrfRep", "Gene", "Drug", "conc_num", "conc_num_factor_factor")
  1407. )$df_with_stats
  1408. message("Calculating deletion strain(s) interactions scores")
  1409. deletion_results <- calculate_interaction_scores(df_deletion_stats, df_bg_stats, "deletion")
  1410. df_interactions <- deletion_results$interactions
  1411. df_interactions_joined <- deletion_results$full_data
  1412. write.csv(deletion_results$calculations, file = file.path(out_dir, "zscore_calculations.csv"), row.names = FALSE)
  1413. write.csv(df_interactions, file = file.path(out_dir, "zscore_interactions.csv"), row.names = FALSE)
  1414. # message("Generating deletion interaction plots")
  1415. # deletion_plot_configs <- generate_interaction_plot_configs(df_reference_summary_stats, df_interactions_joined, "deletion")
  1416. # generate_and_save_plots(out_dir, "interaction_plots", deletion_plot_configs, page_width = 16, page_height = 16)
  1417. # message("Writing enhancer/suppressor csv files")
  1418. # interaction_threshold <- 2 # TODO add to study config?
  1419. # enhancer_condition_L <- df_interactions$Avg_Zscore_L >= interaction_threshold
  1420. # suppressor_condition_L <- df_interactions$Avg_Zscore_L <= -interaction_threshold
  1421. # enhancer_condition_K <- df_interactions$Avg_Zscore_K >= interaction_threshold
  1422. # suppressor_condition_K <- df_interactions$Avg_Zscore_K <= -interaction_threshold
  1423. # enhancers_L <- df_interactions[enhancer_condition_L, ]
  1424. # suppressors_L <- df_interactions[suppressor_condition_L, ]
  1425. # enhancers_K <- df_interactions[enhancer_condition_K, ]
  1426. # suppressors_K <- df_interactions[suppressor_condition_K, ]
  1427. # enhancers_and_suppressors_L <- df_interactions[enhancer_condition_L | suppressor_condition_L, ]
  1428. # enhancers_and_suppressors_K <- df_interactions[enhancer_condition_K | suppressor_condition_K, ]
  1429. # write.csv(enhancers_L, file = file.path(out_dir, "zscore_interactions_deletion_enhancers_L.csv"), row.names = FALSE)
  1430. # write.csv(suppressors_L, file = file.path(out_dir, "zscore_interactions_deletion_suppressors_L.csv"), row.names = FALSE)
  1431. # write.csv(enhancers_K, file = file.path(out_dir, "zscore_interactions_deletion_enhancers_K.csv"), row.names = FALSE)
  1432. # write.csv(suppressors_K, file = file.path(out_dir, "zscore_interactions_deletion_suppressors_K.csv"), row.names = FALSE)
  1433. # write.csv(enhancers_and_suppressors_L,
  1434. # file = file.path(out_dir, "zscore_interactions_deletion_enhancers_and_suppressors_L.csv"), row.names = FALSE)
  1435. # write.csv(enhancers_and_suppressors_K,
  1436. # file = file.path(out_dir, "zscore_interaction_deletion_enhancers_and_suppressors_K.csv"), row.names = FALSE)
  1437. # message("Writing linear model enhancer/suppressor csv files")
  1438. # lm_interaction_threshold <- 2 # TODO add to study config?
  1439. # enhancers_lm_L <- df_interactions[df_interactions$Z_lm_L >= lm_interaction_threshold, ]
  1440. # suppressors_lm_L <- df_interactions[df_interactions$Z_lm_L <= -lm_interaction_threshold, ]
  1441. # enhancers_lm_K <- df_interactions[df_interactions$Z_lm_K >= lm_interaction_threshold, ]
  1442. # suppressors_lm_K <- df_interactions[df_interactions$Z_lm_K <= -lm_interaction_threshold, ]
  1443. # write.csv(enhancers_lm_L, file = file.path(out_dir, "zscore_interactions_deletion_enhancers_lm_L.csv"), row.names = FALSE)
  1444. # write.csv(suppressors_lm_L, file = file.path(out_dir, "zscore_interactions_deletion_suppressors_lm_L.csv"), row.names = FALSE)
  1445. # write.csv(enhancers_lm_K, file = file.path(out_dir, "zscore_interactions_deletion_enhancers_lm_K.csv"), row.names = FALSE)
  1446. # write.csv(suppressors_lm_K, file = file.path(out_dir, "zscore_interactions_deletion_suppressors_lm_K.csv"), row.names = FALSE)
  1447. # message("Generating rank plots")
  1448. # rank_plot_configs <- generate_rank_plot_configs(
  1449. # df_interactions,
  1450. # is_lm = FALSE,
  1451. # adjust = TRUE
  1452. # )
  1453. # generate_and_save_plots(out_dir, "rank_plots", rank_plot_configs,
  1454. # page_width = 18, page_height = 12)
  1455. # message("Generating ranked linear model plots")
  1456. # rank_lm_plot_configs <- generate_rank_plot_configs(
  1457. # df_interactions,
  1458. # is_lm = TRUE,
  1459. # adjust = TRUE
  1460. # )
  1461. # generate_and_save_plots(out_dir, "rank_plots_lm", rank_lm_plot_configs,
  1462. # page_width = 18, page_height = 12)
  1463. # message("Generating overlapped ranked plots")
  1464. # rank_plot_filtered_configs <- generate_rank_plot_configs(
  1465. # df_interactions,
  1466. # is_lm = FALSE,
  1467. # adjust = FALSE,
  1468. # filter_na = TRUE,
  1469. # overlap_color = TRUE
  1470. # )
  1471. # generate_and_save_plots(out_dir, "rank_plots_na_rm", rank_plot_filtered_configs,
  1472. # page_width = 18, page_height = 12)
  1473. # message("Generating overlapped ranked linear model plots")
  1474. # rank_plot_lm_filtered_configs <- generate_rank_plot_configs(
  1475. # df_interactions,
  1476. # is_lm = TRUE,
  1477. # adjust = FALSE,
  1478. # filter_na = TRUE,
  1479. # overlap_color = TRUE
  1480. # )
  1481. # generate_and_save_plots(out_dir, "rank_plots_lm_na_rm", rank_plot_lm_filtered_configs,
  1482. # page_width = 18, page_height = 12)
  1483. message("Generating correlation curve parameter pair plots")
  1484. correlation_plot_configs <- generate_correlation_plot_configs(
  1485. df_interactions,
  1486. df_reference_interactions
  1487. )
  1488. generate_and_save_plots(out_dir, "correlation_cpps", correlation_plot_configs,
  1489. page_width = 10, page_height = 7)
  1490. })
  1491. })
  1492. }
  1493. main()